
Last Time...

Mitigation Strategies: Transportation

Mitigation = Diminishing the severity of the problem

Transportation

14.4% of global emissions currently come from transportation

- -28.2% in high income countries (USA)
- -7% in low-middle income countries (China)

Expected to increase by 25% from 2010-2030, mostly from passenger cars/trucks

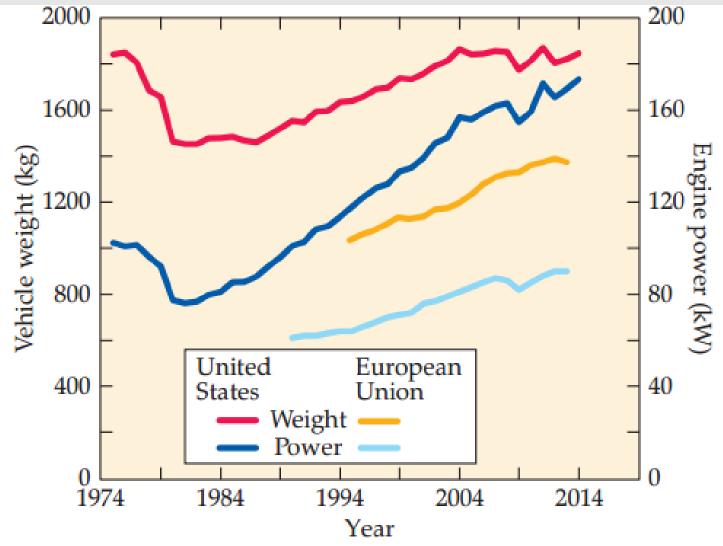
Fuel Efficiency of light-duty vehicles

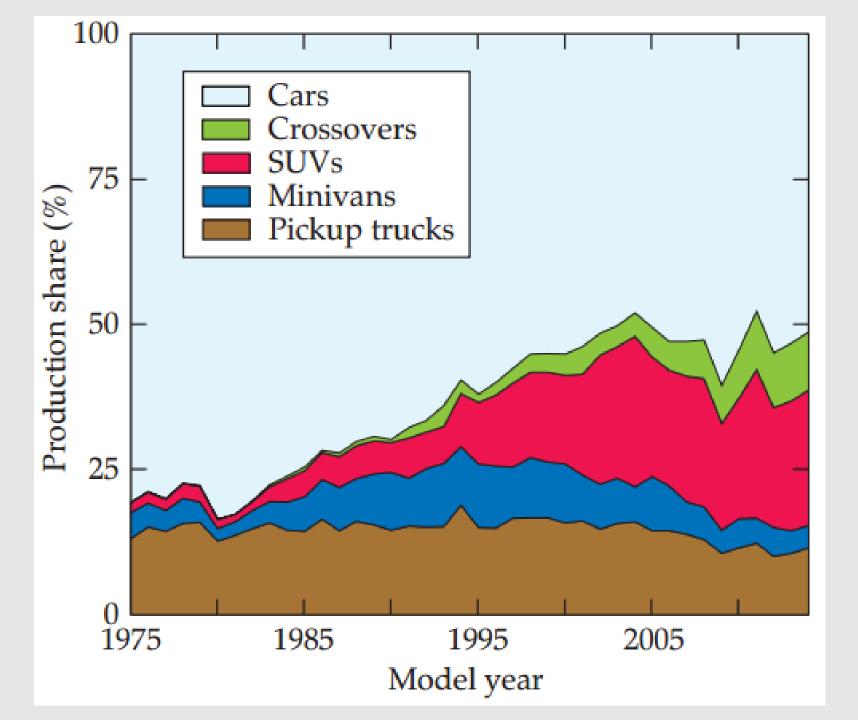
Hard to get people to drive less

Easier to get people to drive more efficiently

Fuel efficiency is influenced by:

- -Driving conditions
- -Taxes on petroleum and vehicles
- -Consumer preferences
- -Use of diesel-powered vehicles
- –Agreements with automobile manufacturers


Consumer Preferences


- Large vehicles
- Fast acceleration
- Powerful engines

Since the mid 1980s, vehicles in the US and Europe have gained weight, more powerful engines, and faster acceleration

2014 in the US:

- Sales of pickup trucks, vans, SUVs, and crossovers grew five times faster than cars during 2014, increasing to a production share equal to cars
- Sales of gas-electric hybrid vehicles declined 9%

Fuel efficiency is influenced by:

- -Driving conditions
- -Taxes on petroleum and vehicles
- -Consumer preferences
- -Use of diesel-powered vehicles
- –Agreements with automobile manufacturers

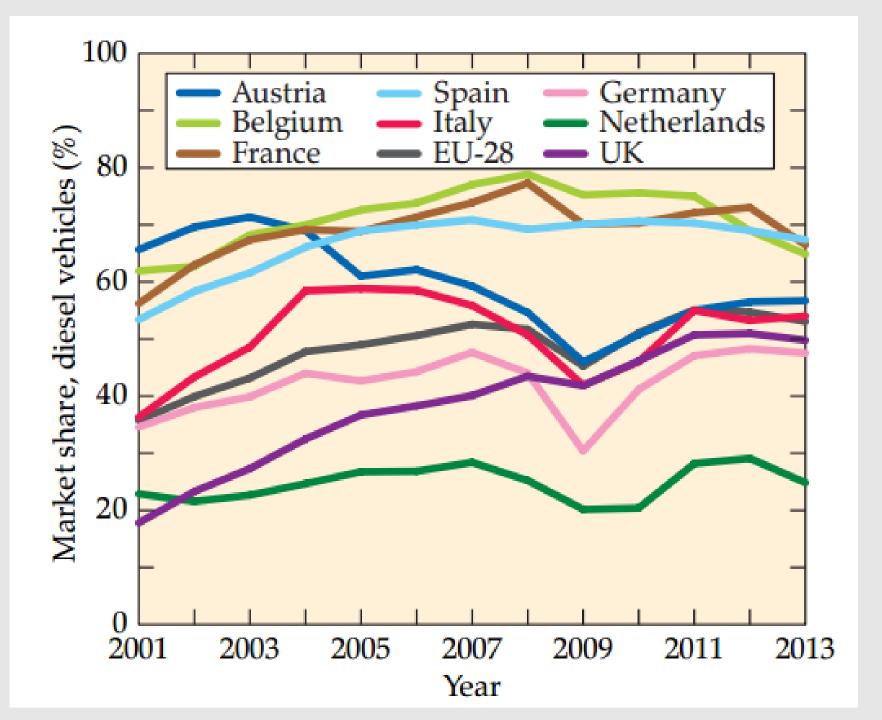
Diesel-Powered Vehicles

- Diesel fuel is denser than gasoline
- Contains 11% more energy per volume
- Diesel engines more efficient than gasoline engines

-Operate at higher pressures and temperatures

• Diesel engines are 40% more fuel efficient per volume of fuel than gasoline engines of the same power.

Diesel personal vehicles


Past Problems:

- -Noisier
- -Generate more vibrations
- -More difficult to start
- –Emit thick black smoke in their exhaust
- –Slower acceleration than gasoline

Diesel personal vehicles

- Technological advances:
 - -Computer-controlled electronic ignition
 - -Turbocharged direct fuel injection
- In Europe, diesel powered light duty vehicles now account for half of all new vehicles.

Diesel and GHGs

- More fuel efficient (11%)
- Release 15% more CO₂ per volume of fuel
- Larger, heavier engines (high pressure and temperature)

Diesel-powered light-duty vehicles emit 5% to 30% less GHGs per distance traveled than gasoline equivalents

Nitrous Oxide (N₂O)

• Diesel engines emit 20% more than gasoline engines

–GHG, smog

- Manufacturers use technology to remove N₂O
- Volkswagen: trap absorbs N₂O.
 Chemical reaction transforms it to gas and water

- 11 million cars (2009-2015) were intentionally programed to cheat on N₂O emission tests
- Computer detects fuel test is happening, purges N₂O more frequently
- During tests, fuel efficiency = 43 mpg
- Normal driving, fuel efficiency =55 mpg; N₂O emissions increase by 5 to 40%

Fuel efficiency is influenced by:

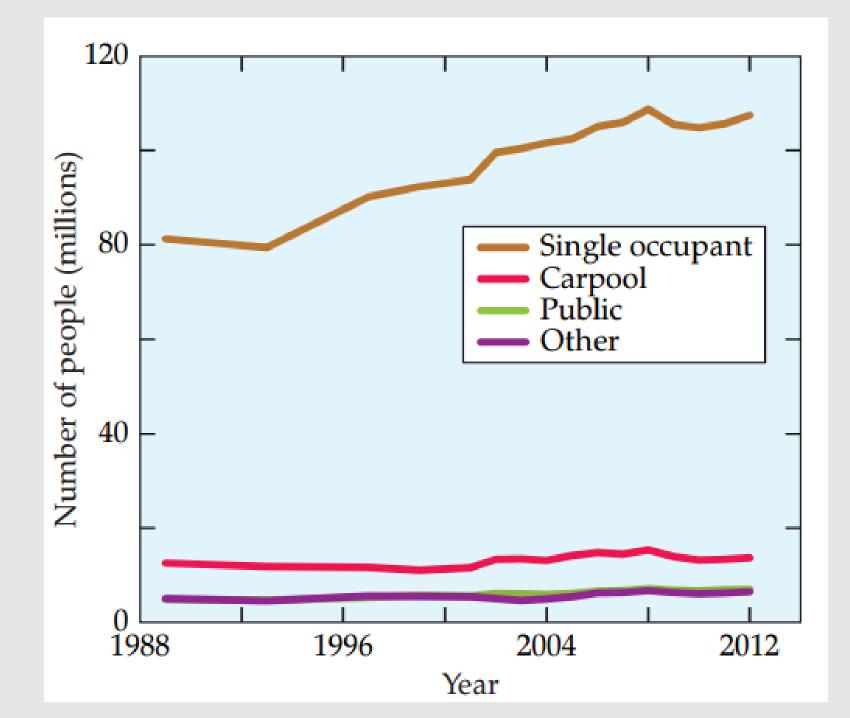
- -Driving conditions
- -Taxes on petroleum and vehicles
- -Consumer preferences
- -Use of diesel-powered vehicles
- –Agreements with automobile manufacturers

Agreements with Manufacturers

1975, US Congress enacted the Corporate Average Fuel Economy (CAFE) regulations.

- –Passenger cars: 18mpg in 1978 and 27.5 mpg in 1985
- –Small trucks: 17.2 mpg in 1979 and 21.6 mpg in

1985


2012: New CAFE Regulations

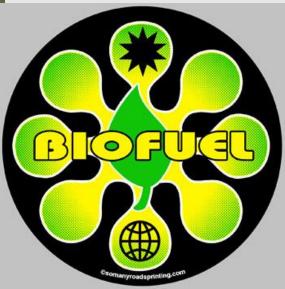
Light-duty vehicles: 40.3 mpg by 2021, 48.7 mpg by 2025

Public Transportation

- Central factor for fuel efficiency: passenger occupancy
- Doubling passenger occupancy nearly halves the effect of GHG emissions per distance traveled

Unitran Bus

Davis, California


Alternative Fuels

Natural Gas

Extracted from oil wells, coal beds, natural gas fields, landfills

$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O + energy$$

Compressed Natural Gas

- Low energy content at normal atmospheric pressure
- Compressed. Pressurized to several hundred times normal atmospheric pressure
- ¼ or less of the energy content in gasoline
 –Requires larger storage tanks
 - -Slower refueling

Large Storage Tanks

Compressed Natural Gas

"Clean" fuel:

Produces fewer particulates, non-methyl hydrocarbons, and NO_x than gas or diesel

-Great for cities with smog problems

Compressed Natural Gas

- Combustion emits smaller amounts of GHGs than any fuel except hydrogen
- CNG vehicles emit 12% less GHGs than gas powered vehicles.
- Leakage during extraction, refining, distribution and combustion is a problem
 - -Mostly methane
 - -Leakage amount unclear

Hydrogen Fuel Cell

Hydrogen reacts with oxygen to form water and generates electricity to power the vehicle

Hydrogen Fuel Cell

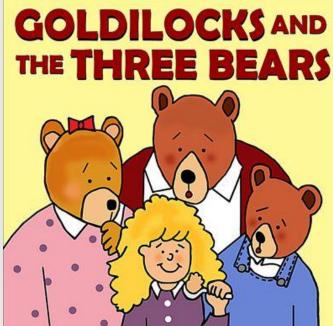
Expensive

- –Catalyst contains platinum, costs over \$30 per gram
- -Currently a typical fuel cell vehicle contains over \$30,000 of platinum.

Dependability

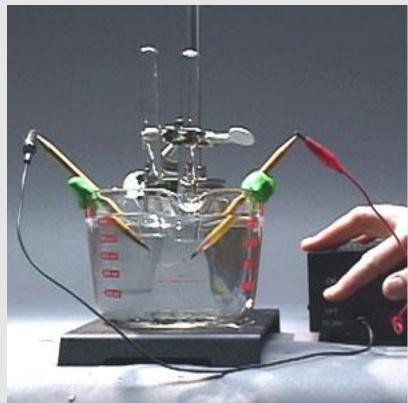
Cars go through a lot!

- -Constant vibration
- –Rapid temperature changes
- -Frequent bombardment with dirt and


water

-Neglect/incompetence

- Fuel cell membranes are thin (permeable to gas). Venerable to contamination by dirt or CO.
- Principal reaction generates water. If fuel cell floods, reaction will stop.
- Too little water, reaction will stop
- Water freezes, reaction will stop
- Water boils, reaction will stop


Hydrogen Production

- Over 95% of hydrogen generated today comes from fossil fuels.
- $CO + H_2O \longrightarrow CO_2 + H_2$

Electrolysis

- Electrolysis: electric current passes through water and releases hydrogen and water
- Requires energy
- (electricity)
- Not very efficient

Under Investigation:

-Splitting water at very high temperatures

- could be done using heat produced from nuclear reactors or solar collectors with modifications
- -Biological production
 - •Nitrogen fixation releases hydrogen gas
 - •Cyanobacteria and green algae in anaerobic conditions release hydrogen

Hydrogen Distribution

- Need refueling stations
 - –Could produce hydrogen in large factories and ship it long distances
 - -Or could produce locally at small facilities
 - -Hydrogen gas pipelines

Hydrogen Fuel

- Could be a good long term solution
- Not ready for general adoption

Electric Vehicles

- Require batteries to carry electricity
- Lead-acid batteries are inexpensive and reliable

Top speed of 40 mph, range of 25 miles, recharge in 8 hours

Tesla Model X, Lithium Ion Battery

\$132,000

155 mph

0-60 in under 4 seconds

Range of 260 miles

Recharge in 20 min

Electric Vehicles

Advantages

- Very efficient energy conversion
- Vehicle emits no GHGs
- Recharge at night, not peak hours
- Less maintenance, just tires and brakes
- Breaking can be used to recharge the battery

Disadvantages

- Limited range
- Long recharge time
- High costs
- Power plants to generate electricity produce GHGs

