Chevron

Evaluating Oil Spill Risks through Stochastic and Deterministic Modeling

> Don Danmeier Environmental Risk Scientist

San Ramon, March 2 2017

© 2017 Chevron

- How modeling fits into an oil spill risk assessment
- Define *stochastic* and *deterministic* modeling
- Modeling considerations when assessing likelihood & consequence
- Comments on the common practice

Part of a bigger picture

Elements of the risk assessment

Hazard identification

HAZOP, PHA, What-If-Analysis

Likelihood analysis

historical data and extreme value theory

Consequence analysis

Predicted exposure & receptor sensitivity

Evaluate risk

Compare severity/prob. to tolerance criteria

Finding 6	
Oil spill risk assessment and response planning for offshore installations	
FINAL REPORT	
Oil Spill Response Joint Industry Project	

Hazard identification

Hypothetical Event Tree Analysis (ETA) for exploratory drilling

Likelihood analysis

Characterize volume & probability

For blowout example:

- Model flow for each ETA pathway
- · Vol. based assumed intervention time
- Assign prob. based on historical data

Consider complete risk profile

Production & transportation risk

Representative spill scenarios

- Evaluating all hazards is intractable
- Select representative scenarios for consequence analysis

Consequence analysis

Severity of spill determined by:

- Modeling fate & trajectory of spilled oil
- Comparing exposure to environmental sensitives

Importance of metocean inputs

- Drive trajectory...but also affect weathering
- Transient and seasonally variable

Establish & evaluate risk

Establishing risk

- Combine likelihood and consequence
 - Establish risk level from one specific set of metocean parameters
 - Do different metocean inputs affect severity?

Evaluating risk

- · Compare risk level to tolerance criteria
- Are safeguards needed?
- Are risks as low as responsibly practical (ALARP)?

Deterministic modeling

Simulate fate & transport under specific metocean forcing

Stochastic modeling

Combine multiple runs under various metocean forcing

- Spatial variation of *conditional probability*
- Does not show extent of oiling

Histograms describe distribution of low/high exposure

- Rank runs by surface area oiled, shoreline oiled, ...
- Shape of distribution indicates importance of metocean variability

A 'representative' or 'worst-case' run?

Some exposure metrics may not vary much....

but simplification may mask severity

A 'representative' or 'worst-case' run?

...but some may vary considerably

Conflicting guidance & practice

IPIECIA Good Practice Guide

The stochastic analyses should be paired with a **most probable** deterministic case that can be utilized to support response planning

Australian Maritime Safety Authority

Stochastic modelling is the recommended method for determining the Zone of Potential Impact...assess the **likely effect** of the spill scenarios for each resource type identified within the ZPI.

BOEM risk assessments

- Simplified consequence analysis (no weathering, 30-day trajectory, no ecology)
- Summation of prob. x extent of oiling over stochastic set

Typical practice

Use P100 run as a (overly?) conservative assumption

closing thoughts

- Don't blindly adopt P100 run for consequence analysis
- Consider how severity varies with conditional probability
 - Is comparison to tolerance criteria robust?

Consequence Likelihood	Insignificant	Small	Moderate	Large	Very Large	
≥≈10 ⁻¹					very high risk	
≥≈10 ⁻²			DEO			
≥≈10 ⁻³			P50	D05	r PQ5	
≥≈10-4				F 95	1-35	
≥≈10 ⁻⁵	very low risk					

- When practical, establish risk by weighting consequence by conditional probability
- If establishing risk only from central portion of stochastic set, confirm ability to scale-up response

Questions?

