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  Long-term viability of endangered populations requires development of effective 

management strategies that target the population vital rate with the highest potential to 

influence population trajectories. When adult survival is high and stable, juvenile 

recruitment is the vital rate with the greatest potential to improve population trajectories. 

For my thesis I examined how lactating Sierra Nevada Bighorn sheep (Ovis Canadensis 

sierra) balance forage and predation risk during the neonatal period. I first identified 

resource selection strategies employed by lactating females to promote survival of 

neonates and then determined the primary factors affecting survival of neonates. I found 

lactating females selected for habitat that, despite decreased access to high quality forage, 

reduced the risk of predation by mountain lions.  Understanding the availability of high 

quality neonate rearing habitat is an important consideration in restoring bighorn 

populations. My predictive resource selection function models will assist managers in 

identifying habitat that is most likely to meet the lambing needs of lactating bighorn 

females. I also found that despite the efforts of lactating female to protect neonates from 

risks of predation, predation was the strongest factor contributing to variable survival of 

neonates across subpopulations. I determined that neonates become less vulnerable as 

they age, were most vulnerable if they were born before the peak birth pulse (April) and 

if lactating females selected habitat farther from the safety of escape terrain. My work is 

the first to examine factors affecting selection of neonatal habitat by lactating females 

and survival of neonates within Sierra bighorn sheep populations. My results have 

elucidated potential management strategies that may inform recovery actions.  
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INTRODUCTION AND OVERVIEW 

Introduction  

Declines of bighorn sheep (Ovis canadensis) populations occurred rapidly across North America 

with European settlement in the 1800s (Valdez and Krausman 1999), and today Sierra Nevada 

Bighorn sheep (O. c.sierra; Sierra bighorn hereafter), are the rarest subspecies of all North 

American mountain sheep. The history of Sierra bighorn conservation efforts span centuries; 

beginning in 1878, when hunting of the species was prohibited (U.S Fish and Wildlife Service 

2007). By 1979, disease, illegal hunting, and competition from domestic livestock had reduced 

the population to approximately 300 individuals distributed across a fraction of their historic 

range (Wehausen and Jones 2014). Despite intensive efforts by California Department of Fish 

and Wildlife (CDFW), by 1999 fewer than 130 Sierra bighorns were detected within 3 isolated 

subpopulations, and the species was emergency listed under the Endangered Species Act.  In 

2007, U.S Fish and Wildlife Service identified several potential factors limiting Sierra bighorn 

recovery including: limited distribution, inadequate connectivity, low population size, loss of 

genetic diversity, predation and disease. Research and subsequent management efforts have 

sought to address these concerns through translocations, predator control, and disease prevention. 

Despite considerable progress towards recovery, considerable demographic variation across 

subpopulations continues to threaten species recovery (U.S Fish and Wildlife Service 2007, 

Johnson et al. 2010, Conner et al. 2018). 

 When adult survival is high and stable, juvenile recruitment is the vital rate with the 

greatest potential to improve population trajectories (Gaillard et al. 2000, Raithel et al. 2007). 

Although estimates of vital rates for Sierra bighorn sheep have varied widely annually and across 

subpopulations (Johnson et al. 2010), recent survival estimates for adult females are relatively 
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high and stable (0.78 – 0.99; Conner et al. 2018). Pregnancy rates are also consistently high (90 – 

95%), but observed lamb:female ratios estimated in late summer and overwinter are much lower 

and more variable (21–86%; Greene et al. 2016). Survival of juveniles captured at 6 months to 1 

year old was estimated to be 83% (T. Stephenson, California Department of Fish and Wildlife, 

unpublished data), indicating that mortality of juveniles likely occurs during the neonatal period. 

Quantifying the factors influencing survival of neonates is important in the development of 

conservation strategies for improving survival of juveniles and overall population trajectories 

(Gaillard et al. 1993, Barber-Meyer and Mech 2008). 

  In the following chapters, I present two main sets of analyses that were intended to 

reduce the uncertainty surrounding the mechanisms influencing juvenile recruitment and provide 

managers with recommendations for improving recruitment in Sierra bighorn. In Chapter 1 my 

objective was to understand how lactating females balance forage acquisition and safety from 

predators during the early neonatal lambing period. I defined lactating female as any bighorn 

sheep producing milk for a lamb at-heel. In my second Chapter I sought to test whether predation 

nutrition, or quality of lambing habitat was the primary factor influencing survival of neonates 

and to understand how inbreeding depression was affecting survival.  

In Chapter 1, I hypothesized that nutrition and predation risk would be key drivers of 

selection of neonatal lamb rearing habitat by lactating females and evaluated the local 

adaptations of individual subpopulations to test for a function response to key resources. I 

quantified the relative probability of selection of neonatal habitat by lactating Sierra bighorn 

sheep with a used-available resource selection function (RSF; Hosmer and Lemeshow 2000, 

Manly et al. 2002). I found lactating females selected for habitat that minimized risk of predation 

by mountain lions on vulnerable neonates, despite decreased access to nutritious forage. I also 
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found variations in resource selection between subpopulations could generally be explained by 

differences in resource availability.  Managers of Sierra Nevada bighorn sheep can use my 

spatial RSF maps to evaluate the suitability of neonatal lamb rearing habitat within potential 

reintroduction sites. Recolonization into historic ranges and interconnectivity between 

subpopulations is a key component in species recovery and ensuring long-term viability of 

fragmented subpopulations.  

 In Chapter 2, I evaluated competing hypotheses to test whether quality of habitat 

selected by lactating females, nutrition (female body condition),  predation risk, or habitat quality 

selected by lactating females had the greatest effect on survival of Sierra bighorn sheep neonates 

(0–90 days) and if inbreeding depression was negatively influencing survival. I tested these 

hypotheses using nest-survival analysis (Dinsmore et al. 2002, Rotella et al. 2004, Shaffer and 

Thompson 2007). I found that predation risk was the primary driver of survival for neonates. 

Vulnerability of neonates to predators was highest for early-born neonates, neonates farther from 

escape terrain, and decreased as neonates age. Although managers may not be able to directly 

mitigate mortality of neonates, managers may be able to entice lactating females to remain closer 

to escape terrain by conducting prescribed burns to improving nutritious forage near escape 

terrain (Greene et al. 2012).  Overall, my work reveals that predation risk is a strong force 

governing selection of habitat by lactating females and survival for Sierra Bighorn sheep 

neonates. Management practices that can improve survival of neonates have the potential to 

improve population growth within subpopulations where adult survival is high and recruitment is 

low, which may have long-term effects on the recovery of Sierra Bighorn sheep.  
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CHAPTER 1 

 

PREDATOR AVOIDANCE STRATEGIES DRIVE SELECTION OF NEONATAL LAMBING 

HABITAT BY LACTATING SIERRA NEVADA BIGHORN SHEEP  

 

ABSTRACT  

Predation risk has shaped the selection of habitat by ungulates, leading to trade-offs in selection 

of habitat between acquiring quality forage and minimizing risk of predation. These 

compromises are thought to be strongest for lactating ungulates because of the high nutritional 

demands of lactation and increased vulnerability of juveniles to predators. I examined selection 

of habitat by federally endangered Sierra Nevada bighorn sheep (Ovis canadensis sierrae) during 

the neonatal period. I hypothesized that lactating females should select for habitat that minimizes 

risk of predation. As predicted, I found lactating females strongly selected for habitat near escape 

terrain with high visibility and avoided habitat where the relative probability of encountering 

mountain lions (Felis concolor) was higher. Despite decreased access to high quality forage, my 

results show that females selected habitat that reduced the risk of predation on neonates. 

Understanding the availability of high quality neonate rearing habitat is an important 

consideration in restoring bighorn populations. Our models will assist managers in identifying 

habitat that is most likely to meet the lambing needs of lactating bighorn sheep and facilitate 

recovery of Sierra Nevada bighorn.  

KEY WORDS: Sierra Nevada bighorn sheep, Mountain lion, predation, nutrition, lamb rearing 

habitat, resource selection function 
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INTRODUCTION 

For prey species, balancing selection of habitat that maximizes acquisition of high quality forage 

against the constraints from risk of predation results in critical trade-offs between safe and 

productive foraging areas (Festa-Bianchet 1988, Lima and Dill 1990, Hamel and Côté 2007). 

Habitat can be defined as the biotic and abiotic resources that determine the presence, survival 

and reproductive fitness of a species (Sinclair et al. 2006). When a positive correlation exists 

between predation risk and forage, ungulates must select from a continuum of low forage and 

low risk of predation areas to high forage and high risk areas (Bowyer et al. 1998, Mitchell and 

Lima 2002, Hebblewhite and Merrill 2009). Risk of predation is strongly related to selection of 

habitat and spatial distribution of predators. (Lima and Dill 1990, Hebblewhite et al. 2005).  Prey 

can minimize predation risk through selection of habitat that reduces the likelihood of 

encountering predators, increases the likelihood of detection and evasion of predators, or 

minimizes the odds of predator success (Risenhoover and Bailey 1985, Hebblewhite and Merrill 

2009, DeMars and Boutin 2018). Such behavioral adaptations often result in decreased food 

intake, increased stress levels, and can negatively affect survival and reproductive success of 

prey (Brown and Kolter 2004, Fortin et al. 2005, Thaker et al. 2011). Balancing nutrition and 

predation risk is most crucial for lactating ungulates in the first month post-partum, as energetic 

requirements for females increase between 65–215% (Oftedal 1985, Parker et al. 2009) and 

neonatal offspring are most vulnerable to predation (Gaillard et al. 1998, Hamel and Côté 2007, 

Smith et al. 2014). Selection of habitat by lactating females can have direct consequences on 

fitness of females as well as survival of offspring (Berger 1991, Rachlow and Bowyer 1994, 

Bangs et al. 2005).  
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Natural selection should favor female ungulates that employ strategies that promote 

survival of offspring (Festa-Bianchet 1988). Birthing seasons for alpine ungulates are 

synchronous with the narrow window of favorable climactic conditions and phenology of 

vegetation. In addition to providing adequate nourishment for growth and development of 

offspring during this time, maternal ungulates must also replenish their own body reserves in 

preparation for over-winter survival when nutritional intake is expected to be limited (Bunnell 

1982, Rachlow and Boywer 1994, Parker et al. 2009). Neonatal offspring are highly vulnerable 

to predation (Gaillard et al. 1998, Laundre 2008). Migration of alpine ungulates to higher 

elevations in spring is expected to reduce the likelihood of encountering predators at larger 

spatial scales (Hebblewhite and Merrill 2009), yet this strategy can result in reduced access to 

forage biomass (Nicholson et al. 1997,  Spitz et al. In Press). Proximity to rugged escape terrain 

and use of open terrain with high visibility has been consistently noted as strategies for reducing 

predation risk at smaller spatial scales, but these areas generally provide limited access to forage 

(Geist 1971, Festa-Bianchet 1988, Berger 1991, Wehausen 1996, Hamel and Côté 2007). 

Lactating females must make trade-offs between acquiring high quality forage and avoidance of 

predation risk. The consequences of these trade-offs are challenging to predict, yet for threatened 

or endangered ungulate populations, understanding the factors driving these behavioral strategies 

is important for guiding management decisions.  

Sierra Nevada bighorn sheep (Ovis canadensis sierrae; Sierra bighorn sheep hereafter) 

are a federally endangered subspecies of bighorn sheep endemic to the Sierra Nevada of 

California (U.S Fish and Wildlife Service 2007, Wehausen and Jones 2014). This 

metapopulation currently consists of 14 subpopulations distributed along the Sierra Nevada crest. 

In 2007, U.S Fish and Wildlife Service identified several potential factors limiting Sierra bighorn 
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sheep recovery including: limited distribution, inadequate connectivity between subpopulations, 

small population size, loss of genetic diversity, predation, and disease. Research and subsequent 

management efforts have sought to address those concerns through translocations, predator 

control and disease prevention (Johnson et al. 2010, 2011, 2013, Greene et al. 2012, Clifford et 

al. 2009, Cahn et al. 2011). Despite considerable progress towards recovery, subpopulations 

continue to exhibit highly variable and population-specific dynamics (U.S Fish and Wildlife 

Service 2007, Johnson et al. 2010, Conner et al. 2018). Subpopulations are geographically 

grouped into metapopulation recovery units: Northern, Central, Southern and Kern (Figure 1).  

Long-term viability of naturally fragmented subpopulations can be achieved through 

inter-population connectivity and recolonization of suitable habitat. Sierra bighorn sheep are 

philopatric and slow to naturally recolonize, thus recent conservation efforts have focused on 

reintroductions throughout former ranges and augmentation of smaller subpopulations (Geist 

1971, Few et al. 2015). The historical distribution of Sierra bighorn sheep remains poorly 

understood because the species was nearly extirpated before being listed for protection 

(Wehausen and Jones 2014). Furthermore, little is known about patterns of habitat selection by 

lactating females during the early neonatal period. Much of the previous research describing 

lambing habitat was largely based on observations of lambs, not known birth events, and thus are 

potentially biased towards areas of greater visibility or habitat used by pairs when lambs are 

more mobile (Bangs et al. 2005, Barbknecht 2008, Smith et al. 2015). Smith et al. (2015) 

reported that >80% of documented parturition sites occurred outside of lambing habitat 

previously delineated through observations. To improve translocation success and ultimately aid 

in the recovery of Sierra bighorn sheep, it is important to quantify neonatal habitat.  
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My objective was to evaluate how lactating females balance forage acquisition and safety 

from predators during the early neonatal lambing period. I first tested for a forage-risk trade-off 

within each subpopulations spring range. I hypothesized that forage and risk of predation from 

mountain lions would be positively correlated, and expected that Sierra bighorn females would 

make trade-offs between safety and forage acquisition. I then hypothesized that lactating females 

should select for habitat that minimizes risk of predation on vulnerable neonates. Accordingly, I 

predicted strong avoidance of habitat with high probability of encountering predators, strong 

selection for habitat with good visibility and proximity to escape terrain. Alternatively, I 

hypothesized that lactating females should select habitat that maximizes access to high quality 

nutrition to meet increased nutritional demands of lactation. Thus, I predicted strong selection for 

habitat where access to forage biomass is greatest.  I evaluated the potential for a functional 

response from females to several key habitat resources and examined local adaptations of 

individual subpopulations by comparing availability of habitat resources and selection among 

subpopulations. I hypothesized that variation in availability of quality forage and exposure to 

predation risk would explain potential differences in selection strength for these resources 

between subpopulations. Consequently, I predicted subpopulations with decreased availability of 

forage resources would show increased selection for forage and subpopulations with increased 

availability of forage would show decreased strength of selection. I also predicted that 

subpopulations with greater risk of predation (higher risk of encounter or lower proportion of 

escape terrain) would show greater avoidance of encounter risk and increased selection for 

proximity to escape terrain.  
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STUDY AREA  

The Sierra Nevada extends 650 km along the Eastern border of California (Hill 1975). Sierra 

bighorn sheep subpopulations are historically and currently restricted to the most alpine habitat 

along the Southeast portion of the range (U.S Fish and Wildlife 2007). Subpopulations extend 

from Lee Vining, California approximately 200 km south near Olancha, California. Elevation 

along the Eastern front changes abruptly from 1000 m to an average of 3,000 m, with numerous 

peaks above 4,000 m. Sierra bighorn sheep are considered partially migratory, many individuals 

spending winters at lower elevations and migrating upwards in spring months (U.S Fish and 

Wildlife 2007, Spitz et al. In Press). The strong rain shadow effect limits summer (May-

September) precipitation east of the Sierra crest, thus most of the annual precipitation falls as 

snow during winter months (November-April). Granitic and volcanic soil types are nutrient 

limited and predominant throughout the range (Hill 1975). The xeric vegetation communities are 

separated by elevation classes, low-elevation (1500–2499 m) includes scrub with mixed grass 

and forb types; intermediate (2500–3300 m) includes moderate timber cover with sparse forbs 

and subalpine meadows; high elevations (>3300 m) includes sparse alpine vegetation (Hill 

1975). Common fauna includes mule deer (Odocoileus hemionus), mountain lion (Puma 

concolor), bobcat (Lynx rufus), black bear (Ursus americanus), coyote (Canis latrans), and 

golden eagle (Aquila chrysaetos). The strong overlap of mule deer populations with low-

elevation Sierra bighorn sheep ranges, leads to predator-mediated apparent competition by 

mountain lions (Johnson et al. 2013). Predation by mountain lions has been a leading cause of 

adult Sierra bighorn sheep mortality in numerous subpopulations for decades, accounting for 

approximately 53% of all known mortalities (Johnson et al. 2013, Stephenson et al. 2012, Conner 

et al. 2018).  
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METHODS  

California Department of Fish and Wildlife crews captured adult female Sierra bighorn sheep 

across seven subpopulations from 2008 – 2018 by helicopter net-gun and fitted them with global 

positioning system (GPS) collars (University of Montana IACUC 012–16MMMCWRU–022916, 

Federal Fish and Wildlife Service Permit No. TE050122–4) as a part of a long-term monitoring 

effort for recovery. These seven subpopulations are the focus of extensive data collection and 

represent >85% of the subspecies. Collars were programmed to record >1 location at regular 

time intervals (2–12 hours). We determined pregnancy using ultrasonography (Stephenson et al. 

1998).  I fitted a sub-sample of pregnant females with vaginal implant transmitters (VIT) and 

high fix rate collars (12 fixes/day) during 2016 – 2017 (Bishop et al. 2007). I included 30 days of 

post-partum GPS locations from resident females each lamb-year to represent the early neonatal 

lamb rearing period beginning on the date of parturition.  

I developed an algorithm for estimating date of parturition based on locations of collared 

ewes using the adehabitat package (Calenge 2006) in Program R (R Core Team 2018); Appendix 

A). I analyzed movement patterns pre, during, and post-partum for a sub-sample (n =22) of 

females with high fix-rate GPS collars and VITs to develop a model that predicted parturition for 

these females (DeMars et al. 2013, McClintock et al. 2012, 2014, Blackwell et al. 2016).  I found 

that on average, females spent ( χ̅  = 26 hours , SE = 4) in a parturition site and remained within 

an average of ( χ̅  =19m , SE= 11) from the site until departing.  I tested this model by comparing 

known parturition sightings to model predictions (n=21). I also tested for false positives 

(clustered GPS locations due to extended or consecutive use of bedsite) using GPS data from 

females (n=6) that were not pregnant. I applied this cluster detection algorithm to all sampled 

females within our study.  
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I calculated the probability of detecting a lamb known to be present using mark-resight 

estimation based on the presence of lamb-at-heel for marked females by surveying spring lamb 

ranges during the early neonatal lambing period (Bonenfant et al. 2005). Because twinning has 

not been observed in Sierra bighorn and females do not allow non-related offspring to suckle, 

visual observations reliably indicate lamb presence and absence. I made multiple attempts to 

confirm the presence of a lamb for each female, and to resight pairs through the early neonatal 

period. I estimated the probability of sighting and resighting a lamb for each occasion a female 

was observed post-partum during the early neonatal period. 

Selection of Neonatal Habitat  

I evaluated the relative probability of selection of neonatal habitat by lactating Sierra 

bighorn sheep with a used-available resource selection function (RSF) by using the exponential 

approximation to the inhomogenous poisson point process (Aarts et al. 2012, Lele et al. 2013, 

McDonald 2013). I used a 99% kernel density estimator (KDE) with 100m buffer (Worton 1989) 

to delineate spring home range for each subpopulation from all compiled GPS locations from all 

collared females within each subpopulation from April 1 –July 15th from all years. I sampled 

available locations within each subpopulation’s home range (Johnson 1980, Boyce 2006) using a 

4:1 ratio of stratified random available locations to used GPS locations (Benson et al. 2013, 

Northrup et al. 2013).  

     Resource variables  ̶  I selected vegetative, topographic and biotic explanatory variables to 

test my hypotheses (Table 1). I included a spatial predation risk variable developed from a 

mountain lion RSF derived specifically for my study area in spring months (Appendix B).  

I built a third-order used-available design RSF based on GPS locations from 28 radiomarked 

mountain lions within my study area from 2002-2011.  I included GPS locations from 
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crepuscular hours estimate selection of habitat that primarily reflected hunting behaviors, and 

considered the resulting RSF was correlated with relative probability of encountering a hunting 

mountain lion (Lima and Dill 1990, Hebblewhite et al. 2005, Hebblewhite and Merrill 2007, 

2009; Johnson et al. 2013). I mapped spatial encounter risk at a 30m resolution.  I defined escape 

terrain for Sierra bighorn sheep as slopes > 42°. I examined distance to escape terrain by binning 

distances into levels of risk; Low: 0–120 m, Med: 121–240 m, and High: < 240 m (Fairbanks et 

al. 1987, Harris et al. 1995). I included the Normalized Difference Vegetation Index (NDVI) 

metric to represent relative forage biomass, a proxy for vegetation quality and net primary 

productivity in open canopied landcover types (Borowik et al. 2013). I obtained composite layers 

from the MOD13Q1 data product from the moderate-resolution imaging spectroradiometer 

(MODIS) satellite (Didan 2015). I used 16-day composites of surface reflectance values to 

calculate NDVI vales from April 1- July15th for the years 2006 – 2017 at the spatial resolution of 

250m (Pettorelli et al. 2007, Hamel et al. 2009, Sensi et al. 2012).  I processed NDVI data 

following previously established protocols, excluding locations contaminated by cloud cover 

(Hamel et al. 2009). I extracted NDVI values from the composite layer that matched the date of 

use by each female.  For available locations, I calculated the median NDVI from the annual time 

series data-sets for each available cell across the study area (Pettorelli et al. 2007, Hebblewhite et 

al. 2008, Hebblewhite and Merrill 2009). I included thematic vegetation layers from CalVEG 

condensed to 4 categories to represent basic vegetation types. I focused on NDVI values within 

herbaceous and barren vegetation types because they represent grasses and forb species primarily 

consumed by Sierra bighorn sheep (Wehausen and Hansen 1988, Greene et al. 2012, Borowik et 

al. 2013).  I standardized continuous variables by subtracting each value from the mean of all 

values across the study area and dividing by the standard deviation so that the magnitude of each 
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variable was comparable across models (Bring 1994). I extracted variables for all GPS locations 

using digital raster layers at the 30m resolution in Program R (3.1.4) and ArcGIS (10.5.1). I 

tested the correlation structure between forage and predation risk using 8,000 random locations 

within subpopulation spring home ranges that were delineated as either barren or herbaceous 

vegetation types using Pearson correlation coefficients.  

     Model fitting and selection. ̶  I retained candidate variables that were non-confounded and 

screened for collinearity using the Pearson correlation coefficient threshold of |r| < 0.6 (Hosmer 

and Lemeshow 2000, Wickham 2009). Among collinear-pairs, I retained the variable that had 

stronger predictive ability (Austin 2002). I built thirteen candidate models to test my hypotheses 

using a generalized linear mixed-effects modeling (GLMM) framework and a random intercept 

for individual females and subpopulations to account for unbalanced sample sizes between 

individually collared females and subpopulations (Skrondal & Rabe-Hesketh 2004, Gilles et al. 

2006).  

I ranked top models using Bayesian Information Criteria (BIC); models with the lowest 

BIC were most supported by the data and I considered models with < 2 ΔBIC  to be competitive 

(Schwartz 1978, Hooten and Hobbs 2015). I evaluated overfitting, multicollinearity and 

improved variable selection for my top candidate models using a regularization multiplier 

through the least absolute shrinkage and selection operator (LASSO; glmmLasso; Tibshirani 

1996, Francais et al. 2017). I considered standardized β-coefficients with confidence intervals 

that did not overlap 0, and defined coefficients ≤ 0.1 to have weak effects on selection, values ≥

|0.1| and ≤ 0.5 moderate, values ≥ |0.5| and  ≤ |1.0 | strong, and values ≥ |1.0| to have very 

strong effects (Bring 1994).  
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     Model testing and projection .̶  I evaluated the predictive capacity of the top performing 

model by averaging the results from 100 iterations of k-fold cross validation and derived 

Spearman Rank coefficients (Boyce et al. 2002, Fernandez et al. 2003, Maindonald and Braun 

2006). I externally tested the top model using an independent sample of GPS locations from 

lactating bighorn sheep in 2018 withheld from model building. I multiplied the fixed effect β-

coefficients from the top model with corresponding spatial variable raster layers to project the 

relative probability of selection across the study site. I applied the top model to each 

subpopulation data set, with a random effect for individual (Manly et al. 2002, Beyer et al. 2010) 

to evaluate relative differences in selection among subpopulations.  

     Subpopulation characteristics. ̶  I calculated the proportional availability of resources related 

to forage (vegetation types) and predation risk (risk of encountering a mountain lion and distance 

to escape terrain) systematically sampled within each subpopulation’s spring home range to 

evaluate if selection varies as a function of availability (Benson 2013).  I ranked level of 

predation risk based on the percentage of known mortalities from mountain lions occurring 

within 3 levels of relative predicted probabilities of encounter:  Low (12%), Medium (38%), 

High (>50%). I fit a general linear model using regression analysis to test for a functional 

response by females to key resources and evaluate differences between subpopulations. I 

considered the strength of correlation between availability of a resource and selection coefficient 

as well as the proportion of variation in selection explained by availability.  

 

RESULTS 

From 2006- 2017 California Department of Fish and Wildlife collected a total of 34,763 GPS 

locations from 30 days post-partum across 123 unique female-lamb pairs for model building; 
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2,286 from 24 pairs in Mt. Warren, 1,529 from 8 pairs in Mt. Gibbs, 2,643 from 11 pairs in 

Convict Creek, 8,268 from 21 pairs in Wheeler Ridge , 6,148 from 16 pairs in Sawmill Canyon,  

7,614 from 18 pairs in Mt. Baxter, and 6,275 from 25 pairs in Mt. Langley. I used 1,280 GPS 

locations from 14 pairs in 2018 to test model fit. Using mark-resight, I estimated the probability 

of sighting and resighting a lamb as 0.96 (SE=0.04, n=36 known present lambs) for each 

occasion a female was observed. I made an average of 3.42 observations per female during the 

30 day period, and only included data from females with ≥ 2 observations, thus on average there 

was <1% chance in missing a lamb.  

Selection of Neonatal Habitat  

     Resource variable ̶  Slope, elevation, NDVI, and predation risk were highly correlated. I 

retained predation risk as this metric had strong explanatory power for selection of habit by 

lactating females and incorporated slope, elevation and NDVI in RSF models (Lehman et al. 

2002, Austin 2002). I found that forage biomass was positively correlated with risk of predation 

at randomly available locations throughout the spring Sierra bighorn sheep ranges (r =0 .73, P< 

0.001). The correlation was too strong to include predation risk and forage, as estimated by 

NDVI, within the same model. Thus, I evaluated the trade-offs between forage and predation risk 

within forage vegetation types. I found that on average herbaceous vegetation had a relatively 

high risk of encounter (χ̅  = 48%), whereas barren vegetation had relatively low risk (χ̅  = 18%).  

     Model fitting and selection. ̶  There was low model uncertainty among top candidate models 

explaining selection of habitat by lactating Sierra bighorn sheep; the top five models included the 

same six base variables with alternative combinations of additional variables (Table 2). I selected 

the second ranked model because it was more parsimonious and the additional covariates were 

uninformative (Arnold 2010). The fixed effects ß-coefficients of the top selection model 
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suggested that during the early neonatal period, lactating Sierra bighorn sheep selected most 

strongly for habitat within 120m of escape terrain (β=2.30, SE=0.03), followed by habitat within 

240m (β=1.15, SE=0.03; Table 3), relative to habitat < 240 m. Females strongly selected for 

barren vegetation types  (β=0.85, SE=0.03), shrubs (β=0.81, SE=0.03), and slightly for 

herbaceous vegetation (β=0.31 SE=0.04) when predation risk was zero. Females showed strong 

avoidance of habitat with increasing probabilities of encountering a hunting mountain lion in all 

vegetation types other than barren (β= -0.64, SE=0.02). Females showed strong selection for 

barren habitat with increasing predation risk (β= 0.70, SE=0.02; (Figure 2). Selection was weak 

for increasing values of TPI (β= 0.09, SE=0.003). I found very low individual-level variation in 

resource selection between individuals (n= 123, SD <0.001), and minimal variation at the 

subpopulation level (n= 7, SD= 0.101) compared to our standardized fixed-effect coefficient 

estimates.  

     Model Testing and Projection- The LASSO and VIF tests indicated no issues with collinearity 

within my selected top model (Neter et al. 1996, Tibshirani 1996). The top model had a mean 

internal cross-validation estimate of 0.88 + 0.004 (SE). The top model had an external cross-

validation estimate of 0.97 + 0.01 (SE).  

     Subpopulation characteristics. ̶ Availability of forage and exposure to predation varied 

widely across subpopulations (Table 3). Strength of selection for forage varied across 

subpopulations, however, I found no evidence of a relationship between availability and strength 

of selection for herbaceous vegetation (r =0 .02, P= 0.79) and very low evidence for barren 

vegetation (r =0.19, P= 0.20). I found no evidence of a relationship for avoidance of predation 

encounter risk (r =0.06, P= 0.61). I did, however, find a strong and positive relationship between 

availability and selection of proximity to escape terrain (r =0.55, P= 0.06). Subpopulations with 
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an abundance of habitat near to escape terrain within their spring home range had greater 

strength of selection for escape terrain (Figure 3).  

 

DISCUSSION 

I evaluated how lactating females balance forage acquisition and safety from predators during the 

early neonatal lambing period. I found support for the hypothesis that lactating females selected 

for habitat that minimized risk of predation on vulnerable neonates. As predicted, females 

strongly avoided habitat with increased risk of predation despite reduced access to high quality 

forage. Females showed strong avoidance of habitat with increased probability of encountering a 

hunting lion and selected strongly for habitat near escape terrain where visibility was high (open 

vegetation types).  I further sought to test for a functional response across subpopulations 

between strength of selection and availability of forage resources and exposure to risk of 

predation. I found low variation in selection strengths across forage resources and predation 

encounter risk, despite wide variation in availability, indicating no evidence of a functional 

response. However, counter to my predictions, I found strong evidence of a positive functional 

response for low distances to escape terrain, indicating that subpopulations with greater 

proportions of safe terrain demonstrate stronger selection for it.   

The strong correlation between predation risk and forage prevented me from directly 

testing for an interaction between forage biomass and risk. I hypothesize that the strength of the 

relationship is likely ultimately driven by the spatial distribution of mule deer. The seasonal 

distribution of mule deer populations is strongly linked to spatial forage biomass (Wickstrom et 

al. 1984, Marshal et al. 2004, Montieth et al. 2011), and because mule deer are the primary prey 

for mountain lions in the Sierra Nevada, lions distributions are strongly driven by the distribution 
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of mule deer (Johnson et al. 2013). I also found that predation risk was higher in herbaceous 

vegetation types than barren types, indicating that where forage is presumed most abundant risk 

of encountering a hunting mountain lion is also greater.  

Overall, the behavior of lactating bighorn sheep suggests risk of predation was strongly 

reduced by avoiding areas where the probability of encountering predators was high, distances 

far from escape terrain and areas where visibility was decreased. Females showed avoidance of 

areas with increased probability of encountering predators, such as low elevations, mild slopes 

and near waterways. Females also reduced predation risk by selecting habitat near escape terrain 

where they can quickly access terrain that is predator are less likely to be able to navigate. By 

selecting habitat with increased visibility, lactating females can detect approaching predators and 

decrease the risk of mortality.  

Consequently, to remain safe from predation females must compromise access to high 

quality nutrition during the early neonatal period. The strong positive correlation I observed 

between predation risk and forage biomass suggests that access to forage biomass is decreased 

when sheep select habitat where predation risk is relatively low. Predation risk and forage quality 

was lowest at high elevations where green-up is delayed and mountain lions are infrequent.  

Previous work by Wehausen et al. (1995), Greene et al. (2010), and comparable research on 

alpine vegetation by Rachlow and Bowyer (1998) and Hamel and Côté (2007) indicates that 

measures of digestibility and crude protein are lowest in areas immediately surrounding escape 

terrain. I hypothesize that to maintain forage intake, females may choose to forage on alternative 

plant species that are more readily available at higher elevations near escape terrain, thus 

explaining the unexpected positive selection for shrubs. Selection for shrubs was not universal 

across the landscape however and depended strongly on predation risk; when risk was low, 
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selection for shrubs increased. Females may choose to forage on shrubs because they are 

abundantly available within habitat where predation risk is relatively low and fresh annual 

growth can provide some nutritional value (Greene et al. 2012). Selection for barren vegetation 

types strongly increased with increasing predation risk, suggesting that females may be selecting 

for open habitat to forage in as predation risk increases. I hypothesize that risk of mortality from 

predators does not increase in barren vegetation types greatly due to the ability of sheep to detect 

predators, despite increased risk of encounters.  

I found support for the hypothesis that variation in selection for forage resources and 

avoidance of predation risk between subpopulations could be explained primarily by differences 

in resource availability, indicating no functional response to these resources. However, I did find 

strong evidence to suggest that individuals within subpopulations responded to increased 

availability of low distances to escape terrain with increased selection for that terrain. This was 

in contrast to my prediction of a negative functional response, where a reduction in availability 

of safe terrain would result in increased selection for it. In a post-hoc examination I hypothesized 

that because overall risk of mortality from predation a function of encountering a predator and 

probability of evasion, selection strength for low distance to escape terrain (habitat that enables 

the evasion of predators) may depend on the availability of low distance to escape terrain as well 

as the overall risk of encountering a predator. I found a strong positive relationship between 

proportion of high encounter risk terrain and selection for proximity to escape terrain (r= 0.55, 

p= 0.05), indicating that for subpopulations with greater proportions of high encounter risk 

terrain, selection for ‘safe’ terrain was also greater. For example, Mt. Gibbs had the lowest 

selection coefficient (1.08), lowest proportion of low distance to escape terrain (35.1%), and 

lowest proportion of terrain with high predation (encounter) risk (7.2%). Wheeler Ridge had a 
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selection coefficient 3 times higher (3.08), had 38% more availability of low distance to escape 

terrain (57.1%), and had 74% more terrain with of high risk of predation compared to Mt. Gibbs. 

Conner et al. (2018) concluded that Mt. Gibbs had one of the lowest occupancy rates of 

mountain lions, whereas Wheeler Ridge had one of the highest. I hypothesize that these 

differences in overall risk of predation may influence the ability of lactating females to obtain 

high quality nutrition. Montieth et al. (2018) found that females in Mt. Gibbs had the highest fall 

IFBFat (approximately 13.5%) of any subpopulation, whereas Wheeler Ridge, had among the 

lowest IFBFat of any subpopulation (approximately 10.5%).  

 Availability and selection of habitat during the early neonatal period can strongly 

influence the reproductive success of maternal ungulates and survival of neonates. Investigations 

into the adaptive strategies of ungulates to balance forage acquisition and predation risk have 

yielded diverse results that often provide conflicting management implications. Evaluating how 

lactating females cope with the increased nutritional demands of lactation and increased 

vulnerability of neonates to predators is important for developing strategies for recovering small 

or endangered populations. Furthermore, identifying factors that influence selection of habitat 

can improve our understanding of the risk factors lactating females and neonates face and enable 

the development of effective management strategies.  

I demonstrated that predation risk was a strong driver influencing the selection of 

neonatal lambing habitat, however my estimates of predation risk were based on an ambush 

predator, which are considered more spatially predictable than coursing predators because of 

their requirement for visual cover to hunt (Heithaus et al. 2009, Middleton et al. 2013, Blake and 

Gese 2016). I hypothesize, however, that my definition of escape terrain also served as habitat 

that is safe from coyotes because coyotes are also unlikely to be successful at hunting sheep in 
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such steep slopes. I was unable to estimate spatial risk from avian predators such as golden 

eagles.  

 Understanding the availability of high quality lamb rearing habitat is an important 

consideration in restoring bighorn populations. My results demonstrate that resource availability 

and abundance of high quality lambing habitat differs across subpopulations. Differences in 

abundance and connectivity of lambing habitat may be important in understanding differences in 

lamb recruitment and population performance among subpopulations. Furthermore, quantifying 

the proximity of lamb rearing habitat to summer and winter ranges aids in predicting the success 

of current and future subpopulations. My models will assist managers in identifying habitat that 

is most likely to meet the lambing needs of lactating bighorn sheep and facilitate recovery.  

 

MANAGEMENT IMPLICATIONS 

By incorporating my findings into future reintroduction plans, managers of Sierra Nevada 

bighorn sheep can evaluate the suitability of neonatal lamb rearing habitat within potential 

reintroduction sites (Appendix C). Recolonization into historic ranges and connectivity between 

Sierra bighorn sheep subpopulations is a key component in species recovery and ensuring long-

term viability of fragmented subpopulations.  My predictive maps could inform spatial 

prioritization for the establishment of Sierra bighorn sheep habitat relative to neonatal lamb 

rearing habitat within the Sierra Nevada range (Figure 4). In established subpopulations, 

managers could evaluate augmentations based on predation risk relative to increased visibility 

and increased forage opportunities.  

 

 



24 

 

ACKNOWLEDGMENTS 

Captures were made possible with the assistance from S. D. DeJesus, R. C. Swisher, M. D. 

Shelton, J. D. Pope, G. M. Pope, M. R. Breiling, and G. M. Schales.  Field assistance was 

provided by J. A. Leary, D. A. Taylor, J. A. Weissman, L. E. Greene, L. Simeon, T. F. Calfee, B. 

E. Hatfield, V. M. Davis, J. L. Fusaro, J. D. Wehausen, D. F. Jensen, K. A. Anderson, C. P. 

Massing, H. E. Johnson, C. A. Schroeder, B. A. Gonzales, L. Konde, V. C. Bleich, B. M. Pierce, 

J. T. Villepique, D. B. Spitz, A. C. Sturgill, M. L. C. Kane, M. A. Kiner, K. M. Ellis, M. Dodd, 

L. R. Bowermaster, A. H. Peet, G. M. Foote, K. E. Nelson, J. A. Erlenbach, R. J. Spaulding, A. 

E. Feinberg, A. C. Lawrence, T. M. Glenner, B. A. Teagle, W. O. Livingston, D. E. Rivers, G. L. 

Cadwallader, W. L. Loeper, and C. C. Noear. Collaborators include Michael Mitchell, Tom 

Stephenson, Mark Hebblewhite, Paul Lukacs, and Creagh Bruner.  Funding for collection of 

demographic data was provided by the California Department of Fish and Wildlife, Federal 

Assistance in Wildlife Grants, California Wild Sheep Foundation, the Yosemite Conservancy, 

the Sierra Nevada Bighorn sheep Foundation, the Wild Sheep Foundation, and USFWS Section 

6 grants to support recovery activities. Funding for analyses was provided by a grant from 

National Science Foundation’s Graduate Fellowship Research Program. The Bureau of Land 

Management, Inyo National Forest, Humboldt-Toiyabe National Forest, Yosemite and Sequoia-

Kings Canyon National Parks are partners in the recovery effort and provided funding.  

 

LITERATURE CITED 

Aarts, G., Fieberg, J. and Matthiopoulos, J. 2012. Comparative interpretation of count, presence-absence 

and point methods for species distribution models. Methods in Ecology and Evolution. 3:177–

187. 



25 

 

Alldredge, A. W., R. D. Deblinger, and J. Peterson. 1991. Birth and fawn bed site selection by 

pronghorns in a sagebrush-steppe community. The Journal of Wildlife Management 222–227. 

Arnold, T.W., 2010. Uninformative parameters and model selection using Akaike's Information 

Criterion. The Journal of Wildlife Management. 74:1175–1178. 

Austin, M. P. 2002. Spatial prediction of species distribution: an interface between ecological 

theory and statistical modelling. Ecological Modelling 157:101–118. 

Bangs, P. D., P. R. Krausman, K. E. Kunkel, and Z. D. Parsons. 2005. Habitat use by female 

desert bighorn sheep in the Fra Cristobal Mountains, New Mexico, USA. European 

Journal of Wildlife Research 51:77–83. 

Barbknecht, A. E. 2008. Ecology of elk parturition across winter feeding opportunities in the 

brucellosis endemic area of Wyoming. Iowa State University. 

Barbknecht, A. E., W. Fairbanks, J. D. Rogerson, E. J. Maichak, and L. L. Meadows. 2009. 

Effectiveness of vaginal-Implant transmitters for locating elk parturition sites. The 

Journal of Wildlife Management 73:144–148. 

Benson, J. F. 2013. Improving rigour and efficiency of use‐availability habitat selection analyses 

with systematic estimation of availability. Methods in Ecology and Evolution. 4: 244–

251. 

Berger, J. 1991. Pregnancy incentives, predation constraints and habitat shifts: experimental and 

field evidence for wild bighorn sheep. Animal Behaviour 41:61–77. 

Beyer, H. L., D. T. Haydon, J. M. Morales, J. L. Frair, M. Hebblewhite, M. Mitchell, and J. 

Matthiopoulos. 2010. The interpretation of habitat preference metrics under use–

availability designs. Philosophical Transactions of the Royal Society B: Biological 

Sciences 365:2245–2254. 



26 

 

Bishop, C.J., Freddy, D.J., White, G.C., Watkins, B.E., Stephenson, T.R. and Wolfe, L.L., 2007. 

Using vaginal implant transmitters to aid in capture of mule deer neonates. Journal of 

Wildlife Management 71:945–954. 

Blackwell, P. G., M. Niu, M. S. Lambert, and S. D. LaPoint. 2016. Exact Bayesian inference for 

animal movement in continuous time. Methods in Ecology and Evolution 7:184–195.  

Blake, L.W. and Gese, E.M., 2016. Cougar predation rates and prey composition in the Pryor 

Mountains of Wyoming and Montana. Northwest Science 90:394–410. 

Bonenfant, C., J.M., Gaillard, F. Klein, and J.-L. Hamann. 2005. Can we use the young: female 

ratio to infer ungulate population dynamics? An empirical test using red deer Cervus 

elaphus as a model. Journal of Applied Ecology 42:361–370. 

Borowik, T., Pettorelli, N., Sönnichsen, L. and Jędrzejewska, B., 2013. Normalized difference 

vegetation index (NDVI) as a predictor of forage availability for ungulates in forest and 

field habitats. European Journal of Wildlife Research 59:675–682. 

Boyce, M. S. 2006. Scale for resource selection functions. Diversity and Distributions 12:269– 

276. 

Boyce, M. S., P. R. Vernier, S. E. Nielsen, and F. K. Schmiegelow. 2002. Evaluating resource 

selection functions. Ecological modelling 157:281–300. 

Bowyer, R. T., J. G. Kie, and V. Van Ballenberghe. 1998. Habitat selection by neonatal black-

tailed deer: Climate, forage, or risk of predation? Journal of Mammalogy 79:415–425. 

Bowyer, R. T., V. Van Ballenberghe, J. G. Kie, and J. A. Maier. 1999. Birth-site selection by 

Alaskan moose: maternal strategies for coping with a risky environment. Journal of 

Mammalogy 80:1070–1083. 



27 

 

Bring, J. 1994. How to standardize regression coefficients. The American Statistician 48:209–

213. 

Bristow, K. L., and G. S. Campbell. 1984. On the relationship between incoming solar radiation 

and daily maximum and minimum temperature. Agricultural and Forest Meteorology 

31:159–166. 

Brown, J. S., and B. P. Kotler. 2004. Hazardous duty pay and the foraging cost of predation. 

Ecology letters 7:999–1014.  

Bunnell, F.L., 1982. The lambing period of mountain sheep: synthesis, hypotheses, and tests. 

Canadian Journal of Zoology 60:1–14. 

Cahn, M.L., Conner, M.M., Schmitz, O.J., Stephenson, T.R., Wehausen, J.D. and Johnson, H.E., 

2011. Disease, population viability, and recovery of endangered Sierra Nevada bighorn 

sheep. The Journal of Wildlife Management 75:1753–1766. 

Calenge, C. 2006. The package adehabitat for the R software: a tool for the analysis of space and 

habitat use by animals. Ecological Modelling, 197:516–519.  

Carlson, B. Z., C. F. Randin, I. Boulangeat, S. Lavergne, W. Thuiller, and P. Choler. 2013. 

Working toward integrated models of alpine plant distribution. Alpine Botany 123:41–53. 

Clifford, D. L., B. A. Schumaker, T. R. Stephenson, V. C. Bleich, M. L. Cahn, B. J. Gonzales, 

W. M. Boyce, and J. A. Mazet. 2009. Assessing disease risk at the wildlife–livestock 

interface: A study of Sierra Nevada bighorn sheep. Biological Conservation 142:2559–

2568. 

Conner, M. M., T. R. Stephenson, D. W. German, K. L. Monteith, A. P. Few, and E. H. Bair. 

2018. Survival analysis: Informing recovery of Sierra Nevada bighorn sheep.  Journal of 

Wildlife Management 83:883–906.  



28 

 

Cushman, S.A. and Wallin, D.O., 2002. Separating the effects of environmental, spatial and 

disturbance factors on forest community structure in the Russian Far East. Forest Ecology 

and Management 168:201–215. 

DeCesare, N. J., M. Hebblewhite, M. Bradley, D. Hervieux, L. Neufeld, and M. Musiani. 2014. 

Linking habitat selection and predation risk to spatial variation in survival. Journal of 

Animal Ecology. 83:343–352. 

DeMars, C. A., and S. Boutin. 2018. Nowhere to hide: Effects of linear features on predator-prey 

dynamics in a large mammal system. The Journal of Animal Ecology 87:274–284. 

DeMars, C. A., M. Auger-Méthé, U. E. Schlägel, and S. Boutin. 2013. Inferring parturition and 

neonate survival from movement patterns of female ungulates: a case study using 

woodland caribou. Ecology and Evolution 3:4149–4160. 

Didan, K. 2015. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid 

V006 [tiles H8V6: dates: 97-142(2006-2017)]. NASA EOSDIS LP DAAC. Accessed 

October 2016 doi: 10.5067/MODIS/MOD13Q1.006  

Dickson, B.G. and Beier, P., 2002. Home-range and habitat selection by adult cougars in 

southern California. The Journal of Wildlife Management, pp.1235–1245. 

Ernest, H.B., Penedo, M.C.T., May, B.P., Syvanen, M. and Boyce, W.M., 2000. Molecular 

tracking of mountain lions in the Yosemite Valley region in California: genetic analysis 

using microsatellites and faecal DNA. Molecular Ecology 9:433–441. 

Ernest, H.B., Rubin, E.S. and Boyce, W.M., 2002. Fecal DNA analysis and risk assessment of 

mountain lion predation of bighorn sheep. Journal of Wildlife Management 66:75–85. 

Fairbanks, W.S., Bailey, J.A. and Cook, R.S., 1987. Habitat use by a low-elevation, semi-captive 

bighorn sheep population. The Journal of Wildlife Management 51: 912–915. 



29 

 

Fernández, N., M. Delibes, F. Palomares, and D. J. Mladenoff. 2003. Identifying breeding habitat 

for the Iberian lynx: inferences from a fine-scale spatial analysis. Ecological Applications 

13:1310–1324. 

Festa-Bianchet, M. 1988. Seasonal range selection in bighorn sheep: conflicts between forage 

quality, forage quantity, and predator avoidance. Oecologia 75:580–586. 

Festa-Bianchet, M., T. Coulson, J.-M. Gaillard, J. T. Hogg, and F. Pelletier. 2006. Stochastic 

predation events and population persistence in bighorn sheep. Proceedings of the Royal 

Society B: Biological Sciences 273:1537–1543.  

Few, A. P., K. Knox, D. W. German, J. D. Wehausen, and T. R. Stephenson. 2015. Translocation 

plan for Sierra Nevada bighorn sheep: A focus on strategic planning. California 

Department of Fish and Wildlife. 54pp. 

Fieberg, J., J. Matthiopoulos, M. Hebblewhite, M. S. Boyce, and J. L. Frair. 2010. Correlation 

and studies of habitat selection: problem, red herring or opportunity? Philosophical 

Transactions of the Royal Society B: Biological Sciences 365:2233–2244. 

Francis, R. A., J. D. Taylor, E. Dibble, B. Strickland, V. M. Petro, C. Easterwood, and G. Wang. 

2017. Restricted cross-scale habitat selection by American beavers. Current Zoology 

63:703–710. 

Fryxell, J. M., J. Greever, and A. R. E. Sinclair. 1988. Why are migratory ungulates so 

abundant? The American Naturalist 131:781–798. 

Gaillard, J.-M., M. Festa-Bianchet, and N. G. Yoccoz. 1998. Population dynamics of large 

herbivores: variable recruitment with constant adult survival. Trends in Ecology & 

Evolution 13:58–63. 



30 

 

Gaillard, J.-M., M. Festa-Bianchet, N. G. Yoccoz, A. Loison, and C. Toigo. 2000. Temporal 

variation in fitness components and population dynamics of large herbivores. Annual 

Review of ecology and Systematics 31:367–393. 

Gaillard, J.-M., M. Hebblewhite, A. Loison, M. Fuller, R. Powell, M. Basille, and B. Van 

Moorter. 2010. Habitat–performance relationships: finding the right metric at a given 

spatial scale. Philosophical Transactions of the Royal Society B: Biological Sciences 

365:2255–2265. 

Gehr, B., E. J. Hofer, A. Ryser, E. Vimercati, K. Vogt, and L. F. Keller. 2018. Evidence for 

nonconsumptive effects from a large predator in an ungulate prey? Behavioral Ecology 

29:724–735. 

Geist, V. 1971. Mountain sheep: A study in behavior and evolution. University of Chicago Press. 

Greene, L., Hebblewhite, M. and Stephenson, T.R., 2012. Short-term vegetation response to 

wildfire in the eastern Sierra Nevada: Implications for recovering an endangered 

ungulate. Journal of arid environments. 87:118–128. 

Greene, L.E., C.P. Massing , D.W. German,  J. D. Wehausen, A.C. Sturgill, A.P. Johnson, K. 

Anderson, E.A. Simeion, D.B. Spitz and T.R. Stephenson. 2016. California Department 

of Fish and Wildlife. 2015-2016 Annual Report of the Sierra Nevada Bighorn Sheep 

Recovery Program. Bishop, California, USA. pp.25 

Hamel, S., and S. D. Côté. 2007. Habitat use patterns in relation to escape terrain: are alpine 

ungulate females trading off better foraging sites for safety? Canadian Journal of Zoology 

85:933–943. 



31 

 

Hamel, S., Garel, M., Festa‐Bianchet, M., Gaillard, J.M. and Côté, S.D., 2009. Spring 

Normalized Difference Vegetation Index (NDVI) predicts annual variation in timing of 

peak faecal crude protein in mountain ungulates. Journal of Applied Ecology, 46:582–

589. 

Harris, L.K., Gimblett, R.H. and Shaw, W.W., 1995. Multiple use management: using a GIS 

model to understand conflicts between recreationists and sensitive wildlife. Society & 

Natural Resources, 8:559–572. 

Hebblewhite, M., and E. H. Merrill. 2009. Trade-offs between predation risk and forage differ 

between migrant strategies in a migratory ungulate. Ecology 90:3445–3454. 

Hebblewhite, M., and E. Merrill. 2008. Modelling wildlife–human relationships for social 

species with mixed-effects resource selection models. Journal of applied ecology 45:834–

844. 

Hebblewhite, M., E. H. Merrill, and T. L. McDonald. 2005. Spatial decomposition of predation 

risk using resource selection functions: an example in a wolf–elk predator–prey system. 

Oikos 111:101–111. 

Heithaus, M. R., A. J. Wirsing, D. Burkholder, J. Thomson, and L. M. Dill. 2009. Towards a 

predictive framework for predator risk effects: the interaction of landscape features and 

prey escape tactics. Journal of Animal Ecology 78:556–562. 

Hill, M. 1975. Geology of the Sierra Nevada. 37, University of California Press, USA. 

Holmes, B.R. and Laundré, J.W., 2006. Use of open, edge and forest areas by pumas Puma 

concolor in winter: are pumas foraging optimally? Wildlife Biology, 12:201–209. 

Hooten, M.B. and Hobbs, N.T., 2015. A guide to Bayesian model selection for ecologists. 

Ecological Monographs 85:3–28. 



32 

 

Hornocker, M.G., 1970. An analysis of mountain lion predation upon mule deer and elk in the 

Idaho Primitive Area. Wildlife monographs 21:3–39. 

Hosmer, D. W., and S. Lemeshow. 2000. Special topics. Applied Logistic Regression, Second 

Edition 260–351. 

Jacques, C. N., J. A. Jenks, T. W. Grovenburg, and R. W. Klaver. 2015. Influence of habitat and 

intrinsic characteristics on survival of neonatal pronghorn. PloS one 10:e0144026. 

Johnson, C. J., S. E. Nielsen, E. H. Merrill, T. L. McDonald, and M. S. Boyce. 2006. Resource 

selection functions based on use–availability data: theoretical motivation and evaluation 

methods. Journal of wildlife Management 70:347–357. 

Johnson, D. H. 1980. The Comparison of Usage and Availability Measurements for Evaluating 

Resource Preference. Ecology 61:65. 

Johnson, H. E., L. S. Mills, T. R. Stephenson, and J. D. Wehausen. 2010. Population-specific 

vital rate contributions influence management of an endangered ungulate. Ecological 

Applications 20:1753–1765. 

Johnson, H. E., M. Hebblewhite, T. R. Stephenson, D. W. German, B. M. Pierce, and V. C. 

Bleich. 2013. Evaluating apparent competition in limiting the recovery of an endangered 

ungulate. Oecologia 171:295–307. 

Kjellander, P., I. Svartholm, U. A. Bergvall, and A. Jarnemo. 2012. Habitat use, bed-site 

selection and mortality rate in neonate fallow deer Dama dama. Wildlife Biology 18:280–

291.  

Kunkel, K.E., Atwood, T.C., Ruth, T.K., Pletscher, D.H. and Hornocker, M.G., 2013. Assessing 

wolves and cougars as conservation surrogates. Animal Conservation 16:32–40. 



33 

 

Laundre, J. W. 2008. Summer predation rates on ungulate prey by a large keystone predator: 

how many ungulates does a large predator kill? Journal of Zoology 275:341–348. 

Lele, S. R., E. H. Merrill, J. Keim, and M. S. Boyce. 2013. Selection, use, choice and occupancy: 

clarifying concepts in resource selection studies. Journal of Animal Ecology 82:1183–

1191. 

Lima, S. L. 1998. Stress and decision making under the risk of predation: recent developments 

from behavioral, reproductive, and ecological perspectives. Advances in the Study of 

Behavior. 27: 215–290. 

Lima, S. L., and L. M. Dill. 1990. Behavioral decisions made under the risk of predation: a 

review and prospectus. Canadian Journal of Zoology 68:619–640. 

MacArthur, R. A., R. H. Johnston, and V. Geist. 1979. Factors influencing heart rate in free-

ranging bighorn sheep: a physiological approach to the study of wildlife harassment. 

Canadian Journal of Zoology 57:2010–2021. 

Maindonald, J., and J. Braun. 2006. Data analysis and graphics using R: an example-based 

approach. Volume 10. Cambridge University Press. 

McDonald, T.L. 2013. The point process use-availability or presence-only likelihood and 

comments on analysis. Journal of Animals Ecology, 82:1174–1182. 

Manly, B. F J., L. L. McDonald, D. L. Thomas, T. L. McDonald, and W. P. Erickson. 2002. 

Resource selection by animals: statistical design and analysis for field studies. Second 

edition. Kluwer Academic Publishers, Boston, Massachusetts, USA.   

McClintock, B. T., D. S. Johnson, M. B. Hooten, J. M. Ver Hoef, and J. M. Morales. 2014. 

When to be discrete: the importance of time formulation in understanding animal 

movement. Movement Ecology 2:21-28. 



34 

 

McClintock, B. T., R. King, L. Thomas, J. Matthiopoulos, B. J. McConnell, and J. M. Morales. 

2012. A general discrete-time modeling framework for animal movement using 

multistate random walks. Ecological Monographs 82:335–349. 

McGraw, A. M., J. Terry, and R. Moen. 2014. Pre-parturition movement patterns and birth site 

characteristics of moose in northeast Minnesota. Alces: A Journal Devoted to the Biology 

and Management of Moose 50:93–103. 

McKinney, T., Boe, S.R. and deVos Jr, J.C., 2003. GIS-based evaluation of escape terrain and 

desert bighorn sheep populations in Arizona. Wildlife Society Bulletin 1229–1236. 

Middleton, A. D., M. J. Kauffman, D. E. McWhirter, M. D. Jimenez, R. C. Cook, J. G. Cook, S. 

E. Albeke, H. Sawyer, and P. J. White. 2013. Linking anti-predator behaviour to prey 

demography reveals limited risk effects of an actively hunting large carnivore. Ecology 

Letters 16:1023–1030. 

Monteith K. L., Bleich V. C., Stephenson T. R., Pierce B. M., Conner M. M., K. Robert W., and 

Bowyer R. T. 2011. Timing of seasonal migration in mule deer: effects of climate, plant 

phenology, and life-history characteristics. Ecosphere 2:1–34.  

Monteith, K. L., R. A. Long, T. R. Stephenson, V. C. Bleich, R. T. Bowyer, and T. N. Lasharr. 

2018. Horn size and nutrition in mountain sheep: Can ewe handle the truth? The Journal 

of Wildlife Management 82:67–84.  

Mysterud, A., Langvatn, R., Yoccoz, N.G. and Chr, N., 2001. Plant phenology, migration and 

geographical variation in body weight of a large herbivore: the effect of a variable 

topography. Journal of Animal Ecology.70:915–923 

Nicholson, M. C., R. T. Bowyer, and J. G. Kie. 1997. Habitat selection and survival of mule 

deer: tradeoffs associated with migration. Journal of Mammalogy 78:483–504.  



35 

 

Northrup, J.M., Hooten, M.B., Anderson, C.R. and Wittemyer, G., 2013. Practical guidance on 

characterizing availability in resource selection functions under a use–availability design. 

Ecology. 94:1456–1463. 

Oftedal, O. T. 1985. Bioenergetics of wild herbivores. Pages 216–238 in R. J. Hudson and R. G. 

White, editors. Pregnancy and lactation. CRC Press, Inc., Boca Raton, Florida, USA. 

Parker, K. L., P. S. Barboza, and M. P. Gillingham. 2009. Nutrition integrates environmental 

responses of ungulates. Functional ecology 23:57–69. 

Pettorelli, N., F. Pelletier, A. von Hardenberg, M. Festa-Bianchet, and S. D. Côté. 2007. Early 

onset of vegetation growth vs. rapid green-up: Impacts on juvenile mountain ungulates. 

Ecology 88:381–390. 

Pierce, B. M., R. T. Bowyer, and V. C. Bleich. 2004. Habitat selection by mule deer: forage 

benefits or risk of predation? Journal of Wildlife Management 68:533–541. 

Pierce, B. M., V. C. Bleich, J. D. Wehausen, and R. T. Bowyer. 1999. Migratory Patterns of 

Mountain Lions: Implications for Social Regulation and Conservation. Journal of 

Mammalogy 80:986–992. 

Pierce, K.B., Lookingbill, T. and Urban, D., 2005. A simple method for estimating potential 

relative radiation (PRR) for landscape-scale vegetation analysis. Landscape Ecology, 

20:137–147. 

Poirier, M.-A., and M. Festa-Bianchet. 2018. Social integration and acclimation of translocated 

bighorn sheep (Ovis canadensis). Biological Conservation 218:1–9. 

Preisser, E. L., D. I. Bolnick, and M. F. Benard. 2005. Scared to death? The effects of 

intimidation and consumption in predator–prey interactions. Ecology 86:501–509. 



36 

 

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Rabe-Hesketh, S., A. Skrondal, and A. Pickles. 2004. Generalized multilevel structural equation 

modeling. Psychometrika 69:167–190. 

Rachlow, J. L., and R. T. Bowyer. 1994. Variability in maternal behavior by Dall’s sheep: 

environmental tracking or adaptive strategy? Journal of Mammalogy 75:328–337. 

Rachlow, J. L., and R. T. Bowyer. 1998. Habitat selection by Dall’s sheep (Ovis dalli): maternal 

trade-offs. Journal of Zoology 245:457–465. 

Ralls, K., K. Kranz, and B. Lundrigan. 1986. Mother-young relationships in captive ungulates: 

variability and clustering. Animal Behaviour 34, Part 1:134–145. 

Rearden, S. N., R. G. Anthony, and B. K. Johnson. 2011. Birth-site selection and predation risk 

of Rocky Mountain elk. Journal of Mammalogy 92:1118–1126. 

Risenhoover, K. L., and J. A. Bailey. 1985. Foraging Ecology of Mountain Sheep: Implications 

for habitat management. The Journal of Wildlife Management 49:797–804. 

Runcie, J. M., Few, A.P., German, D.W., Wehausen, J. D., Stephenson T. R. 2014. California 

Department of Fish and Wildlife. 2013–2014 Annual Report of the Sierra Nevada 

Bighorn Sheep Recovery Program. Sierra Nevada Bighorn Sheep Recovery Program, 

Bishop, California, USA. 

Sawyer, H., F. Lindzey, and W. C. Fishery. 2002. A review of predation on bighorn sheep (Ovis 

canadensis). Wyoming Cooperative Fish and Wildlife Research Unit Laramie, USA. 

Schwarz, G., 1978. Estimating the dimension of a model. The Annals of Statistics 6:461-464. 



37 

 

Seddon, P. J., and D. P. Armstrong. 2016. Reintroduction and other conservation translocations: 

history and future developments. Reintroduction of Fish and Wildlife Populations. 

University of California Press.7–28.  

Sesnie, S. E., B. G. Dickson, S. S. Rosenstock, and J. M. Rundall. 2012b. A comparison of 

Landsat TM and MODIS vegetation indices for estimating forage phenology in desert 

bighorn sheep (Ovis canadensis nelsoni) habitat in the Sonoran Desert, USA. 

International Journal of Remote Sensing 33:276–286. 

Sinclair, A., Byrom, A. 2006. Understanding ecosystem dynamics for conservation of biota. 

Journal of Animal Ecology 75: 64–79. 

Singer, F. J., C. M. Papouchis, and K. K. Symonds. 2000. Translocations as a tool for restoring 

populations of bighorn sheep Restoration Ecology 8:6–13. 

Smith, J. B., J. A. Jenks, T. W. Grovenburg, and R. W. Klaver. 2014. Disease and predation: 

sorting out causes of a Bighorn sheep (Ovis canadensis) decline. PLOS ONE 9:e88271. 

Smith, J. B., T. W. Grovenburg, and J. A. Jenks. 2015. Parturition and bed site selection of 

bighorn sheep at local and landscape scales. Journal of Wildlife Management 79:393–

401. 

Snijders, L., D. T. Blumstein, C. R. Stanley, and D. W. Franks. 2017. Animal social network 

theory can help wildlife conservation. Trends in Ecology & Evolution 32:567–577. 

Spitz, D. B. 2015. Does migration matter? Causes and consequences of migratory behavior in 

Sierra Nevada bighorn sheep. University of Montana. 

Stephenson, T. R., K. J. Hundertmark, C. C. Schwartz, and V. V. Ballenberghe. 1998. Predicting 

body fat and body mass in moose with ultrasonography. Canadian Journal of Zoology 

76:717–722. 



38 

 

Stephenson, T. R., J.D. Wehausen, A.P. Few, D.W. German, D.F. Jensen, D. Spitz, K. Knox, 

B.M. Pierce, J.L. Davis, J. Ostergard, and J. Fusaro. 2012. Annual report of the Sierra 

Nevada bighorn sheep recovery program: A decade in review. California Department of 

Fish and Game. 57 pp. 

Tibshirani, R. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal 

Statistical Society: Series B (Methodological) 267–288. 

Tilton, M.E. and Willard, E.E., 1982. Winter habitat selection by mountain sheep. The Journal of 

Wildlife Management, 46:359–366. 

U.S. Fish and Wildlife Service. 2007. Recovery plan for the Sierra Nevada bighorn sheep. U.S. 

Fish and Wildlife Service, Sacrament, California, USA. 

Valdez, R., and P. R. Krausman. 1999. Mountain sheep of North America. University of Arizona 

Press.  

Venables, W.N. and Ripley, B.D. 2002. Random and mixed effects. In modern applied statistics 

with S. 271–300. Springer, New York, NY. 

Wehausen, J.D., 1995. Fecal measures of diet quality in wild and domestic ruminants. Journal of 

Wildlife Management 59:816–823. 

Wehausen, J.D., 1996. Effects of mountain lion predation on bighorn sheep in the Sierra Nevada 

and Granite Mountains of California. Wildlife Society Bulletin 471–479. 

Wehausen, J. D., and M. C. Hansen. 1988. Plant communities as the nutrient base of mountain 

sheep populations. Plant biology of eastern California. University of California, White 

Mountain Research Station, Bishop, California, USA 256–268. 

Wehausen, J. D., and F. L. Jones. 2014. The historical distribution of bighorn sheep in the Sierra 

Nevada, California. California Fish and Game 100:417–435. 



39 

 

Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.   

Wickstrom, M. L., C. T. Robbins, T. A. Hanley, D. E. Spalinger, and S. M. Parish. 1984. Food 

intake and foraging energetics of elk and mule deer. The Journal of Wildlife Management 

48:1285–1301 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

 

Table 1. Predictor variables hypothesized to affect selection of habitat by lactating Sierra Nevada 

bighorn sheep in the Sierra Nevada of California, USA during the neonatal lambing period from 

2006–2017. 

Habitat Variable  Biological Association Variable Description  

NDVI 

Temporal plant phenology index (Pettorelli 

et al. 2007, Hamel et al. 2009, Sensi et al. 

2012) 

Continuous (reflective 

units) derived from 

MODIS 

Relative 

probability of 

encountering a 

mountain lion  

Mountain lion predation risk (Appendix A)  
Continuous (relative 

probability 0–99%)  

Vegetation cover: 

Tree 

Low visibility with high risk of 

encountering ambush predators, no 

nutritional value 

Indicator, derived from 

thematic vegetation 

layers from CalVEG  

Vegetation cover: 

Shrub 

Medium visibility, moderate risk of 

encountering ambush predators, annual 

woody vegetation with low digestibility 

and crude protein 

Indicator derived from 

thematic vegetation 

layers from CalVEG 

Vegetation cover: 

Herbaceous 

 

High visibility perennial meadows with the 

largest biomass of forbs, graminoids and 

cushion plants available in the study area 

Indicator derived from 

thematic vegetation 

layers from CalVEG 

Vegetation cover: 

Barren 

High visibility, open rocky terrain with 

intermittently dispersed sparse graminoids 

and forbs 

Indicator, derived from 

thematic vegetation 

layers from CalVEG 

Closed Terrain 

Low visibility, high risk of encountering 

ambush predators (Hornocker 1970, Holem 

and Laundre 2006, Kunkel et al. 2013, 

Blake and Gese 2016) 

Indicator (barren and 

herbaceous cover types) 

Distance to 

trail/road 
Human influence (Smith et al 2015) 

Continuous (0–max: 

1,200meters)  

Distance to water Potential sources of hydration 
Continuous (0–max: 

1,200meters) 

Elevation  
Vegetation communities and temperatures 

regimes  

Continuous (0–4,660 

meters) 

Elevation+ 

Elevation2 

Quadratic to represent selection of 

intermediate values 
 

Slope  
Predator success, used to define Escape 

Terrain  

Continuous (0–90 

degrees) 

Slope+ Slope2 
Quadratic to represent selection of 

intermediate values 
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Distance to escape 

terrain  

Distance to habitat safe from predators 

(Appendix A; Fairbanks et al. 1987, Harris 

et al. 1995). 

Escape terrain: slopes ≥ 

42̊ 

Binned (Low: 0–120m, 

Med: 121–240m, High > 

241)  

 

Topographic 

Position Index 

(TPI) 

 

Measure of ruggedness  
Continuous index 

(-180: 180) 

TPI+ TPI2 
Quadratic to represent selection of 

intermediate values 
 

Solar Radiation 

Index (SRI) 

Measure of solar radiation indicating 

exposure during spring (Pierce et al. 2005). 

Continuous 

(kilowatt/hour) derived 

for latitude:37.5 

Aspect  

Measure of temperature and moisture. SE 

slopes are warmest during spring 

(Cuishman and Wallin 2002) 

Continuous (0:NW–

1:SE) 
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Table 2. Top mixed-effect models of resource selection function models evaluating selection of 

habitat by lactating Sierra bighorn sheep during the early neonatal period the Sierra Nevada of 

California, USA from 2006–2017. I considered models within 2 ΔBIC to be competitive; k= 

number of estimable parameters, LL=log-likelihood, ΔBIC=difference between the model listed 

and the BIC of the best model, ωi= Akaike weights; BASE includes Low distances to escape 

terrain (0–120m), medium distance to escape terrain (120–240m), Predation Risk (relative 

probability of encountering a hunting mountain lion), Barren=(vegetation type with high 

visibility and sparse forage), Herbaceous (vegetation type with good visibility and high forage 

availability), Shrub (vegetation type with medium visibility and minimal forage); TPI= 

topographic position index, a measure of ruggedness; SRI=solar radiation index (kilowatt per 

hour); Aspect= continuous from 0 (NE) to 1 (SW).   

 

Model Ka LLb ΔBICc ωi
d  

BASE+ TPI+ Aspect  10 -79426 0 0  

BASE+TPI 9 -79530 131 0  

BASE+TPI+ SRI 10 -79548 278 0  

BASE+Aspect 9 -79798 302 0  

BASE 8 -79882 803 0  
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Table 3. Estimated percent composition of available habitat variables within spring ranges for 

seven Sierra Nevada bighorn sheep subpopulations in the Sierra Nevada of California from 

2006–2017. Percentages were calculated from randomly available locations systematically 

sampled within each spring home range (Benson 2013).  

       

 

 

  Warren Gibbs Convict Wheeler Sawmill Baxter Langley 

Habitat Resource         

Vegetation type  
Tree 23.7 19.9 10.7 18.7 20.9 11.2 26.7 

Shrub 11.2 7.7 13.6 36.3 25.0 11.0 19.8 

Herb 7.5 9.0 2.8 1.4 1.5 27.5 5.8 

Barren 57.7 63.4 72.9 43.6 52.6 50.2 47.6 

Distance to escape 

terrain Low 35.6 35.1 54.2 57.1 48.2 49.4 45.7 

Med 25.5 20.6 26.0 17.8 22.4 22.4 21.3 

High 39.0 44.3 19.9 25.0 29.4 28.2 33.1 

Relative lion 

predation risk Low 73.8 86.2 74.8 54.8 59.4 59.6 59.5 

Med 12.4 6.6 10.0 17.8 10.8 15.8 11.6 

High 13.8 7.2 15.2 27.4 29.8 24.6 28.8 

99% KDE Subpopulation Spring 

Home range (km2)             6.63 3.32 2.15 10.03 9.12 8.68 8.74 
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Table 4. Standardized coefficients and standard errors from the top generalized linear mixed-

effect model fit to determine selection of habitat by lactating Sierra bighorn sheep during the 

early neonatal period in the Sierra Nevada of California, USA from 2006–2017. The individual-

level variation (n=123, SD <0.001) and subpopulation-level variation (n=7, SD= 0.01). Low 

Distance Escape Terrain=  habitat <120m from escape terrain (slopes> 42°); Med Distance 

Escape Terrain= habitat between  >120m  and <240m  from escape terrain; LionRisk = relative 

probability of encountering a hunting mountain lion; Barren=sparse grasses and forbs ; 

Shrub=shrub vegetation ; Herb=herbaceous vegetation ; Topographic Position Index= index of 

directional ruggedness 

 

          

a Intercept contains the reference categories: high distance to escape terrain and tree vegetation 

 

 

 

 

 

Model Covariate  

 

ß-coefficients 

Intercept a  -3.89 (0.05) 

Low Distance Escape Terrain  2.30 (0.03) 

Med Distance Escape Terrain  1.15 (0.03) 

Lion Encounter Risk  -0.64 (0.01) 

Barren  0.85 (0.02) 

Shrub  0.82 (0.03) 

Herb  0.31 (0.04) 

Topographic Position Index (TPI)  0.09 (0.003) 

LionRisk*Barren  0.70 (0.02) 
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Figure 1. Study area for Sierra Nevada bighorn sheep in southeastern Sierra Nevada range of 

California, USA from 2006–2018. Herds extend from Mt. Warren near Lee Vining, CA south 

approximately 200 km to Olancha, CA. Study subpopulations are outlined in orange and include: 

Mt. Warren, Mt. Gibbs (Northern Recovery Unit); Convict Creek, Wheeler Ridge (Central 

Recovery Unit); Mt. Baxter, Sawmill Canyon and Mt. Langley (Southern Recovery Unit).  

 

Figure 2. Resource selection by lactating Sierra Nevada bighorn sheep during the early neontal 

period in the Sierra Nevada of California, USA from 2008–2017 displaying the relative 

probability of selection for encountering a mountain lion by vegetation category.  

 

Figure 3. Functional response of seven subpopulations of lactating Sierra Nevada bighorn sheep 

during the early neontal period in the Sierra Nevada of California from 2008-2017 displaying the 

relative probability of selection for low distances to escape terrain (0-120 m) against the 

proportional availability of low distances to ecape terrain Selection moderately increased for all 

subpopulations with increasing availability of low distances to escae terrain. 

 

Figure 4.  Predictive map displaying the relative predicted probabilities of selection of neonatal 

lambing habitat by lactating Sierra Nevada Bighorn sheep developed from 123 animal-years 

across seven subpopulations in the Sierra Nevada of California between 2008 and 2017 from a 

used-available resource selection function. Predicted selection is displayed across all occupied 

and currently vacant subpopulations. Dark red colors indicate habitat where relative predicted 

probability of use is highest.  
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4.  
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APPENDIX A: PARTURITION DETECTION ALGORITHM 

 

I developed a cluster detection algorithm using the adehabitatHR package (Calenge 2006) in 

Program R (R Core Team 2018) to determine parturition dates of female Sierra Bighorn sheep 

from 2008-2018. I developed input criteria for the algorithm using GPS locations and vaginal 

implant transmitters (VITs; (DeMars et al. 2013, McGraw et al. 2014, McClintock et al. 2012, 

2014, Blackwell et al. 2016). I included a sub-sample of adult females (n=22) fitted with high 

fix-rate GPS collars and VITs during spring captures. Once a VIT was expelled, I visually 

verified the birth event and monitored the movement patterns of females and offspring. I then 

calculated the average time spent in a parturition site, and the average distance traveled from the 

location the VIT was expelled.  

I found females spent on average (χ̅  = 26, SE= 4) hours in a parturition site and remained 

within an average of ( χ̅  19m, SE= 11m) from the site until departing. I used these parameters to 

predict independent visually-verified parturition sites for females with variable fix-rate GPS 

collars that did not receive VITS (n=21). I tested for false positives (clustered GPS locations that 

are not the result of parturition) using GPS data from females that were not pregnant. I found 

these methods of parturition detection correctly identified all independently verified parturition 

sites and did not result in any false positives (no potential clusters were identified) for females 

that were not pregnant.  

I determined potential parturition dates for the remaining sample of females (n= 80) using 

the range of times and distances estimated from the VIT females (Figure 1). I used three criteria 

to externally evaluate whether clusters identified by the algorithm could be considered 

parturition sites. First, each cluster must have included locations during daylight hours when a 

sheep would normally be expected to exhibit foraging behavior (approximately 07:00am to 
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6:00pm). Second, each cluster must have been preceded by movement greater than the average 

daily movement for that female, a long-distance movement from winter range, or movement 

away from other collared females. Finally, I cross-referenced visual observations of females to 

be sure that no offspring were observed with a female prior to the predicted cluster date. In some 

cases, I was also able to confirm a lamb had been observed after the predicted parturition date; 

however, due to potential offspring mortality, this was not a required criteria. I found no 

discrepancies between visual observations and predicted parturition dates. In addition to these 

criteria, I also mapped predicted cluster locations and checked local weather conditions to reduce 

uncertainty. If there were sequential clusters that fit the aforementioned criteria, the earliest date 

was selected because Sierra bighorn are known to remain localized in a parturition site then 

make a small movement to a nursery site (Figure A1).  
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R code: Cluster Detection Algorithm 

Install packages and set working directory and other preferenes. 

install.packages("fpc", dependencies = TRUE, repos = "http://cran.us.r-proje
ct.org") 

library(adehabitatHR)           # Load package 

library(RODBC) 
library(gtools) 

library(fpc) 
 
setwd("C:/Users/SForshee/Desktop/Lambing_Clusters") # Redefine directory  
#rm(list=(ls()))                        # clears memory by deleting all variab
les 
#graphics.off()                     #close graphics window 

Connect to database and retrieve GPS location data. The following code is specific to each database 
where the GPS data resides, and is set-up for Sierra bighorn sheep.  

 
bhdb<-file.path("bighorn.mdb")            # Identify database 
channel<-odbcConnectAccess(bhdb)            # Open connection 
 
##  AllCollarLocations  ##                  # Pull table from access and modif
y 
##======================## 
acl.raw=sqlFetch(channel,"AllCollarLocations",colnames=F,rownames=F) 
nrow(acl.raw) 

## [1] 1346929 

odbcClose(channel)                    # Close connection 
 
acl=acl.raw[-grep("d",acl.raw$AnimalID,ignore.case=T),] # Remove Desert Sheep 
acl$AnimalID=factor(gsub("S","s",acl$AnimalID))             # Standardizes cap
italization for AnimalID 
nrow(acl) 

## [1] 1337663 

unique(acl$AnimalID) 

##   [1] s191 s210 s211 s213 s225 s226 s231 s236 s241 s243 s246 s251…… 

Enter the animal ID (“ID”) exactly as it appears in the database, the year “YYYY”, the month range 
starting “MM” & ending “MM”. 

ID="s465"                                       ### Enter animal ID ### 
cl<-acl[which(acl$AnimalID==ID),] 
head(cl) 
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##         AnimalID     Date    UTM_E   UTM_N Method     Time DOP SV Fix 
## 1214549     s465 20170322 384495.9 4085622      V 00:00:39 9.2     3D 
## 1214565     s465 20170322 384506.8 4085616      V 04:00:40 5.2     3D 
## 1214581     s465 20170322 384471.8 4085627      V 08:00:39 2.2     3D 
## 1214600     s465 20170322 384466.5 4085618      V 12:00:39 3.6     3D 
## 1214620     s465 20170322 384472.6 4085629      V 16:00:39 2.0     3D 
## 1214630     s465 20170322 384472.1 4085626      V 20:00:39 3.0     3D 
##                     keyfield CollarSerialNo_Date_FK HU RU Sex 
## 1214549 2017032200:00:39S465         23266_20170320 Bx  S   F 
## 1214565 2017032204:00:40S465         23266_20170320 Bx  S   F 
## 1214581 2017032208:00:39S465         23266_20170320 Bx  S   F 
## 1214600 2017032212:00:39S465         23266_20170320 Bx  S   F 
## 1214620 2017032216:00:39S465         23266_20170320 Bx  S   F 
## 1214630 2017032220:00:39S465         23266_20170320 Bx  S   F 

nrow(cl) 

## [1] 2930 

cl$year<-substring(cl$Date,1,4)      
cl<-cl[which(cl$year=="2017"),]                 ### Enter year ### 
cl$month<-substring(cl$Date, 5,6)   
cl<-cl[which(cl$month>="04" & cl$month<="08"),] ### Enter month range ### 
cl<-cl[order(cl$Date & as.numeric(cl$Time)),] 
cl$row<-1:nrow(cl) 
head(cl)  # review for completeness 

##         AnimalID     Date    UTM_E   UTM_N Method     Time DOP SV Fix 
## 1215738     s465 20170401 384868.0 4085589      V 00:00:39 2.2     3D 
## 1215746     s465 20170401 384864.3 4085589      V 02:00:08 2.8     3D 
## 1215764     s465 20170401 384865.3 4085591      V 04:00:39 2.4     3D 
## 1215775     s465 20170401 384860.7 4085525      V 06:00:38 5.8     3D 
## 1215798     s465 20170401 385000.0 4085522      V 08:00:40 1.8     3D 
## 1215808     s465 20170401 385032.9 4085506      V 10:00:08 4.8     3D 
##                     keyfield CollarSerialNo_Date_FK HU RU Sex year month 
## 1215738 2017040100:00:39S465         23266_20170320 Bx  S   F 2017    04 
## 1215746 2017040102:00:08S465         23266_20170320 Bx  S   F 2017    04 
## 1215764 2017040104:00:39S465         23266_20170320 Bx  S   F 2017    04 
## 1215775 2017040106:00:38S465         23266_20170320 Bx  S   F 2017    04 
## 1215798 2017040108:00:40S465         23266_20170320 Bx  S   F 2017    04 
## 1215808 2017040110:00:08S465         23266_20170320 Bx  S   F 2017    04 
##         row 
## 1215738   1 
## 1215746   2 
## 1215764   3 
## 1215775   4 
## 1215798   5 
## 1215808   6 

The follow step allows you to calcualte the averages fixes per day based on the time frame set 
above. This will be important when setting the minimum number of fixes to be considered a cluster. 
I recommend using the output from this command as the input for the first cluster paramter 
(“fixrate”) rather than the expected number of fixes based on collar settings. 

(fixes.est<-nrow(cl)/length(unique(cl$Date))) ### Calculates fixes per day 
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## [1] 9.059211 

This section organizes the location data, and does not need to be modified. 

data<-cbind(cl$UTM_E,cl$UTM_N,cl$Date,as.character(cl$Time)) 
colnames(data)<-c("UTM_E","UTM_N","Date","Time") 
data<-as.data.frame(data) 
data$UTM_E<-as.numeric(as.character(data$UTM_E)) 
data$UTM_N<-as.numeric(as.character(data$UTM_N)) 
data$Date<-as.numeric(as.character(data$Date)) 
data<-as.data.frame(data) 

Set the cluster search parameters. These should be set based on 2 criteria:  

A)  Basic biology of the species. For Sierra bighorn sheep, I expect a female to remain in a 
parturition site on average for a MINIMUM of 18 hours, staying within MAXIMUM radius of 
40 meters. A female may remain much longer than 18 hours, and may remain within a much 
tighter radius, but these parameters provide a basic starting point for the minimum 
requirements to be considered a parturition site.  

B) Biological parameters must be then tailored to fit the GPS fix rates and local conditions. The  

 “fixrate” is the number of locations per 24 hour period 
  “ndays” is the consecutive number of days to search for a cluster, a day begins at 

00:00 and ends on 23:59, thus if a sheep enters a parturition site at hour 20:00, a 
second day will be needed to be considered a cluster (two to three days is optimal 
for this parameter) 

  “fixperperiod” is the “fixrate*ndays” and results in the total number of points 
possible to be within a cluster 

  “eps” is the Euclidian diameter size in meters of a the search area,  
  “minpts” is the minimum number of GPS locations that must be contained within 

the eps distance.  

A final consideration is the completeness and accuracy of GPS data, although a collar may be 
programmed to take a fix 12 times per day, some fixes may be incomplete, this is why reviewing 
your dataset and calculating your average fixes per day is an important previous step. If the average 
fixes is lower than expected, I suggest reducing the number of minpts to account for potential 
missed fixes. Furthermore several factors can affect the precision of GPS fixes, rugged terrain and 
closed canopies can increase GPS fix errors, thus the eps setting may need to be adjusted based on 
local terrain, I also suggest estimating GPS accuracy for the specific collar company as these can 
vary. 

For example the code below represents a female  (s465) with a collar that records an estimated 12 
fixes per day (a fix every 2 hours), 2 consecutive days of parturition would yield 24 possible fixes if 
none are missed. To search for a parturition cluster, a setting of eps=18, minpt=12 will provide 
result in a GPS cluster of 24 hours within 18m. However, because the average number of fixes 
previously calculated was 9, consider reducing the fix rate and subsequent “fixperperiod” 
calculation.  

 

fixrate<-12         ### Number of fixes expected in a 24 hour period (day) ### 
nday<-2             ### Search Period (Number of consecutive days) ### 
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fixperperiod<-24    ### Number of fixes possible in period (fixrate*ndays) ### 
 
 
eps<-18             ### Maximum disatance of circle in meters  ### 
minpt<-12           ### Minimum number of points within "eps"  ### 

Run the cluster analysis, looping through the entire GPS dataset ( “cl” ) to identify groups of 
locations that fit the previously defined paramter criteria. 

cnt<-1;cnt1<-1 
cluster.all<-NULL; cluster.new<-NULL 
iloop<-1 
 
# loop through days  # 
for (iloop in 1:200){   #test for overun of end of data    if((iloop*fixrate+f
ixperperiod)>nrow(cl)) { 
    upper<-nrow(cl) 
  }else{ 
    upper<-iloop*fixrate+fixperperiod 
  }                                                      
  data.sub<-as.data.frame(data[((iloop*fixrate-fixrate+1):upper),c(1:3)])  #1:
3 is x,y corrd, and date units. 1:2 is just x,y 
    data.sub<-na.omit(data.sub) 
  cl.sub<-cl[((iloop*fixrate-fixrate+1):upper),] 
  names(data.sub)<-c("UTME","UTMN","Date") 
  d <- dbscan(data.sub,eps=eps,MinPts=minpt,showplot = 0)          # Calls D
BSCAN routine ;eps = Euclidan distance and MinPts (default=5).#can show graphi
c of UTMs using showplot=T 
  if(sum(d$cluster)>0) { 
    cluster.new<-as.data.frame(cbind(rep(cnt,length(d$cluster)),d$cluster,cl.s
ub$Date,cl.sub$UTM_E,cl.sub$UTM_N,as.character(cl.sub$Time))) 
    cluster.new<-cluster.new[which(cluster.new[,2]!=0),] 
    cluster.new<-cluster.new[,-2] 
    cluster.all<-rbind(cluster.all,cluster.new) 
    cnt<-cnt+1 
    cluster.new<-NULL} 
} 

View the print out of clusters. “Iteration” refers to a cluster number, “Date” refers to the date of the 
GPS location, “UTME” refers to the Easting of the location, “UTMN” refers to the Northing of the 
location," Time" refers to the time stamp from the local time zone in 24 hour format, where 00:00 
refers to midnight and 12:00 will be noon.  

names(cluster.all)<-c("iteration","date","UTME","UTMN","Time") 
options(max.print=2000) ####some clusters or sequences can be large, if you r
each max of 2000, constrict your parameters 
print(cluster.all[order(cluster.all$date, cluster.all$iteration),]) 

Several clusters may contain the same GPS locations, this will depend on the previous formatting of 
sequential days specified for the cluster search. For example a single GPS location may be included 
in several Iterations if it meets the minimum requirements specified for a cluster with the inclusion 
of nearby locations that alone do not constitute a cluster. Each iteration (cluster) will receive a new 
number, but several clusters may overlap. This is NOT an error and can instead indicate several 
clusters that are near enough to share points, alternatively the same large cluster may meet the 
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minimum requirements with only a portion of the locations that make up the total cluster.  See 
highlighted example below: 

 

 

##      iteration     date     UTME    UTMN     Time 
## 7            1 20170413 382303.4 4082570 14:00:38 
## 9            1 20170413 382297.3 4082547 20:00:40 
## 10           1 20170413 382304.8 4082562 22:00:38 
## 11           1 20170414 382306.8 4082555 00:00:38 
## 12           1 20170414 382311.4 4082556 02:00:40 
## 13           1 20170414 382307.2 4082564 04:00:40 
## 14           1 20170414   382315 4082554 06:00:38 
## 15           1 20170414 382324.2 4082573 07:14:27 
## 16           1 20170414 382333.5 4082558 08:00:38 
## 22           1 20170414 382320.4 4082559 20:00:39 
## 1            2 20170414 382307.2 4082564 04:00:40 
## 2            2 20170414   382315 4082554 06:00:38 
## 3            2 20170414 382324.2 4082573 07:14:27 
## 4            2 20170414 382333.5 4082558 08:00:38 
## 5            2 20170414 382339.3 4082555 10:00:40 
## 6            2 20170414   382337 4082568 12:00:38 
## 71           2 20170414 382343.5 4082548 14:00:37 
## 8            2 20170414 382345.9 4082556 16:00:09 
## 91           2 20170414 382343.2 4082547 18:00:39 
## 101          2 20170414 382320.4 4082559 20:00:39 

The time stamp should be reviewed critically before a cluster can be designated as parturition. 
Species biology and other external factors should be carefully considered. For example a cluster 
that only includes times of 20:00, 00:00, 02:00, 04:00, 06:00 is most likely an overnight bedsite, 
Sierra bighorn sheep often revisit a bedsite on consecutive days. Thus a cluster with 10 GPS 
locations with the specified distance over 2 days may technically fit the cluster criteria, this is 
unlikely to be a true parturition site. Sierra bighorn sheep often remain in in a parturition site 
during daylight hours, and are unlikely to move outside the cluster to feed for an extended period of 
time, thus daytime hours are important criteria for considering a cluster a parturition site.  

In some cases, for Sierra bighorn sheep there may be a cluster at a parturition site and a secondary 
cluster immediately after that is considered a nursery site and will share similar patterns as the 
parturition site.  

The following output code shows partial output from a parturition site (highlighted in 
yellow), a nursery site (highlighted in green) and an overnight bedsites that was re-used by 
a female consecutive nights (highlighted in red).  This female made a long-distance 
movement into the parturition site on 04/13 around 14:00 and remained within the site 
for nearly 4 days departing on 4/17 around 10:00 when she moved into a nursery site, 
where she spent an additional 7 days until departing the site on the night of 4/23. She 
remained near the area until departing altogether on 4/26.  The additional clusters below 
these dates are examples of repeated use bedsites that are not associated with parturition.  

##      iteration     date     UTME    UTMN     Time 
## 7            1 20170413 382303.4 4082570 14:00:38 
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## 9            1 20170413 382297.3 4082547 20:00:40 
## 10           1 20170413 382304.8 4082562 22:00:38 
## 11           1 20170414 382306.8 4082555 00:00:38 
## 12           1 20170414 382311.4 4082556 02:00:40 
## 13           1 20170414 382307.2 4082564 04:00:40 
## 14           1 20170414   382315 4082554 06:00:38 
## 15           1 20170414 382324.2 4082573 07:14:27 
## 16           1 20170414 382333.5 4082558 08:00:38 
## 5            2 20170414 382339.3 4082555 10:00:40 
## 6            2 20170414   382337 4082568 12:00:38 
## 71           2 20170414 382343.5 4082548 14:00:37 
## 8            2 20170414 382345.9 4082556 16:00:09 
## 91           2 20170414 382343.2 4082547 18:00:39 
## 101          2 20170414 382320.4 4082559 20:00:39 
## 24           1 20170415 382320.8 4082553 00:00:39 
## 25           1 20170415 382313.1 4082556 02:00:37 
## 26           1 20170415 382313.3 4082555 04:02:45 
## 27           1 20170415 382313.4 4082552 06:00:38 
## 51           5 20170417 382272.9 4082396 10:00:39 
## 83           5 20170417   382239 4082409 16:00:40 
## 94           5 20170417   382248 4082412 18:00:39 
## 104          5 20170417 382247.9 4082406 20:00:40 
## 112          5 20170417 382249.8 4082407 22:00:38 
## 243          4 20170418 382247.9 4082407 00:00:38 
## 253          4 20170418 382242.6 4082404 02:00:40 
## 263          4 20170418   382251 4082404 04:00:38 
## 324          9 20170423 382249.8 4082410 18:00:39 
## 335          9 20170423 382247.4 4082404 20:00:40 
## 346          9 20170423 382250.7 4082406 22:00:40 
## 356          9 20170424 382252.4 4082388 00:00:39 
## 366          9 20170424 382252.6 4082405 02:00:40 
## 99          13 20170515 383946.7 4081704 18:00:39 
## 1010        13 20170515 383945.5 4081689 20:00:39 
## 1112        13 20170515 383953.1 4081695 22:00:38 
## 1210        13 20170516 383951.9 4081695 00:00:39 
## 1310        13 20170516 383944.6 4081692 02:02:39 
## 1411        13 20170516 383947.4 4081689 04:00:40 
## 2210        13 20170516 383955.6 4081680 20:00:39 
## 239         13 20170516 383946.4 4081685 22:00:38 
## 120         14 20170516 383944.6 4081692 02:02:39 
## 230         14 20170516 383947.4 4081689 04:00:40 
## 1011        14 20170516 383955.6 4081680 20:00:39 
## 1113        14 20170516 383946.4 4081685 22:00:38 
## 249         13 20170517 383947.4 4081684 00:00:39 
## 2510        13 20170517 383947.4 4081682 02:01:30 
## 2610        13 20170517 383952.7 4081690 04:00:38 
## 337         13 20170517 383945.7 4081693 20:00:39 
## 348         13 20170517 383930.8 4081690 22:00:14 
## 1211        14 20170517 383947.4 4081684 00:00:39 
## 1311        14 20170517 383947.4 4081682 02:01:30 

For Sierra bighorn sheep, it may also be important to check for spring storms that may cause sheep 
to cluster. This can be easily done using the following link: https://water.weather.gov/precip/ 

https://water.weather.gov/precip/
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An additional way to estimate if a cluster is a parturition site is to map the locations by writing 
them to a csv or other file of your choice. 

write.csv(cluster.all, "s465_2017parturition.csv") 

 

 

Figure A1. Three GPS clusters identified by a cluster detection algorithm for an adult female 

Sierra Nevada bighorn sheep (s465) in 2017 in the Sierra Nevada of California. Based on post-

identification parturition verification criteria, only one cluster (Inset map) is considered a 

parturition site where the females vaginal implant transmitter was expelled, the other large 

cluster is a post-parturition nursery site where the female and offspring moved to after several 

days in the parturition site, and the smallest cluster is a bedsite that was used for several 

consecutive nights.  
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Figure A1.  
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APPENDIX B. MOUNTAIN LION RESOURCE SELECTION FUNCTION 

 

I developed a spatial model to predict the spatial probability of encountering hunting lions within 

Sierra bighorn sheep home ranges during spring at the third-order scale by developing a used-

available resource selection function (RSF; Hosmer and Lemeshow 2000, Manly et al. 2002, 

Johnson et al. 2006).  Predation risk is comprised of probability of encounter and probability of 

death (Hollings 1959), but perceived risk and subsequent behavior modifications by Sierra 

Nevada Bighorn sheep to avoid risk, may arise from simple encounters of mountain lions 

(Wehausen 1996). Mule deer (Odocoileus hemionus) are the primary prey of mountain lions in 

this region, but mountain lions are opportunistic hunters and are the cause of mortality for 

approximately 53% of all known Sierra bighorn sheep mortalities (California Dept. of Fish and 

Wildlife; CDFW, unpublished data). I quantified the relative probability of encounter risk by 

mountain lions across the Sierra Nevada and Owens Valley.  

The portion of the Sierra Nevada that we studied extends along the Eastern border of 

California extending from Lee Vining, California in the north approximately 200 km south near 

Olancha, California (Hill 1975). Elevation changes abruptly along the Eastern front from 1000 m 

to an average of 3,000 m, with numerous peaks above 4,000 m. The strong rain shadow effect 

limits east of the Sierra crest and most of the annual precipitation falls as snow during winter 

months (November-April). The resulting xeric vegetation communities are separated by 

elevation classes, low-elevation (1500–2499 m) includes scrub with mixed grass and forb types; 

intermediate (2500–3300 m) includes moderate timber cover with sparse forbs and subalpine 

meadows; high elevations (>3300 m) includes sparse alpine vegetation (Hill 1975).   

California Department of Fish and Wildlife crews captured mountain lions by pursuit 

with hounds and fitted them with GPS collars (see Pierce et al. 1998). I programmed collars to 
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collect 6–10 GPS locations per day, with 5–7 locations during crepuscular and overnight hours 

(18:00–6:00) to best capture hunting behaviors.  

I evaluated the relative probability of selection of habitat by mountain lions with a used-

available resource selection function (RSF) within a logistic regression frame-work (Hosmer and 

Lemeshow 2000, Manly et al. 2002, Johnson et al. 2006). I used a 100% kernel density estimator 

(KDE) with 500m buffer (Worton 1989) to delineate available habitat for each mountain lion 

from April 1 –July 30th from all years. I sampled available locations within each individual 

mountain lion’s home range, (Johnson 1980, Boyce 2006) using a 4:1 ratio of stratified random 

available locations to used GPS locations (Northrup et al. 2013).  

I selected landscape attributes known from previous studies to influence mountain lion 

resource selection (Kunkel et al. 2013, Blake and Gese 2016, Justin Delinger, CDFW, 

unpublished data). I calculated topographic variables (slope, elevation, aspect, ruggedness) from 

30m digital elevation models. I refined aspect using a geomorphology package in ArcGIS, such 

that 0 is warm dry aspect (southwest), and 1 is cooler shaded aspect (northeast). I condensed 6 

landcover types (forest, shrub, alpine, desert, riparian, and water) obtained from thematic 

vegetation layers from CalVEG and calculated minimum distance to each for all pixels across the 

study area. I retained candidate variables that were non-confounded and screened for collinearity 

using the Pearson correlation coefficient threshold of |r| < 0.6 (Hosmer and Lemeshow 2000, 

Wickham 2009).  

I considered additive, interactive, and quadratic term candidate models, and used a 

mixed-effects RSF allowing for heterogeneity across individual mountain lions (Gilles et al. 

2006). I used a combination of graphical, Bayesian Information Criteria (BIC) guidelines, and 

ANOVA deviance values to determine the top model (Schwartz 1978, Boyce et al. 2002, 
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Veneables and Ripley 2002, Hooten and Hobbs 2015). I evaluated the predictive performance of 

the top model using k-fold cross-validation (Boyce et. al 2002), using code provided by 

Brzustowski (2005). The predictive capacity of the partitioned model was evaluated against the 

withheld subset of data using Spearman rank correlations (rs) grouped into 10 bins. I externally 

tested the top model using Spearman rank correlations from locations of mountain lion-killed 

sheep not included in model building compared to bins of predicted use. I mapped relative 

probability of use by mountain lions by multiplying the beta coefficients with each 

corresponding landscape attribute layer. I conducted all statistical calculations and graphical 

explorations in Program R 3.3.1 (R Core Team 2016) with packages: ‘adehabitatHR’, 

‘maptools’, ‘rgdal’, ‘sp’, ‘raster’, ‘rgeos’, ‘spatial.tools’ , ‘MuMIn’, ‘MASS’, ‘GGally’, 

‘ggplot2’ and ‘plotrix’, and ARC GIS 10.3.1 (ESRI 2011).  

I collected 20,764 locations from 28 GPS-collared mountain lions that inhabited current 

and historical Sierra bighorn sheep distributions during the spring lamb rearing period (April-

July) from 2002–2011. Mountain lions included eleven males and seventeen females, and eight 

were subadults. Each mountain lion’s collar collected between 2 and 12 fixes per day, most 

averaging 6 per day. Elevation, slope, ruggedness, aspect, and distance to vegetation cover types: 

desert, shrub, riparian, forest, and alpine barren, and distance to streams and seasonal drainages 

were consistently retained in top-ranked models (Table A1). Ruggedness was consistently ranked 

highly, but estimated beta coefficients and predictive mapping appeared incorrect. I determined 

that the method used to obtain ruggedness (Sappington et al. 2003), could provide misleading 

conclusions at the specified resolution. The resulting top model included the following fixed 

effect covariates and mountain lion ID (n=28) as a random effect (Table A2).  
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The mean Spearman rank correlation for the top model showed good model fit (rho=0.98) 

overall, and when partitioned by individual mountain lion (rho= 0.96). External validation from 

mountain lion-killed sheep (n=126) also showed good model fit (0.92). There were four 

mountain lions that the model did a poor job of predicting (rho <.50), two of which were 

subadult males. Individual differences in mountain lion selection accounted for less than 10% of 

model variation (0.07). Probability of mountain lion use was highest for elevations between 

1,500–2,600 m. Probability of use was highest for slopes approximately 10–30° and dropped 

below 10% for slopes > 42°. Probability of use decreased for cooler and more shaded aspects 

(28%). Probability of use increased with increasing distance from alpine landcover types (27%), 

decreased with increasing distance from forest (68%), riparian (55%), shrub (66%), and desert 

(51%) landcover types. Probability of use strongly decreased with increasing distance from water 

(91%). The predictive map developed showed mountain lion use was greater in valley bottoms, 

along water systems and in closed canopy cover types, decreased at elevations above 3,000 m 

and slopes greater than 42 degrees. (Figure A1). The predictive map covering the spring 95% 

MCP home range of female Sierra bighorn sheep in 2016 from the Mt. Langley subpopulation 

showed considerable variation (0.04–0.78%) in probability of use by mountain lions (Figure A2).   

Although I did not explicitly test hypotheses, these results support the assumption that 

mountain lions are primarily using habitat where mule deer are likely to occur (Johnson et al. 

2013) and near closed cover types, where mountain lions have higher chances of ambush hunting 

success (Dickson and Beier 2002). These findings suggest that slopes ≥ 42 degrees represent 

locations with low predation risk and can be designated as safe ‘escape terrain’ for Sierra Nevada 

bighorn.  These results are consistent with my expectations and analogous previous research on 

the habitat use patterns of mountain lions in high desert-alpine regions, yet are specific to 
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mountain lions within the Sierra Nevada region (Pierce et al. 1999, Ernest et al. 2000, 2002, 

Dickson and Beier 2002, Stephenson et al. 2012, Johnson et al. 2013, Blake and Gese 2016). The 

development of this mountain lion RSF and predictive map provides a strong method for 

determining the relative mountain lion predation risk within SNBS habitat across subpopulations.  
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Table B1. Model selection for the top candidate models representing relative probability of use 

by mountain lions in spring, developed from a resource selection function using GPS data from 

28 mountain lions between 2002–2011.  

 

       Model         Ka          BIC  b
     ΔBICc      ωc       LLd 

slope quad+ elev quad +full 13  86413.5         0.00           1     -42511.31 

slope quad +elev +full 12  86508.8      660.14         0   -43188.8 

slope +elev+ rugged +full 12 87842.6    1329.16      0 -43853.3 

slope + elev+full           11 88130.1 1616.68      0 -44002.8 

a k= number of parameters, bΔBIC=difference between the model listed and the BIC of 

the best model cw= model weight based on model BIC compared to all other BIC values, 
dLL=log-likelihood; slope quad= slope + slope2, elev quad= elevation + elevation2, full= 

full model including: aspect, and distance to vegetation cover types (desert, shrub, 

riparian, forest, and alpine barren), and distance to streams and seasonal drainages.  
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Table B2. Standardized regression coefficients and standard errors for the top ranked resource 

selection function model for mountain lion use in the southcentral portion of the Sierra Nevada, 

California, USA during 2002–2011.  

 

Model covariate                           ß-coefficient                   SE 

(intercept) -1.26 0.06 

aspect -0.08 0.03 

elevation -0.39 0.02 

elevation2 -0.36 0.01 

slope     0.41 0.01 

slope2  -0.3 0.01 

riparian -0.59 0.02 

forest -0.39 0.03 

desert -0.67 0.06 

alpine 0.24 0.01 

shrub -0.41 0.03 

water -0.09 0.01 
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Figure B1. Spatial maps cover the Southcentral portion of the Sierra Nevada. The predictive map 

(left) displaying the relative predicted probability of use by mountain lions and was derived from 

a resource selection function including GPS mountain lion data from 2002–2011. This map 

indicates mountain lion use is greater in valley bottoms, lower elevations and low-grade slopes. 

The map on the right displays topographic attributes of the region as well as subpopuilations of 

Sierra Nevada Bighorn sheep for comparison.  

 

Figure B2. Predictive maps displaying the relative predicted probability of use by mountain lions 

derived from a resource selection function using GPS location data from mountain lions in the 

southcentral portion of the Sierra Nevada during 2002–2011. The blue polygon represents the 

95% MCP spring home range of Sierra Nevada bighorn sheep from the Mt. Langley 

subpopulation. There is considerable variation (0.04–0.78%) in probability of use by mountain 

lions within this home range. The map on the right highlights predefined ‘escape terrain’ for 

Sierra Nevada bighorn sheep, where the slope is greater than 42 degrees. The relative probability 

of use by mountain lions in escape terrain is very low.   
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Figure B1.  
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Figure B2.  
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APPENDIX C: PREDICTIVE RESOURCE SELECTION BY SUBPOPULATION 

 

I developed a predictive resource selection funtion to map reource selection by lactating Sierra 

Nevada bighorn sheep (Ovis canadensis sierrae; Sierra bighorn sheep hereafter) in the Sierra 

Nevada of California. This metapopulation currently consists of 14 subpopulations distributed 

along the Sierra Nevada crest. One of the potential factors identified by U.S Fish and Wildlife 

Service (2007) to be limiting recovery includes limited distributions and inadequate connectivity 

among subpopulations. Despite considerable progress towards recovery, demographic variation 

among subpopulations remains a threat to recovery (U.S Fish and Wildlife Service 2007, 

Johnson et al. 2010, Conner et al. 2018).  Inter-population connectivity and recolonization of 

suitable habitat can increase long-term viability for naturally fragmented subpopulations. Sierra 

bighorn sheep are philopatric and slow to naturally recolonize, thus to achieve recovery goals, 

managers are focused on reintroductions into former ranges and augmentation of smaller 

subpopulations (Geist 1971, Few et al. 2015). I used a resources selection function to quantify 

selection of neonatal habitat by lactating Sierra bighorn sheep, and produce the following maps. 

The 14 distinct subpopulations are geographically grouped into metapopulation recovery units 

(Figure C1): Northern  recovery unit {Mt. Warren (Figure C2), Mt. Gibbs (Figure C3) and 

Cathedral Range (Figure C4)}, Central recovery unit {Convict Creek (Figure C5) and Wheeler 

Ridge (Figure C6) Southern recovery unit {Taboose Creek (Figure C7), Sawmill Canyon (Figure 

C8), Mt. Baxter (Figure C9), Bubbs Creek (Figure C10), Mt. Williamson (Figure C11), Mt. 

Langley (Figure C12), and Olancha Peak (Figure C13)}, and Kern recovery unit {Big Arroyo 

(Figure C14) and Laurel Creek (Figure C15)}. There are currently 4 vacant subpopulations that 

have been identified by U.S. Fish and Wildlife for future occupancy; Twin Lakes (Figure C16), 

Green Creek (Figure C17), Coyote Ridge (Figure C18) and Black Divide (Figure C19). The 
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Black Divide contains the largest proportion of lamb rearing habitat with high and very high 

probabilities of selection by lactating females. Coyote Ridge contained the smallest proportion of 

habitat with high and very high probabilities of selection by lactating female.  
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Figure C1. Predictive map displaying the relative predicted probabilities of selection of neonatal 

lambing habitat by lactating Sierra Nevada Bighorn sheep across fourteen occupied and four 

vacant subpopulations in the Sierra Nevada of California. This map was developed from 123 

animal-years between 2008 and 2017 from a used-available resource selection function. Dark red 

colors indicate habitat where relative predicted probability of use is highest.  

 

Figure C2. Predictive map displaying the relative predicted probabilities of selection of neonatal 

lambing habitat by lactating Sierra Nevada Bighorn sheep within the Mt. Warren subpopulation 

in the Sierra Nevada of California. This map was developed from 123 animal-years between 

2008 and 2017 from a used-available resource selection function. Dark red colors indicate habitat 

where relative predicted probability of use is highest. 

 

Figure C3. Predictive map displaying the relative predicted probabilities of selection of neonatal 

lambing habitat by lactating Sierra Nevada Bighorn sheep within the Mt. Gibbs subpopulation in 

the Sierra Nevada of California. This map was developed from 123 animal-years between 2008 

and 2017 from a used-available resource selection function. Dark red colors indicate habitat 

where relative predicted probability of use is highest. 

 

Figure C4. Predictive map displaying the relative predicted probabilities of selection of neonatal 

lambing habitat by lactating Sierra Nevada Bighorn sheep within the Cathedral Ridge 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest. 
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Figure C5. Predictive map displaying the relative predicted probabilities of selection of neonatal 

lambing habitat by lactating Sierra Nevada Bighorn sheep within the Convict Creek 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest. 

 

Figure C6. Predictive map displaying the relative predicted probabilities of selection of neonatal 

lambing habitat by lactating Sierra Nevada Bighorn sheep within the Wheeler Ridge 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest. 

 

Figure C7. Predictive map displaying the relative predicted probabilities of selection of neonatal 

lambing habitat by lactating Sierra Nevada Bighorn sheep within the Taboose Creek 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest. 

 

Figure C8. Predictive map displaying the relative predicted probabilities of selection of neonatal 

lambing habitat by lactating Sierra Nevada Bighorn sheep within the Sawmill Ridge 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-
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years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest. 

 

Figure C9. Predictive map displaying the relative predicted probabilities of selection of neonatal 

lambing habitat by lactating Sierra Nevada Bighorn sheep within the Mt. Baxter subpopulation in 

the Sierra Nevada of California. This map was developed from 123 animal-years between 2008 

and 2017 from a used-available resource selection function. Dark red colors indicate habitat 

where relative predicted probability of use is highest. 

 

Figure C10. Predictive map displaying the relative predicted probabilities of selection of 

neonatal lambing habitat by lactating Sierra Nevada Bighorn sheep within the Bubbs Creek 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest.  

 

Figure C11. Predictive map displaying the relative predicted probabilities of selection of 

neonatal lambing habitat by lactating Sierra Nevada Bighorn sheep within the MT. Williams 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest.  

 

Figure C12. Predictive map displaying the relative predicted probabilities of selection of 

neonatal lambing habitat by lactating Sierra Nevada Bighorn sheep within the Mt. Langley 
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subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest.  

 

Figure C13. Predictive map displaying the relative predicted probabilities of selection of 

neonatal lambing habitat by lactating Sierra Nevada Bighorn sheep within the Olancha Peak 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest.  

 

Figure C14. Predictive map displaying the relative predicted probabilities of selection of 

neonatal lambing habitat by lactating Sierra Nevada Bighorn sheep within the Big Arroyo 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest.  

 

Figure C15. Predictive map displaying the relative predicted probabilities of selection of 

neonatal lambing habitat by lactating Sierra Nevada Bighorn sheep within the Mt. Laurel 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest.  
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Figure C16. Predictive map displaying the relative predicted probabilities of selection of 

neonatal lambing habitat by lactating Sierra Nevada Bighorn sheep within the vacant Twin Creek 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest.  

 

Figure C17. Predictive map displaying the relative predicted probabilities of selection of 

neonatal lambing habitat by lactating Sierra Nevada Bighorn sheep within the vacant Green Lake 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest.  

 

Figure C18. Predictive map displaying the relative predicted probabilities of selection of 

neonatal lambing habitat by lactating Sierra Nevada Bighorn sheep within the vacant Coyote 

Ridge subpopulation in the Sierra Nevada of California. This map was developed from 123 

animal-years between 2008 and 2017 from a used-available resource selection function. Dark red 

colors indicate habitat where relative predicted probability of use is highest.  

 

Figure C19. Predictive map displaying the relative predicted probabilities of selection of 

neonatal lambing habitat by lactating Sierra Nevada Bighorn sheep within the Black Divide 

subpopulation in the Sierra Nevada of California. This map was developed from 123 animal-

years between 2008 and 2017 from a used-available resource selection function. Dark red colors 

indicate habitat where relative predicted probability of use is highest.  
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84 

 

 

Figure C5.  

 
 

 



85 

 

 

Figure C6.  
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CHAPTER 2:  

INCREASED EXPOSURE TO RISK OF PREDATION REDUCES NEONATE SURVIVAL IN 

SIERRA NEVADA BIGHORN SHEEP 

 

ABSTRACT 

Populations of bighorn sheep (Ovis canadensis) declined rapidly across North America with 

European settlement in the 1800s (Valdez and Krausman 1999); Sierra Nevada Bighorn sheep 

(O. c sierrae) are today the rarest subspecies of all North American mountain sheep. 

Development of effective management strategies for recovering endangered populations requires 

understanding factors that influence mortality risk for the age-class with the highest potential for 

improvement. When adult survival is high, mortality of juveniles can be an important driver of 

population dynamics, but little is known about the causes of Sierra bighorn lamb mortality or 

characteristics that predispose lambs to mortality. I examined the effects of habitat quality, 

nutrition, risk of predation, and inbreeding depression on survival of neonatal Sierra bighorn 

sheep. Overall, 39% of the lambs in our study died during the neonatal period, the majority of the 

mortalities occurred during the beginning of the lambing season (April), within the first month 

post-partum, and risk increased when lactating females traveled farther from the safety of escape 

terrain. I found support for the primary hypothesis that increased exposure to predation is the 

primary cause of mortality for neonatal Sierra bighorn sheep. Lamb recruitment routinely limits 

population growth in bighorn sheep, identifying factors affecting survival of neonates can 

contribute to the development of strategies aimed at improving population dynamics. 

My results highlighting the relationship between neonatal lamb survival and habitat 

characteristics provides guidance as to the likely value of potential habitats within the Sierra 

Nevada and prospects for recovering bighorn. 
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KEYWORDS: Sierra Nevada bighorn sheep, neonate, predation, nutrition, inbreeding 

depression, nest-survival model.  

INTRODUCTION 

Juvenile recruitment is a key ecological measure that can influence population 

trajectories, and may be especially important for small populations (Gaillard et al. 1998, Festa-

Bianchet et al. 2006). For ungulates, juvenile mortality is often concentrated in the neonatal 

period (1-90 days postpartum; Festa-Bianchet 1988, Valdez and Krausman 1999, Smith et al. 

2014). Quantifying the factors affecting survival of neonates can lead to the development of age-

specific management strategies that can improve recruitment (Bergeron et al. 2008, Gilbert et al. 

2014, Smith et al. 2015). In populations where disease risk is relatively low, mortality of 

neonates is often attributed to starvation or predation (Festa-Bianchet 1988, Linell et al. 1995, 

Valdez and Krausman 1999, Festa-Bianchet et al. 2006). Quality of habitat selected during the 

neonatal period by female ungulates can also have consequences on fitness and survival of 

neonates ( Rachlow and Bowyer 1994, Pulliam 2000,  Bangs et al. 2005, DeCesare et al. 2014). 

For neonates in small or isolated populations inbreeding depression can have additive and 

interactive effects on mortality risk of neonates (Slate et al. 2000, Hogg et al. 2006, Cohas et al. 

2009). Evaluating the magnitude and potential for interaction of each of these common factors 

facilitates the development of management strategies that have the greatest potential to improve 

survival of neonates and overall population trajectories.  

Starvation resulting from inadequate nutrition is a leading cause of mortality for neonatal 

ungulates (Robbins and Robbins 1979, Clutton-Brock et al. 1987, Linell et al. 1995, Martin and 

Festa-Bianchet 2010). Body condition of females during late gestation and lactation can have strong 

effect on body mass and subsequent survival of neonates. Neonates born to females in good body 
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condition (high fat reserves) often have greater body mass and higher chances of survival than 

neonates born to females in poor body condition (Clutton-Brock et al. 1987, Sams et al. 1996, 

Gaillard et al. 1997, Adams and Dale 1998, Côté and Festa-Bianchet 2001). Females in poor 

body condition often decrease reproductive investment or abandon neonates altogether to 

increase their own survival and future reproductive success rather than allocate already depleted 

resources to offspring that have low chances of survival (Clutton-Brock et al. 1989, Gaillard and 

Yoccoz 2003, Therrien et al. 2008, Martin and Festa-Bianchet 2010, Monteith et al. 2014). Body 

condition of lactating females during the fall breeding period can also affect the timing of birth 

(Côté and Festa-Bianchet 2001). Birthing seasons in highly seasonal environments are 

synchronous with the narrow window of favorable climactic conditions and phenology of high 

quality vegetation (Bunnell 1982, Rachlow and Boywer 1994, Parker et al. 2009).  Females in 

good body condition typically conceive earlier than females in poor body condition (Gerhart et 

al. 1996, Heard et al. 1997, Cook et al. 2004a,b; Gustine et al. 2007). Early-born ungulates may 

benefit from a longer growth period before harsh weather and extended access to fresh forage 

growth when it is at peak quality (Festa-Bianchet 1988, Côté and M. Festa-Bianchet 2001, 

Parker et al 2009). Survival can be low for late-born neonates because they are typically born to 

females in poor body condition and have reduced access to forage of high quality (Mitchell and 

Lincon 1973, Bunnell 1982, Reimers and Soerumgaard 1983).  

Predation is also an important driver of survival for neonatal ungulates (Linnell et al. 

1995, Gaillard et al. 1998, Barber-Meyer and Mech 2008, Arthur and Prugh 2010). Vulnerability 

of neonates to predators often depends on age and mobility of neonates (Scotton 1998, Hamel 

and Côté 2009), selection of habitat (Hebblewhite and Merrill 2009), and grouping behavior of 

conspecifics (Ims 1990, Delm 1990, Jenkins and Barten 2005). Neonates are most vulnerable to 
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predators the first few weeks post-partum because their mobility is low and they are less capable 

of evading predators (Hass 1989, Scotton 1998, Hamel and Côté 2009, Jaques et al. 2015). Risk 

of predation varies spatially, consequently selection of habitat by lactating females can affect the 

probability of encountering predators and the likelihood of detecting and evading predators 

(Risenhoover and Bailey 1985, Hebblewhite and Merrill 2009, DeMars and Boutin 2018). 

Alpine species can reduce risk of encountering predators by migrating to high elevations, 

avoiding mild slopes, and selecting habitat near escape terrain (steep rugged cliffs where prey 

can outmaneuver predators; Geist 1971, Berger 1991, Wehausen 1996, Hamel and Côté 2007, 

Hebblewhite and Merrill 2009). Vulnerability to predators can also be influenced by group size 

and behavior of conspecifics (Estes 1976, Frid 1997, Mooring et al. 2004, Rieucau and Martin 

2008). Neonates in groups tend to have higher survival because they benefit from increased 

detection of predators and defense by numerous vigilant lactating females (Bergerud 1974, Estes 

1976, Frid 1997, Mooring et al. 2004) and the dilution effect, where probability of individual risk 

of mortality is decreased with in a larger group (Pulliam and Caraco 1984, Delm 1990, Ims 1990, 

Hebblewhite and Pletscher 2002). Group size and composition of alpine ungulates are strongly 

influenced by season and reproductive state of individuals (Risenhoover and Bailey 1985, 

Rutberg 1987, Childress and Lung 2003). In late spring pre-parturient females remain on winter 

ranges until they migrate to lambing habitat to give birth (Chapter 1, Spitz et al. In Press, 

Mysterud 2013). Early-born neonates, whose lactating females are the first migrate to lamb 

rearing habitat, are less likely to be in a group than those born later, thus may be more vulnerable 

to predators (Estus 1976, Adams et al. 1995, Mooring et al. 2004, Raithel et al. 2007, Smith et al. 

2014).    
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Quality of habitat selected during the neonatal period by female ungulates can affect the 

fitness and survival of neonates (Rachlow and Bowyer 1994, Pulliam 2000,  Bangs et al. 2005, 

DeCesare et al. 2014). Habitat quality is a multidimensional measure that encompass aspects of 

forage quality, risk of predation, and key abiotic habitat resources. Natural selection should favor 

selection of high quality habitat that maximize fitness and survival of offspring (Festa-Bianchet 

1988, DeCesare et al. 2014). Thus, neonates born to females that select poor quality habitat are 

less likely to survive the neonatal period. 

Inbreeding depression resulting from demographic bottlenecks (an event that strongly 

reduced the size of a population; Li and Roossinck 2004), prolonged isolation can substantially 

increase risk of morality for neonates (Keller and Waller 2002, Johnson et al 2011, Brommer et 

al. 2015). Although inbreeding itself is rarely a proximate cause of mortality, neonates born to 

females with low genetic variation are unlikely to survive because they are generally weaker, 

have low birth mass, deformities, and compromised immune systems (Ralls 1979, Cohas et al. 

2009, Da Silva et al. 2009, Mainguy et al 2009).  Furthermore, females with low genetic 

diversity are likely to be poor care givers and may be unable to adequately provision and protect 

neonates (Slate et al. 2000, Hogg et al. 2006, Cohas et al. 2009).   

For small populations where juvenile recruitment may be a limiting factor in population 

growth, it’s important evaluate potential factors affecting survival of neonates (Gaillard et al. 

1998, Festa-Bianchet et al. 2006). I evaluated how nutrition, risk of predation, quality of habitat 

selected by lactating females, and inbreeding depression influenced survival of neonatal Sierra 

Nevada bighorn sheep (Ovis canadensis sierrae), a federally endangered subspecies of bighorn 

sheep. Sierra bighorn sheep are endemic to the Sierra Nevada of eastern California, USA. 

Populations of bighorn sheep declined rapidly across North America with European settlement in 
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the 1800s (Valdez and Krausman 1999), and today Sierra bighorn sheep are the rarest subspecies 

of all North American mountain sheep. Historical and current distributions of Sierra bighorn 

sheep are restricted to alpine habitat found along the central and southern Sierra Nevada (U.S 

Fish and Wildlife 2007).  In 1999, Sierra bighorn sheep were listed as federally endangered, with 

approximately 125 detected individuals remaining among 3 isolated subpopulations (U.S. Fish 

and Wildlife Service 2007). Despite considerable progress towards recovery, high spatial and 

temporal variation in demography across the 14 subpopulations continue to threaten species 

recovery (U.S Fish and Wildlife Service 2007, Johnson et al. 2010, Conner et al. 2018).  

The effects of predation by mountain lions (Johnson et al 2013), forage quality (Greene et 

al. 2012), disease (Clifford et al. 2009, Cahn et al. 2011), and inbreeding depression (Johnson et 

al. 2011) have been evaluated for adult Sierra bighorn sheep. Predation by mountain lions has 

been a leading cause of mortality for adult Sierra bighorn sheep for decades, accounting for 

approximately 53% of all known Sierra bighorn sheep mortalities (Johnson et al. 2013, 

Stephenson et al. 2012). No disease-related mortalities (Cahn et al. 2011) or clinical symptoms 

of disease (Runcie et al. 2014) have been found since the subspecies was listed. Genetic variation 

of adult Sierra bighorn sheep was found to be among the lowest reported for any wild population 

of bighorn sheep, yet it did not affect survival of adult females (Johnson et al. 2011). Recent 

estimates of adult female survival are relatively high and stable (0.78-0.99; Conner et al. 2018). 

Pregnancy rates are also relatively high and consistent (90-95%), but observed lamb:female 

ratios are much lower and more variable (21-86%; Greene et al. 2016). Survival of juveniles 

captured at 6 months to one year old was estimated to be 83% (T. Stephenson, California 

Department of Fish and Wildlife, unpublished data), indicating that mortality of juveniles 
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primarily occurs during the neonatal period, yet factors influencing neonatal mortality remain 

poorly understood for this species (Wehausen 1996, Johnson et al. 2010, 2011).   

I examined survival of neonates in seven subpopulations of Sierra bighorn sheep (Mt. 

Gibbs, Mt. Warren, Convict Creek, Wheeler Ridge, Mt. Baxter, Sawmill Canyon, and Mt. 

Langley) that represent >85% of the subspecies. My objective was to evaluate whether nutrition, 

risk of predation, or habitat quality had the greatest effect on survival of neonates, and whether 

inbreeding depression had additive negative effects. I hypothesized that inadequate nutrition 

would have the strongest effect on survival of neonates. I then hypothesized that neonates born to 

females in poor body condition and those born later during the birthing season would suffer from 

inadequate nutrition and predicted they would have the lowest survival. I alternatively 

hypothesized that predation would have the greatest effects on the survival of neonates. I then 

hypothesized that neonates would be most vulnerable to predators during the first few weeks 

post-partum, if they were born early during the birthing season, and when lactating females 

selected habitat where the risk of encountering a predator was high and likelihood of evasion was 

low. Therefore, I predicted that survival would be lowest for neonates less than one month old, 

neonates born before the peak birth pulse, and neonates born to females that selected habitat 

where probability of encountering ambush predators was high or habitat that was far from escape 

terrain. I alternatively hypothesized that the quality of habitat selected by lactating females 

would have the strongest effects on survival of neonates. I predicted that neonates born to 

females that selected poor quality habitat during the neonatal period would have the lowest 

survival.  I hypothesized that in addition to hypothesized primary sources of mortality, 

inbreeding depression would have additive negative effects of survival on neonates. If true, I 
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predicted that neonates born to females with low genetic variation would have lower survival 

than those born to females with higher genetic variation.   

STUDY AREA  

The Sierra Nevada extends 650 km along the eastern border of California (Hill 1975). Elevation 

changes abruptly along the eastern escarpment from 1000 m to an average of 3,000 m, with 

numerous peaks above 4,000 m. The strong rain shadow effect limits summer (May-September) 

precipitation east of the Sierra crest, resulting in most of the annual precipitation falling as snow 

during winter months (November-April). The resulting xeric vegetation communities are 

separated by elevational gradients; low-elevation communities (1500-2499 m) includes scrub 

with mixed grass and forb types; intermediate (2500-3300 m) includes moderate timber cover 

with sparse forbs and subalpine meadows; high elevations (>3300 m) includes sparse alpine 

vegetation (Hill 1975). Common fauna includes mule deer (Odocoileus hemionus), mountain 

lion (Puma concolor), bobcat (Lynx rufus), black bear (Ursus americanus), coyote (Canis 

latrans), and golden eagle (Aquila chrysaetos).  

METHODS  

Survival Monitoring— California Department of Fish and Wildlife  crews captured adult female 

Sierra bighorn sheep across seven subpopulations from 2008- 2017 using helicopter net-gun 

methods (University of Montana IACUC 012-16MMMCWRU-022916, Federal Fish and 

Wildlife Service Permit No. TE050122-4) as a part of a long-term monitoring effort for recovery. 

We fitted all captured females with global positioning system (GPS) collars, and a sub-sample of 

pregnant females with vaginal implant transmitters (VIT) and high fix rate collars (12 fixes/day) 

during 2016–2017 (Bishop et al. 2007).  
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I determined survival of neonates through the neonatal period (90 days post-partum) by 

monitoring the presence of neonates-at-heel for select GPS-collared females. I identified 

parturition for each female using my previously developed cluster detection algorithm (Chapter 

1, DeMars et al. 2013, McClintock et al. 2012, 2014, Blackwell et al. 2016). I then calculated the 

probability of detecting a lamb known to be present using mark-resight estimation based on the 

presence of lamb-at-heel for marked females by surveying spring lamb ranges during the early 

neonatal lambing period (Bonenfant et al. 2005). Given that twinning has not been observed in 

Sierra bighorn and females do not allow non-related offspring to suckle, lamb presence could be 

assessed accurately from visual observations. I made multiple attempts to confirm the presence 

of a lamb for each female, and to resight pairs post-partum on a bi-weekly basis beginning April 

1st and continuing through September 30th each spring using binoculars and spotting scopes. 

Logistical constraints, however, affected the frequency and duration of monitoring. 

Subpopulations are remote, during spring and summer months Sierra bighorn sheep primarily 

inhabit elevations above 3,200m, and select for steep rugged terrain that is often difficult to 

access. Unpredictable weather patterns coupled with dangerous terrain often limited my ability to 

locate pairs. I ensured, however, that each pair had ≥ 2 observations during the study period. I 

estimated the probability of sighting/resighting a lamb for each occasion a female was observed 

post-partum during the early neonatal period.Following the results of this analysis I selected a 

nest-survival model because our re-capture rate of marked females was very high, thus the 

assumptions of a known-fate model were adequately met.  

     Factors Influencing Survival — I evaluated the effects of nutrition on survival of 

neonates using female body condition (ingesta-free body fat; IFBFat). I estimated percent IFBFat 

for each female during autumn captures using ultrasonography (Stephenson et al. 1998, Gustine 
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et al. 2007). Next, I evaluated the effects of relative timing of birth by determining parturition for 

each neonate using a cluster algorithm (Chapter 1). I summarized the distribution of birth dates 

and defined peak birthing period as the date range that included at least 75% of births. Neonates 

born before the peak were considered early-born and neonates born after the peak were 

considered late-born. I considered early-born neonates to be at higher risk of mortality from 

predation, and late-born to be at higher risk of mortality from decreased access to high quality 

forage.  

Next, I used my previously developed third-order (within home range) level resource 

selection function developed from the same study area at the same time to estimate spatial 

variation in habitat quality (Chapter 1, DeCesare 2012). This model integrated probabilities of 

selection across spatial risk of predation by mountain lions, distance to escape terrain (slope > 

42°), vegetation type, terrain ruggedness, and aspect into a single measure of habitat quality 

(Manly et al. 2002). I then independently assessed how spatial predation risk (probability of 

encountering a hunting mountain lion) derived from a resource selection function (RSF; Chapter 

1) affects survival of neonates by extracting the average likelihood of encounter selected by 

lactating females during each occasion (Lima and Dill 1990, Hebblewhite et al. 2005, 

Hebblewhite and Merrill 2009). I also evaluated spatial predation risk by determining the relative 

probability of evading predators by measuring the average distance to escape terrain (slopes 

>42°) selected by lactating females during each occasion. Finally, I evaluated the effects of 

inbreeding depression on survival of neonates using percent heterozygosity of lactating females. 

I extracted DNA from blood samples taken at captures and used polymerase chain reactions to 

amplify dinucleotide microsatellite markers and to genotype each individual female following 

methods described by Johnson et al. (2011). I genotyped 47 microsatellite loci known to be 
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polymorphic in Ovis species (Sausman 1984, Overall et al. 2005) and calculated multilocus 

heterozygosity of each individual female (Mitton 1993, Slate and Pemberton 2002, Mainguy et al 

2009). I repeated this procedure to obtain duplicate samples and improve genotyping accuracy. I 

removed loci that appeared to be monomorphic across subpopulations. I considered multilocus 

heterozygosity to be a strong measure of genetic variation and an indicator of inbreeding 

depression (Coltman and Slate 2003, Da Silva et al. 2009, Johnson et al. 2011, Brommer et al. 

2015).  

I extracted time-sensitive habitat covariates (habitat quality, risk of encounter, distance to 

escape terrain) selected by each female across the neonatal period then calculated the minimum, 

maximum and averaged values for each of the six 14-day encounter occasions. This method 

ensures that survival probabilities for each interval correspond to the time each habitat covariate 

was selected by lactating females. I then summarized the distribution of each factor across 

lactating females to quantify the variation within my sample (Dinsmore and Dinsmore 2007). 

ProgramMARK standardized each variable internally so that the magnitude of each variable was 

comparable across models (Bring 1994). I considered standardized β-coefficients with 

confidence intervals that did not overlap 0, and defined coefficients ≤ 0.1 to have weak effects 

on selection, values ≥ |0.1| and ≤ 0.5 moderate, values ≥ |0.5| and  ≤ |1.0 | strong, and values 

≥ |1.0| to have very strong effects (Bring 1994). 

     Survival Modeling— I evaluated my hypotheses using nest-survival analysis with a 

logit-link function (Dinsmore et al. 2002, Rotella et al. 2004, Shaffer and Thompson 2007 in 

Program MARK (Version 8.1, White 2005; White and Burnham 1999). Nest-survival models are 

considered known-fate models, thus before selecting this model structure I calculated the 

probability of detecting a lamb known present using mark-resight estimation (Bonenfant et al. 
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2005). I estimated survival bi-weekly because my data was not robust enough to estimate daily 

survival (Johnson et al. 2004, Fieberg and DelGiudice 2008, Grovenburg et al. 2014). I 

considered neonates that survived 90 days (6 bi-weekly occasions) to have survived the neonatal 

period (Griffin et al. 2011). I binned observations into bi-weekly encounter occasions (Fieberg 

and Delgudice 2009); occasion 1: early April (April 1st–15th), occasion 2: late April (April 16th–

30th), occasion 3: early May (May 1st– 15th), occasion 4: late May (May 16th- 31st), occasion 5: 

early June (June 1st– 15th), occasion 6: late June (June 16th–30th ), occasion 7: early July (July 1st 

– 15th ), occasion 8: late July (July 16th–31st) , occasion 9: early August (August 1st–August 15th), 

occasion 10: late August (August 16th–30th), occasion 11: early September (September 1st– 15th), 

occasion 12: late September (September 16th– 30th). I staggered entry into the model based on 

parturition date. I recorded “Last Present” as the last date a neonate was last observed with a 

female, and date “Last Checked” as the final occasion that each neonate:female pair was 

observed during the study period or the 6th occasion for neonates that survived the neonatal 

period.  

I constructed models based on a priori hypotheses and evaluated which model(s) best 

explained survival of neonates. I included a model with year to account for variation among 

years that I did not specifically address with other covariates such as weather. I included a model 

with individual subpopulations to account for variation among groups not specifically addressed 

with other covariates, such as predator distributions, differences in resource availability, and 

differences in size of subpopulations. I modeled survival in 2 stages. First, I subset the data to 

include only individuals I had measures of IFBFat for the neonate-year I was modeling. I built a 

total of 28 models to evaluate my hypotheses; 14 models included combinations of factors I 

hypothesized would influence nutrition (6 models), risk of predation (7 models), and a single 
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model for overall habitat quality.  I included those same 15 models again, each with an additive 

term to evaluate the effect of inbreeding depression (Table 1). I additionally included a model 

with year and one with subpopulation to evaluate if variation in survival could be explained by 

these parameters. I ranked those 15 top models according to Bayesian Information Criteria (BIC 

Schwartz 1978, Hooten and Hobbs 2015), ΔBIC, and model weight (ωi). I considered models 

with < 2 ΔBIC values competitive (Burnham and Anderson 2002). I evaluated strength of 

evidence for factors hypothesized to affect survival based on ΔBICc and 95 % confidence 

intervals (CI) of estimates. Second, I repeated the model building and selection process using all 

individuals but did not include models with IFBFat. Following the results from both stages of 

modeling, I selected the final top model based on BIC ranking, 95% CI, and considered this 

model to best explain survival of neonates.  

Following the identification of the top model, I calculated the probability of survival 

between each encounter occasion, estimated mean survival for lambs by date of birth, and how 

survival varied across covariates. I estimated model fit by plotting the observed survival 

outcomes and predicted probabilities because there is currently no goodness-of-fit test available 

for nest survival models of small sample sizes (Dinsmore et al. 2002, Dinsmore and Dinsmore 

2007, Shaffer and Thompson 2007).  

RESULTS 

Survival Monitoring — I collected 594 observations from 125 neonates from April 1st to 

September 30th for 2006-2017. A total of 76 (61%) neonates survived the neonatal period and 51 

died. I estimated the probability of sighting/resighting a lamb as 0.92 (SE=0.03, n=36 known 

present lambs) for each occasion a female was observed. I made an average of 5.38 observations 

per female during the 90 day period, and only included data from females with ≥ 2 observations, 
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thus on average there was <1% chance in missing a lamb. I monitored 38 neonates in the 

Northern recovery unit (Mt. Gibbs [n=16], Mt. Warren [n=22]), 34 neonates in the Central 

recovery unit (Convict Creek [n=12], Wheeler Ridge [n=22]), and 53 neonates in the Southern 

Recovery unit (Mt. Langley [n=27], Mt. Baxter [n=13], and Sawmill Canyon [n=13]).   

     Factors Influencing Survival — Parturition dates followed a relatively normal distribution 

(Figure 2); the earliest neonate was born on April 1st and the last on July 10th ( χ̅  = May 10th,  

SD=18 days). I considered the peak birthing period as the 2–4th encounter occasions (April 15th– 

May 30th) because they contained 97 of the 125 births (78%). Mean IFBFat of lactating females 

in fall was (χ̅  = 14.2 %,  SD= 4.9). Lactating heterozygosity was calculated from 42 

polymorphic loci was (χ̅  = 50.3 %,  SD=8.7).  Lactating females selected habitat with quality 

measures on average that were ( χ̅  = 71.3%, SD = 0.05) during the first occasion post-partum, ( χ̅  

= 67.2% , SD = 0.05) during the second, ( χ̅  = 65.7% m , SD = 0.04) during the third,  ( χ̅  = 

63.6% m , SD = 0.04) during the fourth, ( χ̅  = 60.3% m , SD = 70.1) during the fifth, and  ( χ̅  = 

58.4% m , SD = 0.05) during the final occasion. On average, lactating females selected for 

distances to escape terrain that were ( χ̅  = 66.4 m , SD = 40.5) during the first occasion post-

partum, distances that were ( χ̅  = 79.0 m , SD = 50.8) during the second, ( χ̅  = 87.6 m , SD = 

44.7) during the third,  ( χ̅  = 100.2 m , SD = 53.0) during the fourth, ( χ̅  = 120.3 m , SD = 70.1) 

during the fifth, and  ( χ̅  = 130.8 m , SD = 66.3) during the final occasion. The average 

probability of encountering hunting mountain lion was ( χ̅  = 8% , SD = 0.5) during the first 

occasion post-partum, distances that were ( χ̅  = 7% , SD = 0.3) during the second, ( χ̅  = 8% , SD 

= 0.3) during the third,  ( χ̅  = 9% , SD = 0.5) during the fourth, ( χ̅  = 12% , SD = 0.5) during the 

fifth, and  ( χ̅  = 13% , SD = 0.6)  during the final occasion. 
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      Survival Modeling— The first set of models included 52 lactating females with measures of 

IFBFat. I found no evidence to suggest female body condition measured in autumn, determined 

by percent IFBFat, was associated with survival of neonates (ΔBIC was > 10 and 95% CI for the 

estimate overlapped 0); thus I continued on to the second stage of modeling that included 125 

lactating females. Survival models that included time-dependent covariates (age of the neonate 

and time of season), and corresponding time-varying distance to escape terrain received nearly 

100% of the model weight (Table 2). I selected the top ranked model containing neonate age, and 

average distance to escape terrain selected during early and late April.  

The standardized ß-coefficients of the top model explaining survival of neonates 

indicated the odds of bi-weekly survival strongly increased as neonates aged (ß =1.02, SE=0.29) 

and slightly decreased with increasing distances from escape terrain (ß = -0.22, SE= 0.05) for 

individuals in April (Table 3). Probability of survival was lowest during the first-few weeks post-

partum and early in the season when lactating females selected for habitat farther from escape 

terrain. When lactating females selected for habitat >100m from escape terrain, the probability of 

a neonate born in early April surviving to the next occasion was very low (χ̅   = 0.32, SE = 

0.095), survival increased for those born in late April ( χ̅   = 0.56, SE = 0.126), and continued to 

increase for neonates born in early May ( χ̅   = 0.97, SE = 0.014 ), late May( χ̅   = 0.99, SE = 

0.002) and remained very high ( χ̅   = 0.99, SE < 0.01) through the remainder of the season 

(Figure 3). Neonates born in early April had the lowest probability of surviving the 90 day 

neonatal period (χ̅ = 0.17, SE= 0.09, n=15). Neonates born in late April had 3 times higher 

probability of surviving than those born in early April (χ̅ = 0.54, SE= 0.05, n=26). Probability of 

survival continue to increase later in the season; probability of survival for neonates born in early 
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May was (χ̅ = 0.983, SE= 0.03, n=39), increased slightly in late May (χ̅  = 0.99.4, SE= 0.04, 

n=32) and remained very high and stable (χ̅  < 0.99.8) for lambs born later in the season (n=13).  

Neonates whose mothers remained closer to escape terrain had much higher chances of 

survival than those born to females that selected habitat farther (Figure 4). If a female selected 

for habitat that was on average 1m from escape terrain, the probability of a neonate born in early 

April to survive to the next occasion was (χ̅  =0.81, SE=0.04) but sharply dropped to (χ̅  = 0.31, 

SE=.095) at 100m, and (χ̅  = 0.05 , SE= 0.04) at 200m.  My graphical estimations of goodness of 

fit showed that distance to escape terrain has a strong relationship, but that distances beyond 

150m may have been high-leverage points, I did not remove those points, however, because they 

represented the variation in observed selection of habitat by lactating females.  

 

DISCUSSION 

When adult survival is high and stable, juvenile recruitment is the vital rate with the 

greatest potential to improve population trajectories (Gaillard et al. 2000, Raithel et al. 2007).  

Identifying factors that influence mortality risk for juveniles is complex because risk changes as 

juveniles age and many factors often interact and disguise the effect of one another. Juvenile 

mortality is often concentrated during the neonatal period, thus to develop effective management 

strategies for recovering endangered populations it’s important to determine the primary factors 

influencing mortality risk. I examined whether nutrition, predation, or quality of habitat selected 

by lactating females had the greatest effect on survival of Sierra bighorn sheep neonates. I also 

evaluated whether inbreeding depression was negatively influencing survival. I did not find 

evidence to suggest that inadequate nutrition or selection of poor quality habitat was a primary 

factor limiting survival of Sierra bighorn sheep neonates. Rather, I found that predation risk was 



115 

 

 

the primary driver of survival, and that vulnerability of neonates to predators was highest for 

early-born neonates, neonates farther from escape terrain, and that vulnerability decreases as 

neonates aged. Understanding factors that increase risk of mortality for neonates can contribute 

to the development of strategies that can reduce mortality and potentially improve population 

dynamics.  

 I found no evidence to support the hypothesis that nutrition was a primary factor affecting 

survival of Sierra bighorn sheep neonates. I hypothesized that nutritional condition of females 

would strongly affect body condition of neonates and ability of females to care for neonates, yet 

none of the models containing female body condition (percent fall IFBFat) were competitive, and 

the estimated 95% CI overlapped 0. Although nutrition can limit the reproductive success for 

many species of ungulate, percent body fat of female Sierra bighorn was higher than is expected 

to inhibit pregnancy for elk (>5%, Cook et al. 2004a) and caribou (6 –7.8%; Crête et al. 1993, 

Ouellet et al. 1997), and does not suggest that lactating females within my sample were 

nutritionally stressed. I therefore rejected the hypothesis that poor body condition was negatively 

affecting survival of neonatal Sierra bighorn sheep.   

 I found no evidence to support the hypothesis that selection of poor quality habitat by 

lactating females during the neonatal period was a primary factor affecting survival of Sierra 

bighorn sheep neonates. None of the models containing habitat quality were competitively 

ranked and the 95% CI for coefficient estimates overlapped 0. Females within our sample 

selected habitat that, on average, was relatively high quality with little variation. Although the 

multidimensional estimate of habitat quality did not appear to relate to survival of neonates, 

when key resources within an RSF have very strong effects on selection of habitat, these isolated 

resources often yield an improved explanation of spatial survival patterns (DeCesare et al. 2012).  
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 I found strong evidence to support the hypotheses that vulnerability of neonates to 

predators would be highest during the first few weeks of life and for neonates in habitat farther 

from escape terrain. I found mortality was concentrated within the first few weeks post-partum 

but probability of survival increased steadily increased and remained very high after one month 

old. As strength and mobility of neonates improve, they may be less vulnerable to predators. I 

also predicted that neonates born to females that selected habitat farther from escape terrain 

would have decreased survival because of the decreased likelihood of evading predators. I found 

probability of survival decreased with increasing distance from escape terrain, especially at 

distances beyond 150m. Neonatal lambs follow lactating females immediately from birth (Lent 

1974), thus if pairs encounter a predator and flee to safety, neonates that have decreased mobility 

are much less likely to reach escape terrain than adults (Berger 1991, Bleich 1999). I found that 

beyond distances of approximately 200m from escape terrain neonates born in early April had 

less than 5% chance of survival. Although few females ventured beyond 200m, this suggests 

predators are highly successful at capturing neonates encountered at this distance. Escape terrain 

decreases risk of predation, however, those areas may provide less access to high quality forage 

(Festa-Bianchet 1988, Wehausen 1996, Rachlow and Bowyer 1998, Hamel and Côté 2007). 

Thus, I hypothesize that lactating females may have selected habitat farther from escape terrain 

to increase access to high quality forage. In a post-hoc analysis, I tested for a correlation between 

selection for distances to escape terrain and female IFBfat, but found no evidence to suggest that 

females who selected for distances farther from escape terrain did so because they were in 

compromised body condition and needed to obtain forage. It remains uncertain why lactating 

females would select for distances far from escape terrain where the probability of survival for 

neonates is so low. 
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Although predation by mountain lions has been a leading cause of mortality for adult 

Sierra bighorn sheep (Johnson et al. 2013, Stephenson et al. 2012) and bobcats have been known 

to take yearling bighorn sheep (T. Stephenson, California Department of Fish and Wildlife, 

unpublished data), I found no evidence to suggest that females who selected habitat where risk of 

encountering ambush predators was higher suffered higher rates of neonatal mortality. I found 

lactating females selected habitat where the average probability of encountering a lion was low 

(13%). Therefore, I hypothesize that predation-related mortalities of neonatal Sierra bighorn may 

primarily be attributed to coyotes or golden eagles. If I had included covariates for risk of 

predation by coyotes and golden eagles, I predict my results may have reflected increased 

mortality risk for neonates with increased encounter risk of coyotes and eagles. For neonatal 

Dall’s sheep (O. dalli) in Alaska, 45% of mortalities were attributed to predation by coyotes, and 

34% were golden eagles (Arthur and Prugh 2010). Golden eagle attacks were also most frequent 

during the first month post-partum for Dall’s sheep in Alaska (Scotton 1998) and mountain goats 

(Oreamnos americanus) in Alberta, Canada (Hamel and Côté 2009).  

I evaluated effects of predation and nutrition simultaneously by examining the influence 

of timing of birth on survival of neonates. I found neonates born the earliest (April) had the 

lowest chances of surviving and neonates born later during the season had the highest survival. 

Thus, I did not find support for the hypothesis that inadequate nutrition is affecting survival of 

neonates. I found no evidence to suggest neonates presumed to be in good body condition and 

having greater access to forage had higher survival than neonates expected to be in poor 

condition. My results support the hypothesis that predation is the primary cause of morality. 

Follower species with precocial young are expected to exhibit synchronized birth patterns as an 

antipredator strategy that satiates predators thus reducing the morality risk for neonates (Sinclair 
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et al. 2000). Early-born neonates are much less likely to receive the benefits of group vigilance 

and defense because pregnant females generally remain on winter ranges until immediately prior 

to giving birth (Smith et al. 2014). I documented < 20 births before April 15th and no more than 2 

births occurred in the same subpopulation in the same year, suggesting that lactating females 

who give birth before April 15th are likely to be isolated for several weeks post-partum. Although 

solitary lactating bighorn can successfully defend juveniles from predators, my results support 

the hypothesis that neonates born later are less vulnerable to predators (Berger 1978, 

Risenhoover and Bailey 1985, Mooring et al. 2004).  Adams et al. (1995) found that early-born 

caribou calves had decreased survival as a result of increased predation risk, and hypothesized 

this could be attributed to an insufficient numbers of neonates to swamp predators or that early-

born calves were the first to form nursery groups, thus they were highly detectable by predators. 

The sharp increase in probability of survival for neonatal lambs that coincides with the peak 

birthing period (May) further suggests neonates born during this time benefit the most from a 

synchronous lambing period (Estes 1976).  

 My results suggest that variation in vulnerability to predation risk and subsequent 

survival of neonates may explain the observed annual variation in juvenile recruitment. The 

relative influence of neonatal mortality on juvenile recruitment can be interpreted along a 

continuum of additive or compensatory effects on population growth (Monteith et al. 2014). 

When predators consume prey in poor nutritional condition that already had low probability of 

survival, the mortality is generally considered compensatory; however, when predators take prey 

that would otherwise have high probability of survival, mortality is considered additive 

(Errington 1956). A review by Linnell et al. (1995) found that mortality of neonates averaged 

47% in populations with predators (n=68), but only 19% in populations without predators (n=6), 
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suggesting mortality by predators may commonly have additive effects. Early-born neonates are 

expected to be born in good body condition and have extended access to high quality forage. In 

the absence of predators, I would expect high survival for early-born neonates, thus I hypothesize 

that predation on early-born neonates may have an additive effect on mortality of Sierra bighorn 

neonates.  

I hypothesized that inbreeding depression would increase risk of mortality for neonates. I 

found no evidence that bi-weekly survival of neonates increased with increasing female 

heterozygosity. I expected that female heterozygosity indicates general quality and is associated 

with other factors that I was not able to directly measure, such as neonatal birth mass and 

immune system response (Sausman 1984, Slate et al. 2000, Hogg et al. 2006, Da Silva et al. 

2009). Inbred neonatal Red deer (Cervus elaphus) in Scotland had much smaller birth weights 

than outbred calves, and increased rates of mortality (Coulson et al. 1998). It is possible that I did 

not detect a relationship between neonatal survival and female heterozygosity because there may 

not be a strong enough relationship between female heterozygosity and neonatal heterozygosity. 

Thus, it is possible that if inbred female bred a high heterozygosity ram, the resulting neonate 

could have higher heterozygosity than female heterozygosity alone would predict. Alternatively, 

it is possible that inbred lambs may suffer greater mortality risk after the neonatal period when 

maternal care is reduced. My results support the findings of Johnson et al. (2011) and suggests 

that although inbreeding depression can adversely affect fecundity, it is unlikely to influence 

survival of neonates.  

I made several assumptions that if violated could affect my inferences. If the GPS 

locations included were imprecise my estimates of vulnerability to predators could be biased, to 

mitigate this, however, I only included GPS locations that had high estimates of geographic 
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precision. Nest-survival models assume probability of detection is 100%, my estimated 

probability of detection was imperfect and it is possible that I did not observe a lamb that was 

present and considered it to have died. However, this is unlikely given the probability of missing 

a lamb was only 1%. Furthermore, I included several neonates with large time gaps between last 

observed alive and first observed dead, which can affect estimates of time to death. My model 

estimates, however, match externally estimated time to death for mortalities not included within 

the model (n= 68) where time of death was known.  

 

MANAGEMENT IMPLICATIONS 

Understanding the processes that influence population demographics can help managers better 

predict the effects of potential management alternatives. Examining the link between exposure to 

predation risk and probability of mortality for neonates allows managers to better understand the 

effects of predation risk on juvenile recruitment. My survival estimates for Sierra Nevada 

bighorn sheep suggest that survival of neonates can fluctuate widely depending on proximity to 

escape terrain selected by lactating females, if females remain closer to escape terrain my 

estimates suggest survival of neonates would increase. If females are selecting habitat farther 

from escape terrain to obtain higher quality forage, managers may be able to entice females to 

remain closer by improving nutritious forage near escape terrain by implementing prescribed 

burns (Greene et al. 2012).  
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Table 1. Factors hypothesized to influence survival of neonatal Sierra Nevada bighorn sheep 

from 2006–2017 in Sierra Nevada, California, USA. H1-H4 = Primary hypothesized drivers of 

survival for neonates; H1.a) = hypothesized factors affecting vulnerability of neonates to primary 

hypothesized driver of survival.  

Hypothesis  

 

Predicted effect Model covariate 

H1: Habitat quality has the strongest effect on neonatal survival  

        Habitat Quality   Females that select higher 

quality habitat will increase 

survival of neonates 

Habitat quality, 

measured by 

resource selection 

(Chapter 1)  

H2: Nutrition has the strongest effect on survival of neonates  

 Factors that can affect nutrition of neonates  

 H2.a) Female body 

condition  

Increased body fat of 

lactating females will 

increase survival of neonates 

Percent IFBFat of 

lactating female 

 H2.b) Timing of birth  Early-born neonates will 

have higher survival than late 

born 

Timing of birth: 

(combinations of 

April and July-

September) 

 H2.c) Female body 

condition + timing of birth  

Low body fat of lactating 

females and late- birth will 

decrease survival of  

neonates  AND High body 

fat and early-birth will 

increase survival of neonates 

Percent IFBFat + 

Timing of birth 

(combination of 

April and July-

September) 

H3: Predation has the strongest effect on survival of neonates   

 Factors that can affect vulnerability of neonates to predators  

 H3.a) Age of neonate  Survival will increase with 

age 

Age of neonate 

 H3.b) Selection of habitat  

(Encounter of ambush 

predators) 

Selection of habitat where 

risk of encounter is high will 

decrease survival of neonates 

Probability of 

encountering a 

mountain lion  
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 H3.c) Selection of habitat  

(Escape terrain) 

Selection of habitat far from 

escape terrain will decrease 

survival of neonates 

Maximum distance 

to escape terrain  

 H3.d) Timing of birth 

relative to birth pulse 

Survival will be low for 

early-born neonates 

Timing of birth 

(early April, and 

early + late April) 

 H3.e) Combinations of age 

of neonate + timing of birth 

+ combinations of selection 

of habitat  

Survival will be increase 

with age, be low for early-

born neonates, and decrease 

if lactating females use 

habitat with higher risk of 

predation 

Age of neonate+ 

Timing of birth+ 

combinations of 

habitat selection 

H4) Inbreeding depression will have negative effects on survival of neonates in 

combination with nutrition, predation, or habitat quality 

 

 Female  body condition + 

Inbreeding depression 

Increased body fat of 

lactating females will 

increase survival of neonates 

Percent IFBFat of 

lactating female+ 

female 

heterozygosity 

 Timing of birth +Inbreeding 

depression 

Early-born neonates will 

have higher survival than late 

born,  

Timing of birth: 

(combinations of 

April and July-

September) + 

female 

heterozygosity 

 Female body condition + 

timing of birth + Inbreeding 

depression 

Low body fat of lactating 

females and late- birth will 

decrease survival of  

neonates  AND High body 

fat and early-birth will 

increase survival of neonates 

Percent IFBFat + 

Time of birth 

(combination of 

April and July-

September) + 

female 

heterozygosity 

 Age of neonate strongly 

affects predation risk  

Survival will increase with 

age 

Age of neonate + 

female 

heterozygosity 

 Selection of habitat  

(encounter of ambush 

predators) + Inbreeding 

depression 

Selection of habitat where 

risk of encounter is high will 

decrease survival of neonates 

Probability of 

encountering a 

mountain lion 

(Chapter 1) + 

female 

heterozygosity 
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 Selection of habitat  (Escape 

terrain) + Inbreeding 

depression 

Selection of habitat far from 

escape terrain will decrease 

survival of neonates 

Maximum distance 

to escape terrain + 

female 

heterozygosity 

 Timing of birth relative to 

birth pulse+ Inbreeding 

depression 

Survival will be low for 

early-born neonates 

Timing of birth 

(early April, and 

early + late April) + 

female 

heterozygosity 

 Combinations of age of 

neonate + timing of birth + 

combinations of selection of 

habitat + Inbreeding 

depression 

Survival will be increase 

with age, be low for early-

born neonates, and decrease 

if lactating females use 

habitat with higher risk of 

predation 

Age of neonate+ 

Timing of birth+ 

combinations of 

habitat selection + 

female 

heterozygosity 
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Table 2. Top ranked models for nest-survival analysis of neonatal Sierra Nevada bighorn sheep 

in the Sierra Nevada, California, USA from 2006–2017. Only models that were ranked higher 

than the constant model (.) are shown.  K= number of parameters; BIC = Bayesian Information 

Criterion; ΔBIC = difference between BIC of model and the top model;  ωi= model weight 

compared to all other models; Age= neonate age; Time # = Encounter occasion referring to 

seasonal time (eg. Time 1 refers to April 1st-15th); DE_mean= average distance from escape 

terrain for the specified time period; HET=percent heterozygosity of lactating females; 

Prisk_mean= average probability of encountering a hunting mountain lion during specified time 

period; HabQuality= average habitat quality selected by lactating females during the specified 

time period; PRisk_max= max probability of encountering a hunting mountain lion during 

specified time period; (.)= constant survival. 

Model K  BIC ΔBIC ωi Deviance 

{Age + DE_mean+ Time1,2} 3 198.0 0.0 0.6 179.6 

{Age + DE_mean *Time1,2} 4 200.6 2.6 0.1 175.0 

{Age+DE_mean*Time1} 4 200.9 2.9 0.1 175.9 

{Age+ DE_max+Time1,2} 3 202.3 4.3 0.1 184.0 

{Age + DE_mean1,2,3} 3 202.7 4.8 0.0 184.4 

{Age+ DE_mean1,2*Time1,2} 5 205.1 7.1 0.0 174.5 

{Age + Time1,2} 3 209.7 11.7 0.0 191.3 

{Age*DE_mean1,2* Time1,2} 6 210.8 12.8 0.0 174.1 

{DE_mean*Time1,2} 3 214.8 16.8 0.0 196.4 

{Age} 2 215.1 17.1 0.0 202.9 

{Age*Time1,2,3} 5 217.5 19.5 0.0 187.0 

{Age*Time1,2 +HET} 5 218.3 20.3 0.0 187.7 

{Age*Time1,2, PRisk_mean1,2} 5 219.1 21.1 0.0 188.6 
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{Age*Time1,2, HabQuality1,2} 5 219.8 21.8 0.0 189.3 

{Age*Time1,2, PRisk_max+Time1,2} 5 220.0 22.0 0.0 189.4 

{Time1,2,3} 4 221.1 23.2 0.0 196.7 

{Age*Time1,2 +DE_max+Time1,2} 6 221.3 23.4 0.0 184.7 

{Age*Time1,2,3,4} 6 223.5 25.5 0.0 186.8 

{Time_1,2} 3 224.6 26.7 0.0 206.3 

{ALL_time1:6} 6 225.5 27.6 0.0 188.9 

{.} 1 255.4 57.4 0.0 249.2 
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Table 3. Standardized parameter estimates from the top nest survival model explaining survival 

of neonatal Sierra Nevada bighorn sheep in the Sierra Nevada of California, USA from 2006–

2017. Intercept= includes May- September 30th; Lamb Age= age of neonate (14 day increments); 

Distance to Escape Terrain (distance in meters from slopes >42°).  

 

 

 

Intercept 0.429 0.507 -0.566 1.423 

Lamb Age 1.018 0.294 0.441 1.595 

Distance to Escape Terrain -0.022 0.005 -0.032 -0.012 
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Figure 1. Study area in southeastern Sierra Nevada of California. Herds extend from Mt. Warren 

near Lee Vining, CA south approximately 200km to Olancha, CA. Study subpopulations are 

outlined in orange and include: Mt. Warren, Mt. Gibbs (Northern Recovery Unit); Convict 

Creek, Wheeler Ridge (Central Recovery Unit); Mt. Baxter, Sawmill Canyon and Mt. Langley 

(Southern Recovery Unit).  

 

Figure 2. Parturition dates for neonatal Sierra Nevada bighorn sheep (n=125) between 2006-2017 

in the Sierra Nevada of California, USA binned into bi-weekly intervals.  

 

Figure 3. Predicted bi-weekly survival of neonatal Sierra Nevada bighorn sheep between 2006–

2017 in the Sierra Nevada of California, USA illustrated for a mean selected distance from 

escape terrain of 100m when a lamb is 14 days old. Solid line represents bi-weekly survival rate 

estimated using beta parameters from the top model, vertical lines represent upper and lower 

95% confidence intervals for the estimated bi-weekly survival rate. 

 

Figure 4. Predicted bi-weekly survival of neonatal Sierra Nevada bighorn sheep in relation to 

average distance to escape terrain selected by lactating females with lambs during April between 

2006–2017 in the Sierra Nevada of California, USA.  Illustrated for the first two encounter 

occasions (color coded). Center solid lines represent mean bi-weekly survival estimate, shaded 

regions represents 95% confidence intervals. Observed survival outcomes are denoted as 

triangles for neonates that survived to recruitment and circles for neonates that died before 

recruitment and indicate the average distance selected by lactating females during both encounter 

occasions in April  

.  
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4.  
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