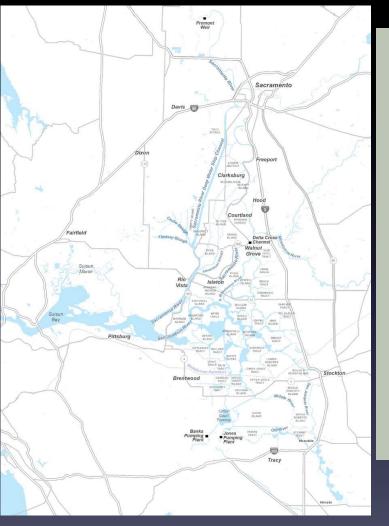
Welcome to the Conservation Lecture Series

https://www.wildlife.ca.gov/Conservation/Lectures

Questions? Contact Margaret.Mantor@wildlife.ca.gov

Improving monitoring: from design to evaluation

Zan Rubin Matt Kondolf Blanca Ríos-Touma Mary E. Power Jennifer Natali *University of California, Berkeley*



What is an acre?

Outline:

1) Thoughts on evaluation 2) Example: lower Colorado River

The Sacramento-San Joaquin River Bay Delta Conservation Plan

Habitat restoration will be closely monitored and implemented over time using established adaptive management principles.

Habitat Protection and Restoration:

New Floodplain in the south Delta10,Tidal Habitat65,Channel Margin20Riparian Habitat5,0Grassland Habitat10,Other Habitats5,0Managed Wetlands6,5Cultivated Lands~4Enhanced Floodplain Habitatin the Yolo Bypass

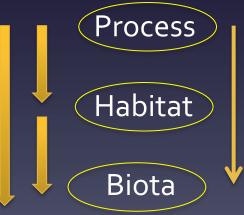
10,000 acres 65,000 acres 20 levee miles 5,000 acres 10,000 acres 5,000 acres 6,500 acres ~45,000 acres

Restoration Approach

Process

Form (Limiting Habitat)

Restoration Basis



What to measure?

Questions

- Are there universal metrics of success
- What do we measure?
- How do we set targets?

Are there universal metrics of success

- If you say yes... then what is it? And how much of that do we want? Is more always better?
- If you say no... then we rely on the project goals to define success (and project goals may be overly modest or entirely misguided)

Failure!

"Restored" channel 1996

1997

Uvas Creek, CA

Failure = Movement

Success≠ No Movement

Process -> Habitat

Habitat (Heterogeneity)

Freshwater Biology

Freshwater Biology (2012) 57, 1076-1095

doi:10.1111/j.1365-2427.2012.02763.x

APPLIED ISSUE

Range of variability of channel complexity in urban, restored and forested reference streams

BRIAN G. LAUB*, DANIEL W. BAKER[†], BRIAN P. BLEDSOE[‡] AND MARGARET A. PALMER[§]

Laub et al., 2012

1086 B. G. Laub et al.

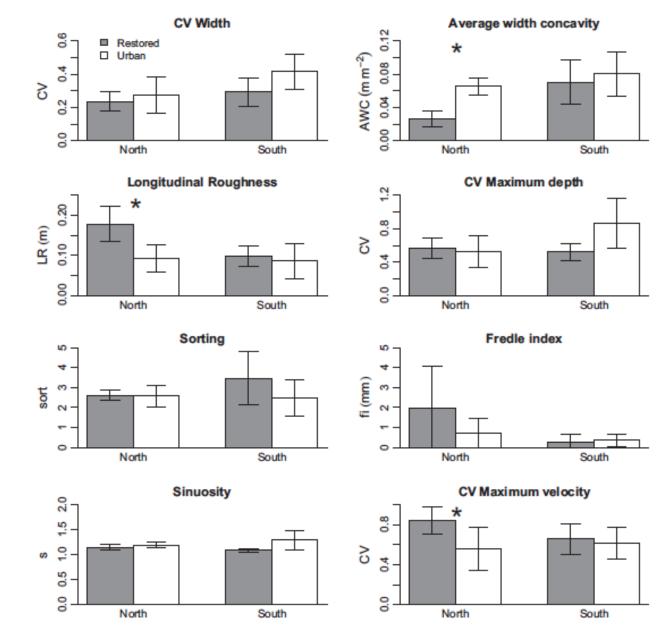


Fig. 6 Comparison of individual complexity metrics for northern restored (n = 5), northern urban (n = 8, except longitudinal roughness, n = 7), southern restored (n = 4) and southern urban streams (n = 5) in Anne Arundel County, Maryland. * above bars indicates a significant difference between restored and urban streams within that region (north or south) at $\alpha = 0.05$. Error bars are standard deviations.

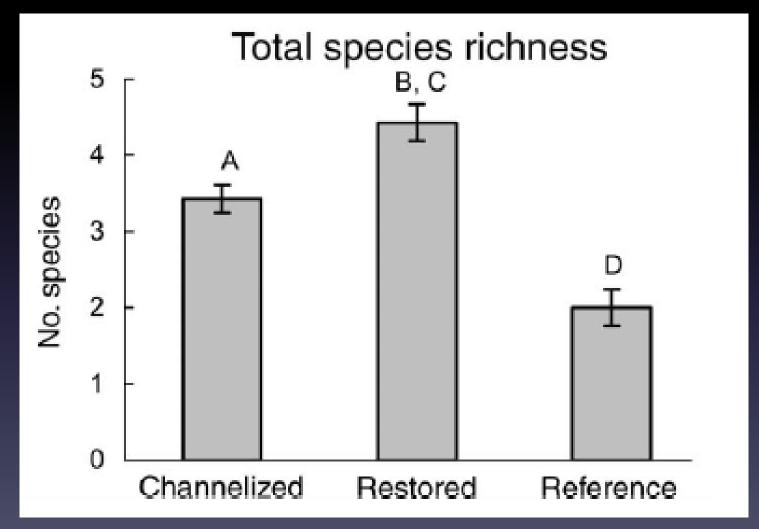
QHEI Pool/Riffle Development Metric

Excellent Pool/Riffle Development:

Pools - > 1 m Deep Glides - Only Transitional Habitats Runs - > 0.5 m Deep Riffles - Deep, Large Substrates Morphology - All Habitats Easily Definable, Riffles Narrow and Deep, Pools Wide with Deep and Shallow Sections

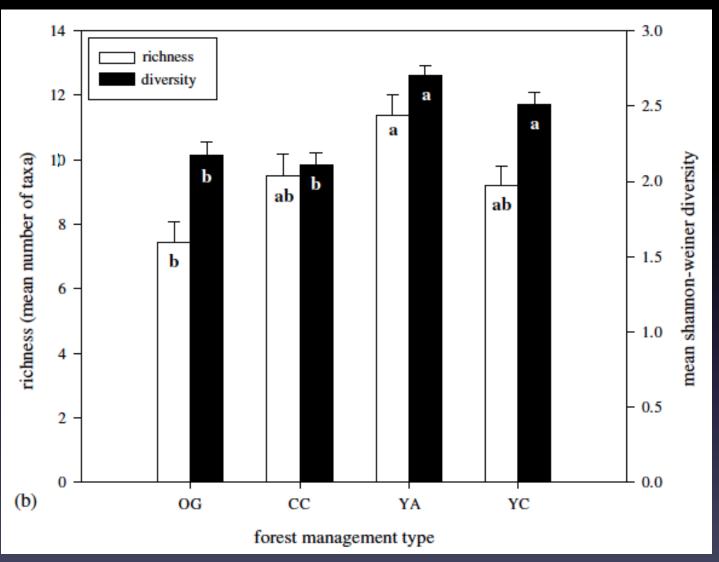
Good Pool/Riffle Development:

Pools - > 0.7 m Deep Glides - Mostly Transitional Habitats Runs - Deep, but < 0.5 m Riffles - Some Deep Areas, Large Substrates (At Least Large Gravels) Morphology - All Habitats Fairly Well Definable, Riffles Typically Narrower Than Most Pools


"Old " OHEI		"New" OHEI	
Substrate	15 pts	Substrate	20 pt
1) Type	2-14	1) Type	0-20
2) Quality	-2-2	2) Quality	-5-3
Instream Cover	15 pts	Instream Cover	20 pt
1) Type	0-8	1) Type	0-9
2) Amount	1-7	2) Amount	1-11
Channel Quality	15 pts	Channel Quality	20 pt
1) Sinuosity	1-4	1) Sinuosity	1-4
Development	1-4	Development	1-7
Channelization	1-4	Channelization	1-6
4) Stability	1-3	4) Stability	1-3
Riparian/Erosion	15 pts	Riparian/Erosion	10 pt
1) Width	0-5	1) Width	0-4
Floodplain Quality	1-5	2) Floodplain Quality	0-3
3) Bank Erosion	1-5	3) Bank Erosion	1-3
Pool/Riffle	15 pts	Pool Riffle	20 pt
1) Max. Depth	0-3	1) Max Depth	0-6
2) Cover Quality	0-3	2)	
Current Available	-2-4	3) Current Available	-2-4
Pool Morphology	0-2	4) Pool Morphology	0-2
5) Riffle/Run Depth	1-3	5) Riffle/Run Depth	0-4
Riffle Substrate Stability	0-1	6) Riffle Substrate Stab.	0-2
7) Riffle Embeddedness	0-1	7) Riffle Embeddedness	-1-2
Drainage Arca	0-15 pts	Drainage Area	Not
			included
Gradient	0-10 pts	Gradient	0-10 pt
Total Score	0-100 pts.	Total Score	0-100 p

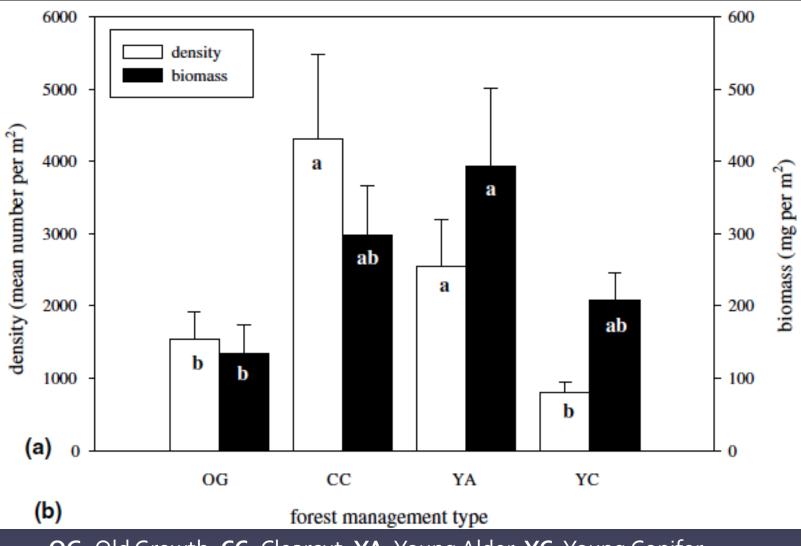
- Generic habitat assessments (EPA Rapid Bioassessment Protocol or Ohio Qualitative Habitat Evaluation Index)
- What is optimal? How do we know?
- Many metrics imply more/less is good...
- Some metrics can be "rigged" through channel alteration

8. Bank Stability (score each bank) Note: determine left or right side by facing downstream.	Banks stable erosion or ba absent or min potential for problems. < affected.	ank failure nimal; litt future	e le	Moderate infrequent erosion m over. 5-3 reach has	it, small iostly he 0% of b	areas of ealed oank in	Moderate 60% of b areas of e erosion p floods.	oank in r erosion;	each has high	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.			
SCORE (LB)	Left Bank	10	9	8	7	6	5	4	3	2	1	0	
SCORE (RB)	Right Bank	10	9	8	7	6	5	4	3	2	1	0	

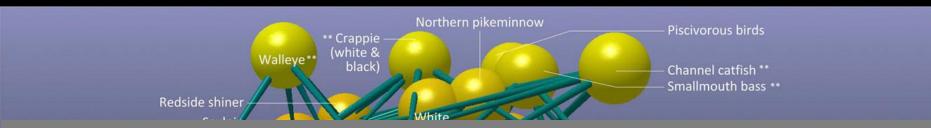

EPA Rapid Bioassessment Protocol

Biotic Surrogates The Problem with "More is Better"

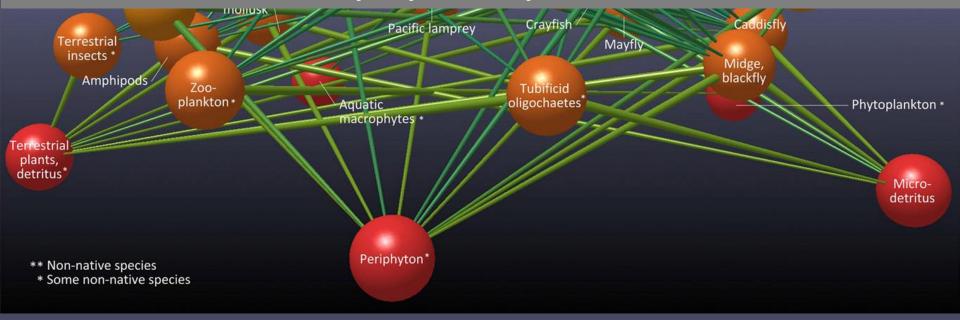
Lepori et al., 2005


The Problem with "More is Better"

OG-Old Growth, CC- Clearcut, YA-Young Alder, YC-Young Conifer


Hernandez et al., 2005

The Problem with "More is Better"



OG-Old Growth, CC- Clearcut, YA-Young Alder, YC-Young Conifer

Hernandez et al., 2005

Time consuming and doesn't consider interactions with physical processes and habitat

Naiman et al. 2012

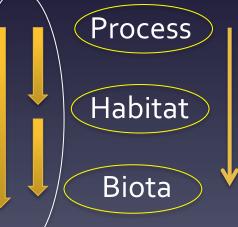
Restoration

Evaluation Metrics

Area of habitat Trees planted Length of channel Project stability

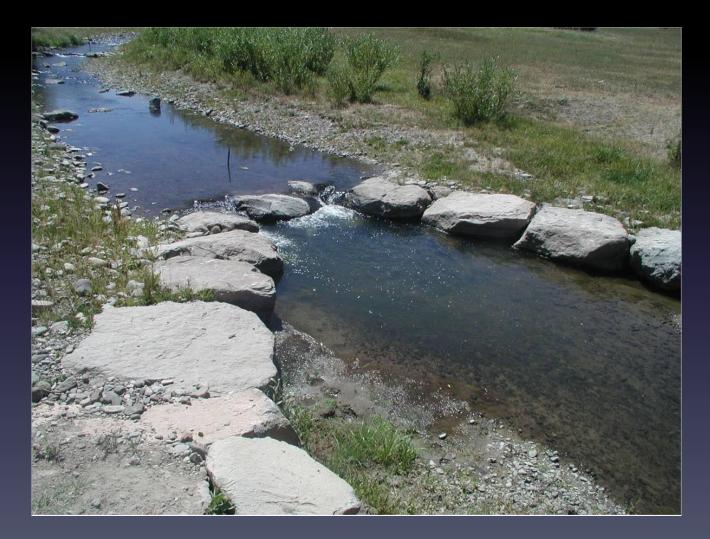
Habitat quality Biodiversity Ecosystem functions

Easy to measure, but may not be relevant


More appropriate but harder to measure and difficult to set

targets

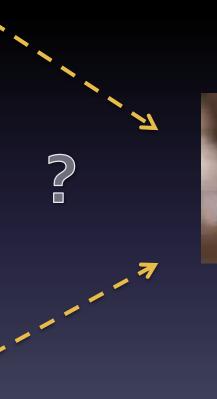
What to measure?


Scouring winter floods Drought or artificial regulation Large Roach Steelhead Large Roach Steelhead small predators small predators Armored or Sessile tuft midges Grazers mayflies mayflies Tuft Midges armored or sessile grazers algae algae

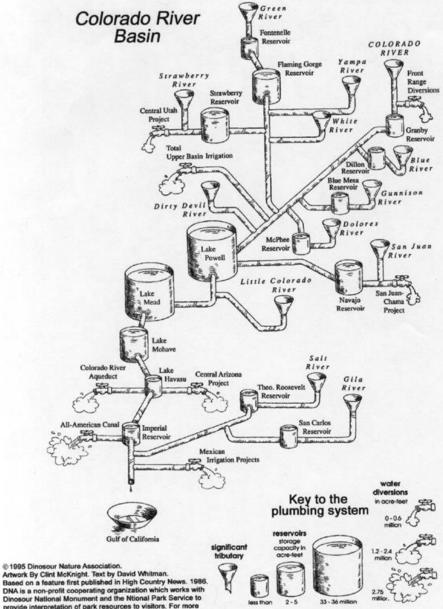
Power, Parker, and Wootton, 1996

Project acceptance	Acceptance by interest group *										0	1.5	1-15
-	Acceptance by entire public *										0	3	1-15
-	Acceptance by project work group *										0	1	1-15
Stakeholder participation	Satisfaction of interest groups with the design of the participation process										c	1-2.5	1-5
-	Satisfaction of the public with participation opportunities										c	1-2.5	1-5
-	Satisfaction of interest groups with participation opportunities										c	1-2	1-5
Recreational use	Number of visitors											1	1-15
	Variety of recreational opportunities *	0										0.5	1-15
-	Public site accessibility for recreation											0.5	1-15
Landscape	Diversity and spatial arrangement of habitat types *	•	•		•	•	•	•	•	•		3.5-5.5	3-15
	Aesthetic landscape value *	0										1.5-3	1-15
Longitudinal connectivity	Barrier-free migration routes for fish				0							1	1-5
Hydrogeomorphology and hydraulics	Inundation dynamics: duration, frequency and extent of flooding					•				•		0.5	1-15
-	Variability of measured wetted channel width *											2.5	1-15
	Variability of visually estimated wetted channel width *		0	•		0						1	1-15
-	Variability of flow velocity		0	•								2.5-5	1-15
-	Depth variability at bankfull discharge		0	•				•	•			2.5	1-15
Bed load	Bedload regime		•	0	•				•			1-18	1-15
Organic material	Short-term leaf retention capacity		•			•				0		1.5	1-15
	Quantity of large wood					•				0		1	1-15
	Quantity and composition of floating organic matter and abundance and diversity of colonizing snails				0	•		•	•	•		1.5	1-5
River bed	Permeability of river bed •		•	•			0					2.5	3-15
-	Diversity of geomorphic river bed structures *		0	•	•	•	٠	•	•	•		1.5	1-15
	Temporal changes in diversity of geomorphic river bed structures *		0	•	•	•	•	•	•	•		2	1-15
	Clogging of hyporheic sediments											1-1.5	1-15
	Grain-size distribution of substratum *		0	•			٠		٠			1.5	1-15
	Degree and type of anthropogenic modification		0						٠			1	1-15

Shore	Width and degree of naturalness (vegetation, composition of ground) of riparian zone		0		•		•		•	•	•	1	1-15
	Quantity and spatial extent of morphological units	•	0			•	0			•		1.5	1-15
	Temporal changes in the quantity and spatial extent of morphological units	•	0			•	0			•		1.5-2.5	1-15
	Shoreline length											2	1-15
	Degree and type of anthropogenic modification		0				٠	0	٠	٠	•	1	1-15
Transition zones	Food subsidies across land-water boundaries						•					5.5	1-2
	Exchange of dissolved nutrients and other solutes between river and groundwater	•	•	•	•			0				5.5	3-15
	Community composition and density of small mammals on floodplain						•			0		1	1-15
Refugia	Availability of three types of refugia (hyporheic refugia, shoreline habitats, and intact tributaries)			•		•	•	•	•	•		5.5	1-5
Temperature	Spatial and temporal variation in water temperature *	•			0		•	•				1	1-15
Fish	Age structure of fish population		•	٠		•	•			0		4	1-15
	Fish species abundance and dominance											4	1-15
	Diversity of ecological guilds of fish											4	1-15
Fish habitat	Presence of cover and instream structures		•	•			•			٠	•	1.5	1-15
Macroinvertebrates	Richness and density of terrestrial riparian arthropods						•			0		1.5	1-5
	Occurrence of both surface water and groundwater organisms in the hyporheic zone			•				•		0		4	1-15
	Taxonomic composition of macroinvertebrate community		•	•		•	•	•		0		0.5	1-15
	Presence of amphibiontic species in the groundwater			•				•		0		4	1-15
Vegetation	Presence of typical floodplain species					٠			0			0.5	1-15
	Succession and rejuvenation of plant species on floodplains *						•		0			7	3-15
	Temporal shift in the mosaic of floodplain vegetation categories					•			0			2	3-15
	Composition of floodplain plant communities						٠		0			0.5	1-15


All parts of an ecosystem must be present and functioning. 9/10 parts might not be good enough...

Metrics Checklist


 Because of organizational specialization and agency divisions, etc. Geomorph/Hydro/Eco are studied separately.

Based on a feature first published in High Country News. 1986. DNA is a non-profit cooperating organization which works with Dinosour National Monument and the Ntional Park Service to provide interpretation of park resources to visitors. For more information call 1(800)845-DINO.

- Diversions
- No floods since mid 8o's
- Sediment trapping in reservoirs

- Channel straightening
- Bank protection

- Tamarisk
- Incision

Effects of Regulation

Impounded Runoff index IR = <u>reservoir capacity</u> mean annual runoff

Humid climate rivers

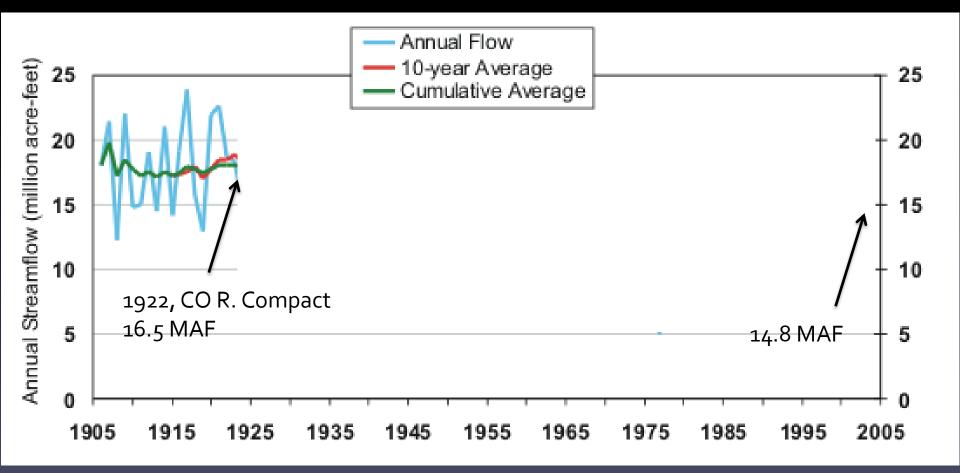
Potomac, Elbe, Rhein Rivers: IR 0.05-0.20

Mediterranean climate rivers

Ebro, Sacramento, San Joaquin: IR = 0.57-1.20 *Colorado River :* IR = 4-7 (depending on estimates)

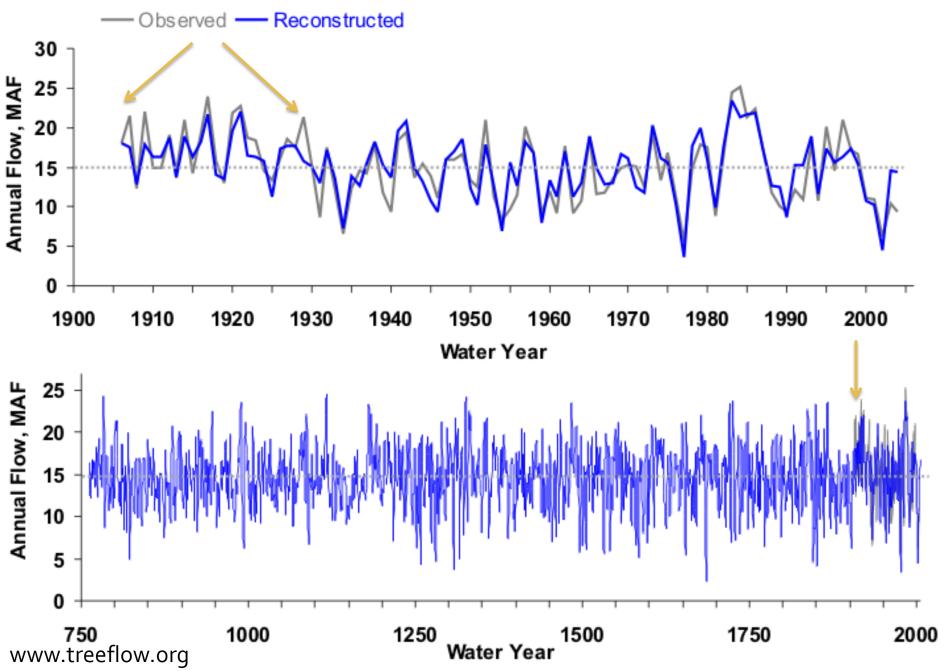
Colorado River Compact of 1922

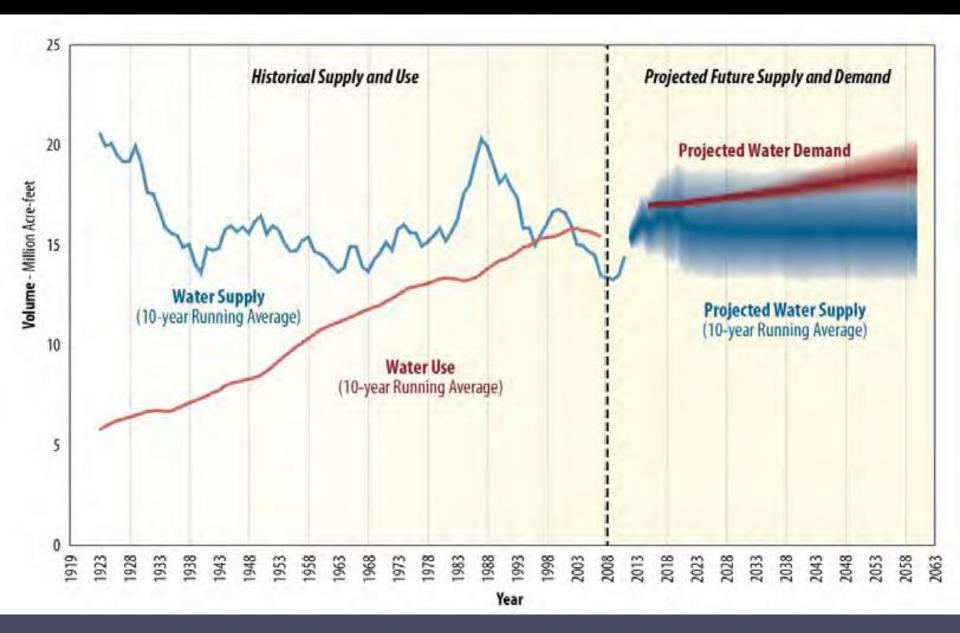
Mean Annual Flow= 16.5 Million Acre Feet (MAF)


Upper Basin States (CO, WY, UT, NM) receive 7.5 MAF

Lower Basin States (AZ, NV, CA) receive 7.5 MAF

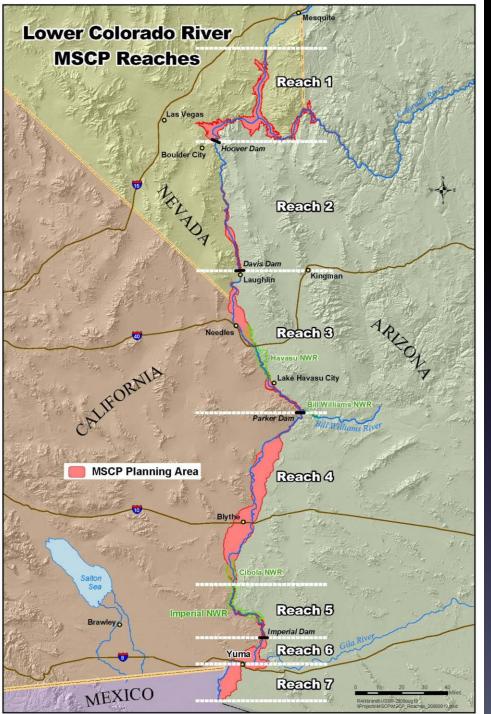
Mexico receives 1.5 MAF


Colorado River Indian Tribes: ~660,000 (5% of the river!)


Discharge

http://www.colorado.edu/treeflow/lees/gage.html

Colorado River at Lees Ferry, AZ

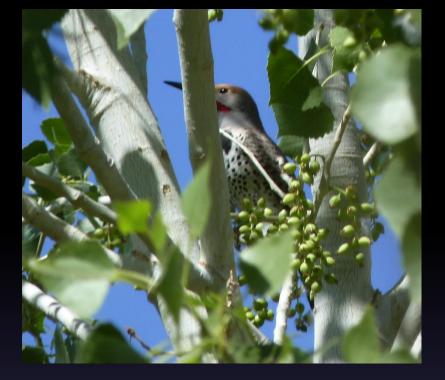

US Bureau of Reclamation 2012

The Colorado: A working river

The Colorado River supplies water for:

Municipal use for 40 million people Irrigation 5.5 million acres of land 4,200 megawatts of hydropower

These uses are unlikely to stop anytime soon.


400 miles Lake Mead to Mexico

50 years

\$626 million

Habitat construction+ Fish hatchery

http://www.azgfd.gov**/**

Arizona Bell's Vireo Bonytail Chub

California Black Rail California Leaf-Nosed Bat Colorado River Cotton Rat Colorado River Toad Desert Pocket Mouse Desert Tortoise (Mojave Population) Elf Owl Flannelmouth Sucker Flat-Tailed Horned Lizard Gila Woodpecker Gilded Flicker

Humpback Chub

Least Bittern Lowland Leopard Frog MacNeill's Sootywing

Razorback Sucke

Relict Leopard Frog Sonoran Yellow Warbler

Southwestern Willow Flycatcher

Sticky Buckwheat Summer Tanager Threecorner Milkvetch Townsend's Big-Eared Bat Vermilion Flycatcher Western Red Bat Western Yellow Bat Yellow-Billed Cuckoo

Yuma Clapper Rail

Yuma Hispid Cotton Rat

Imperial Ponds Backwater

6000 acres of Willow-Cottonwood

Palo Verde Conservation Area

Palo Verde Conservation Area

Colo. R. 4-15

Colo. R. 4-14.

OC

E

Colo R. 10-21

74.

4-45

Colo. R. 10-201

Colo. R. 10-22

Cibola Valley Conservation Area

Conceptual Model

- Dynamic
- Connected
- Bare sediment
- Arguably less
 vegetation throughout
 basin (Webb, 2007)
- Functions missing in riparian plantations?
- Emerging veg.
- Channel complexity
- Aquatic insects

Aquatic-Terrestrial Subsidies

Ecology, 67(3), 1986, pp. 629-638 © 1986 by the Ecological Society of America

SECONDARY PRODUCTION, EMERGENCE, AND EXPORT OF AQUATIC INSECTS OF A SONORAN DESERT STREAM¹

JOHN K. JACKSON² AND STUART G. FISHER Department of Zoology, Arizona State University, Tempe, Arizona 85287 USA

Jackson and Fisher (1986): 97% of aquatic insect emergence biomass transferred to terrestrial habitat and prey for terrestrial consumers such as bats, birds, and ants (Sycamore Creek, AZ).

Sanzone et al (2003): isotopes in Sycamore Creek, AZ. Web weaving spiders along the stream channel obtain almost 100% of their carbon and 40% nitrogen from instream sources. Ground-hunting spiders obtained ~68% of their carbon and 25 % nitrogen. Three times more spiders at the stream edge than at 25m from the bank.

Hypotheses and potential limiting factors

The following decrease with distance from the river:

- 1) Aquatic insect abundance
- 2) Percentage of insects that are aquatic in origin
- 3) Total abundance of insects
- 4) Insect diversity (# of orders present)

Methods

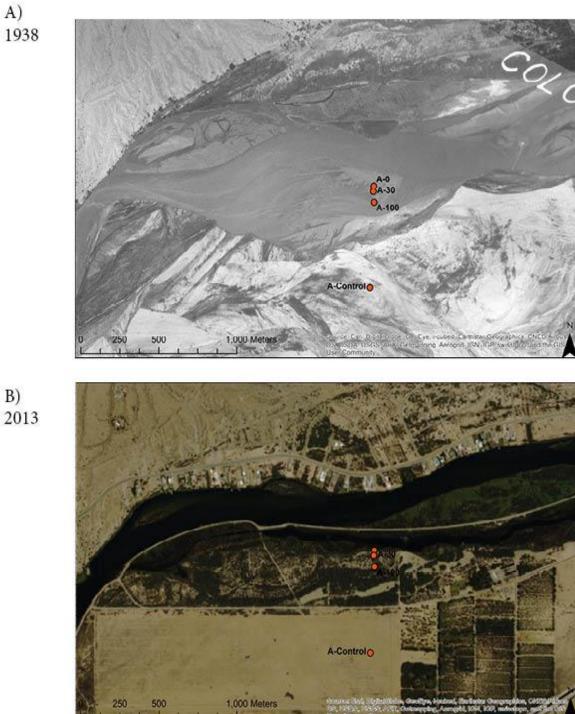
2 restoration sites:

Ahakhav (A)

Cibola NWR (C)

1 reference site:

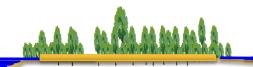
Bill Williams River (B)


Lower Colorado Study Areas Nevada Utah California Arizona Glen Canyon Dam Colorado River Hoover Dam Bill Williams **River NWR** Ahakhav Triba Preserve Cibola NWR Dams Rivers MSCP Study Areas 4.00

Methods

Non-attracting sticky traps- each trap left for 48 hours. 3-6 stations along each transect with 8 sheets at each station. 3 visits (May, July, September). 0, 30, and 100 m from river's edge.

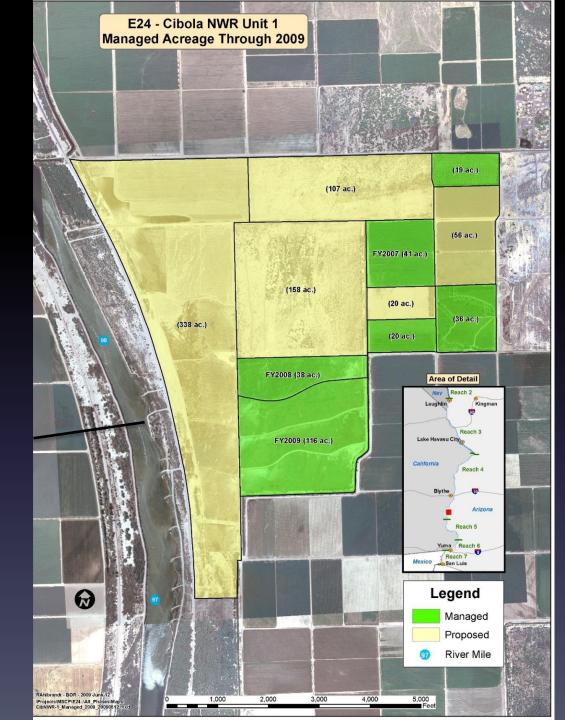
Ahakhav (A)



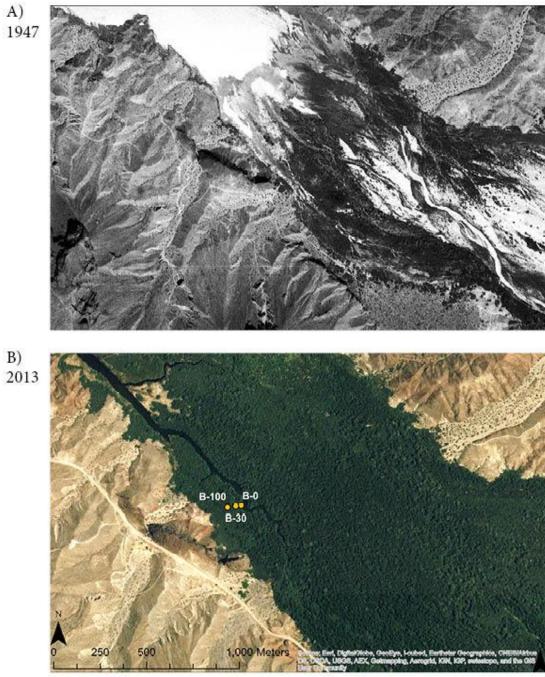
B) 2013

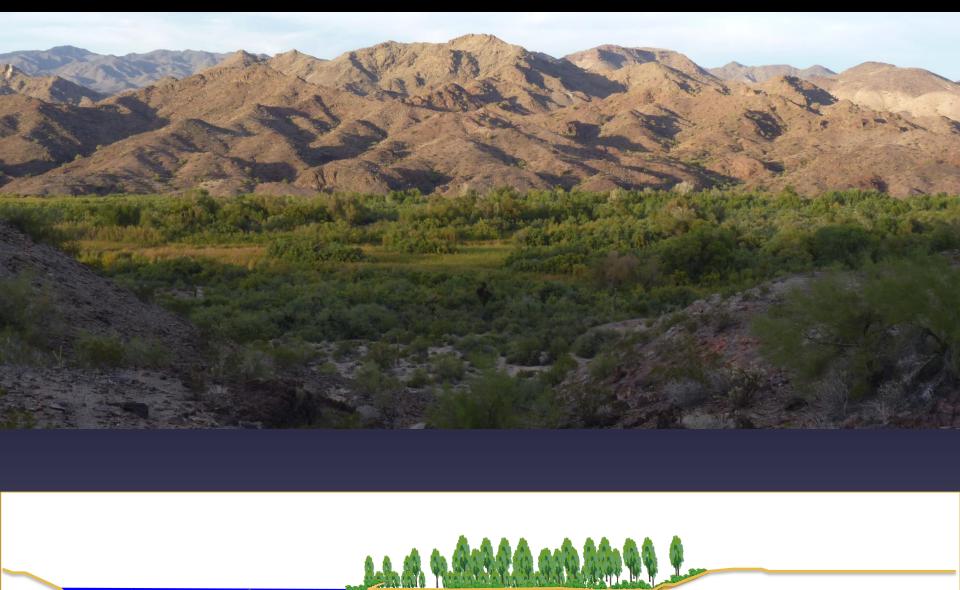
Ahakhav Tribal Preserve

Built as a park, with willow, cottonwood, mesquite, and arroweed. Dredged and reconnected side-channel, minimally irrigated vegetation.

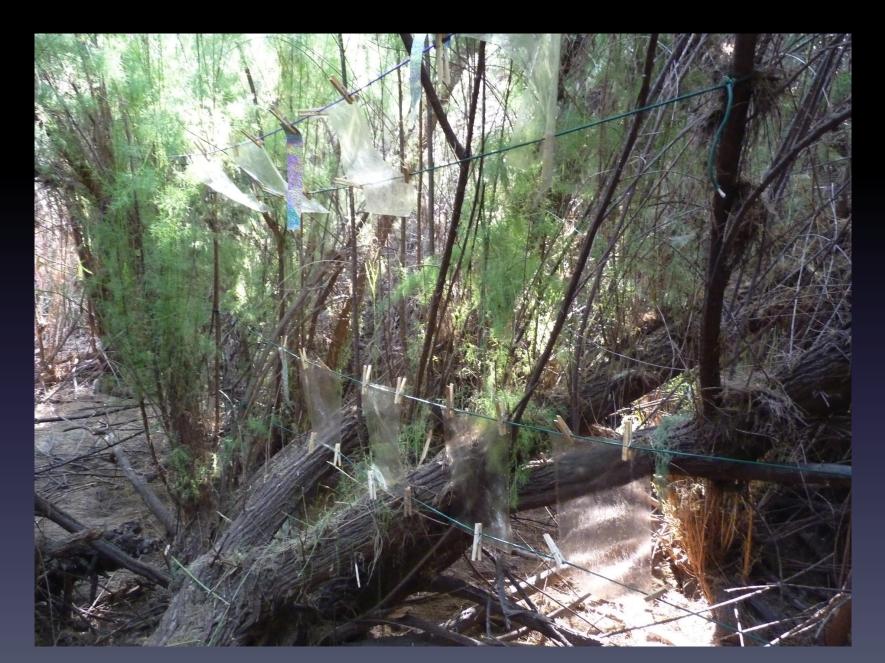


Cibola (C)

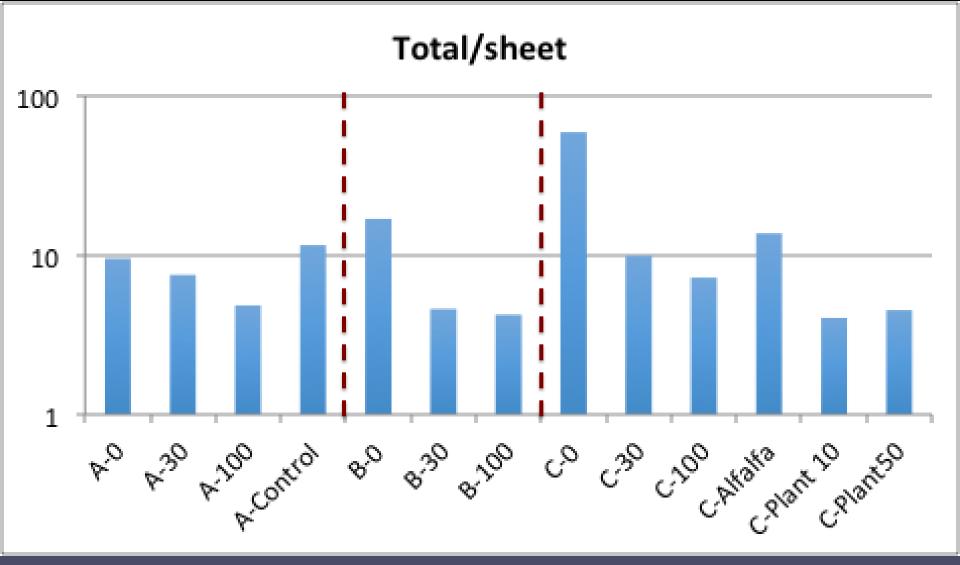

Cibola (C)


Cibola: Disconnected floodplain plantation

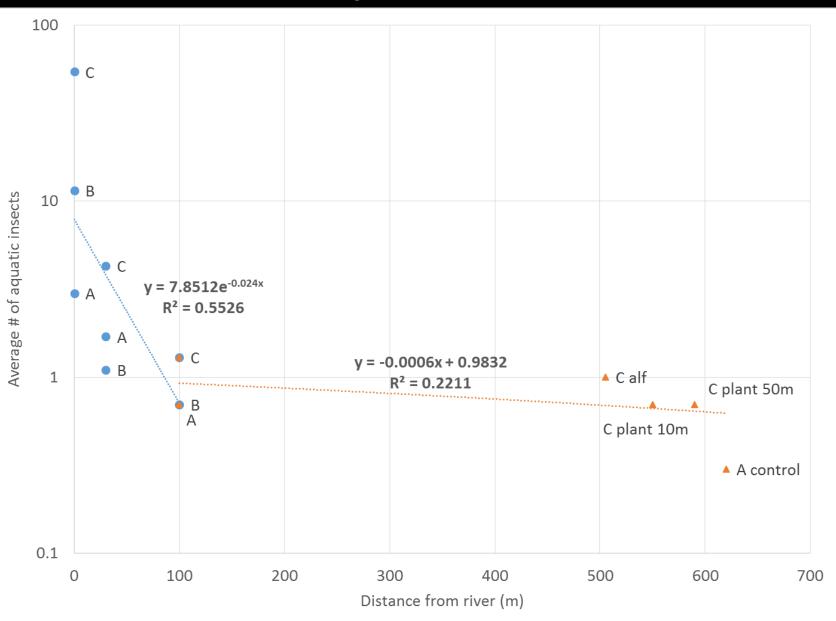
Bill Williams (B)

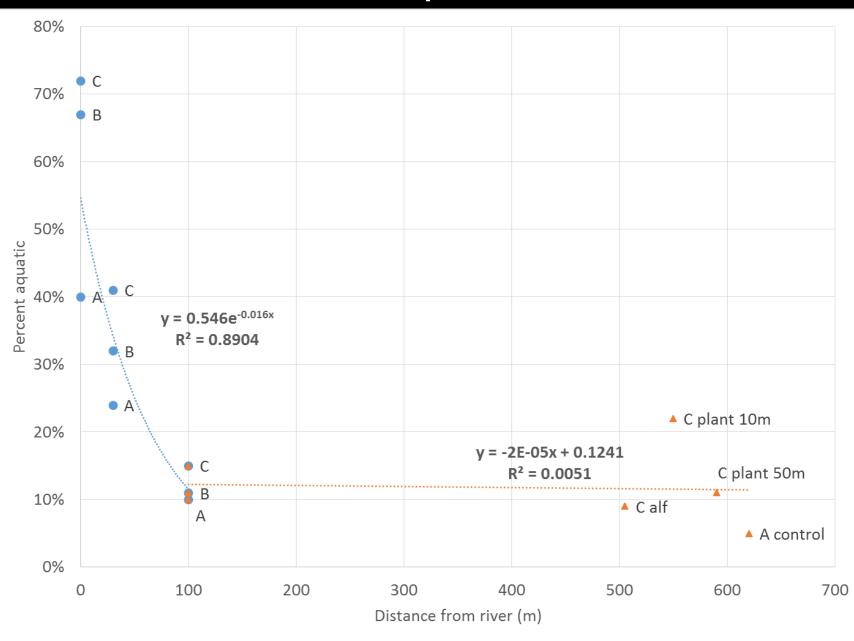


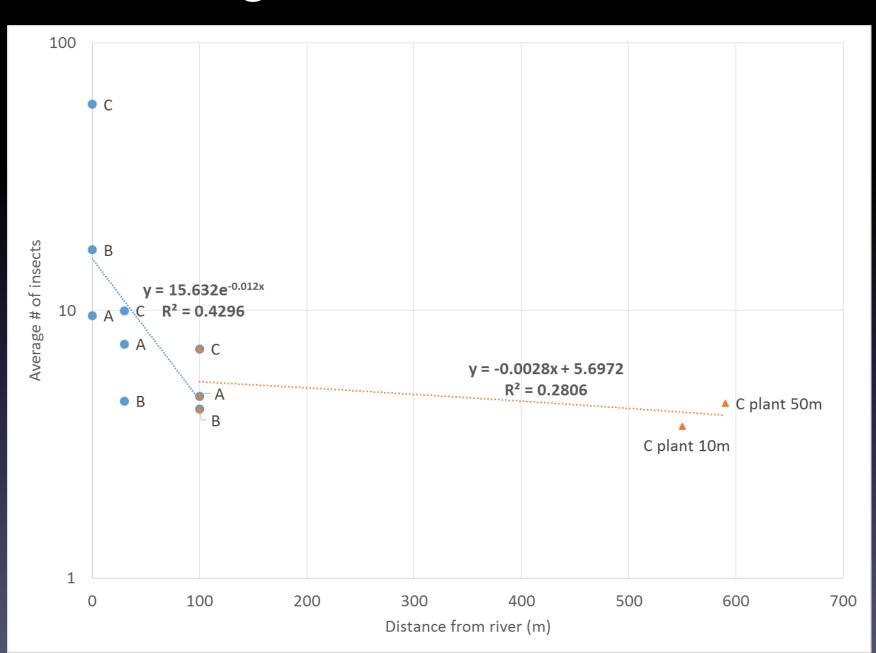
Bill Williams River: Connected Floodplain

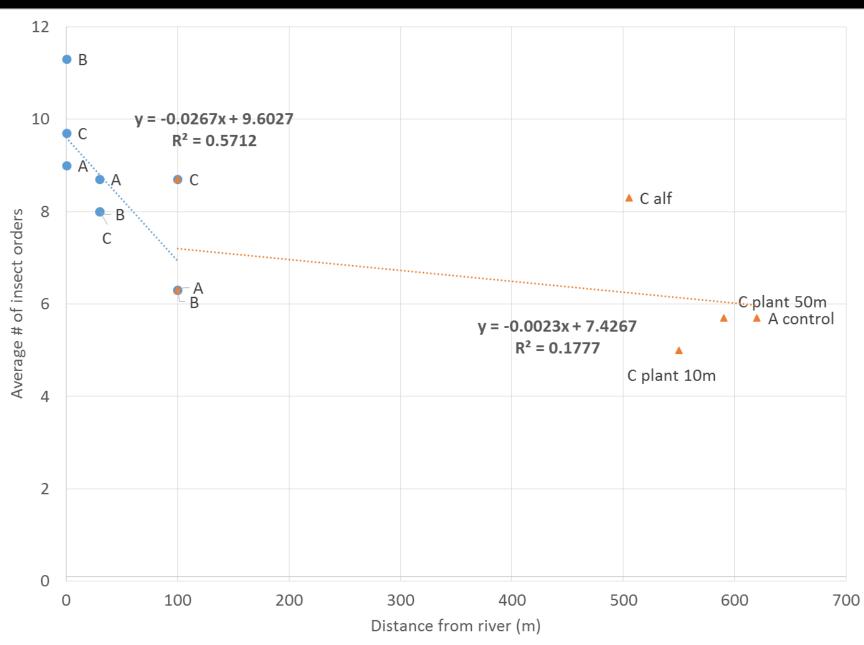


- Mandandan - Marth Bach Black A - MARA


Bill Williams River: Connected Floodplain


Aquatic per sheet 100 10 $\mathbf{1}$ 0.1 ^B می C-100 CANARA CRIANT 10 CRIANTSO A-30 A-100 ACONTROL \$³⁰ \$¹⁰⁰ \$^{,0} 40


of Aquatic Insects


% Aquatic

Average# of Insects Per Sheet

of Insect Orders

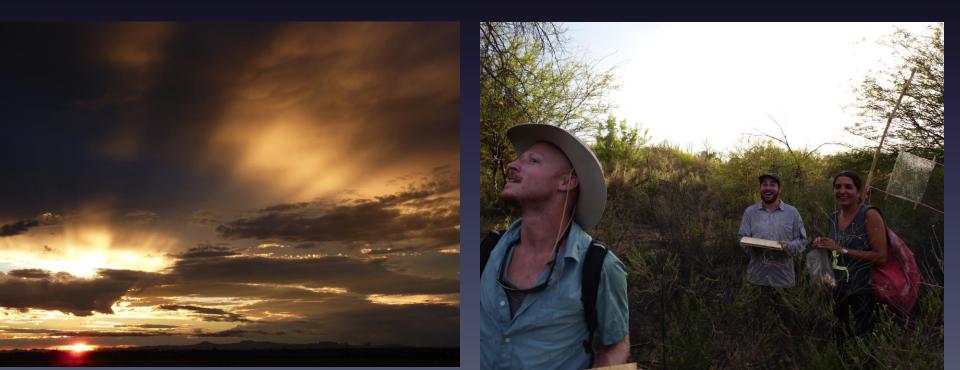
Conclusions

Intermediate functional metrics useful for evaluating restoration.

Question assumptions and make sure we are testing hypotheses with monitoring (perhaps *don't* monitor)

Prey availability studies are time consuming, but even a minimalist approach may yield useful insights.

Tree plantations more than 100m from desert rivers may not support insectivores such as southwestern willow flycatcher


Ideally: Levee set backs, flood pulse...

Minimally: trees planted along the river for improved ecosystem function and water quality

Acknowledgements

Parsa Safarinia, Nate Kauffman, Joe Sims, Dennis Patch, Kathleen Blair, Shiyu Huang, Brian Gong, Mike Limm, Many staff from Colorado River Indian Tribes, Bill Williams River National Wildlife Refuge, Cibola National Wildlife Refuge, and Bureau of Reclamation

"Far better an approximate answer to the *right* question, which is often vague, than an *exact* answer to the wrong question, which can always be made precise."

-John Tukey, 1962. "The Future of Data Analysis"

zanrubin@berkeley.edu