Last Time...

Fuel efficiency is influenced by:

- -Driving conditions
- -Taxes on petroleum and vehicles
- -Consumer preferences
- -Use of diesel-powered vehicles
- –Agreements with automobile manufacturers

Consumer Preferences

- Large vehicles
- Fast acceleration
- Powerful engines

Fuel efficiency is influenced by:

- -Driving conditions
- -Taxes on petroleum and vehicles
- -Consumer preferences
- -Use of diesel-powered vehicles
- –Agreements with automobile manufacturers

Diesel and GHGs

- More fuel efficient (11%)
- Release 15% more CO₂ per volume of fuel
- Larger, heavier engines (high pressure and temperature)

Diesel-powered light-duty vehicles emit 5% to 30% less GHGs per distance traveled than gasoline equivalents Fuel efficiency is influenced by:

- -Driving conditions
- -Taxes on petroleum and vehicles
- -Consumer preferences
- -Use of diesel-powered vehicles
- –Agreements with automobile manufacturers

2012: New CAFE Regulations

Light-duty vehicles: 40.3 mpg by 2021, 48.7 mpg by 2025

Alternative Fuels

Compressed Natural Gas

- Combustion emits smaller amounts of GHGs than any fuel except hydrogen
- CNG vehicles emit 12% less GHGs than gas powered vehicles.
- Leakage during extraction, refining, distribution and combustion is a problem
 - -Mostly methane
 - -Leakage amount unclear

Hydrogen Fuel Cell

Hydrogen reacts with oxygen to form water and generates electricity to power the vehicle

Hydrogen Fuel

- Could be a good long term solution
- Not ready for general adoption

Electric Vehicles

Advantages

- Very efficient energy conversion
- Vehicle emits no GHGs
- Recharge at night, not peak hours
- Less maintenance, just tires and brakes
- Breaking can be used to recharge the battery

Disadvantages

- Limited range
- Long recharge time
- High costs
- Power plants to generate electricity produce GHGs

- Gas-electric combination
- Gas-powered engine and electric motors both connected to the wheels
 - -Gas engine shuts down when vehicle stops
 - –Batteries recharged with gas-powered engine and braking

Hybrids

- Batteries are difficult to recycle
- Guaranteed for 8 years or 100,000 miles
- Replacement battery for a 2011 Prius costs \$2,200

Hybrids

- City driving is 30% more efficient than gas power alone
- Highway driving depends heavily on gas engine, little efficiency gain

Biofuel: produced from living materials

Bioethanol

Biomenthane

Biodiesel

In all cases, the energy originally comes from photosynthesis

Bioethanol

 $6CO_2$ + water + light \rightarrow carbohydrate + oxygen

Carbohydrates then fermented into ethanol

Combustion of ethanol creates chemical energy, water, and CO₂

ethanol + oxygen \rightarrow 4CO₂ + water + ENERGY

All together: light \rightarrow ENERGY **No <u>net</u> production of GHGs**

Biomethane and Biodiesel

- Carbohydrate from photosynthesis converted into methane or biodiesel
 - Burning releases same amount of CO₂ that was taken in during photosynthesis

Biofuel

- The burning of biofuels release CO₂ equivalent to that taken in by plants during photosynthesis
- However, the production, transport, conversion and distribution of biofuels generate GHGs

Biomass Production

Agriculture

- -Uses sophisticated farm machinery (burns fuel)
- -Fertilizers
- -Pesticides
- -Water use
- -New high yield strains of crops

Fertilizer

- Nitrogen fertilizer increases crop yields
- Contributes the majority of GHGs emitted during biomass production
 - -Manufacturing requires energy
 - -Distribution uses fuel
 - Application stimulates
 microbes which release N₂O

Biofuel

- We need a plant crop that requires low inputs of nitrogen, water, and less use of mechanical equipment
- Will produce high, sustainable yields that can easily be converted into fuels

Corn

- 40% of U.S. corn used for ethanol
- 36% fed to cattle, pigs, and chickens
- The rest is exported or consumed by Americans (corn syrup)

Diversion of food to fuel

Increase in corn prices in the past 10 years

Sugarcane

- 10% of Brazil's farmland
- Grows throughout the year
- Produces more energy per hectare than corn
- Has nitrogen-fixing bacteria within its tissues
 Maintains high productivity with low fertilization

Corn vs Sugarcane

Processing corn is less efficient than sugarcane

-Extra steps to convert starch to sugar

Corn vs Sugarcane

http://www.newsweek.com/biggest-loser-iowa-ethanol-423640

- 1978 Federal tax breaks on gasoline blended with ethanol and a large tariff imposed on ethanol from sugarcane imported from Brazil
- 2001 domestic energy initiative, tax credits for E10
 Corn ethanol production increased by 700% between 2001 and 2010
- 2007 Democrats control Congress, diverting corn from stomachs to cars would cause widespread hunger among world's poor Price of corn increased; UN officials labeled biofuels "a crime against humanity"
- 2011 tax breaks and tariff discarded

Switchgrass

- Grows on lands unsuitable for cultivation of human food
- Require 1/3 less nitrogen, other chemicals and water than corn

Sources of GHG Emissions

- Transportation of biomass to processing facilities
- Biomass processing
 - -Burning
 - -Fermentation
 - -Distillation

Conversion of Cellulose to Ethanol

- Cellulose has a very strong structure. Forms plant cell walls.
- Very difficult to break down into ethanol

Cellulose to Ethanol

- Many steps involved in the process
- Most steps are expensive. Can't compete with other energy sources
- Research being done
 on genetic engineering
 of bacteria/fungi for
 efficient ethanol
 production

Overall Efficiency

Many different findings, based on several different assumptions

- -Will production require substantial fertilization and irrigation?
- -How much energy for processing will come from the biomass itself?

Electric Power Generation

- The human activity that emits the largest share of GHGs
- More than double the amount of any other source

Electricity Generation

- Coal-Fired Power Plants
- Natural Gas Power Plants
- Nuclear Power Plants
- Renewable Energy Sources

 Hydroelectric, wind, solar, geothermal, tidal and wave

Industrial Power

- Industry = processing of raw materials and manufacture of goods in factories
- Industry shifting from developed to developing countries
- As nations develop, their energy demands increase
 - –In 2006, China increased is power-generating capacity by the total amount used by France
 - —1990-2000 India doubled its power-generating capacity

Power Plants

- All types have a lifespan of 30-50 years
- Building new plants with new GHG abating equipment is cheaper than retrofitting older plants
- Developing nations have a choice: what kind of power plants will they build?
 - -Coal is cheapest
 - International agreements provide economic incentives for cleaner technologies

Coal Fired Power Plants

- Generate 50% of the electricity in the United States
- Provide over 60% of capacity in China and India
- In the next decade
 - China plans to build
 500
 - India plans to double capacity

Coal Fired Power Plants

- Higher GHG emissions per unit of power generated than other types
- Cheaper to construct and operate
- US, China, and India have large reserves of coal
 - Much more than gas, oil or uranium needed for other types of power plants

"Clean" Coal

- Release less sulfur dioxide and nitrogen oxides
- Combined with Carbon Capture and Storage

Not really "clean," just clean<u>er</u>.

Natural Gas Power Plants

- Second-largest energy source in US and world
- Converting natural gas to electricity is simpler than converting coal
 - -Fewer steps
 - -Less processing

Converting natural gas to electricity is simpler than converting coal

This means:

- -Inexpensive and rapid to construct
- -Efficient to operate
- -Easy to maintain

Natural Gas Power Plants

- Low GHG and pollutant emissions
- High fuel efficiency

Problem: natural gas is more expensive than coal, and also not a renewable resource

Carbon Capture and Storage

- Burning hydrocarbon fuel, both coal and natural gas, releases CO₂
- Carbon capture and storage (CCS):
 - -Collect CO₂ released
 - -Concentrate it
 - -Transport it
 - -Store it to prevent it from mixing with the atmosphere

CO₂ Capture

- Carbon capture almost doubles the construction cost of a power plant
- Adds 50% to the cost of electricity generation

CO₂ Transport

- Power plants not often near areas where CO₂ will be stored
- Transportation using pipelines and tanker ships

CO₂ Transport Problems

- Pipes and storage vessels must be made of carbonic acid resistant alloys. More expensive than steel
- Leaks from transportation will accumulate in depressions (denser than air). CO₂ is colorless and odorless. A leak sink could endanger people
- Transportation as a liquid is more efficient, but more dangerous (higher pressure and low temperature)