

Diet of barred owls in California elucidated with high-throughput-sequencing

Nick Kryshak

Daniel F. Hofstadter¹ Brian P. Dotters² Kevin N. Roberts² Kevin. G. Kelly¹ Connor M. Wood¹ Emily D. Fountain¹ Amy K. Wray¹ Isabel F. Papraniku¹ Paige J. Kulzer¹ John P. Dumbacher⁴ John J. Keane³ Paula A. Shaklee³ M. Zachariah Peery¹

Research Questions

- What species are predated by Barred Owls in a novel environment?
- How do Hybrid diets compare to their parent species?
- Can genetic methods help elucidate diet in barred and hybrid owls?

Pellet Analysis

- Significant differences in prey composition in pellets vs direct observations | (Livezey, 2007)
- Up to 50% loss of bone material, 20% loss of <u>individual</u> prey items | (Raczynski and Ruprecht, 1974)

Most much fur

Morphological Stomach Content

DNA Metabarcoding

- Allows for identification of rare, highly degraded, or even visually absent items | (Pinol et al, 2014)
- High taxonomic resolution
- Allows for bulk detection of prey items
- Has been shown to increase proportion of identifiable prey items | (Pompanon et al, 2012; Newmaster et al, 2013; Aguilar et al, 2016)

Early Results

- Separately processed stomachs and intestines from all 2019 removals (~150 individuals)
 - Coronavirus Lockdowns-
- Extracted, amplified, and sequenced 125 samples
 - Includes both Barred Owls and Hybrids
 - Completed results for Mammalia, Amphibia, Reptilia
 - Partial results for Aves

Early Results

- Frequency of Occurrence (FO)
 - Percent of owls where prey item is detected
- Percent of Occurrence (PO)
 - Proportion of total prey each prey type represents
- Absence/Presence Data
 - <u>Does not</u> account for multiple predations of same prey item, biomass, etc.

Class Order **Family** Genus **Species**

Class Order **Family** Genus **Species**

Reptilia

Aves*

Genus: Tamiasciurus

28 Confirmed Species ID!

T. douglasii.
Douglas Squirrel

Gary Nafis

Class Order **Family** Genus **Species**

- Molecular sequencing methods work across taxonomic levels
- Specific resolution requires an expansion of the current California genetic data bank

Barred Owl vs. Hybrids

Maybe!

Only Sierra Nevada Removals:

- 31 Barred Owls
- 7 Hybrid Owls

At Genus level, Hybrid prey demonstrates:

Lower Shannon's Diversity (p < 0.1)Lower Rarefied Species Richness (p < 0.1)

Barred Owl vs. Hybrids

Conclusions

- Hybrids appear similar to Barreds at Class level, but less diverse at lower levels
- Established genetic metabarcoding methods that work with Barred Owls
- Large number of prey detections
 - Barred owls are consuming key spotted owl prey
 - Barred owls are consuming key prey items for other species of concern
 - Barred owls are consuming a large number of amphibians

Conclusions

Upcoming Work

- Finish processing data
 - Additional Aves
 - Invertebrates
 - Fish
- Expand genetic reference data
- Refine and expand analyses with completed data
 - Barreds v. Hybrids
 - Klamath Range v. Sierra Nevada
 - Landscape Features
 - Seasonal Trends

Upcoming Work

Genetic Kinship

Identification of Parent –
 Offspring Dyads

- Immigration Rates into Sierra Nevada Population
- General Dispersal from Parent Territories

Genetic Kinship

Thank You!

nkryshak@wisc.edu