Non-floating Oil Effects on Natural Resources

0

April DaSilva

Natural Resource Damage Assessment Unit

CDFW-OSPR

November 15, 2017

Oil Types

Group 1	Group 2	Group 3	Group 4	Group 5
Very Light	Light	Medium	Heavy	Non-floating
Gasoline Jet Fuels	Diesel No. 2 Fuel Oil Kerosene Light Crudes	Alaskan North Slope Crude Medium Crudes	Bunker C No. 6 Fuel Oil Residual fuels Heavy Crudes	Coal Tar Oils Asphalt Very Heavy Crudes
SG < 0.80	SG = 0.80 - 0.85	SG = 0.85 - 0.95	SG = 0.95 - 1.00	SG > 1.00
Impacts to water column and intertidal resources	Impacts intertidal resources	Impacts to intertidal resources, water fowl and fur-bearing mammals	Heavy contamination to intertidal resources, water fowl and fur-bearing mammals, long-term sediment contamination	Long-term sediment contamination

552

Non-floating Oil Concept

Non-floating Oil Risks

- Oil accumulates on a waterbody's bottom
- Slow weathering

 \bigcirc

- Slow release of water-soluble PAHs
- Increased risk of chronic exposure
- Smothering and coating expected
- Benthic organisms (shellfish, fish, macroinvertebrates etc.) at highest risk of exposure
- Possible resuspension into the water column

Cosco Busan Oil Spill – San Francisco Bay

- November 7, 2007
- Marine spill
- Bunker/Intermediate Fuel oil
- Impacted eelgrass beds and Pacific Herring spawning habitats
 - eelgrass grows in the intertidal zones from 2 5m deep
 - Pacific Herring spawn adheres to eelgrass

Adverse effects

- Coat aquatic plants
- Effects on Early-life stages
 - Egg mortality
 - Reduced hatching
 - Developmental defects
 - Pericardial and yolk sac edema
 - Spinal curvature
- Lost production of viable larvae for next spawning season
- Incardona et al., (2011) The 2007 Cosco Busan oil spill: Field and laboratory assessment of toxic injury to Pacific herring embryos and larvae in the San Francisco estuary.

Prestige Oil Spill – NW Spain

- November 2002
- Marine spill
- Heavy fuel oil
- Tanker sank to ~4000m deep
- Oil was dispersed and sank due to bad weather and wave action
- Tar aggregates dropped out of the water column and were found one month later on the seabed

Adverse effects

- Long residence time due to depth
- Benthic species effects²
 - Oil found in exoskeletons and the gut of zooplankton species
 - Suprabenthic amphipods were found to be stained with oil
 - Reduction in growth and food consumption among juvenile benthic fish (lab study)¹
- Ecosystem effects²
 - Effects on secondary producers, suspension feeders, and detritivorous organisms
 - Bottom-up effect shifts in abundances in lower trophic levels
 - Top-down effect possible enhancement in the biomass of predators

East Walker River – Mono County, CA

- December 30, 2000
- Freshwater Spill
- No. 6 Fuel Oil becomes tar-like at low temperatures
- January 2001 was exceptionally cold
 - low temperatures averaging 9°F,
 - severe winter weather forced temps. below zero

Adverse effects

- Reduction in macroinvertebrates^{1, 2}
 - Recovered BMI were oiled in tar-like material covering head, mouth, abdomen, thorax, legs and cerci
 - Reduce feeding capabilities
 - Restrict movement
 - Increase vulnerability to predation
- Fish mortality²
 - Reduction in food supply
 - Direct PAH exposure
 - Formation of anchor ice in the river

E. Walker River: Post-spill Macroinvertebrate Survey Results

25000 macroinvertebrate abundance 20000 15000 10000 5000 ٥ Stage Gauge Hwy 182 Bridge Above Spill Above Murphy's Ranch House selow State Line □ Jan-01 ■ Mar-01 Oct-Nov 01

¹ CDFG Aquatic Bioassessment Lab (2006) Biological and Physical/Habitat Assessment Report in Response to an Inland Waters Pollution Spill. ² Hampton et al., (2002) Assessment of Natural Resource Damages As a Result of the East Walker River Oil Spill On December 30, 2000.

Enbridge Oil Spill -Kalamazoo River, Michigan

- July 26, 2010
- Freshwater spill
- Diluted Bitumen (dilbit) heavy asphalt-like crude
- Initially floated then sank after loss of volatile fraction
- Submerged oil and oil-contaminated sediment removed by dredging (~12-18,000 gallons)
- Sunken oil remobilized due to changes in turbulence and currents
- Sampling efforts produced surface sheens when depositional zones were disturbed

Aquatic Macroinvertebrate Study¹

- reduced diversity and abundance of macroinvertebrates
- In 2011, scores improved, but abundance was still impacted.
- Decrease in vegetative cover exposed more of the stream
- Altered macroinvertebrate community composition due to increased instream sunlight

Adverse effects^{1,2}

- Removal techniques removed aquatic vegetation and roots
 - Increase vulnerability to predation
- Burial/Smothering of the fish and benthic zone
 - Direct mortality
 - Dissolved oxygen depletion
 - Abrasion of fish gills
 - Chronic exposure leading to adverse effects on reproduction, development, immunity
 - Gross examination of fish showed hemorrhages, skin lesions, and skin irritation
 - Reduction in BMI biomass and growth

¹ Winter et al., Assessing Natural Resource Impacts from the Enbridge Pipeline Spill into the Kalamazoo River. *Presentation*.
² Fitzpatrick et al., (2012) Net Environmental Benefit Analysis (NEBA) Relative Risk Ranking Conceptual Design. Kalamazoo River System Enbridge Line 6B MP 608 Marshall, MI Pipeline Release.

Summary

- Submerged/sunken oil may reside longer in the sediments due to slow weathering, density, and viscosity
- Studies have shown:
 - Reduction in benthic communities due to contaminated sediments
 - Physical malformations on bottom dwelling fish species
 - Reduction in food supply
 - Mortality

- Long-term chronic impacts include:
 - Reduction in reproduction and development
 - Tumors
 - Mortality
- Ecosystem effects:
 - Bottom-up effect shifts in abundances in lower trophic levels
 - Top-down effect possible enhancement in the biomass of predators that affect lower trophic levels