State of California The Resources Agency DEPARTMENT OF FISH AND GAME

ANNUAL REPORT
 CHINOOK SALMON SPAWNER STOCKS IN CALIFORNIA'S CENTRAL VALLEY, 2003

Edited by

Robert M. Kano

Habitat Conservation Division
Native Anadromous Fish \& Watershed Branch

Inland Fisheries
Administrative Report No. 2006-02

Edited by
Robert M. Kano
Habitat Conservation Division
Native Anadromous Fish \& Watershed Branch

Abstract

This report covers the 51st annual inventory of Chinook salmon, Oncorhynchus tshawytscha, spawner populations in the Sacramento-San Joaquin River system. It is a compilation of sources estimating the late-fall-, winter-, spring-, and fall-run populations for streams which were surveyed. Estimates were based on counts of fish entering hatcheries and migrating past dams, from surveys of dead and live fish and redds in spawning areas, and from aerial counts.

The estimated 2003 total escapement of Chinook salmon in the Central Valley was 624,808 fish, which was 7% lower than in 2002 . The population consisted of 590,735 fall-, 17,564 spring-, 8,291 late-fall-, and 8,218 winter-run spawners. All of the late-fall-, spring-, and winter-run salmon were in the Sacramento River system. The entire Central Valley fall run consisted of 602,425 fish in the Sacramento River system and 21,383 fish in the San Joaquin River system. In the American River of the Sacramento system, a record high fall run occurred. The fall run in the San Joaquin tributaries still only contributed a small portion (3\%) to the total Central Valley escapement.

[^0]
INTRODUCTION

The Sacramento-San Joaquin River system (Figure 1), which flows through California's Central Valley, is the principle producer of Chinook salmon caught in the state's ocean fisheries; its salmon runs also contribute to the ocean fisheries of Oregon and Washington. This report is the 50th compilation of Chinook salmon spawner stock surveys. The spring and fall runs have been monitored since 1953, and late-fall and winter runs since 1971. The four runs are distinguished as follows:

1) Late-fall run. These salmon spawn mainly in the upper Sacramento River and its tributaries near and upstream of Red Bluff. They arrive in this area in early November through February, with spawning occurring from January through mid-April. Adults of this run are usually larger in physical size than fall- and winter-run salmon spawning in the same area.
2) Winter run. These salmon spawn almost entirely in the Sacramento River and its tributaries upstream of Red Bluff, arriving there in December through early August, with spawning occurring from April through August.
3) Spring run. Once widespread in Central Valley tributaries, this run has disappeared from many of the streams in which dam construction has blocked access to spawning habitat. Spring-run spawners return to the system from the ocean in late January through August; early arrivals to their natal streams oversummer in holding pools. Spawning occurs from mid-August through October.
4) Fall run. These are presently the most numerous and widely distributed salmon in the Central Valley. They return from the ocean during June through November and spawn from early October through late December.

Monitoring of salmon spawner escapement in Central Valley tributaries is an important component of the California Department of Fish and Game's (CDFG) fishery management effort. The primary objectives of this work are to determine size and composition of spawner populations. Any changes in spawning distribution and habitat conditions that may adversely affect salmon are noted to determine if corrective action is necessary.

FIGURE 1. Sacramento-San Joaquin River System of California's Central Valley.

GENERAL METHODS

During 2003, spawner stock data were collected in some Central Valley tributaries known to support Chinook salmon runs by: monitoring fish entering hatcheries and migrating past dams; conducting stream surveys in holding or spawning areas for live fish, carcasses, and redds; or making aerial redd counts.

The data collected usually represented only a sampling of the tributaries' spawners. For some tributaries, data were not sufficient to calculate an estimate of the spawner population size; in some such cases, a decision of the number of spawners present was arrived at by "best professional judgment".

In other streams, salmon carcasses were marked throughout a series of survey periods. Discrete marks associated those carcasses with the individual surveys upon subsequent recovery trips. All counted carcasses were marked, or cut in half to prevent recounting. Estimated spawner numbers were calculated from mark-and-recovery data.

Specific details of surveys (e.g. timing, duration, location), or estimation methods are presented under the individual tributary sections.

In this report, adult salmon are considered those fish three years old and older. Two-year-old salmon, although sexually mature, are referred to as grilse.

-6-
 CHINOOK SALMON SPAWNER POPULATIONS FOR THE SACRAMENTO RIVER SYSTEM

Sacramento River Mainstem

A total of 102,941 salmon was in the mainstem between Keswick Dam and Princeton Ferry (Figure 2), consisting of 89,229 fall-, 8,218 winter-, and 5,494 late-fall- fish.

Late-fall run. The late-fall spawner population was estimated from salmon carcass surveys in a portion of the mainstem, and from aerial redd surveys of the entire mainstem. Carcass surveys were conducted from 10 December 2002 through 28 April 2003, covering the $26.4-\mathrm{km}(16.5-\mathrm{mi})$ stretch of the mainstem from Anderson-Cottonwood Irrigation District Dam (ACID) downstream to Anderson River Park ${ }^{\underline{2}!}$.

Salmon carcasses were marked with colored tags attached to their jaws with hog rings; for each week a different color was used. Marked carcasses were returned to running water for subsequent recovery. Carcasses that were not marked, as well as those that were recovered with marks, were chopped in half to prevent recounting. Measurements of fork length (FL), determination of gender, and relative egg retention of females were made for a subsample of fresh carcasses (those with a clear eye or pink gills).

The carcass processing protocols were intended to allow post-season distinction of age-class (adult or grilse, based on length), and condition (fresh or decayed), so the data could be better compiled for estimating the population through several biometric models. Analysis of the data indicated the Jolly-Seber model (Appendix 1.C) was the most appropriate. Using the mark-andrecovery data for fresh and decayed carcasses, 1,353 carcasses were observed, 503 of which were marked and 92 subsequently recovered, for an estimate of 4,681 fish in the surveycd area upstream of Anderson River Park (Table 1).

An aerial survey of the mainstem from Keswick Dam downstream to Princeton Ferry was conducted on 6 March 2003 (Table 2). Based on data from these surveys, approximately 85.2% of the late-fall-run spawning occurred within the mark-and-recovery area, and 97.3% of the redds were upstream of Red Bluff Diversion Dam (RBDD). The carcass survey population estimate was therefore expanded to 5,494 fish for the entire mainstem, consisting of 5,346 spawners upstream of RBDD and 148 fish downstream.

The 2003 late-fall-run population of 5,346 fish for the Sacramento River mainstem upstream of RBDD was the lowest since 1998, when estimates of the population began being determined using carcass survey and redd data (Appendix 3).

[^1]- 7 -

FIGURE 2. Sacramento River System from Keswick Dam downstream to Princeton Ferry.

Survey	Carcosses Recoveled from Perux																				Marhed Carcasses Recovered $\left(\mathrm{R}_{1}\right): \quad(\mathrm{K},)$		Curcanses Obsenced (E, $)^{4}$	Sacramento Esturnte for Period		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			(NI)	(1) ${ }^{\text {a }}$		
1	-	-	--	--	--		--	\checkmark	--	--	--	-	-	-	.	--	--	${ }^{*}$	-	--	0	-		159	912	589
2	14	--	-	-	--		--	--	-.	..	--	--	..	-	--	-	-	--	--	--	14	6	14.	-	597	
3	2	1	--	--	*		--	--	-	--	--	..	-	--	--	-	--	--	*	--	3	4	100	--	m80	
4	4		5	--	-		--	-	--	--	-	-	--	-	.-	--	--	.-	--	--	9	${ }^{1}$	71	*	219	
5				1	--		--	-	--	--	*	\cdots	--	--	\cdots	--	--	..	--	--	1	1	37	\cdots	32.	
6				1	2	--	..	--	--	\cdots	-.	--	--	-	--	--	-.	-	--	--	3	1	89	--	207	
7					1	0	--	--	-	-	--	--	..	--	--	.	--	--	--	-	1	2	35	--	173	
8						$1)$	2	--		..	--	--	..	--	--	--	.-	--	--	-*	2	4	31	--	337	
9						1	1	0	..	--	--	--	..	-	--	\cdots	--	--	--	*	2	2	71	-	220	
10						I	0		2	--	--	-	--	--	-*	--	--	--	-	--	3	2	94	--	364	
11							1		0	1	--	-	--	--	-	--	--	--	-	--	2	9)	52	--	$2 \times$	
12									1	4	5	--	--	$\stackrel{ }{-}$	--	--	--	"	--	--	10	10	94	*	217	
13										3	3	5	--	-	--	-	--	-	--	--	11	9	100	пr	53	
14										I	3	2	s	--	--	--	--	*	--	--	11	6	72	nn	411	
15												0	1	2	--	-	-"	--	--	-*	3	11	32	--	-12	
16												3	0	3	0	-.	-.	--	.-	.-	6	5	51	-	8	
17													2	2		2	--	..	--	--	6	1	37	-	29	
18														1			1	-.	--	--	2	0	22	--	35	
19																		1	--	--	1	1	16	--	52	
20																		0	1	-	1	1	24	-	-2	
21																		1		0	1	--	11			
Tatal iceovered (C) ${ }^{7}$ Tolul marked (T_{1}) ${ }^{\text {a }}$																				lomis	92		1353			
	20	1	5	2	3	2	4	0	3	9	11	10	\%	8	0	2	1	2	1	0						
		9	39		19			1.			22	29		29	10	9	4			5	511	1 Grand	Ijut markid			
																			Jolly-Seber estimate ${ }^{\text {\% }}$:					4,681		
 2/ Tutal recovered murhed cartaswed tor the /h pencol 3/ Tintal marhed carcakser recoveted atter the /ih period, that were marked befone tie th period 5/ Number of careuskev in the pojpulation at the shat of sumby period 1 																										

TABLE 2. Chinook salmon redd relative distribution observed during 2003 aerial surveys of the mainstem Sacramento River from Keswick Dam to Princeton Ferry.

	L.ate-fall rum		Winter run		Spring rum		till tun	
River section	$\begin{gathered} \text { Redds } \\ \text { counted }{ }^{\prime \prime} \end{gathered}$	Proportional distribution	Redds counted ${ }^{2 /}$	Proportuonal distribution	$\begin{gathered} \text { Redds } \\ \text { counted } \end{gathered}$	Proportional distribution	$\begin{gathered} \text { Redds } \\ \text { counted } \end{gathered}$	Proportional distidution
Keswick Dam to A (ID Dain ${ }^{\text {s }}$	87	584\%	578	65 8\%	5	22 7\%	221	58%
A C LD Dam to Highway 44 Btidge	18	12%	151	172\%	7	318%	77	20%
Highway 44 Bridge to Airpor Road Bridge	22	148%	143	163\%	1	45\%	183	48%
Arport Road Bridge to Balls Ferry Bridge	18	$12 \mathrm{\%}$	3	03\%	6	273%	739	193%
Balls Ferry Bridge to Battle Creck	0		0		3	136%	412	108\%
Aratle Cieek to Jellys Ferry Budge	0		0		0		644	168%
Jellys Ferry Bridge to Rend Bridge	0		0		0		370	8 7%
Bend Bradge to Red Bluff Dam	0		0		0		207	54%
Upstream piopertina:		97.3\%		997%	\%	$1000^{1 / n}$	2umb	745°
Red Hluti Damo Tehana Bridze	6		3	6 ra	0		016	15900
Tchama Bruige w Wroodson Brodge	4	27%	0		v		100	43%
Woodson Bridge to Hamulton Cily Budge	0		0		0		95	25\%
Hamulton City Bridge to Ord Ferry Burlge	0		0		0		93	24%
Ord Ferry Bridge to Princeton Ferry	0		0		0		12	13\%
Downst cam proportion:		2.7%			12	?		25 5\%
Total Redds:	149		878		22		3,829	
1/ Total count of thew redds for one aer alal survey made on 6 March 2003 2/ Total count of new redds for 12 aerial surveys made from 20 May through 6 Augusi 2003 3. Total count of new iedds tor three aerial surveys made on 3, 10, \& 24 September 2003 4i Total count of new redds for four aerial surveys made from 9 October through 18 November 2003 5/ Anderson-Cottotiwood Irrigation Distucr Dam								

Winter run. The winter-run spawner population was estimated through salmon carcass surveys in a portion of the Sacramento River mainstem, aerial redd surveys of the entire mainstem, and data from sampling salmon at Keswick Dam. Surveys covered the $25.2-\mathrm{km}$ ($15.7-\mathrm{mi}$) stretch of the mainstem from Keswick Dam downstream to Anderson Mill Riffle ${ }^{3 /}$. The study area was divided into three reaches, which were surveyed on two consecutive days starting with the upstream reach. After a one day pause, and the cycle was repeated, for 43 survey periods during 30 April through 4 September 2003. Mean survey-period river flow averaged $357 \mathrm{~m}^{3} / \mathrm{s}(12.605$ cfs), ranging from $228 \mathrm{~m}^{3} / \mathrm{s}$ to $843 \mathrm{~m}^{3} / \mathrm{s}(8,050-29,785 \mathrm{cfs})$. Mean survey-period temperature averaged $11.1^{\circ} \mathrm{C}\left(52^{\circ} \mathrm{F}\right)$, ranging from $10^{\circ} \mathrm{C}$ to $12.2^{\circ} \mathrm{C}\left(50-54^{\circ} \mathrm{F}\right)$. Water clarity, measured by secchi disk, averaged $4.2 \mathrm{~m}(14 \mathrm{ft})$, ranging from 2.4 m to more than $4.5 \mathrm{~m}(8 \mathrm{ft}$ to $>15 \mathrm{ft})$.

Most of the surveys were conducted using two boats, each with two samplers, which covered opposite shorelines out to the middle of the river. Efforts were made to assure adequate coverage of areas where carcasses were known to accumulate, and several short stretches of river were surveyed on foot.

Collected carcasses were categorized as being either fresh or decayed, and either from hatchery or natural origin. Fresh carcasses were those having at least one clear eye and reddish colored gills. A carcass of hatchery origin was identified by a missing adipose fin. Livingston Stone National Fish Hatchery (LSNFH) had been the exclusive winter-run salmon rearing facility in the upper Sacramento river system since 1998, and all of its juvenile fish were released with adipose fin-clips, and coded-wire tags (identifying their race, age, and origin) implanted in their snouts. It was therefore assumed that any carcasses with adipose fins intact were winter-run salmon produced from in-river (natural) spawning. Length measurements, determination of gender, and female degree of egg retention were also recorded.

For estimation of the spawner population, carcasses were marked with colored plastic attached with hog rings; tag color was used to identify the survey period that the carcass was tagged. Fresh carcasses were tagged in the upper jaw, and decayed carcasses were tagged in the lower jaw. Tagged carcasses were returned to flowing water near the location where they were originally found. Hatchery-origin carcasses were excluded from marking, since their heads were removed and saved for retrieval of the coded-wire tag. Other carcasses not tagged, usually those in an advanced state of decay, were chopped in half. During subsequent surveys, previously tagged carcasses that were recovered were also chopped.

The carcass processing protocols were intended to allow post-season distinction of age-class (adult or grilse. based on length), condition (fresh or decayed), and origin (hatchery or natural), so the data could be better compiled for estimating the population through several biometric models. Analysis of the data indicated the Jolly-Seber model (Appendix 1.C) was the most appropriate.

A total of 4,549 individual salmon carcasses was observed, but only the mark-and-recovery data for those of natural-origin females classified as adults ($\mathrm{FL} \geq 61 \mathrm{~cm}$ [24 in]) were used to calculate an estimate. A total of 2,884 fresh and decayed carcasses was tagged, and 1,896 of

[^2]those were subsequently recovered, resulting in a Jolly-Seber estimate of 4,903 adult female fish in the surveyed area (Table 3).

TABLE 3. Chintook salmon fresh and decayed carcass mark-and-recovery data used to estimate the 2003 winter-run natural-origin adult female spawner population in the Sacramento River between Keswick Dam and the Anderson Mill Riffle (at River Mile 286.4) ".

Since the estimate from the Jolly-Seber calculations represented only a portion of the adult female population in the mainstem winter run, expansions/extrapolations were made to obtain the total in-river spawner population (Table 4).

- As only the mark-and-recovery data for natural-origin carcasses were used in the JollySeber calculation, the estimated number of adult female fish in the survey area was expanded to include those of hatchery origin. Based on the relationship of 2,008 fresh female carcasses observed in the survey, of which 1,914 were of natural origin, the JollySeber estimate was expanded to 5,143 adult females within the carcass survey arca.

TABLE 4. Estimated Components of the 2003 Winter-run Salmon Population in the Mainstem Sacramento River.	
Adult Female Salmon	
Within Carcass Survey Area	
	5,143
	36
Total Adult Females:	5,179
Total Adult Male Salmon ${ }^{\text {4/ }}$	2,419
Total Grilse Female Salmon ${ }^{5 /}$:	39
Total Grilse Male Salmon ${ }^{\text {o/ }}$:	496
TOTAL RUN:	8,133
1/ Jolly-Scber estimate calculated usmy mark-recovery data of natural-orign (non-adipose-fin-clipped) adult female salmon carcasses 2/ Expansion of Jolly-Seber estımate to melude hatchery-origin (adıpose fin-clipped) fish.	
3/ Estunate derived from number of femalc salmon withan the carcass survey arca, hased on relative proportions of redds	
4/Estumate derived from number of total adult fernales, based on female-male proportions at Keswick Dam	
5/ Estimate derived from number of total adult females, based on adult-grilse porportions in the carcass survey	
6/ Estmate derived from number of total adult males. based on adult-grilse porportions in the carcass survey	
7/ Nurnber of fish transferred from Keswick Dam	

- The number of adult females in the survey area was then extrapolated to the entire mainstem through aerial redd count data. Using the relationship of 878 total redds observed in the mainstem, of which 872 were in the carcass survey area, it was calculated that 36 fish were outside the area, resulting in 5,179 total adult females for the entire mainstem.
- An estimate of adult male salmon was derived from the total number of adult females using the winter-run male-to-female sex-ratio at the Keswick Dam trapping station. Based on the 64 males and 137 females observed, it was calculated that a total of 2,419 adult males were in the mainstem.
- Estimates of grilse salmon for each gender were derived from the respective total numbers of adults using the proportions of grilse and adults observed in fresh carcasses sampled during the survey. Based on the female salmon relationship of 15 grilse and 1,997 adults, 39 total female grilse were calculated. Likewise, based on the male salmon relationship of 64 grilse and 312 adults, a total of 496 male grilse was estimated.

Combining the estimates for each sex-age component of the run, a total of 8,133 salmon spawned in the mainstem. Based on 12 aerial surveys conducted during 20 May through 6 August 2003, the distribution of winter-run redds upstream and downstream of RBDD was about 99.7% and 0.3%, respectively (Table 2). This represented a population distribution of 8,105 fish upstream of RBDD and 28 fish downstream. An additional 85 fish were transferred from Keswick Dam to LSNFH, resulting in a total 8,218 winter-run salmon for 2003 (Appendix 3).

The winter-run population consisted of 29.7% male adults, 63.7% female adults, 6.1% male grilse ($\mathrm{FL}<61 \mathrm{~cm}$), and 0.5% female grilse.

The 2003 winter-run spawner population of 8,218 salmon in the mainstem upstream of RBDD was 9% higher than that of 2002 . The 2003 population was also over three times higher than the average for 1993-2002, but estimates previous to 2000 were determined from RBDD counts rather than carcass surveys (Appendix 3).

Spring run. Mainstem salmon estimates were determined by methodology which involved expansion of sampling the salmon passage at RBDD during mid-May through midSeptember. This interval was when the dam's gates were lowered, and its fishways were operable. Briefly, numbers of salmon counted weekly during discrete periods were adjusted for unsampled periods, then apportioned to an individual run. The total of a run's adjusted counts was further expanded using historical distributions of migration past RBDD. For the spring run this distribution was an average run timing from year-round samplings during 1970-1988. Expansion to include passage during the gates-up period in 2003 assumed that the total adjusted count represented the same proportion of the run as the period's historical distribution. Mainstem-only spawner populations were typically calculated by removing numbers harvested in the sport fishery and populations in upstream tributaries from a run's total estimated RBDD passage.

An estimated 145 salmon with spring-run characteristics passed RBDD in $2003^{4 /}$. However, the numbers of fish of this run accounted for in Cottonwood, Clear, and Battle creeks exccedcd that estimated to have passed RBDD, so it was not possible to make an estimate of the mainstem spawner population. During aerial surveys conducted on 3, 10, and 24 September 2003, springrun redds were not observed downstream of RBDD (Table 2), and it was assumed that there were no spawners of this run in that area.

Fall run. The fall-run spawner population was estimated through salmon carcass surveys conducted in a portion of the mainstem, aerial redd surveys of the entire mainstem, and data from sampling salmon at RBDD. Carcass surveys covered the $9.7-\mathrm{km}(6-\mathrm{mi})$ stretch of the mainstem from ACID downstream to Bonneyview Bridge in Redding ${ }^{4 /}$.

Most of the surveys were conducted using two boats, each with two samplers, which covered opposite shorelines out to the middle of the river. Collected carcasses were categorized as being either fresh or decayed, and either from hatchery or natural origin. Fresh carcasses were those having at least one clear eye and reddish colored gills. A carcass of hatchery origin was identified by a missing adipose fin, and it was assumed that any carcasses with adipose fins intact were fall-run salmon produced from in-river (natural) spawning. Length measurements, determination of gender, and female degree of egg retention were also recorded.

For estimation of the spawner population, carcasses were marked with colored plastic attached with hog rings; tag color was used to identify the survey period that the carcass was tagged.

[^3]Fresh carcasses were tagged in the upper jaw, and decayed carcasses were tagged in the lower jaw. Tagged carcasses were returned to flowing water near the location where they were originally found. Hatchery-origin carcasses were excluded from marking, since their heads were removed and saved for retrieval of the coded-wire tag. Other carcasses not tagged, usually those in an advanced state of decay, were chopped in half. During subsequent surveys, previously tagged carcasses that were recovered were also chopped.

The carcass processing protocols were intended to allow post-season distinction of age-class (adult or grilse, based on length), condition (fresh or decayed), and origin (hatchery or natural), so the data could be better compiled for estimating the population through several biometric models. Analysis of the data indicated the Jolly-Seber model (Appendix 1.C) was the most appropriate.

Only the mark-and-recovery data for fresh carcasses from natural-origin female adults were used in the Jolly-Seber calculation. From a total of 1,246 carcasses marked, and 568 subsequently recovered, an adult female population of 4,808 fish was estimated (Table 5).

Since the estimate from the Jolly-Seber calculations represented only a portion of the adult female population in the mainstem fall run, expansions/extrapolations were made to obtain the total in-river spawner population (Table 6).

TABLE 6. Estimated Components of the 2003 Fall-run Salmon Population in the Mainstem Sacramento River.

Adult Female Salmon
$\left.\begin{array}{|ccc|}\hline \begin{array}{l}\text { Within Carcass Survey Area } \\ \text { Natural-origin spawners } \\ \text { Natural and Hatchery-origin spawners }{ }^{2 /}\end{array} & 4,808\end{array}\right)$

1/ Jolly-Seber estimate calculated using mark-recovery data of non-adipose-fin-clipped adult fcmale salmon carcasses.
2/ Expansion of Jolly-Seber estimate to include hatchery-origin (adipose fin-clipped) fish
3/ Estimate derived from number of female salmon in the carcass survey area, based on relative proportions of redds.
4/ Estimate derived from number of total adult females, based on female-male proportions at Keswick Dam.
5/ Estimate derived from number of total adult females, based on adult-grilse porportions in the carcass survey.
6/ Estimate derived from number of total adult males, based on adult-grilse porportions in the carcass survey

- As only the mark-and-recovery data for natural-origin carcasses were used in the JollySeber calculation, the estimated number of adult female fish in the survey area was expanded to include those of hatchery origin. Based on the relationship of 588 fresh female carcasses observed in the survey, of which 42 were of hatchery origin, the JollySeber estimate was expanded to 5,178 adult females within the carcass survey area.
- The survey area adult females was extrapolated to the entire mainstem through aerial redd count data. Using the relationship of 3,829 total redds observed in the mainstem, of which 405 were in the carcass survey area, it was calculated that 43,773 fish were outside the area, resulting in 48,951 total adult females for the entire mainstem.
- An estimate of adult male salmon was derived from the total number of adult females using the fall-run male-to-female sex-ratio at the RBDD trapping station. Based on the 331 males and 430 females observed, it was calculated that a total of 37,680 adult males were in the mainstem.
- Estimates of grilse salmon for each gender were derived from the respective total numbers of adults using the proportions of grilse and adults observed in fresh carcasses sampled during the survey. Based on the female salmon relationship of 5 grilse and 588 adults, 416 total female grilse were calculated. Likewise, based on the male salmon relationship of 15 grilse and 259 adults, 2,182 male grilse were estimated.

Combining the estimates for each sex-age component of the run, a total of 89,229 salmon spawned in the mainstem. Based on four aerial surveys conducted during 9 October through 18 November 2003, fall-run redds upstream and downstream of RBDD constituted about 74.5% and 25.5%, respectively, of the total mainstem spawning (Table 2). This represented a population distribution of 66,476 fish upstream of RBDD and 22,753 fish downstream.

The 2003 fall-run spawner population in the mainstem upstream of RBDD was 31% higher than that of 2002 , while the downstream population was 11% higher than the previous year (Appendix 3).

Sacramento River Tributaries
 Keswick Dam to Red Bluff Diversion Dam

In 2003, a total of 165,509 salmon was estimated for the Sacramento River system tributaries upstream of RBDD, consisting of 162,520 fall-, 2,797 late-fall-, and 192 spring-run fish. Clcar and Battle creeks were the only tributaries in this area for which individual fall-run population estimates were made.

Clear Creek

Late-fall run. No surveys were conducted for this run in 2003.
Spring run. Snorkeling surveys were conducted by the U.S. Fish and Wildlife Service (FWS), Northern Central Valley Fishery Resource Office (NCVFRO) in Red Bluff. Based on the number of live fish observed during the August survey, which was regarded as an index of annual adult abundance, the spring-run spawner population was judged to be 25 salmon $\frac{5}{}$.

Fall run. Nine spawner surveys of Clear Creek were conducted during 6 October through 1 December 2003, in the $6.7-\mathrm{km}(4.2-\mathrm{mi})$ stretch downstream of the former site of McCormickSaeltzer Dam ${ }^{\frac{5}{5}}$. Salmon carcasses were marked by attaching colored tags to their jaws with hog rings, and replacing them back into running water for recovery during following surveys; different colors of tape were used to identify carcasses with distinct marking periods.

Using fresh carcass mark-and-recovery data with the Schaefer model (Appendix 1.B), the

[^4]spawner population in Clear Creek was estimated to be 9,475 fish (Table 7).
Based on examination of 4,609 salmon carcasses, the fall-run spawner population of Clear Creek consisted of 40% male adults ($\mathrm{FL} \geq 61 \mathrm{~cm}$ [24in.]), 57% female adults, and 3% grilse ($\mathrm{FL}<$ 61 cm).

Pre-spawning mortality of female salmon in Clear Creek this season was one percent.

Recovery	Number of marked carcasses recovercd from marking pertod (i)								Total marked carcasses recovered (R j$)$	Total carcasses observed$(\mathrm{CJ})^{1 /}$	Population estimate (N) ${ }^{2 i}$
	6-Oct	14-Oct	20-Oct	27-Oct	3-Nov	$10-\mathrm{Nov}$	17-Nov	24-Nov			
$14-\mathrm{Oct}$	6	--	--	--	..	--	-	--	6	304	884
20-Oct	1	44	\rightarrow	--	-	--	--	--	45	607	1,255
27-Oct	4	12	72	--	--	--	--	--	88	1,133	2,209
$3-\mathrm{Nov}$		6	11	60	--	--	--	--	77	1,141	2,216
$10-\mathrm{Nov}$			7	19	64	-	--	--	90	878	1,474
17 -Nov				6	16	74	--	--	96	659	1,336
24-Nov				2	3	15	27	--	47	329	824
1-Dec					0	0	1	0	1	38	147
Cotal recovered (Ri)	11	62	90	87	83	89	28	0			
lotal carcasses marked (Mı)	32	127	173	169	131	190	80	0		tal estımate	10.345
									Adjusted	Imate ${ }^{3 /}$:	9,475
1/ Includes salmon carcasses which were manked and marked carcasses that were recovered 3/ Adjusted estmate reflects the modified Schaeter cquation (Hoopaugh 1978), where maked carcasscs (M1) from the second marking period on were subtracted from the total cstimate $(10,34,5-870=9,475)$											

Cottonwood Creek

Spring run. Four surveys were conducted for this run in Beegum Creek, a tributary to Cottonwood Creek ${ }^{6 /}$. A total of 73 salmon was counted, and judged to constitute the 2003 spring run for the Cottonwood Creek system.

Fall run. Three surveys were conducted for this run in the stretch adjacent to the Cottonwood Creek Wildlife Area, downstream of the Interstate-5 bridge crossing ${ }^{61}$. A total of 210 salmon carcasses was counted, and examined primarily for adipose-fin clips. An estimate of the fall-run spawner population was not made.

Battle Creek

Late-fall run. No surveys were made for late-fall-run Chinook salmon spawning naturally in Battle Creek during 2003. The only available spawner data were for 2,797

[^5]late-fall-run salmon which entered CNFH ${ }^{7 \prime}$. These fish consisted of 39% male adults, 46% female adults, and 15% grilse. Adipose fin-clipped salmon constituted 98% of the hatchery fish.

Spring run. The FWS-NCVFRO monitored fish passage at the CNFH barrier weir. From a combination of live trapping during 3 March through 30 May , and subsequent underwater video counts through 13 July, it was estimated that 94 spring-run adult salmon passed upstream of the barrier weir ${ }^{8 /}$. Since the monitoring period covered the entire spring-run migration, it was judged that this estimate constituted the Battle Creek spring-run population for 2003.

Fall run. Carcass surveys were conducted during 8 October through 26 November 2003, covering the $5.6-\mathrm{km}(3.5-\mathrm{mi})$ stretch of river from CNFH downstream to the old hatchery site ${ }^{\underline{8}}$; Grover's Ditch was also surveyed. Salmon carcasses were marked by attaching colored tags to their jaws with hog rings, and placed into running water for recovery; different colors of tape were used to identify carcasses with distinct marking periods.

Using carcass mark-and-recovery data with the Schaefer model (Appendix 1.B), the spawner population in the surveyed sections was estimated to be 64,764 fish (Table 8). Combined with an additional 88,281 fish which entered CNFH, the total Battle Creek fall-run population was 153,045 salmon (Appendix 2).

Based on examination of 30,005 salmon carcasses, the in-river fall run consisted of 28% male adults ($\mathrm{FL} \geq 61 \mathrm{~cm}$ [24 in.$]$), 70% female adults, and 2% grilse ($\mathrm{FL}<61 \mathrm{~cm}$). In comparison, fallrun fish entering CNFH consisted of 47% male adults, 47% female adults, and 6% grilse.

TABLE 8. Chinook salmon carcass mark-and-recovery data used to estimate the 2003 fall-run spawner population in Battle Creek from Coleman National Fish Hatchery to the old hatchery location.

Recovery period (j)	Number of marked carcasses recovered from marking period (1).							Total marked carcasses recovered$\left(\mathrm{R}_{\mathrm{j}}\right)$	Total carcasses obscrved	Population estimate
	8-Oct	16-Oct	22-Oct	29-Oct	$5-\mathrm{Nov}$	14-Nov	20-Nov		$\left(\mathrm{CJ}^{\prime}\right)^{1 /}$	(N) ${ }^{2 /}$
16 -Oct	49	--	--	--	--	--	--	49	2,300	5,573
22-Oct	3	260	--	--	--	--	--	263	6,572	11.619
$29-\mathrm{Oct}$		23	137	--	-	--	--	160	9,025	18.433
S-Nov		3	18	52	--	--	--	73	4.911	11,758
14-Nov		0	0	10	37	--	-	47	3193	9.749
2()$-N o v$		0	1	5	14	87	--	107	3.325	6.479
26-Nov		2		2	6	14	91	115	1,393	2,686
Total recovered (R1)	52	288	156	69	57	101	91	Total estumate		
Total carcasses marked (M_{1}).	126	507	326	175	182	173	170			66,297
								Adjusted estimate ${ }^{3 /}$:		64,764

I Includes salmon carcasses which were maked and marked carcasses that were recovered
${ }^{2} /$ Suthefer (1051) estmate equation $N=\Sigma\left(\mathrm{Ruj}^{\mathrm{N}} \times\left(\mathrm{M}_{1} / \mathrm{RI}_{\mathrm{I}}\right) \times\left(\mathrm{C}_{\mathrm{J}} / \mathrm{R}_{1}\right)\right)$
/ Adjusted eatimate reflects the modified Schacfer equation (I loopaugh 1978), where marked carcasses (M1) from the second mating period on wete subtracted fiom the total cstimate $(66,297 \times 1,533 \times 64764)$

${ }^{7 /}$ Null, R. FWS, NCVFRO. Personal communication.

$8 /$ Killam, D., and C. Harvey-Arrison. Chinook Salmon Spawner Populations for the Upper Sacramento River Basin, 2003. Technical Report No. 04-3. May 2005. CDFG-NCNCR, SRSSAP.

Pre-spawning mortality of female fall-run salmon in Battle Creek averaged 60% in 2003.
The 2003 fall-run spawner population in Battle Creek of 153,045 fish was only one-third of that in 2002, but still 27% higher than the average population for 1993-2002 (Appendix 3).

Sacramento River Tributaries Red Bluff Diversion Dam to Princeton Ferry

A total of 6,657 Chinook salmon spawners, consisting of 4,231 spring-, and 2,246 fall-run fish, was estimated for 2003 in the tributaries of the Sacramento River system between Red Bluff and Princeton Ferry (Figure 2)

Antelope Creek

Spring run. A snorkeling-survey of the holding habitat of adult spring-run salmon in the upper Antelope Creek system was made on 28 July $2003{ }^{\underline{9} /}$. A total stream length of 23.5 km $(14.6 \mathrm{mi})$ was covered, from Facht Place on the mainstem upstream, to Judd Creek on the North Fork, and into sections of the south fork to South Antelope Gun Club. A total of 46 adult salmon was observed, and judged to be the 2003 spring run for this system; while six salmon were seen in the North Fork, none were observed in the South Fork.

Fall run. No surveys were conducted for this run in 2003.

Mill Creek

Spring run. Surveys of Upper Mill Creek covered a stream length of approximately 66 $\mathrm{km}(41 \mathrm{mi})$ from just upstream of the Hwy- 36 Bridge crossing to downstream 4.8 km (3 mi) from Little Mill Creek, at the steel tower transmission line crossing ${ }^{10 \prime}$. The reach from Hwy- 36 to Buckhorn Gulch was surveyed from the ground during 1-9 October 2003, while an aerial survey was made from Buckhorn Gulch to the powerlines on 26 September. Totals of 204 live fish, 70 carcasses, and 713 redds were observed. Based on the redds seen during the combined ground and aerial surveys, the total counted was determined to be the maximum number present, and judged to represent a spring-run population of 1,426 fish.

[^6]Fall run. Four weekly spawner surveys of Mill Creek were conducted between the Los Molinos Mutual Water Company's Upper Diversion Dam and the confluence with the Sacramento River during 20 October through 19 November $2003{ }^{\frac{11}{} / \text {; high flows and limited }}$ personnel prevented surveys through the end of spawning. Salmon carcasses were marked by attaching colored tags to the jaw with a hog-ring and replacing the fish back into running water for recovery during following surveys. No surveys were made upstream of the Upper Dam for spawning fall-run salmon. Using fresh carcass mark-and-recovery data with the Schaefer (Appendix 1.B) model, the spawner population in Mill Creek was estimated to be 2,426 fish (Table 9).

The composition of natural spawning fall-run salmon in Mill Creek was 48% male adults (FL \geq $61 \mathrm{~cm},[24 \mathrm{in}], 46 \%$ female adults and 6% grilse ($\mathrm{FL}<61 \mathrm{~cm}$), based on an examination of 1,295 carcasses. Pre-spawning mortality of female salmon in Mill Creek this season averaged 7\%.

TABLE 9. Chinook salmon fresh carcass mark-and-recovery data used to estimate the 2003 fallrun spawner population in Mill Creek from the Upper Diversion Dam to the Sacramento River.						
Recovery period (j):	Number of marked carcasses recovered from marking period (i):			carcasses recovered (Rj)	Total carcasses observed (Cj) ${ }^{1 /}$	Population estimate (N) ${ }^{2!}$
	20-Oct	4-Nov	13-Nov			
4-Nov	15	--	--	15	328	49
$13-\mathrm{Nov}$	2	40	--	42	434	870
19 -Nov	2	15	58	75	648	1,342
Total recovered (Ri):	19	55	58			
Total carcasses					estimate:	2,660
marked (Mi):	26	112	122			
				Adjusted	nate ${ }^{3 /}$:	2,426
1/ Includes salmon carcas	ses which wer	ked and ma	carcasses that	recovered		
2/ Schaefer (1951) estuma 3/ Adjusted estimate refle period on were subtracted	e equation: ts the modifie from the total	Rij x (M hatere equa nate (2,660	$\left.x\left(C_{j} / R \mathrm{Rj}\right)\right)$ Hoopaugh 19 $=2,426$).	re marked	$s\left(M_{1}\right) \text { from }$	d marking

Deer Creek

Spring run. Snorkeling surveys of upper Deer Creek were conducted on 5 and 11 August 2003 covering the $40-\mathrm{km}(25-\mathrm{mi})$ stretch from Upper Deer Creek Falls downstream to Dillon Cove ${ }^{12 \prime}$. Surveys only extended to Dillon Cove since few salmon were observed in the

[^7]preceeding three-mile reach; 97% of the fish were holding in pools upstream of Ponderosa Way. A total of 2,759 adult salmon was counted, and judged to be the 2003 spring run in this tributary.

Fall run. A survey was conducted in Deer Creek on 12 November 2003 covering the stretch from Leninger Road bridge to the Hwy-99 crossing ${ }^{[13 /}$. Totals of 22 salmon carcasses and 22 live fish were observed, but an estimate of the fall-run population was not made.

Sacramento River Tributaries Big Chico Creek to the American River

A total of 328,318 Chinook salmon was estimated for 2003 in the Sacramento River tributaries from Big Chico Creek to the American River (Figure 3). This total consisted of 315,177 fall-run and 13,141 spring-run fish (Appendix 2).

Big Chico Creek

Spring run. A snorkeling survey was conducted on 11 August 2003 in three reaches of Chico Creek between Higgin's Hole and Iron Canyon (Ward et al. 2004). Four surveyors each made individual estimates of the salmon holding in pools. Based on this survey, a population of 81 spring-run spawners were in the creek.

Fall run. No surveys were conducted for this run in 2003.

Butte Creek

Spring run. A snorkeling survey was conducted during 18-27 August 2003, covering four stretches of the creek from Quartz Bowl downstream to Parrott-Phelan Diversion Dam ${ }^{14 /}$. Total independent counts of live salmon by four observers ranged from 4,109 to 4,707 fish. All of the fish observed were upstream of the covered bridge. Based on these surveys, a population of 4,398 spring-run salmon were in the creek.

Fall run. Carcass surveys for fall-run salmon in Butte Creek covered the approximately $15.3-\mathrm{km}(9.5-\mathrm{mi})$ stretch from Parrott-Phelan Diversion Dam downstream to Gorrill Ranch Dam. and included a $0.8-\mathrm{km}(0.5-\mathrm{mi})$ section near the Western Canal Siphon (Ward et. al. 2004). Surveys were conducted during 20 October through 4 December 2003. Fresh salmon carcasscs (those with at least one clear eye and firm flesh) were marked by attaching colored ribbon to their lower jaws with hog rings, and replaced into running water near the location originally found.

[^8]

FIGURE 3. Sacramento River System from Big Chico Creek to the American River.

Different colors of marks were used to identify carcasses with distinct marking periods. Carcasses that were not marked were chopped in half, as were recoveries of previously marked ones.

Using carcass mark-and-recovery data with the Schaefer model (Appendix 1.B), the spawner population in the surveyed sections was estimated to be 3,284 fish (Table 10). Combined with an additional 26 carcasses counted during the initial survey week, the total fall run population was 3,310 salmon spawners.

Recovery pcriod ($)$	Number of marked calcasses recovered from marking period (1)						Total marked carcasses recovered (R f$)$	Total carcasses observed\qquad	Population estimate (N)
	20-22 Oct	$27-29 \mathrm{Oct}$	4.6 Nov	$11-13 \mathrm{Nov}$	18-20 Nov	24-26 Nov			
27-29 Oct	1	--	-	--	--	--	1	76	152
$4-6 \mathrm{Nov}$		9	--	--	--	--	9	177	496
11.13 Nov		1	22	--	--	--	23	313	517
18.20 Nov			6	26	--	--	32	478	909
24-26 Nov			1	7	25	--	33	384	865
2-4 Dee			1	3	3	30.	37	296	621
Total recovered (R1)	1	10	30	36	28	30			
Total carcasses								al estumate	3,560
marked (M1)	2	28	48	71	66	63			
							Adjusted e	nate ${ }^{31}$;	3,284
1/ Includes salmon carcasses which were marked and marked carcasses that were recovered 2: Sthatfer (1951) estumate equation $N=\sum\left(R_{1 J} \times\left(M_{1} / R_{1}\right) \times\left(\mathrm{C}_{1} / \mathrm{R}_{1}\right)\right)$ 7/ Adjusted estimate reflects the modified Schaelet equation (Hoopaugh 1978), where marked carcawes (Mi) from the second marking period on were subtracted from the total estumate (3 , 5 fin $276=3,284)$									

Feather River

Spring run. A total of 8,662 salmon classified as spring-run fish entered Feather River
 42.9% female adults, and 4.5% grilse. In the river itself, no attempt was made to estimate numbers of spring-run salmon.

The 8,662 spring-run salmon at FRH in 2003 was the highest recorded, being two times higher than in 2002, and 87% higher than the average for 1993-2002 (Appendix 3).

Fall run. Salmon carcass mark-and-recovery surveys were conducted in the Feather River between the hatchery barricr dam and Gridley Road bridge during 2 September through 17 December $2003^{\frac{16}{}}$. This stretch of river was surveyed in two sections, upstream (Section 1)

[^9]and downstream (Section 2) of Thermalito Afterbay Outlet. Carcasses were marked with colored flagging, identifying them with a specific marking period, and released into flowing water for later recovery. Carcasses not marked were counted and then chopped in half, as were those that were recovered with marks.

Schaefer (Appendix 1.B) estimates, calculated from the mark-and-recovery data, were 51,674 salmon for Section 1, and 37,962 fish for Section 2 (Table 11). Combining both estimates, along with an additional 310 carcasses counted during the initial survey week, resulted in a total inriver population of 89,946 fish. A total of 14,976 fall-run salmon entered FRH ${ }^{17 / 1}$, bringing the 2003 fall run in the Feather River to 104,922 salmon (Appendix 2).

[^10]The overall composition of fall-run salmon in the river was 95.1% adults ($\mathrm{FL} \geq 68 \mathrm{~cm}$ [26.8 in]), and 4.9% grilse ($\mathrm{FL}<68 \mathrm{~cm}$), based on carcasses examined during the surveys ${ }^{\frac{18}{}}$. Salmon which entered FRH consisted of 47.5% male adults ($\mathrm{FL} \geq 61 \mathrm{~cm}$ [24 in]), 43.5% female adults, and 9.0% grilse ($\mathrm{FL}<61 \mathrm{~cm}$).

The 2003 total Feather River population of 104,922 salmon was 20% lower than in 2002, but still 10% higher than the average for 1993-2002 (Appendix 3); 1998 and 1999 populations are not included in the average as in-river estimates were not possible for those years.

Yuba River

Spring run. Surveys were conducted weekly during 21 August through 3 October 2003, to determine the extent of spring-run salmon spawning in the Yuba River ${ }^{19}$. The approximately $16-\mathrm{km}(10-\mathrm{mi})$ stretch from the Narrows pool downstream to Daguerre Point Dam was covered in four reaches, surveyed during two days each week. A total of 212 new redds was counted for the period, but an estimate of the spawner population was not made.

Fall run. Salmon carcass mark-and-recovery surveys for this run during 2003 were conducted in the Yuba River from the Narrows at Rose Bar downstream to Simpson Lane bridge in Marysville ${ }^{20}$. The surveyed reach was covered in three sections: the Narrows to Parks Bar at the Hwy. 20 bridge (Section 1), Parks Bar to Daguerre Point Dam (Section 2), and Daguerre Point Dam to Marysville (Section 3). These reaches included nearly all of the spawning areas used by Chinook salmon in the Yuba River. Some fish may have spawned upstream of the Narrows to Englebright Dam, although suitable habitat is scarce in that area. Weekly surveys were conducted in Section 1 during 1 October through 16 December, in Section 2 during 2 October through 16 December, and in Section 3 from 9 October through 17 December.

Yuba River flows below Englebright Dam ranged from $19.8 \mathrm{~m}^{3} / \mathrm{s}$ to $28.3 \mathrm{~m}^{3} / \mathrm{s}(700-1000 \mathrm{cfs}$) throughout the spawning season. Flows near Marysville ranged between $14.2 \mathrm{~m}^{3} / \mathrm{s}$ and $19.8 \mathrm{~m}^{3} / \mathrm{s}$ ($500-700 \mathrm{cfs}$). The mean daily water temperature ranged from the lower 50 -degree to lower 60 degree Fahrenheit, while visibility through the water averaged $3.6 \mathrm{~m}(12 \mathrm{ft})$.

This season, both adult and grilse fresh salmon carcasses were marked. Carcasses were considered fresh if they had firm flesh, at least one clear eye, and pink gills, while the adult designation was a $\mathrm{FL}>64.8 \mathrm{~cm}$ (25.5 in). The length distinguishing adults and grilse was based on length frequency data from previous seasons' samplings.

Marking consisted of colored flagging attached to the fish's lower jaw with a hog ring; different

[^11][^12]colors of tape were used to identify carcasses with distinct marking periods and survey reaches. Marked carcasses were returned into flowing water for subsequent recovery. Non-fresh carcasses and recovered marked carcasses were counted and then chopped in half. Length measurements and determination of gender were made for fresh adult carcasses.

Using carcass mark-and-recovery data with the Schaefer model (Appendix 1.B), estimates of 8,841 adults and 460 grilse were calculated for Section 1 (Table 12), 11,142 adults and 684 grilse in Section 2 (Table 13), and 6,844 adults and 345 grilse in Section 3 (Table 14). Combining these estimates gave 28,316 total salmon as the 2003 Yuba River population.

Based on fresh carcasses observed during the surveys, the fall run population consisted of 40% adult males and 60% adult females. Although grilse salmon composed 5.3% of the estimated numbers of fish, they constituted 7% of the total fresh carcasses examined.

The 2003 Yuba River fall run of 28,316 salmon was 15% higher than in 2002, and 39% higher than the 1993-2002 average population (Appendix 3).

[^13]2/ Schaclen (1951) cstumate equation $N-\Sigma\left(R_{\mathrm{J}} \times\left(M_{1} / R_{i}\right) \times\left(\mathrm{C}_{\mathrm{J}} / \mathrm{R}_{\mathrm{J}}\right)\right.$)
 4/ Adjusted esumate where marhed carenses (Mi_{1}) [rom the second marhing period on were suble weted from the total estimate (496 - 36 - 460)

TARIE 14 Chinook salmon fresh carcass mark-and-recovery data used to estimate the 2003 fall-run spavner population in the Yuba River from Dagucrre Point Dam to Marysville (Section 3)

ADULT ESTIMATE

Recoveryperiod (j)	Number of marked carcasses recovered from marking penod (1):										maked carcasses recovered (RJ)	Tolal carcasses observed (C1)	Population essimate (N) ${ }^{-}$													
	9-0.ct	16-Oct	23-Oct	30-Oct	6-Nov	13-Nov	$20-\mathrm{Nov}$	26-Nov	4-Dec	11-Dec																
$16-\mathrm{Oct}$	0	--	--	--	--	--	--	--	--	--	0	52	52													
23-0ct		2	--	--	--	--	--	--	--	--	2	93	434													
$30-0 \mathrm{ct}$		1	2	--	--	--	--	--	--	--	3	128	825													
6-Nov			1	5	--	--	--	--	--	--	6	122	505													
13-Nov				3	9	--	--	--	-	--	12	348	1,349													
$20-\mathrm{Nov}$					1	16	--	--	--	--	17	432	1,337													
26-Nov					3	8	14	-	--	--	25	442	1,092													
4-Dec						2	8	12	--	-	22	286	834													
11-Dec								2	1	--	3	34	192													
17-Dec								2	2	0	4	72	551													
$\begin{aligned} & \text { Total recovered (R1) } \\ & \text { lotal carcasses } \\ & \text { marked (M1) } \end{aligned}$	0	3	3	8	13	26	22	16	3	0																
												al estumate	7,169													
	5	14	22	28	52	79	40	58	29	3																
											Adjusted estimate ${ }^{3 /}$:		6,844													
GRILSE ESTIMATE		Number of marked carcasses tecovered from making penod (1).									Total marked carcasses recovered (Ri)	Total carcasses observed (Cj) ${ }^{1 /}$	Population estimate (N) ${ }^{2 /}$													
Recovery petrod (j).																										
		16-Oct	$23-\mathrm{Ocl}$	30-Oct	6-Nov	13-Nov	20-Nov	26-Nov	4-Dec																	
16-Oct	0	--	--	\cdots	--	--	--	--	-		0	3	3													
$23-0 \mathrm{ct}$		0	--	-	--	--	--	--	--		0	5	5													
$30-\mathrm{Oct}$			1	-	--	--	--	--	-		1	20	40													
6-Nov				0	--	-	--	--	--		0	8	8													
13. Nov					0	--	--	--	--		0	32	32													
20 -Nov					0	0	--	--	--		0	48	48													
$26 . \mathrm{Nov}$					1		3	--	--		4	51	108													
4-Dec							1	1	--		2	45	124													
II-Dec									0		0	2	2													
17-Dec											0	9	9													
Total tecovered (Ri) Tulal carcasses marked (Mi).	0	0	1	0	1	0	4	1	0		Total estumate															
													379													
	0	0	2	7	4	7	6	4	4																	
											Adjusted	mate ${ }^{4 /}$:	345													
V/Includes salmon carcases which were marked and marked catcasses that were recovered 																										
3/Aduusted estumate reflects the modified Schacfer equation (Hoopaugh 1978), where marked carcasses (M1) from the second marking period on werc ubbtracted from the thital estumate (7, 169 - 325 0.844)																										
4/ Adyusted estumate where marked carcases (Mi) from the second marking period on were subrracted from the total estrmute (379 - $34=345$)																										

American River

Fall run. Salmon carcass mark-and-recovery surveys in the American River were conducted from 14 October 2003 through 14 January 2004, covering the $20.8-\mathrm{km}$ ($12.9-\mathrm{mi}$) stretch from Sailor Bar downstream to the Watt Avenue bridge ${ }^{21 /}$. This stretch of river was covered in three reaches, each surveyed weekly. Mean daily river flow was relatively constant at around $56.5 \mathrm{~m}^{3} / \mathrm{sec}$ (2000 cfs) throughout most of the survey period, except for the third and the final weeks when flows were over $70.8 \mathrm{~m}^{3} / \mathrm{sec}(2500 \mathrm{cfs})$. Visibility through the water, measured by secchi disk, ranged from 4.7 m to $2.0 \mathrm{~m}(15.5-6.6 \mathrm{ft})$. Water temperature ranged from $17.7^{\circ} \mathrm{C}$ to $9.7^{\circ} \mathrm{C}\left(63.9-49.5^{\circ} \mathrm{F}\right)$.

This season fresh adult salmon carcasses were distinctly marked by attaching colored hog rings to their upper jaws; different colors were used each marking period. A carcass was considered fresh if it had either one clear eye or pink gills, and the adult distinction was a total length (TL) $>$ 68 cm (26.8 in). Fresh carcasses with missing adipose fins (indicating possible presence of a coded-wire tag), and those carcasses found downstream of Gristmill Fishing Access were not marked. Marked carcasses were replaced into running water for later recovery. Any carcass not marked, as well as those recovered with marks were counted and cut in half. Length measurements and determination of gender were made for a sample of the fresh carcasses.

The adult salmon population of the Watt Avenue to Sailor Bar section of the river, estimated from carcass mark-and-recovery data using the Schaefer calculation (Appendix 1.B), was 146,945 fish (Table 15). This adult estimate was expanded for a 7.3% grilse proportion to 158,516 fish in the surveyed reaches. In addition, 14,887 fish entered Nimbus Hatchery ${ }^{227}$, and 5,226 salmon carcasses were removed from the Nimbus Racks, bringing the total American River 2003 fall-run population to 178,629 fish (Appendix 2).

Based on examination of 2,469 fresh carcasses, the run consisted of 33.5% male adults, 59.2% female adults, 5.5% male grilse ($\mathrm{TL} \leq 68 \mathrm{~cm}$), and 1.8% female grilse. Salmon entering Nimbus Hatchery consisted of 46% male adults ($\mathrm{FL}>61 \mathrm{~cm}$ [24 in]), 34% female adults, and 20% grilse ($\mathrm{FL} \leq 61 \mathrm{~cm}$).

The 2003 run of 178,629 salmon in the American River was the highest ever recorded, increasing 25% over the previous year's population, and over twice the average for 1993-2002 (Appendix 3).

[^14]TABLE 15 Chinook salmon fresh carcass mark-and-recovery data used to estimate the 2003 fall-run aduli spawner population in the American River from Wall Avenue to Sailor Bar ${ }^{1 /}$.

Recovery period (j)	Numbet of marked carcasses recovered from marking period (i)												Total marked carcasses recovered (R_{j})	I otal carcabses observed $(\mathrm{CJ})^{2}$	Population estirnate (N) ${ }^{7 /}$
	1	2	3	4	5	6	7	8	9	10	11	12			
2	9	--	--	--	--	--	--	--	--	--	--	--	9	162	360
3		6	--	--	-	\cdots	--	--	--	--	--	--	6	251	711
4			4	--	--	-	-	\cdots	--	--	--	--	4	531	3,823
5			0	34	--	--	..	--	--	--	--	--	34	1,364	4,377
6			1	9	111	--	--	--	--	--	\cdots	--	121	6,090	18,263
7					11	304	-7	--	--	--	--	--	315	7,393	20,565
8					3	67	257	--	--	--	--	--	327	12,889	33.469
9						15	55	189	--	--	--	--	259	11456	29501
10						1	4	31	133	--	--	--	169	7,431	15,860
11						0	8	4	33	104	--	--	149	3.881	10,788
12						1	0	4	12	40	44	--	101	2.142	6128
13							2	0	0	1	7	14	24	861	2,682
14								1	2	3		3	9	199	582
Total recovered (R1)	9	6	5	43	125	388	326	229	180	148	51	17			
Total carcasses marked (M1)	20	17	36	138	368	1.077	830	588	486	414	151	56	Total estumats		151,111
	20	17	36	1.8	368	1,077	80						Adjusted	ate ${ }^{4 /}$:	146,945

1/Surveys were conducted from 14 Otobor 2003 through 14 January 2004
2/ Includes salmon carcasses which were marked and marked calcasses that werc recovcted
3/ Schacect (1951) csimate cquation $N-\Sigma\left(R y \times(M / R 1) \times\left(C_{j} / R j\right)\right)$

CHINOOK SALMON SPAWNER POPULATIONS FOR THE SAN JOAQUIN RIVER SYSTEM

The Mokelumne, Stanislaus, Tuolumne, and Merced rivers of the San Joaquin River system (Figure 4) were surveyed for Chinook salmon spawners. A total of 21,383 salmon, consisting entirely of fall-run fish, was estimated to be in this system for 2003 (Appendix 2).

Mokelumne River

Fall run. Fish passage at Woodbridge Irrigation District Dam was monitored by East Bay Municipal Utilities District (EBMUD), during 1 August 2003 through 31 July $2003{ }^{\frac{23}{2} / \text {. Passage }}$ through the high-stage fishway was monitored with a closed-circuit, underwater video system through 6 November, after which the lake behind the dam was drawn down for the winter. Subsequently, a combination of the video system and upstream migrant trapping was used in the low-stage fishway through 15 December, after which only the video monitoring continued; monitoring was switched back to the high-stage fishway on 18 April 2004.

A total of 10,239 salmon was counted migrating past the dam ${ }^{24 /}$ during 4 August 2003 through 14 January 2004. Mokelumne River Hatchery took in 8,117 salmon ${ }^{25}$, and the in-river fall-run spawner population was assumed to be 2,122 fish (Appendix 2).

Based on examination of 9,997 salmon at the dam, the run consisted of 33% male adults ($\mathrm{FL}>$ 60 cm [23.6 in]), 41% female adults, 20% male grilse ($\mathrm{FL} \leq 60 \mathrm{~cm}$), and 6% female grilse. The composition of the salmon entering the hatchery was 28.1% male adults ($\mathrm{FL}>61 \mathrm{~cm}$ [24 in]), 34.8% female adults, and 37.1% grilse ($\mathrm{FL} \leq 61 \mathrm{~cm}$).

The 2003 spawner population of 10,239 fish in the Mokelumne River was only 5% lower than the previous year's run, but still almost 50% higher than the average population size for the 19932002 period (Appendix 3).

[^15]

FIGURE 4. San Joaquin River System.

Stanislaus River

Fall run. Spawner surveys in the Stanislaus River were conducted weekly during 22 September 2003 through 13 January $2004{ }^{\frac{26}{6}}$; marking-and-recovery surveys began during the third week. The $35.4-\mathrm{km}(22-\mathrm{mi})$ stretch of the river from Knight's Ferry to Jacob Meyers Park in Riverbank was covered by drift boat. Surveys upstream of Knight's Ferry in the $4.8-\mathrm{km}$ (3-mi) section of the Goodwin Canyon area were made on foot, and salmon carcasses were only counted in this section.

River flows were increased, four weeks after the carcass surveys began, to attract salmon into the tributary and improve spawning conditions. The higher flows were continued for ten days with a maximum discharge from Goodwin Dam of $27.7 \mathrm{~m}^{3} / \mathrm{s}$ (980 cfs). Flows at the Orange Blossom Bridge gauge during the spawning period ranged from $6.2 \mathrm{~m}^{3} / \mathrm{s}$ to $10.2 \mathrm{~m}^{3} / \mathrm{s}(220-360 \mathrm{cfs})$.

During the mark-and-recovery surveys, salmon carcasses in both fresh and decayed condition had numbered aluminum tags attached to their lower jaws with hog-rings. Fresh carcasses were identified as having at least one clear eye and blood still in the gills, while decayed ones had cloudy eyes and no blood. Extremely decayed carcasses (completely covered with fungus) and skeletons were not marked. Marked carcasses were redistributed into running water for subsequent recovery. Carcasses not marked, as well as those previously marked carcasses which were recovered, were counted and chopped in half. During the initial handling of each carcass, its condition of decomposition was recorded, and if possible it was measured and its gender determined.

The carcass marking protocol and use of numbered tags were intended to allow post-season distinction of age-class (adult or grilse, based on length) and condition (fresh or decayed), so the data could be better compiled for estimating the salmon population through several biometric models. Analysis of the data indicated the Jolly-Seber estimate (Appendix 1.C) was the most appropriate.

A population of 5,141 fish was estimated for the Knight's Ferry to Riverbank stretch of the river, using the mark-and-recovery data for fresh and decayed carcasses (Table 16). The data from surveys in the Goodwin Canyon area were not included in the Jolly-Seber estimate calculations. The spawner population for this area was determined by expanding the 191 carcasses which were actually observed there to an estimated 761 fish, using the overall recovery rate of 25.1% for marked fish in the Knight's Ferry to Riverbank stretch. The combined estimates were a total of 5,902 salmon for the 2003 fall run.

The adult-grilse composition of the population was determined from frequency distributions of length measurements from 1,922 carcasses taken this season. Distribution data was compiled separately for each gender of hatchery- and natural-origin fish. Hatchery-origin salmon were identified as carcasses with missing adipose fins, indicating the possible presence of a codedwire tag, which was inserted at the hatchery. The length criteria used to distinguish adult from

[^16]TABLE 16. Chinook salmon fresh and decayed carcass mark-and-recovery data used to estimate the 2003 fall-run spawner population in the Stanislaus River between Knights Ferry and Riverbank ${ }^{\mathbf{1 /}}$.

Survey Period	Carcasses Recovered from Perind													Marked Catcasses Recovered		C'ancasses Observed (E_{1})	$\begin{gathered} \text { Estimate fon } \\ \text { Period } \\ \hline \end{gathered}$		
	1	2	3	4	5	6	7	8	9	10	11	12	13	$\left(R_{1}\right)^{2 /}$	$(\mathrm{K},)^{3}$				
1	--	--	--	--	--	--	-	-	-	--	--	--	--	0	--	1	0		
2	0	--	--	--	--	--	-	--	--	--	--	--	--	0	0	0	0		
3		0	--	--	--	--	-	"-	-	--	--	--	--	0	0	2	0		
4			0	--	-	--	-	--	--	--	--	--	-	0	0	15	52		
5				5	--	--	--	--	--	--	-	--	--	5	0	3	34		
6					5	--	-	--	--	--	-	--	--	5	?	363	163		
7					1	108	--	--	-	--	-	--	--	109	42	861	833		
8					1	33	151	--	--	--	--	--	--	185	71	1,1979	1,095		
9						6	51	238	-	--	--	--	--	295	73	1,159	1,663		
10						2	10	40	95	--	--	--	--	147	81	441	490		
11							2	18	49	45	\cdots	--	"-	114	30	336	381		
12								1	11	16	8	-	--	36	3	158	419		
13										1	1	1	--	3	6	14	5		
14										0		4	0	4	2	1	1		
15										1		1		2	*	2	0		
													Total.	905		4,468			
Total recovered (C) $)^{5}$				5	7	149	214	297	155	63	9	6	0						
	,	0	0	5	7	149						6							
Total marked (Ti) ${ }^{6}$	1	0	1	15	20	228	435	543	323	111	34	24	3	1,738 (Grand total marked)					
													Jolly-St	ber es	mate		5,141		

[^17]grilse salmon was a $F L \geq 65 \mathrm{~cm}$ (25.6 in) for natural-origin females, a $\mathrm{FL} \geq 67 \mathrm{~cm}$ (26.4 in) for hatchery-origin females, a $\mathrm{FL} \geq 71 \mathrm{~cm}$ (28 in) for natural-origin males, and a $\mathrm{FL} \geq 66 \mathrm{~cm}$ (26 in) for hatchery-origin males. Based on these criteria, the run consisted of 32.3% male adults, 53.8% female adults, 8.3% male grilse, and 5.6% female grilse.

The 2003 Stanislaus River fall-run spawner population of 5,902 salmon was a decrease of 32% from the previous year's run, but still 52\% higher than the average for 1993-2002 (Appendix 3).

Tuolumne River

Fall run. Chinook salmon spawner surveys in the Tuolumne River were conducted weekly from 30 September 2003 through 6 January $2004{ }^{27 /}$; marking-and-recovery surveys started during the second week. The river stretch from the riffles at river mile 51.6 ncar LaGrange Dam downstream to Fox Grove Regional Park, a distance of $41.2 \mathrm{~km}(25.6 \mathrm{mi}$), was covered by both boat and ground surveys.

[^18]River flows were increased, two weeks after the carcass surveys began, to attract salmon into the tributary and improve spawning conditions. The higher flows were continued for about two weeks ($16-28$ October) at about $13.3 \mathrm{~m}^{3} / \mathrm{s}(470 \mathrm{cfs}$). Flows were decreased and ranged from 5.9 $\mathrm{m}^{3} / \mathrm{s}$ to $6.5 \mathrm{~m}^{3} / \mathrm{s}(210-230 \mathrm{cfs})$ for the remainder of the spawning season.

During the mark-and-recovery surveys, salmon carcasses in both fresh and decayed condition were marked using numbered aluminum tags attached to their lower jaws with hog-rings. Fresh carcasses were identified as having at least one clear eye and blood still in the gills, while decayed ones had cloudy eyes and no blood. Extremely decayed carcasses (completely covered with fungus) and skeletons were not marked. Marked carcasses were redistributed into running water for subsequent recovery. Carcasses not marked, as well as those previously marked carcasses which were recovered, were counted and chopped in half. During the initial handling of each carcass, its condition of decomposition was recorded, and if possible it was measured and its gender determined.

The carcass marking protocol and use of numbered tags were intended to allow post-season distinction of age-class (adult-grilse, based on length) and condition (fresh or decayed), so the data could be better compiled for estimating the salmon population through several biometric models. Analysis of the data indicated that the Jolly-Seber estimate (Appendix 1.C) was the most appropriate. The salmon population in the Tuolumne River upstream of Fox Grove Park was estimated at 2,163 fish, using the mark-and-recovery data for fresh and decayed carcasses (Table 17).

The adult-grilse composition of the population was determined from frequency distributions of length measurements taken from 584 carcasses during the season. Distribution data was compiled separately for each gender of hatchery- and natural-origin fish. Hatchery-origin salmon were identified as carcasses with missing adipose fins, indicating the possible presence of a coded-wire tag which was inserted at the hatchery. The length criteria used to distinguish adult from grilse salmon was a $F L \geq 66 \mathrm{~cm}(26.0 \mathrm{in})$ for natural-origin females, a $F L \geq 68 \mathrm{~cm}$ (26.8 in) for hatchery-origin females, a $F L \geq 72 \mathrm{~cm}$ (28.4 in) for natural-origin males, and a FL $\geq 67 \mathrm{~cm}$ (26.4 in) hatchery-origin males. Based on these criteria, the run consisted of 33% male adults, 57% female adults, 7% male grilse, and 3% female grilse.

The 2003 fall run of salmon in the Tuolumne River was only 30% of that in 2002 , and 33% of the average for 1993-2002 (Appendix 3).

Merced River

Fall run. Weekly salmon surveys were conducted from 30 September through
30 December 2003 , in the $39.7-\mathrm{km}(24.7-\mathrm{mi})$ stretch of the Merced River from the Merced River Hatchery downstream to Santa Fe Road near Cressey ${ }^{28 /}$; marking-and-recovery surveys started during the sixth week. River flows were increased, two weeks after the carcass surveys began, to

[^19]TABLE 17. Chinook salmon fresh and decayed carcass mark-and-recovery data used to estimate the
2003 fall-run spawner population in the Tuolumne River from LaGrange Dam to Fox Grove Park ${ }^{1 /}$

Survey Period	Carcasses Recovered from Perrod										Marked Carcasses Recovercd		Carcasses Ohserved $\left(E_{1}\right)$	Fstumatc for Period
	1	2	3	4	5	6	7	8	9	10	$\left(R_{1}\right)^{2}$	$\left(K_{1}\right)$		
1	-	-	--	-	--	--	-	--	-	-	0	--	6	32
2	1	--	-	-	--	\cdots	-	--	-	-	1	0	24	164
3		4	-	-	--	-	-	-	--	--	4	0	104	315
4			19	-	-	-	--	-	-	--	19	6	182	534
5			4	38	--	-	-	-	--	-	42	11	409	349
6			2	8	83	-	-	-	-	-	93	5	457	372
7				1	2	49	--	-	-	-	52	13	289	171
8					2	8	16	--	--	-	26	12	143	86
9						3	8	13	-	-	24	1	111	128
10							1		1	\cdots	2	2	30	5
11									1	1	2	1	14	6
12									1		1	-	10	0
									Total: 266				1,779	
Total recovered (C,) "	1	4	25	47	87	60	25	13	3	1				
Total marked (Ti) ${ }^{6}$	2	16	52	78	157	134	80	34	21	10	584 (Grand total marked)			
										Jolly-Seber estimate :				2,163

1/Surveys were conducted from 30 September 2003 through 6 January 2004; marking and recovery bcgan during the second week
2/ Total recovered marked carcasses for the a th period
3/ Total marked carcasses recovered attor the t th period. that were marked betore the i th period
4/ Includes salmon carcasses which were marked, marked carcasses that wete recovered, and unmarked carcasses that were chopped
5/ Total recovered marked carcasses that were marked dunng the i th period
$6 /$ Number of carcasses marked in the t th period.
attract salmon into the tributary and improve spawning conditions. The higher flows were continued for about two weeks (19-22 October) and ranged from $17.7 \mathrm{~m}^{3} / \mathrm{s}$ to $18.4 \mathrm{~m}^{3} / \mathrm{s}(626-649$ cfs). Flows were decreased and stabilized at around $7.1 \mathrm{~m}^{3} / \mathrm{s}(250 \mathrm{cfs})$ for the remainder of the spawning season.

During the mark-and-recovery surveys, salmon carcasses in both fresh and decayed condition were marked using numbered aluminum tags attached to their lower jaws with hog-rings. Fresh carcasses were identified as having at least one clear eye, while decayed ones had cloudy eyes. Extremely decayed carcasses (completely covered with fungus) and skeletons were not marked. Marked carcasses were redistributed into running water for subsequent recovery. Carcasses not marked, as well as those previously marked carcasses which were recovered, werc counted and chopped in half. During the initial handling of each carcass, its condition of decomposition was recorded, and if possible it was measured and its gender determined.

The carcass marking protocol and use of numbered tags were intended to allow post-season distinction of age-class (adult-grilse, based on length) and condition, so the data could be better compiled for estimating the population through several biometric models. Analysis of the data indicated that the Jolly-Seber estimate (Appendix 1.C), using fresh and decayed carcass data, was the most appropriate. An cstimate of 2,530 salmon was calculated for the river stretch from Merced River Hatchery to Santa Fe Road (Table 18). Merced River Hatchery took in 549
salmon ${ }^{29}$, for a total fall-run spawner population of 3,079 fish (Appendix 2).
The adult-grilse composition of the population was determined from frequency distributions of length measurements from 412 carcasses taken during the surveys. Distribution data was compiled separately for each gender of hatchery- and natural-origin fish. Hatchery-origin salmon were identified as carcasses with missing adipose fins, indicating the possible presence of a coded-wire tag which was inserted at the hatchery. The length criteria used to distinguish adult from grilse salmon was a $F L \geq 66 \mathrm{~cm}$ (26 in) for natural-origin females, a $F L \geq 68 \mathrm{~cm}$ (26.8 in) for hatchery-origin females, a FL $\geq 72 \mathrm{~cm}$ (29.3in) for natural-origin males, and a FL $\geq 67 \mathrm{~cm}$ (26.4 in) for hatchery-origin males. The in-river run of the Merced River consisted of 25.2% male adults, 56.1% female adults, 13.1% male grilse, and 5.6% female grilse. Salmon which entered Merced River Hatchery consisted of 30.8% male adults ($\mathrm{FL} \geq 65 \mathrm{~cm}$ [25.6 in]), 40.6% female adults ($\mathrm{FL} \geq 62 \mathrm{~cm}$ [24.4 in]), 28.6% grilse ($\mathrm{FL}<65 \mathrm{~cm}$).

The 2003 Merced River fall run was only 29% of that in 2002 , and 51% of the average population for 1993-2002 (Appendix 3).

TABLE 18. Chinook salmon fresh and decayed carcass mark-and-recovery data used to estimate the 2003 fall-run spawner population in the Merced River from Merced River Hatchery to Cressey ${ }^{1 /}$.

[^20][^21]
SUMMARY

The total estimated 2003 Central Valley Chinook salmon spawner population was 624,808 fish, consisting of 603,425 fish in the Sacramento River system and 21,383 fish in the San Joaquin River system (Table 19). This total was 7% lower than the 672,583 salmon estimated in 2002.

All of the late-fall, winter, and spring runs, and the majority of the fall run were in the Sacramento River system. In the American River a record high fall run occurred. The fall run in the San Joaquin tributaries continued to contribute only a small portion (3\%) to the total Central Valley escapement.

TABLE 19. Summary of the 2003 Sacramento-San Joaquin river system Chinook salmon spawner populations.

Spawning area	Late-fall run $^{1 /}$	Winter run	Spring run $2 /$	Fall run	Total	
Sacramento River mainstem	5,494	8,218	0	89,229	102,941	
Sacramento River tributaries	2,797	--	17,564	480,123	500,484	
San Joaquin River tributaries	--	--	-	21,383	21,383	
Totals:						
8,291	8,218	17,564	590,735	624,808		
2/ Tributary data consists only of fish which entered Coleman National Fish Hatchery (Battle Creek).						

ACKNOWLEDGEMENTS

The editor thanks the individuals, and their affiliations, who are cited as sources for the data presented. That information, collected through their efforts, and provided through their cooperation has made this report possible.

REFERENCES

Boydstun, L.B. 1994. Analysis of two mark-recapture methods to estimate the fall chinook salmon (Oncorhynchus tshawytscha) spawning run in Bogus Creek, California. Calif. Fish and Game. 80(1)). 13 p .

Hoopaugh, David A. (ed.). 1978. King (Chinook) salmon spawning stocks in California's Central Valley, 1976. Calif. Dept. of Fish and Game, Anadromous Fisheries Branch Administrative Report No. 78-19. 33 p.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Res. Bd. Canada, Bull. 191. 382 p.

Schaefer, M.D. 1951. Estimation of size of animal populations by marking experiments. U. S. Fish and Wildl. Serv., Fish. Bull. 52: 189-203.

Ward, P.D., T.R. McReynolds, and C.E. Garmin. 2004. Butte and Big Chico creeks spring-run Chinook salmon, Oncoryhnchus tshawytscha, life history investigation, 2002-2003. Calif. Dept. of Fish and Game, Inland Fisheries Administrative Report No. 2004-6. 43 p.

APPENDIX 1. Calculation methods used with carcass mark-and-recovery data to estimate Chinook salmon spawner populations.
A. The Petersen equation as revised by Chapman (Ricker 1975):

$$
\mathrm{N}=\frac{(\mathrm{M}+1)(\mathrm{C}+1)}{(\mathrm{R}+1)}
$$

where $\mathrm{N}=$ estimated spawner population,
$\mathrm{M}=$ number of carcasses marked,
$\mathrm{C}=$ number of carcasses observed, including those marked and those recovered with marks, and
$R=$ number of marked carcasses recovered.
B. A modification of the Schaefer (1951) equation, which was initially used in the 1976 Central Valley spawner stock report (Hoopaugh 1978);

$$
N=\Sigma\left(\mathrm{R}_{\mathrm{ij}} \times \frac{\mathrm{M}_{\mathrm{i}}}{\mathrm{R}_{\mathrm{i}}} \times \frac{\mathrm{C}_{\mathrm{j}}}{\mathrm{R}_{\mathrm{j}}}\right)-\Sigma{ }_{2}^{1} \mathrm{M}_{\mathrm{i}}
$$

where $\mathrm{N}=$ the estimated spawner population,
$R_{1 \mathrm{~J}}=$ carcasses marked in the ith marking period which were recovered in the jth recovery period,
$\mathrm{M}_{\mathrm{i}}=$ carcasses marked in the ith marking period,
$R_{i}=$ total marked carcasses recovered from the ith marking period,
$\mathrm{R}_{\mathrm{J}}=$ total marked carcasses recovered during the jth recovery period,
$\mathrm{C}_{\mathrm{J}}=$ total carcasses observed in the jth recovery period, including those with marks, and
${ }_{2}^{i} M_{i}=$ total carcasses marked from the second marking period on. Subtraction of this factor adjusted for replacement of recovered marked fish.

APPENDIX 1 (continued).

C. The Jolly-Seber calculations as modified by Boydston (1994) ${ }^{\frac{30 /}{} \text { : }}$

The estimated spawner population $=\mathrm{N}_{1}+\mathrm{D}_{1}+\mathrm{D}_{2}+\ldots \mathrm{D}_{\mathrm{J}}$, where
$N_{1}=$ number of carcasses in the surveyed population in period 1, the first period of sampling;

$$
N_{t}=\frac{E_{1}+\left(N_{2}-T_{1} * S_{1}\right)}{\sqrt{S_{1}}}
$$

and,
$D_{1}=$ number of carcasses joining the population between period i and $i+1$, with j being the last survey period. This accounts for carcasses "leaving" the population between survey periods.

$$
D_{i}=\frac{\left(N_{t 1}-S_{t}\right)^{*}\left(N_{t}-E_{l}+T_{t}\right)}{\sqrt{S_{1}}}
$$

Variables used in the calculations are:
$E_{i}=$ total number of carcasses examined for marks during the $i^{\text {th }}$ period, including those that were marked, those with marks that were recovered, and those that were not marked.
$\mathrm{N}_{\mathrm{i}}=$ estimated number of carcasses in the population immediately prior to each survey period.

$$
N_{i}=\frac{b_{1}^{*}\left(E_{1}+1\right)}{R_{t}+1}
$$

where,
$b_{i}=$ estimated number of marked carcasses available for recovery during each survey;

$$
b_{t}=\frac{\left(T_{t}+1\right)^{*}\left(K_{t}\right)}{\left(C_{t}+1\right)}+R_{t}
$$

and,
$\mathrm{R}_{\mathrm{i}}=$ total number of marked carcasses that were recovered during the $\mathrm{i}^{\text {th }}$ period.
$T_{1}=$ number of carcasses marked during the $i^{\text {th }}$ period.
$S_{1}=$ survival rate of marked carcasses from period i to $\mathrm{i}+1$;

$$
S_{i}=\frac{b_{i t}}{b_{i}-R_{t}+T_{t}}
$$

[^22]| APPENDIX 2. 2003 Chinook Salmon Spawner Population Estimates for the Central Valley River Systems. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Estimated number of fish | | | | |
| | Iate-fall run | Winter rum | Spring ruri | Fall run | Total For All Runs |
| SACRAMENTO RIVER SYSTEM
 Sacramento River Mainstem | | | | | |
| -Upstream of Red Bluff Diversion Dam | | | | | |
| In-river a | 5,346 | 8,105 | b/ | 66,476 | 79,927 |
| Livingstone Stone National Fish Hatchery | -- | 85 | -- | -- | 85 |
| -Downstream of Red Hluff Diversion Dam a/ | 148 | 28 | 0 | 22,753 | 22,929 |
| Totals: | 5,494 | 8,218 | | 89,229 | 102,941 |
| Sacramento River Tributaries | | | | | |
| Keswick Dam to Red Bluff | | | | | |
| - Clear Creek | c/ | -- | 25 | 9,475 | 9,500 |
| -Cottonwood (Beegum) Creek | c/ | -- | 73 | b/ | 73 |
| -Battle Creek | | | | | |
| Coleman National Fish Hatchery | 2,797 | -- | -- | 88,281 | 91,078 |
| In-tivet | c/ | ${ }^{\square}$ | 94 | 64,764 | 64,858 |
| (Tributary total): | $(2,797)$ | | (94) | $(153,045)$ | (155,936) |
| Totals for area: | 2,797 | | 192 | 162,520 | 165,509 |
| Red Bluff to Princeton Ferry | | | | | |
| -Antelope Creek | -- | -- | 46 | c/ | 16 |
| -Mill Creek | - | -- | 1,426 | 2,426 | 3,852 |
| -Deer Creck | -- | -- | 2,759 | b/ | 2,759 |
| Totals for area: | | | 4,231 | 2,426 | 6,657 |
| Big Chico Creek to American River | | | | | |
| - Blg Chaco Creek | -- | -- | 81 | c/ | 81 |
| -Butte Creek | -- | -- | 4,398 | 3.310 | 7.708 |
| -Feather River | | | | | |
| Feather River Hatchery | \cdots | -- | 8,662 | 14,976 | 23,638 |
| In-river | - | - | c/ | $89,946$ | $89,946$ |
| (Tributary total) | | | $(8,662)$ | $(104,922)$ | $(113,584)$ |
| -Yuba Ruver | -- | " | b/ | 28,316 | 28,316 |
| -American River | | | | | |
| Numbus Hatchery | -- | -- | -- | 14,887 | 14,887 |
| Nimbus Basin | -- | -- | -- | 5,226 | 5,226 |
| In-iver | -- | - | -- | 158,516 | 158,516 |
| (Trıbutary total) | | | | $(178,629)$ | (178,629) |
| Totals for area: | | | 13,141 | 315,177 | 328,318 |
| siderimento River System Totals: | 8,291 | 8,218 | 17,564 | 569,352 | 603,425 |
| (\%) | \cdots | \% | "! | | |
| SAN JOAQUIN RIVER SYSTEM | | | | | |
| -Mokelumne River Mokelumne River Hatchery | | | | | |
| Mokelumne River Hatchery | -- | -- | -- | 8,117 | |
| In-river
 (Tributary total): | -- | -- | -- | $\begin{gathered} 2,122 \\ (10,239) \end{gathered}$ | |
| -Stanislaus River | -- | -- | -- | 5,902 | |
| -Tuolumne River | -- | -- | -- | 2,163 | |
| -Merced River | | | | | |
| Merced River Hatchery | -- | -- | *- | 549 | |
| In-river | -- | - | - | 2,530 | |
| (Tubutary total) | | | | $(3,079)$ | |
| San Joaguin River System Total: | | | | 21,383 | |
| a/Estimates based on carcass survey and redd count data. Wunter- and fatl-run estimates also based on sampling at Keswick and Red Bluff Diversion dams
 b/ An estinate of the run sure was not made.
 c/ Tributary was not surveyed for this run | | | | | |

[^0]: 1/ Inland Fisheries Administrative Report No. 2006-02. Submitted for publication June 2006. California Department of Fish and Game, 1416 Ninth Street, Sacramento, California 95814.

[^1]: ${ }^{2 /}$ Killam, D., and C. Harvey-Arrison. Chinook Salmon Spawner Populations for the Upper Sacramento River Basin, 2003. Technical Report No. 04-3. May 2005. CDFG-Northern CaliforniaNorth Coast Region (NCNCR), Sacramento River Salmon and Steelhead Assessment Project (SRSSAP).

[^2]: ${ }^{\text {3/ }}$ Killam, D. Sacramento River Winter-run Chinook Salmon Escapement Survey, April - September 2003. Technical Report No. 04-1. CDFG-NCNCR, SRSSAP.

[^3]: ${ }^{4}$ Killam, D., and C. Harvey-Arrison. Chinook Salmon Spawner Populations for the Upper Sacramento River Basin, 2003. Technical Report No. 04-3. May 2005. CDFG-NCNCR, SRSSAP.

[^4]: 5/ Killam, D., and C. Harvey-Arrison. Chinook Salmon Spawner Populations for the Upper Sacramento River Basin, 2003. Technical Report No. 04-3. May 2005. CDFG-NCNCR, SRSSAP.

[^5]: ${ }^{6 /}$ Killam, D., and C. Harvey-Arrison. Chinook Salmon Spawner Populations for the Upper Sacramento River Basin, 2003. Technical Report No. 04-3. May 2005. CDFG-NCNCR, SRSSAP.

[^6]: 9) Harvey-Arrison, C. 2003 Antelope Creck Spring-run Chinook Salmon Survey. Memorandum to files. 29 July 2003. CDFG - NCNCR, SRSSAP, Red Bluff Office.

 10 Harvey-Arrison, C. Mill Creek Spring-run Chinook Salmon Surveys for 2003. Memorandum to files. 17 December 2003. CDFG - NCNCR, SRSSAP, Red Bluff Office.

[^7]: 11/ Killam, D,. and C. Harvey-Arrison. Chinook Salmon Spawner Populations for the Upper Sacramento River Basin, 2003. Technical Report No. 04-3. May 2005. CDFG-NCNCR, SRSSAP.
 ${ }^{12} l$ Harvey-Arrison, C. 2003 Annual Deer Creek Adult Spring-run Chinook Salmon Survey. Memorandum to files. 22 August 2003. CDFG - NCNCR, SRSSAP, Red Bluff Office.

[^8]: ${ }^{13 /}$ Killam, D., and C. Harvey-Arrison. Chinook Salmon Spawner Populations for the Upper Sacramento River Basin, 2003. Technical Report No. 04-3. May 2005. CDFG-NCNCR, SRSSAP.
 ${ }^{14 /}$ Garmin, C. Butte Creek Spring-run Chinook Salmon Spawning Escapement Survey, 2003. Memorandum to files. 28 August 2003. CDFG - Sacramento Valley and Central Sierra Region (SVCSR), Chico office.

[^9]: ${ }^{15 /}$ Kastner, A. CDFG - SVCSR, Feather River Hatchery. Personal communication.
 ${ }^{16 /}$ Cavallo, B., A. Scesholtz, J. Kindopp, and R. Kurth. 2003 Feather River Salmon Spawning Escapement Surveys Summary. File report. California Department of Water Resources, Division of Environmental Services (CDWR-DES), Sacramento.

[^10]: ${ }^{17 /}$ Kastner, A. CDFG - SVCSR, Feather River Hatchery. Personal communication.

[^11]: ${ }^{18 /}$ Seesholtz, A. CDWR-DES. Personal communication.
 ${ }^{19}$ Drury, I. 2003 Spring-run Chinook Salmon Spawning Survey. Memorandum to files. CDFGSVCSR, Rancho Cordova office.

[^12]: ${ }^{20}$ Jones \& Stokes. 2003 Fall-run Chinook Salmon Spawning Escapement in the Yuba River. Report to the Yuba County Water Agency, Marysville, CA. January 2006. J\&S 03-240.

[^13]: 1/ Includes salmon coreassen which were matked and marked carcasses that were recovered

[^14]: ${ }^{21 /}$ Healey, M. Lower American River Chinook Salmon Escapement Survey, October 2003-January 2004. File report. September 2004. CDFG-SVCSR, Rancho Cordova office.
 ${ }^{22} /$ West, T. CDFG - SVCSR, Nimbus Hatchery. Personal communication.

[^15]: ${ }^{23 /}$ Workman, M. Lower Mokelumne River Upstream Fish Migration Monitoring. File Report. August 2004. EBMUD Fisheries and Wildlife Division. Lodi Office.
 ${ }^{24}$ Workman, M. EBMUD. Personal communication.
 ${ }^{25 /}$ Cochran, K. CDFG - San Joaquin Valley/Southern Sierra Region (SJVSSR), Mokelumne River Hatchery. Personal communication.

[^16]: ${ }^{26 /}$ Guignard, J. Stanislaus River Fall Chinook Salmon Escapement Survey, 2003. File Report. March 2004. CDFG - San Joaquin Valley-Southern Sierra Region (SJVSSR).

[^17]: I/ Surveys wete conducted from 22 September 2003 through 13 January 2004; marking and recovery began during the third week
 2/ Total recovened marked carcasses for the th penod
 3/ Total marked carcasses recovered after the i th period, that were marked before the 1 th perind
 4/ Includes salmon carcasses which were marked, marked carcasses that weete recovered, and ummarked carcasses that were chopped.
 5) Total recovered maked carcasses that wete marked dunng the th period
 $6 /$ Number of carcasses marked in the i th period

[^18]: ${ }^{27 /}$ Blakeman, D. 2003 Tuolumne River Fall Chinook Salmon Escapement Survey. File Report. March 2004. CDFG - SJVSSR.

[^19]: ${ }^{281}$ Johnson, K. 2003 Merced River Fall Chinook Salmon Escapement Survey. File Report. March 2003. CDFG - SJVSSR.

[^20]: 1/ Surveys were conducted from 30 September through 30 December 2003 ; marking and recovery began during the sixth week.
 2/ Total recovered marked carcasses for the i th pertod
 3/ Total marked carcasses recovered after the i th period, that were marked before the t th period.
 4/ Includes salmon carcasses which were marked, marked carcasses that were recovered, and unmarked carcasses that were chopped
 5/ Total recovered marked carcasses that were marked during the t th period
 6/ Number of carcasses marked in the t th perrod.

[^21]: ${ }^{29}$ Cozart, M. CDFG - SJVSSRR, Merced River Hatchery. Personal communication.

[^22]: ${ }^{30 /}$ Symbols for variables are notation provided by D. Killam. CDFG-NCNCR. Personal communication.

