Bureau of Safety and Environmental Enforcement

BSEE Oil Spill Preparedness Division Response Research Branch

SFE

Bureau of Safety an Environmental Enforcement

> Suzanne Chang February 27, 2017

"To promote safety, protect the environment and conserve resources offshore through vigorous regulatory oversight and enforcement."

BSEE Mission Statement

"To promote safety, protect the environment and conserve resources offshore through vigorous regulatory oversight and enforcement."

BSEE Oil Spill Preparedness Division

OSPD Overview

Response Research Branch

- Oversee Ohmsett facility in NJ (National Oil Spill Response Research and Renewable Energy Test Facility)
- Oil spill response research (OSRR)
- Participate in interagency outreach

Preparedness Verification Branch

- Approve oil spill response plans
- Conduct equipment verifications
- Conduct unannounced exercises

BSEE Oil Spill Preparedness Division

Oil Spill Response Research (OSRR)

R&D Projects •200+ projects •FY16-\$7.5M •FY17*-\$10.2M •38 on-going •4 under peer review

Focus areas

- Detection
- Containment
- Treatment
- Recovery and cleanup
- Improving methods
- Advancing technologies

Cooperative effort

- Funding and expertise
- Research partners
 - Government
 agencies
 - Industry
 - Academia

•*anticipated

Where We Research

- National Oil Spill Response Research & Renewable Energy Test Facility-Ohmsett (BSEE)
- Joint Maritime Testing Facility (USCG/Naval Research Lab)
- Cold Regions Research and Engineering Lab (US Army Corps Engineers)
- National Labs (DOE)
 - Pacific Northwest National Lab
 - National Energy Technology Lab

Academia

Research Entities

BSEE Oil Spill Preparedness Division

Oil Spill Response Research

Mechanical Containment/Recovery

Dispersants

Herding

In Situ Burning

Remote Sensing

Decision Making Strategies

BSEE OSRR - Mechanical Recovery

Development of an Autonomous Oil Skimmer

BSEE OSRR #1037

- Alion Science and Technology Corp.
- PI: Dr. Gregory Johnson
- Completed: June 2016

Objective: Develop a navigation sensor and computer control system to direct a variety of skimmers and vessels to autonomously maneuver and skim oil. Automatically track and report progress and performance.

Highlights:

Testing of sensors conducted at Ohmsett;

- Oil thickness sensors
- Oil recovery efficiency sensor

Autonomous maneuvering tested at Gardner Lake (CT)

BSEE OSRR - Herding

Multifunctional Herding-Sorbent Agents for Use in Icy Water

BSEE OSRR #1071

- Pacific Northwest National Laboratory (PNNL)
- PI: Dr. George Bonheyo
- Estimated Completion: May 2017

Objective: Develop material treatments to enhance herding and sorbent effect of sawdust, reduce absorption of water, and delay sinking. Materials tested under icy conditions, in small scale burn studies and for bioremediation potential.

- Initial testing in Sequim, WA.
- Final testing conducted at the USCG Joint Maritime Test Facility in Mobile, AL in Oct 2016.

BSEE OSRR - In Situ Burning

Development of a Low-Emission Spray Combustor for Emulsified Crude Oil

BSEE OSRR #1061

- Naval Research Laboratory (NRL)
- PI: Dr. Steve Tuttle
- Completed: November 2016

Objective: Builds off the proof-of-concept project (BSEE OSRR #1012). Advances the development of a low-emission, low pressure atomization and combustion process for emulsified crude oil. Develops and refines the performance of a quarter and half-scale flow atomizer spray burner.

Highlights:

Successfully tested

- Sub-scale (25%)
- Engineering-scale (50%)

0%

HC-Sentinel: AUV Glider for High Endurance Subsea Hydrocarbon Detection

BSEE OSRR #1041

- Woods Hole Oceanographic Institution (WHOI)
- PI: Dr. Richard Camilli
- Estimated Completion: May 2017

Objective: Develop and test in-situ mass spectrometer payload that operates on an autonomous underwater vehicle (AUV) glider for real-time subsea hydrocarbon detection and classification. Designed to operate for longterm subsea inspection, monitoring, and incident response.

- Tested in Santa Barbara, CA
- Generate a hydrocarbon concentration map

HC-Sentinel: AUV Glider for High Endurance Subsea Hydrocarbon Detection

HC-Sentinel: AUV Glider for High Endurance Subsea Hydrocarbon Detection

Enhanced Oil Spill Detection Sensors in Low-light Environments

BSEE OSRR #1013

- U.S. Army Research Development and Engineering Command (RDECOM)
- PI: Mark Walters
- Estimated Completion: Fall 2017

Objective: Enhance current methods to detect oil in a low-light marine environment. Current methods rely heavily on time-delayed aerial remote sensing technologies or visual observation. RDECOM will test, evaluate, and demonstrate new or alternative hardware/technology;

- Initial testing using manned aircraft.
- Testing at Ohmsett with the new (miniaturized) sensor payload in April and August of 2017.

Platform Holly

Technology Readiness Level (TRL) Definitions for Oil Spill Response Technologies and Equipment

BSEE OSSR #1042

- Applied Research Associates
- PI: Dr. Paul Panetta
- Completed: January 2016

Objective: Establish a uniform and objective means to determine the level of maturity of a new technology.

Highlights:

 Correlates various testing facilities with spill environments and conditions.

BSEE Oil Spill Response TRL Summary

BASIC TECHNOLOGY RESEARCH

- TRL 1 Basic principles observed or reported
- TRL 2 Concept and speculative application formulated
- TRL 3 Proof of concept demonstrated

TECHNOLOGY ADVANCEMENT/DEMONSTRATION

- TRL 4 Prototype demonstrated in lab environment or model scenario
- TRL 5 Prototype tested in relevant environment
- TRL 6 Full-scale prototype tested in relevant environment

TECHNOLOGY IMPLEMENTATION IN OPERATIONAL ENVIRONMENT

- TRL 7 Integrated technology tested on large scale or in open water
- TRL 8 Final integrated system test in real or relevant environment

TECHNOLOGY DEOPOLYMENT IN REAL SPILL ENVIRONMENT

TRL 9 Final integrated system deployed in real spill environment

Technology Readiness Level (TRL) Definitions for Oil Spill Response Technologies and Equipment

BSEE OSSR #1042

Snill		<u>.</u>			•	Test	Facilit	y					
Environment / Condition	CRRC	CRREL	CEDRE	JMTF	Ohmsett	Penn State	Poker Flats	SERF	SINTEF	SL Ross	SwRI	VIMS/ARA	WPI
Aerial							✓						
Surface Wave Tank (< 1 m)			1	~	1			1		1			
Shallow Subsurface (<10 m)	~	~	~		~	~		~	~	~	~	~	~
Mid-depth Subsurface (10 m to 1800 m)						~					~		
Deepsea (>1800 m)						✓					✓		
Arctic/Ice		✓			✓		✓	✓	✓	✓			
ISB		✓		✓			✓			✓		✓	✓

CRRC: The Coastal Response Research Center

CRREL: The Cold Regions Research and Engineering Laboratory

CEDRE: The Center of Documentation, Research and Experimental on Accidental Water Pollution

JMTF: The Joint Maritime Test Facility

SERF: The Sea-ice Environmental Research Facility

SwRI: Southwest Research Institute

VIMS/ARA: Virginia Institute of Marine Science/Applied Research Associates

WPI: Worcester Polytechnic Institute

Assessment of Dispersant Effectiveness Using Ultrasound to Measure Oil Droplet Particle Size Distribution

BSEE OSRR #697

- Applied Research Associates (ARA), Inc.
- PI: Dr. Paul Panetta
- Completed: February 2013

Objective: Proof-of-concept project to develop a novel ultrasonic scatter method to measure the droplet size of dispersed oil to monitor the efficacy of subsea dispersant application.

Highlights: Acoustic signals respond to changes in oil droplet sizes.

Assessment of Dispersant Effectiveness Using Ultrasound to Measure Oil Droplet Particle Size Distribution

BSEE OSRR #697

- Applied Research Associates (ARA), Inc.
- PI: Dr. Paul Panetta
- Completed: February 2013

Photographs of dispersant being applied to the Deepwater Horizon plume using three different methods. The dispersant is the white fluid being sprayed onto the brown oil.

Assessment of Dispersant Effectiveness Using Ultrasound to Measure Oil Droplet Particle Size Distribution

Subsea Chemical Dispersant Research

BSEE OSRR #1003

- S.L. Ross Environmental Research and Applied Research Associates (ARA) Inc.
- PI: Mr. Randy Belore and Dr. Paul Panetta
- Completed: September 2014

Objective: Advance the knowledge in chemical dispersant use when injected into a subsea oil/gas release by developing test techniques for a representative creation; Determine dispersant effectiveness in the presence of natural gas.

Highlights:

- Small scale bench testing evaluated measurement techniques and natural gas effects on dispersion.
- Large scale testing expanded on oil and gas flow rates and dispersant to oil ratios.

Pre-dispersant

Post-dispersant

Acoustic Assessment of Subsea Chemical Dispersant Efficacy

BSEE OSRR #1002

- Applied Research Associates (ARA), Inc.
- PI: Dr. Paul Panetta
- Completed: September 2014

Objective: Build off the previous proof-of-concept project to develop acoustic techniques to measure droplet size distribution for subsea release of crude oil and dispersants in the presence of natural gas. Identify specific frequency ranges for improving the monitoring of dispersant effectiveness.

- Significant step in developing *in situ* methods for measuring oil droplet size using acoustic scattering.
- Collected a broad spectrum of data on several key oils over a wide range of percent dispersions.

Acoustic Assessment of Subsea Chemical Dispersant Efficacy

BSEE OSRR #1002

- Applied Research Associates (ARA), Inc.
- PI: Dr. Paul Panetta
- Completed: September 2014

Methane

Oil and Methane

Dispersed Oil and Methane

Attenuation, Run 20, 2.25 MHz, Methane, Oil, & Dispersant, Dorado, DOR of 1:48

Assessment of Dispersant Effectiveness Using Ultrasound to Measure Oil Droplet Particle Size Distribution

_	BSEE	OSRR #697					
			BSEE Oil Spill Response TRL Summary				
			BASIC TECHNOLOGY RESEARCH				
		TRL 1	Basic principles observed or reported				
		TRL 2	Concept and speculative application formulated				
		TRL 3	Proof of concept demonstrated				
			TECHNOLOGY ADVANCEMENT/DEMONSTRATION				
		TRL 4	Prototype demonstrated in lab environment or model scenario				
		TRL 5	Prototype tested in relevant environment				
		TRL 6	Fuil-scale prototype tested in relevant environment				
		TECHNO	OLOGY IMPLEMENTATION IN OPERATIONAL ENVIRONMENT				
		TRL 7	Integrated technology tested on large scale or in open water				
		TRL 8	Final integrated system test in real or relevant environment				
		TECH	INOLOGY DEOPOLYMENT IN REAL SPILL ENVIRONMENT				
		TRL 9	Final integrated system deployed in real spill environment				

Development of Acoustic Methods to Measure Oil Droplet Size & Slick Thickness on ROV & AUV Platforms

BSEE OSRR #1065

- Applied Research Associates (ARA), Inc.
- PI: Dr. Paul Panetta
- Estimated Completion: May 2017

Objective: Develop and test acoustic techniques and sensors on freeswimming platforms [Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs)] for field applications to measure:

(a) slick thickness on the water surface

(b) oil droplet size at the well head

Intended to assist subsea dispersant applications.

Highlights:

Final testing at Ohmsett in February 2017

24

Development of Acoustic Methods to Measure Oil Droplet Size & Slick Thickness on ROV & AUV Platforms

Assessment of Dispersant Effectiveness Using Ultrasound to Measure Oil Droplet Particle Size Distribution

— BSE	E OSRR #	¢697
		REE Oil Snill Response TRL Summeru
		BASIC TECHNOLOGY RESEARCH
	TRI 1	Basic principles observed or reported
	TRL 2	Concept and speculative application formulated
	TRL 3	Proof of concept demonstrated
		TECHNOLOGY ADVANCEMENT/DEMONSTRATION
	TRL 4	Prototype demonstrated in lab environment or model scenario
	TRL 5	Prototype tested in relevant environment
	TRL 6	Full-scale prototype tested in relevant environment
	TECHN	OLOGY IMPLEMENTATION IN OPERATIONAL ENVIRONMENT
(TRL 7	Integrated technology tested on large scale or in open water
	TRL 8	Final integrated system test in real or relevant environment
	TEC	HNOLOGY DEOPOLITIMENT IN REAL SPILL ENVIRONMENT
	TRL 9	Final integrated system deployed in real spill environment

Development of a ROV Deployed Video Analysis Tool for Rapid Measurement of Submerged Oil and Gas Leaks

BSEE OSRR #1027

- National Energy Technology Laboratory (NETL)
- PI: Frank Shaffer
- Completed: May 2016

Objective: Develop a video based method and associate algorithms for calculating flow rates of subsea oil and gas leaks and blowouts.

- Small scale, high res oil jet experiments were conducted at University of California at Berkley
- Tested at Ohmsett in October 2014

Development of a Real-time Monitoring Protocol for Assessing VOC Impacts on Response and Cleanup Workers' Safety During Dispersant Operations

BSEE OSRR #1006

- Louisiana State University
- PI: Edward Overton
- Completed: 2014

Objective: Develop real-time and passive monitoring protocols to effectively determine the impact of dispersant use and VOC release, in both surface and subsurface applications, on oil spill response worker safety.

- Minimum sensitivity of 0.5 ppm benzene for performance criteria of air monitoring.
- Air sampling every 5 minutes during testing.

Developing an Innovative Dispersant Spray Drift Model

BSEE OSRR #1070 AMOG Consulting, Inc. PI: Stuart Wales Completed: September 2016

Objective: Develop a software tool to identify operability windows and establish exclusion zones based on the maximum extent of dispersant spray. Results from computational fluid dynamics models of the forces acting on dispersants being sprayed from four commonly used aircraft model feed the decision support tool.

Select aircraft	Tractor AT-802 A
Aircraft heading (°N)	
Aircraft Altitude (ft)	Optional
Aircraft Ground Speed (kn)	Optional
Safety Factor	Optional
Wind Forecast:	
Oil Spill Area:	
Planned Spray Release Are	a:
Output .kml filename:	Optional
Operability Table filename:	Optional
	Cancel

- Lockheed Martin C-130A;
- Air Tractor AT-802A;
- Douglas DC-3;
- Douglas DC-4.

Deepwater Horizon Lessons Learned - Methodology and Operational Tools to Assess Future Oil Spills

BSEE OSRR #1079

- NOAA
- PI: George Graettinger
- Estimated Completion: September 2017

Objective: Validate and quantify the capabilities of various remote sensing systems and sensors for detecting and characterizing oil. Monitor and measure oil slicks in the marine environment.

Highlights:

Initial testing at Ohmsett with various sensors in July 2016

Offshore testing conducted at MC-20 in November 2016

Other Research Projects

Arctic

- Estimating an Oil Spill Response Gap for the Arctic Ocean (BSEE OSRR #1022)
- Testing of Skimmer Hoses and Hose Couplings under Simulated Arctic Conditions (BSEE OSRR #1026)
- Geographic Referencing Identification (GRID) Tagging of Oil under Ice (BSEE OSRR #1050/51)

Other Research Projects

Arctic

 Response Favorable Response Marginal Response Not Favorable 	OVERALL Year-round	Winter November-June	Summer July-October
Open-water Mechanical Recovery	8 20% 73% 7 15% 77%	5 94% 98%	21% 48% 32% Chukchi Sea 22% 43% 35% Beaufort Sea
Dispersants - AERIAL Application	15% 7 79% 11 5 84%	95% 99%	37% 14% 49% Chukchi Sea 32% 14% 55% Beaufort Sea
Dispersants - VESSEL Application	20% 16% 65% 17% 14% 70%	<mark>9</mark> 89% 495%	51% 34% 15% Chukchi Sea 48% 35% 17% Beaufort Sea
In-situ Burning - AERIAL Application	17% 19% 65% 15% 16% 69%	10 11 79% 9 11 80%	22% 25% 53% Chukchi Sea 20% 21% 59% Beaufort Sea
In-situ Burning - VESSEL Application	23% 40% 36% 23% 35% 42%	15% 44% 41% 14% 37% 49%	30% 44% 26% Chukchi Sea 29% 41% 30% Beaufort Sea

Other Research Projects

- Other
 - Gulf of Mexico Oil Spill Response Viability Analysis (BSEE OSRR #1077)
 - Equipping GRIDs with Accelerometers to Measure Ocean Wave Characteristics (BSEE OSRR #1080)
 - Environmentally Benign Oil Simulants to Mimic the Behavior of Oil Droplets in the Ocean (BSEE OSRR #1029)

Ohmsett Specific

- Ohmsett Optimization Projects
 - Solidifying the Scientific Capabilities of Ohmsett Wave Hydrodynamics (BSEE OSRR #1045)
 - Solidifying the Scientific Capabilities of Ohmsett Effect of Ambient Chemical Levels (BSEE OSRR #1044)
 - Characterizing Wave-Induced Mixing Energy in Ohmsett Wave Basin for Dispersant Effectiveness Testing (BSEE OSRR #1059)

Offshore Maps, Stats and Facts

Get technical information about offshore activities

Offshore Maps, Stats and Facts

Get technical information about offshore activities

What We Do / Oil Spill Preparedness Division / Oil Spill Response Research

Administrative Services

Budget, Planning & Performance

Safety Enforcement

Environmental Focuses

Incident Investigations

International Engagement >

Oil Spill Preparedness

Ohmsett

Oil Spill Response

Oil Spill Response Research

Preparedness Activities

.

Offshore Regulatory Programs

Research

BSEE actively researches and evaluates current and emerging technologies for operations ranging from the drilling of oil and gas exploration wells to the removal of platforms and related infrastructure in an ongoing effort to reduce risks across all offshore operations.

Oil Spill Response Research

Technology Assessment Program

n Technology Collaborations

Oil Spill Response Research (OSRR)

Share <

For more than 25 years, BSEE (and former organizations) have aggressively maintained a comprehensive, long-term research program dedicated to improving oil spill response options. The major focus of the program is to improve the methods and technologies used for oil spill detection, containment, treatment, recovery and cleanup. The OSRR program is a cooperative effort bringing together funding and expertise from research partners in government agencies, industry and the international community.

OSRD's Response Research Branch (RRB)

manages the funding for numerous research projects chosen to meet selected major topics each year. White Papers and research proposals are solicited through a Broad Agency Announcement (BAA) that is published on the Federal Business Opportunities website at www.fbo.gov.

The RRB also manages Ohmsett, the National Oil Spill Response Research Test

Facility, located in Leonardo, New Jersey, Ohmsett is the largest outdoor saltwater wave/tow tank facility in North America. Ohmsett allows full-scale oil spill response testing, training and research with oil in a realistic marine environment. For more information visit the Ohmsett Website.

Master List of Oil Spill Response Research (OSRR) Projects

Arctic Oil Spill Response	Behavior of Oil
Chemical Treating Agents	Decision-Making Support Tools
In Situ Burning of Oil	Mechanical Containment
Ohmsett	Remote Sensing

1041	HC-Sentinel: An AUV Glider for High Endurance Subsea Hydrocarbon Detection	Woods Hole Oceanographic Institution
1040	Distributed Chemical Sensing for Sub-surface Oil Spill Sensing	University of Houston
1039	Oil Leak Detections with a Combined Fluorescence Polarization Instrument and a Wide Band MultiBeam Sonar	EIC Laboratories, Inc. and Norbit US, Ltd.
1038	Biodegradation and Toxicity Following Dispersant Usage in a Cold, Stratified, Deep Sea Setting	Pacific Northwest National Laboratory (PNNL)
1037	Development of an Autonomous Oil Skimmer (AOS)	Alion Science and Technology Corporation
1036	Burning on Castle Office Ice Cavities - II	Worcester Debylociatis insutute (WPI)
1035	Improved In-Situ Burning for Offshore Use	US Coast Guard Research & Development Center
1034	Temporary Oil Spill Storage and Recovery in Alaskan Arctic Using Petrogel Technology	The Pennsylvania State University
1033	Mitigation of Oil in the Water Column: Phase I - Design	US Coast Guard Research & Development Center
1032	Permitting the Use of Oil Spill Simulants: Identifying Options and Building Consesus	Nuka Research and Planning Group, LLC
1031	Innovative Technology Enhancements for Measuring Test Parameters at Ohmsett	MAR, Inc
1030	Research to Support the Prediction of Effectiveness of Dispersant Use in the U.S. Beaufort and Chukchi Seas	SL Ross

OSRR-1037-Development of an Autonomous Oil Skimmer (AOS)

Share <

Progress Date	7/1g/2018
Category	Remote Sensing Mechanical Containment and Recovery
Project Initiation Date	6/13/2016
Performing Activity	Alion Science and Technology Corporation
Principal Investigator	Dr. Gregory Johnson
Contracting Agency	Bureau of Safety and Environmental Enforcement
Estimated Completion Date	6/30/2016
Description	The goal of this project was to develop a strap-on navigation, sensor, and computer control system that could be used to direct a variety of commercial off the shelf (COTS) skimmers and vessels to autonomously maneuver and skim the oil from a given area with automatic tracking and reporting of progress and performance. This autonomous oil skimmer (AOS) system consisted of a commercial of the shelf (COTS) skimmer and vessel, a COTS autopilot system, a high precision navigation package, oil thickness and recovery efficiency sensors, and a custom computer algorithm. This system was designed to monitor the thickness of the oil being skimmed in real time and track oil thickness versus position as it was skimming. Based on the oil thickness gradients, the tracking algorithm directed the vessel/skimmer to head in the direction of thickest oil concentration. As oil was recovered, statistics on oil thickness and oil recovery rate as a function of position were tabulated for real time performance monitoring. During this effort Alion developed a proof of concept prototype that was tested at the Ohmsett facility as well as at their facility.
Latest progress update	The project is complete and all deliverables have been received. The final report is posted below.
Status	Completed
Date research complete d	6/30/2016
Associated Attachments	1037AA

Questions or Comments?

BSEE Website: www.bsee.gov

"To promote safety, protect the environment and conserve resources offshore through vigorous regulatory oversight and enforcement."