An evaluation of four Sacramento-San Joaquin River Delta juvenile salmon survival studies

Ken B. Newman ${ }^{1}$
Stockton FWO
US Fish and Wildlife Service

March 31, 2008

[^0]
Executive Summary:

An evaluation of four Sacramento-San Joaquin River Delta juvenile salmon survival studies

Background.

The US Fish and Wildlife Service, Stockton Fish and Wildlife Office, has since the mid-1980s conducted several multi-year release-recovery experiments with coded-wire-tagged juvenile Chinook salmon. The objectives of the studies were (1) to estimate survival through the lower portions of the Sacramento and San Joaquin river systems, the California Delta, and (2) to quantify the factors affecting survival. Four of these studies, listed more or less by their historical start dates, are the Delta Cross Channel, Interior, Delta Action 8, and VAMP experiments.

Delta Cross Channel: These studies focused on how the position of the Delta crosschannel (DCC) gate affected survival of out-migrating juvenile salmon. When the gate(s) is open, water flow from the Sacramento river into the central Delta increases. The a priori hypothesis for these studies was that survival would be lowered with the gate open since the probability of entering the interior Delta would increase and the fish would thereby be more vulnerable to the water export pumps at the state water project (SWP) and at the federal Central Valley project (CVP). Temporally paired releases were made above the DCC (near Courtland) and below the DCC (at Ryde) and recoveries were made at Chipps Island and in the ocean fisheries.
Interior: These studies were somewhat of a follow-up to the Delta Cross Channel studies that aimed to more directly compare the survival of fish already in the interior Delta to the survival of fish remaining in the Sacramento River. Temporally paired releases were made, one in the interior Delta (in Georgiana Slough) and one in the Sacramento River (at Ryde), and recoveries were made at Chipps Island and in the ocean fisheries.
Delta Action 8: These studies were essentially an alternative analysis of the Interior studies in that the relative survival of interior Delta releases (compared to Sacramento River releases) was to be modeled as a function of water exports. However, with Delta Action 8 objectives in mind, export levels were deliberately manipulated to increase the scope of inference.
VAMP: In contrast to the other three studies which examined survival for fish outmigrating from the Sacramento River, VAMP focused on the survival of salmon out-migrating from the San Joaquin River. The primary factors of interest were
water export and flow levels. Of additional interest was the effect on survival of placing a barrier at the head of Old River (HORB). When the HORB is in place the chance that a fish will enter Old River from the San Joaquin River is decreased, and presumably the influence of the CVP and SWP, which are located adjacent to Old River, is lessened. Temporally paired releases were made at two or three locations, though a total of five release locations were at one time or another used, and recoveries were made at Chipps Island and in the ocean fisheries, and in more recent years at Antioch.

A positive design feature of all four release-recovery studies was the temporal pairing of releases made at different locations in the river system, i.e., for each upstream release (or releases), a concurrent release was made downstream. The temporal pairing aimed to control for the effect of potentially confounding factors and thereby increase precision.

USFWS staff have previously analyzed these studies at various stages of completion. These analyses utilized the temporal pairing but an underlying probability framework for the release-recovery data was not explicitly specified. The analyses did not account for unequal sampling variation (due to, for example, differing release numbers) nor between release pair variation (e.g., unaccounted-for environmental variation in underlying survival or capture probabilities). Analyses of recoveries at different locations were typically carried out separately on a location-specific basis; e.g., results for recoveries at Chipps Island were analyzed and then the analysis was repeated for recoveries from the ocean fishery.

Bayesian hierarchical models.

In this report, Bayesian hierarchical models (BHMs) were used to reanalyze the data from these studies. The BHM framework explicitly defined probability models for the releaserecovery data and accounted for unequal sampling variation and between release pair variation. Recoveries from multiple locations were analyzed in combination. Such a framework is more statistically efficient and coherent than previous analyses in that several levels of uncertainty are explicitly accounted for, using recoveries from multiple locations simultaneously increases precision, and the effect of sample size on precision can be readily examined. However, the costs of the BHM approach include increased model complexity and more technically difficult model fitting procedures, in this case, Markov chain Monte Carlo.

Some assumptions of the BHMs as applied to these studies are worth highlighting. One is that for temporally paired releases the capture probabilities at recovery locations were identical; e.g., for a temporally paired Courtland and Ryde release, the probability that a fish alive at Chipps Island is then caught at Chipps Island is the same for fish from either release location. A related assumption is that the ocean recovery probabilities, which includes survival, spatial distribution, and maturation probabilities, are the same for temporally paired releases. Finally for the VAMP studies, where releases at two or three locations were made more or less upstream of one another, and absolute survival, as contrasted to relative survival is estimated, the survival of fish through in-common downstream sections was assumed the same. For example, given a paired release at Dos Reis and at Jersey Point, fish from Dos Reis that have survived to Jersey Point have the same survival probability from there on as do the Jersey Point releases. Thus, it is assumed that there is no temperature shock, due to differences in truck water temperature and river water temperature, which increases mortality for Jersey Point releases over and above the mortality that will be experienced by Dos Reis fish that have reached Jersey Point. To estimate relative survival, however, between release groups, such shock is acceptable so long as it is the same for both release groups.

Results.

For the most part, the substantive conclusions from the BHM analyses, summarized below, were consistent with previous USFWS analyses.

Delta Cross Channel: There was modest evidence, 64 to 70% probability, that survival of Courtland releases, relative to the survival of Ryde releases, increased when the gate was closed.
Interior: Survival for the interior Delta releases was estimated to be about 44% of the survival for the Sacramento River releases.
Delta Action 8: There was a negative association between export volume and relative survival, i.e., a 98% chance that as exports increased, relative survival decreased. Environmental variation in the relative survival was very large, however; e.g., for one paired release the actual relative survival at a low export export level could with high probability be lower than relative survival at a high export level for another paired release.
VAMP: (a) The expected probability of surviving to Jersey Point was consistently larger for fish staying in the San Joaquin River (say passing Dos Reis) than fish entering Old River, but the magnitude of the difference varied between models somewhat; (b) thus if the HORB effectively keeps fish from entering Old River, survival of
out-migrants should increase; (c) there was a positive association between flow at Dos Reis and subsequent survival from Dos Reis and Jersey Point, and if data from 2003 and later were eliminated from analysis the strength of the association increased and a positive association between flow in Old River and survival in Old River appeared; (d) associations between water export levels and survival probabilities were weak to negligible. Given complexity and number of potential models for the VAMP data, however, a more thorough model selection procedure using Reversible Jump MCMC is recommended.

Discussion.

The resulting BHM analyses are not the ultimate, definitive explanations for what affects juvenile salmon survival through the Delta, particularly for out-migrants from the San Joaquin River. In general data limitations inherent to release-recovery data, i.e., that only one capture is possible, relatively low capture probabilities, relatively high environmental variation, and in the case of $V A M P$ the lack of balance in the release strategy, affect the accuracy of estimates of effects on survival.

The BHM framework, however, which allowed for between release variation in survival and capture probabilities, is arguably an improvement over previous analyses. For example, models without such random effects in the survival and capture probabilities, for example, did not fit the data nearly as well as models with random effects. The variation in recoveries was greater than what would be explained by standard, non-random effects logistic regression.

Given the apparently high environmental variation, it may take many replications of temporally paired releases to more accurately quantify the effects of DCC gate position, exports, flow, and HORB on survival. Regarding future work, if CWT release-recovery data continue to be the primary source of information, then (a) making releases below the in-river recovery locations, such as Chipps Island, is recommended to allow separate estimation of capture and survival probabilities and (b) more detailed analysis of ocean recovery patterns for temporally paired releases may be useful. A promising alternative to CWT data is the use of acoustic tags and in-river receivers. Fish must be sacrificed to read CWTs while acoustic tags can be detected, and read, remotely, thus allowing repeated recaptures and increased precision in estimates of survival. Additionally, by judicious placement of receivers, acoustic tags can provide information about migration paths much more readily than CWT data.

Contents

List of Tables 8
List of Figures 11

1. Introduction 15
2. Background: Data Summary and Previous Analyses 17
2.1. Data 17
2.2. DCC studies 19
2.3. Interior studies 22
2.4. Delta Action 8 Experiments 23
2.5. VAMP and earlier studies 24
2.6. Comments about previous analyses 27
3. Hierarchical Probability Models 30
3.1. General description of Bayesian hierarchical models (BHMs) for recoveries 31
3.2. Remarks 32
4. Methods 37
4.1. DCC Studies 37
4.2. Interior studies 40
4.3. Delta Action 8 Experiments 41
4.4. VAMP studies 42
4.5. BHM fitting and assessment 48
4.6. Sensitivity analysis 50
5. Results 54
5.1. DCC studies 54
5.2. Interior studies 56
5.3. Delta Action 8 Experiments 58
5.4. VAMP studies 61
6. Study design and sample size issues 65
6.1. Bias 65
6.2. Precision 68
6.3. Acoustic tagging studies as an alternative 73
7. Conclusions and Recommendations 74
7.1. Comparison with previous analyses 74
7.2. Criticisms of and concerns about the BHMs 76
7.3. Recommendations 77
8. Acknowledgments 78
9. References 79
Appendix A. DCC and Interior: Theoretical variance of $\hat{\mu}_{\theta}$ 137
A.1. $V[E]$ calculation 137
A.2. $E[V]$ calculation 137
A.3. Summary 141
Appendix B. DCC and Interior: Bootstrap estimate of variance of $\hat{\mu}_{\theta}$ 142
Appendix C. Interior: Sample size determination 143
Appendix D. R code 144
D.1. Interior: Theoretical variance calculation 144
D.2. Interior: Simulation of hierarchical recovery model 146
D.3. Interior: Bootstrap estimate of variance of $\hat{\mu}_{\theta}$ 149
D.4. DCC: Simulating effect of sample sizes on estimate of DCC effect 151
D.5. Interior: Sample size determination 154
D.6. DA 8: Simulating the effect of sample size on the precision of β_{1} 157
D.7. VAMP: Simulating effect of sample size on precision of parameter estimates. 159
Appendix E. WinBUGS code with R interface 163
E.1. DCC hierarchical model 163
E.2. DCC hierarchical model with multivariate Level 2 distribution 165
E.3. Interior hierarchical model 166
E.4. DA 8 hierarchical model 168
E.5. VAMP hierarchical model 170

List of Tables

1 Overview of the release and recovery locations, and duration, of the four studies.

2 Summary of notation for releases, recoveries, and model parameters.

3 DCC: Release and recovery data. Recoveries at Chipps Island, in the ocean fisheries, and at the SWP and CVP fish salvage facilities are in the columns headed CI, Oc, and $F F$, respectively. Ryde releases were occasionally made at Isleton and some of the Port Chicago releases were actually at Benicia.

4 Interior and DA 8: Release and recovery data. Recoveries at Chipps Island, in the ocean fisheries, at the SWP and CVP fish salvage facilities, and at Inland locations (expanded numbers) are in the columns headed $C I, O c, F F$, and $I L$, respectively. Ryde releases were occasionally made at Isleton (denoted by asterisk by tag code) and some of the Port Chicago releases were actually at Benicia (denoted by asterisk by tag code). Exports are a three day average volume of water exported from SWP and CVP.

5 VAMP: Release and recovery data from pre-VAMP (1985-1991, 1994-1999) and VAMP (2000-2006) studies. Recovery locations are Antioch (Ant), Chipps Island (CI), ocean fisheries (Oc), and the SWP and CVP fish salvage facilities (FF). Stock designations FRH and MRFF denote Feather River Hatchery and Merced River Fish Facility (excepting group 4, all releases in same group have same stock). Flow and Exports (Exp) column headings DF, MD, DR, and UOR are for Durham Ferry, Mossdale, Dos Reis, and Upper Old River. Flows, exports, por, and temperature are defined in Table 6.

6 VAMP: Definitions of covariates used in modeling (and listed in Table 5). DAYFLOW is a California Department of Water Resources (CDWR) database and DSM2 is a CDWR model; Yiguo Liang and Min Yu (personal communication) supplied the DSM2 model-based values. Vernalis is 6 miles upstream of Durham Ferry.

7 VAMP: Year specific schematic of the release and recovery locations in the VAMP and related San Joaquin studies since 1985. Release locations (marked by R) are

Durham Ferry (DF), Mossdale (MD), Old River (OR), Dos Reis (DR), and Jersey Point (JP). Recovery locations (marked by X) are Antioch (Ant), Chipps Island (CI), and ocean fisheries (Oc). X^{*} denotes recoveries that are not yet available.

8 VAMP: Summary of analyses in 2005 Annual Technical Report for San Joaquin River Agreement. Response variable, $R R_{a / b \rightarrow c}$, denotes ratio of recovery fractions at location c from releases at location a and location b. Abbreviations are DF (Durham Ferry), MD (Mossdale), DR (Dos Reis), JP (Jersey Point), Ant (Antioch), CI (Chipps Island), and Oc (ocean fisheries). Sign refers to the slope coefficient. The P-value refers to a test that the slope coefficient equals 0 .

9 DCC: Summary of BHMs fit and model selected for inference. Top table compares DIC values for several BHMs. Column headed $f(\theta)$ refers to the transformation used and column headed σ 's refers to the priors used for standard deviations of random effects. The column headed by $\frac{\theta_{\text {Open }}}{\theta_{\text {Closed }}}$ gives the posterior median of the ratios. Bottom table contains summaries for the model selected for inference. The σ^{2} values are the posterior medians for $\sigma_{\theta}^{2}, \sigma_{\mu_{R y \rightarrow C I}}^{2}$, and $\sigma_{\mu_{R y \rightarrow O c}}^{2}$.

10 Interior: Summary of BHMs fit and model selected for inference. Top table compares DIC values for several BHMs and the mean posterior predicted survival of Georgiana Slough relative to Ryde survival $(\bar{\theta})$. Column headed $f(\theta)$ refers to the transformation of θ used and column headed σ 's refers to the priors used for standard deviations of random effects (the inverse gamma is actually the gamma on the precision, inverse of σ^{2}). Bottom table contains summaries for the model selected for inference. The σ^{2} values are the posterior medians for $\sigma_{\theta}^{2}, \sigma_{\mu_{R y \rightarrow C I}}^{2}$, and $\sigma_{\mu_{R y \rightarrow O c}}^{2}$.

11 DA 8: Posterior distribution summaries for the multinomial model (with log transformed θ and uniform priors on the σ^{\prime} s). The σ^{2} values are the posterior medians of $\sigma_{\theta}^{2}, \sigma_{r_{R y \rightarrow C I}}^{2}$, and $\sigma_{r_{R y \rightarrow O c}}^{2}$.

12 DA 8: Comparison of BHM and non-Bayesian estimates of release pair-specific θ, ratio of the Georgiana Slough survival probability to the Ryde survival probability. BHM values are mean and standard deviation of posterior distribution. NonBayesian values are the MLEs (maximum likelihood estimates) and standard errors (using the delta method). Ratio of survival indices is based upon the Chipps Island recoveries alone (Pat Brandes, personal communication).

13 VAMP: Comparison of DIC values for simple models with and without random effects. Only covariate is an indicator variable for HORB in a logit transformation of $S_{D R \rightarrow J P}$.

14 VAMP: Comparison of model results for $p_{O R}$ known, multinomial distributions, logit θ 's, and Uniform priors for σ 's. When entries under S are decimals, the value shown is the posterior median probability of survival. When entries contain covariate names, the reported percentage is the posterior probability that the flow coefficient is positive or that the exports coefficient is negative.

15 Recoveries from replicate releases made at Durham Ferry and χ^{2} tests of homogeneity. χ^{2} values are based on Antioch, Chipps Island, and Ocean recoveries. P-values were calculated by Monte Carlo simulations; P-values were calculated with Antioch, Chipps Island, and Ocean categories (w/ ocean) and with Antioch and Chipps Island categories (w/o ocean). Number in parentheses next to year is the release set number.

16 Estimated capture probabilities at Chipps Island for the DCC and Interior/DA 8 studies (based on ocean recoveries of Port Chicago releases).

17 DA 8: Standard errors for $\hat{\beta}_{1}$, estimated slope coefficient, as a function of R (number released, $R_{G S}=R_{\text {Ryde }}$) and n (number of release pairs). Calculations are based upon simulations and regression of logit $(\hat{\theta})$ against standardized exports where the true value of β_{1} was 0.57 .

18 VAMP: Interquartile range for parameter estimates for different stream sections as a function of number released ($R=R_{D F}=R_{M D}=R_{D R}=R_{J P}$) and number of release sets (n). Calculations are based upon 10,000 simulations and regressions of point estimates of survival probabilities (logit transformed) against the covariates. The true values are shown for each parameter. HORB is an indicator equal to 1 when the barrier is in.

List of Figures

1 Map of release and recovery locations used by the USFWS for the multi-year studies. 102

2 Schematics of release and recovery locations for the four multi-year studies. $S_{A \rightarrow B}$ is the survival probability between point A and point B, and p_{C} is the capture probability at location C.

3 DCC: Recovery fractions for Courtland ($\hat{r}_{C t \rightarrow C I+O c}$) and Ryde ($\hat{r}_{R y \rightarrow C I+O c}$) releases by release pair. First four pairs are from releases that occurred when the gates were closed (with plotting character C), and the last nine are when the gates were open (plotting character O).

4 DCC: Boxplots of the ratio of recovery fractions for Courtland to Ryde releases, $\hat{r}_{C t \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}$, when the DCC gates were open and closed.

5 Interior/DA 8: Recovery fractions for Georgiana Slough ($\hat{r}_{G S \rightarrow C I+O c}$) and Ryde $\left(\hat{r}_{R y \rightarrow C I+O c}\right)$ releases by release pair.

6 Interior/DA 8: Comparison of recovery fractions at Chipps Island, in the ocean fisheries, in fish facility salvage, and from inland recoveries for Georgiana Slough and Ryde releases by release pair. Straight lines on plots have slope equal to mean of the ratios of recovery fractions, with slope written below x-axis label.

7 DA 8: Estimated fraction of the release that is salvaged at the SWP and CVP fish facilities plotted against the export level (for both Georgiana Slough and Ryde releases). Solid line and dashed line are scatterplot smooths of fraction salvaged for Georgiana Slough and Ryde releases, respectively.

8 VAMP: Combinations of flow and export volumes when the HORB is in and when it is out. The flow and export measurements were those measured or estimated effective near Mossdale.

9 VAMP: Recovery fractions by release site; i.e., for release site $x,\left(y_{x \rightarrow A n t}+y_{x \rightarrow C I}+\right.$ $\left.y_{x \rightarrow O c}\right) / R_{x}$.

10 VAMP: Estimated fraction of releases salvaged at SWP and CVP fish salvage facilities when the HORB is in or out.

11 VAMP: Adult inland recovery fractions for Durham Ferry, Mossdale, Dos Reis, and Jersey Point releases by release pair.

12 CWT recovery pattern by date at Chipps Island for examples taken from DCC, Interior/DA 8, and VAMP studies.

13 DCC: Bootstrap sample $(B=10,000)$ of the estimated ratio, $\left(\frac{\mu_{\theta(\text { Open })}}{\mu_{\theta(\text { Closed })}}\right)$, equation (15). Vertical line marks the point estimate.

14 DCC: Predicted recoveries at Chipps Island of Ryde releases, $y_{R y \rightarrow C I}$ (red vertical line), and Bayesian P-values.

15 DCC: Predicted recoveries in Ocean fisheries of Ryde releases, $\hat{y}_{R y \rightarrow O c}$ (red vertical line), and Bayesian P-values.

16 DCC: Predicted recoveries at Chipps Island of Courtland releases, $y_{C t \rightarrow C I}$ (red vertical line), and Bayesian P-values.

17 DCC: scaled residuals plotted against predicted values.

18 DCC: scaled residuals plotted against predicted values for model without random effects.

19 Interior: Predicted recoveries at Chipps Island of Ryde releases, $y_{R y \rightarrow C I}$ (red vertical line), and Bayesian P-values.

20 Interior: scaled residuals plotted against predicted values.

21 Interior: scaled residuals plotted against predicted values for model without random effects.

22 Interior: Posterior median θ 's plotted against secondary covariates, Georgiana Slough release temperatures and mean fish lengths at time of release.
$23 \mathrm{DA} 8: \hat{\theta}\left(=\hat{r}_{G S \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}\right)$ plotted against export levels. Vertical lines extend up and down one standard error. Fitted line is a nonparametric weighted regression using the supersmoother function in R with weights being the inverse of the standard errors squared.

24 DA 8: Posterior means (solid) and medians (dashed line) for θ from the BHM (with \log transformed θ and uniform priors on standard deviations of random effects) plotted against export levels. The 2.5% and 97.5% intervals are indicated by vertical lines.

25 DA 8: Predicted $\theta\left(S_{G S \rightarrow C I} / S_{R y \rightarrow C I}\right)$ values for different levels of exports for three different models, M1, M2, and M3. M1 is a linear regression of $\hat{r}_{G S \rightarrow C I} / \hat{r}_{R y \rightarrow C I}$ on exports. The M2 values are the exponentiated values of a linear regression of $\log \left(\hat{r}_{G S \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}\right)$ on exports. M3 is a BHM (with \log transformed θ and uniform priors on standard deviations of random effects). Also plotted are the non-BHM point estimates $\hat{r}_{G S \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}$ for the individual releases (denoted by X).

26 VAMP: Histograms of posterior distributions for coefficients, $\xi_{1}, \xi_{2}, \zeta_{1}, \zeta_{2}$, corresponding to flow at Dos Reis and exports following the time of releases from Dos Reis, and flow in Upper Old River and exports following the time of releases from Upper Old River (or Mossdale). (Based on Null.FE.FE model.)

27 VAMP: Posterior mean survival probabilities for each of the release sets through the Dos Reis to Jersey Point reach, the Upper Old River to Jersey Point "reach". Blue vertical bars on x -axis denote when the HORB was in place. (Based on Null.FE.FE model.)

28 VAMP: Posterior predictive distribution and Bayesian P-values for recoveries at Antioch of releases from Mossdale. P-values are the minimum of the two tail probabilities. (Based on Null.FE.FE model.)

29 VAMP: Scaled residuals versus posterior predictive means. (Based on Null.FE.FE model.)

30 VAMP: Random effects residuals, by stream section, for logit of survival plotted against water temperature at release with supersmoother fit superimposed. The effects for Jersey Point are for the logit of Chipps Island recovery rate, either $r_{J P \rightarrow A n t \rightarrow C I}$ or $r_{J P \rightarrow C I}$. (Based on Null.FE.FE model.)

31 VAMP: Random effects residuals, by stream section, for logit of survival plotted against stock origin (FRH=Feather River Hatchery, MRFF $=$ Merced River Fish Facility). The effects for Jersey Point are for the logit of Chipps Island recovery rate, $r_{J P \rightarrow C I}$. (Based on Null.FE.FE model.)

32 VAMP: Random effects residuals, by stream section, for logit of survival plotted against the estimated number of salmon salvaged at the fish facilities at CVP and SWP. The effects for Jersey Point are for the logit of Chipps Island recovery rate, $r_{J P \rightarrow C I}$. (Based on Null.FE.FE model.)

33 DCC: Bootstrap standard errors for $\frac{\mu_{\theta} \widehat{(\text { Open } n)}}{\mu_{\theta(\text { Closed })}}$ as a function of the number of replications. The number of replications on the x-axis refer to the total number of replications, with half being gates open and half with gates closed; e.g., 10 means 5 experiments with DCC gate open and 5 experiments with DCC gate closed. Number of fish released at each site was fixed at $100,000, R_{C t}=R_{R y}=100,000$. An extreme value of 62 , for $n=10$ was deleted before plotting.

34 Interior: Number of years of experimentation (n) to achieve a specified standard error for $\hat{\mu}_{\theta}$ for expected numbers of recoveries plotted against observed numbers of recoveries, by release site and recovery location. ($\mu_{\theta}=0.8$.)

1. Introduction

Throughout the Sacramento and San Joaquin river systems abundances of native Chinook salmon runs are far below historical levels. The declines in abundances of some runs have been drastic enough to result in endangered species listings; e.g., Sacramento winter run Chinook salmon were put on the federal endangered species list in 1994. Reasons for the declines include man induced losses of and changes in adult spawning and juvenile rearing habitat such as the building of dams and various water diversions. To attempt to estimate the survival probabilities for juvenile salmon during the out-migration period, and to understand how survival may be associated with various water conditions and man-made structures, the US Fish and Wildlife Service (USFWS), Stockton Fish and Wildlife Office, has been carrying out various survival studies, more or less annually, for over twenty years.

Many of these studies have focused on survival through and near the California Delta (hereafter the Delta), which is located in the lower reaches of the Sacramento and San Joaquin rivers, including their confluence. The general design of the studies is to release hatchery-reared juvenile Chinook salmon at two or more locations in the river, catch fish downstream using a trawl, typically over a two to three week period, and then, over a two to four year period, recover others in samples taken from ocean fishery catches. At the hatchery the fish are tagged internally with coded-wire-tags and externally marked by excising the adipose fin.

The release and recovery locations and duration of four of the studies are summarized in Table 1. The locations of the various release locations for the studies and the downstream recovery locations (Antioch and Chipps Island) are shown in Figure 1. Schematics of the release-recovery design for each of the studies are shown in Figure 2.

The primary objectives of each study are listed below.
(1) Delta Cross Channel studies (DCC): To determine whether survival of out-migrating juvenile salmon from Courtland, located on the Sacramento River just above the Delta Cross Channel, to Chipps Island is higher when the Delta Cross Channel Gates are closed than when they are open.
(2) Interior Delta vs mainstem Sacramento studies (Interior): To determine whether survival of out-migrating juvenile salmon from Georgiana Slough, located in the north (interior) Delta, to Chipps Island is lower than the survival from Ryde, located in the Sacramento River, to Chipps Island.
(3) Delta Action 8 studies ($D A$ 8): To determine whether survival of Georgiana Slough releases relative to Ryde releases is associated with water project exports (see the Central Valley Project (CVP) and State Water Project (SWP) in Figure 1). (Note: this is an extension of the Interior study.)
(4) Vernalis Adaptive Management Plan studies (VAMP): To determine if survival of outmigrating juvenile salmon from various locations on the San Joaquin River (Durham Ferry, Mossdale, Dos Reis, and Jersey Point) to Antioch and Chipps Island is related to water project exports and San Joaquin River flows.

There are three main purposes of this paper: (1) to evaluate the four studies, some of which are still ongoing, in terms of how well the studies did (or can) achieve their stated objectives, (2) to demonstrate alternative analysis procedures, and (3) to make recommendations for alternative study designs.

Section 2 reviews the data generation and analysis procedures of the USFWS for each study. A general probability framework, hierarchical models, for viewing all four studies is described in Section 3, particular models for each of the studies are given in Section 4, and the framework is applied, with a reanalysis, to each of the studies in Section 5. Sample size determination for some of the studies is discussed in Section 6 and the last section includes recommendations and conclusions. Appendices include technical details of some of the analysis procedures along with computer code.

2. Background: Data Summary and Previous Analyses

2.1. Data. In all four studies releases were made in temporally matched pairs or sets, where one release served as a control group in some regard. The term paired release-recovery experiment will be used to describe these studies, even when more than two temporallymatched releases were made. Table 2 summarizes the release-recovery notation used in this report, with more explanation below, along with some of the notation used for models. The release numbers and recoveries for the paired releases in each of the four studies are shown in Tables 3-5.

Notation. Number of fish released is denoted by R and y is the number recovered. Release locations Courtland, Georgiana Slough, Ryde, Durham Ferry, Mossdale, Dos Reis, and Jersey Point are abbreviated $C t, G S, R y, D F, M D, D R$, and $J P$, respectively. Similarly, recovery locations Chipps Island, Antioch, and the ocean fishery samples are abbreviated by $C I$, $A n t$, and $O c$. The release and recovery abbreviations are used as subscripts for R and y; for example, recoveries at Chipps Island of releases made from Courtland are represented by $y_{C t \rightarrow C I}$. The ocean recoveries used for analysis are estimated, not observed, values and are shown with a hat, e.g., $\hat{y}_{R y \rightarrow O c}$. Recovery fractions, numbers recovered divided by number released, are denoted \hat{r}; e.g., $\hat{r}_{R y \rightarrow O c}=\hat{y}_{R y \rightarrow O c} / R$. The fraction of total recoveries relative to number release are called combined recovery fractions and denoted, for example, $\hat{r}_{R y \rightarrow C I+O c}$.

In-river smolt recoveries. For all four studies a midwater trawl operating at Chipps Island has been used to capture the released salmon. The trawl is part of a longterm USFWS monitoring program to collect information on the abundance of salmon and other species. A single tow is usually of 20 minute duration and is made either along the north shore, in the middle of the river, or along the south shore. During the period when fish from the studies are out-migrating past Chipps Island, the trawl sampling effort is often increased. For example, sampling during May and June (which is when DCC fish and VAMP fish pass by) and during December and January (when Interior/Delta Action 8 fish pass by) has usually been on a daily basis. For a given sample day at least 10 tows are made, and for some days in May and June the number of tows is doubled.

For the VAMP study (since year 2000) additional trawling has been done using a Kodiak trawl at Antioch in a fashion similar to that at Chipps Island. However, the number of tows made in a sampled day has been more variable than that at Chipps Island; e.g., in year 2005, the number of tows made at Antioch on a given sample day ranged from 5 to 30 .

Ocean adult recoveries. The estimated number of ocean recoveries are expansions of observed recoveries taken from samples of landed ocean catches. Spatially and temporally stratified random samples are taken of the catches landed by the commercial troll and sport fisheries at various ports along the Pacific coast throughout the fishing season. Recoveries from a given release can occur at ages $2,3,4$ or 5 ; i.e., if out-migrating in year t (age 1), it could be caught in years $t+1, t+2, t+3$, or $t+4$. The expanded recoveries from a given release can be written approximately as follows, ignoring the distinction between samples taken of commercial and of sport fisheries. Within stratum h (a particular year-week-area combination), letting N_{h} be the total number of sample units, n_{h} be the number selected (within stratum h), and $o b s_{x \rightarrow h}$ be the number of sample recoveries from release x, the estimated number of recoveries is

$$
\hat{y}_{x \rightarrow O c} \approx \sum_{\text {year }} \sum_{\text {week }} \sum_{\text {area }} \frac{N_{\text {year,week,area }}}{n_{\text {year,week,area }}} \text { obs } s_{x \rightarrow \text { year,week,area }} .
$$

These estimates will be referred to as expanded ocean recoveries. The overall sampling rate is around 20 to 25%, i.e., $n / N \approx 0.20$ to 0.25 , and the precision of the estimates is likely relatively high.

Salvaged fish. Out-migrating smolts are also recovered or collected at salvage facilities at the water export locations (one near the state water project, SWP, and one near the federal water project, CVP). The collection facilities are sampled on a regular, fairly systematic basis, and salmon in the sample with a missing adipose fin are sacrificed to read the codedwire tag. Based on these samples, the total number of tagged fish in the collection facility are estimated. This total, including sacrificed fish, is the estimated salvage. All the collected fish (excluding those sacrificed during sampling) are then trucked from the facilities to locations about 8 to 11 miles upstream of Chipps Island. Fish from the state facility are released either in the Sacramento River, at Horseshoe Bend and, or in the San Joaquin River, at Curtis Landing near Antioch Bridge; from federal facilities releases are either in the San Joaquin River at Antioch, near Antioch Bridge, or in the Sacramento River at Emmanton, near Sherman Island. Salvaged fish are potentially being recovered at Chipps Island and in the ocean fisheries, thus using estimated salvaged fish as a response variable along with recoveries at Chipps Island and elsewhere would potentially lead to double-counting. However, Newman (2003) estimated that the probability of recovery at Chipps Island is in the range of 0.001 to 0.002 . Thus the number of fish salvaged and caught at Chipps Island may be relatively small.

Inland recoveries. Returning adult fish are also recovered in freshwater areas, in samples taken to estimate escapement and at hatcheries, sometimes referred to as inland recoveries.

Similar to ocean recoveries, observed and expanded numbers are calculated. Escapement sampling procedures vary considerably throughout the Central Valley, and coverage is uneven. Hatchery fish released away from the hatchery they were reared in are quite likely to stray, with straying probabilities generally increasing with increasing distance from the hatchery. If the straying pattern differs between releases within the same release set, and if the sampling effort differs between return locations, then estimates of adult freshwater returns need to be adjusted accordingly, otherwise bias will result. Such adjustments, however, would be a considerable undertaking, and has not been attempted for the work described herein.

Trawl efficiency measure. For some of the USFWS analyses, a survival "index" was calculated using a measure of the trawl gear efficiency. The idea behind the trawl efficiency measure was to adjust for possible differences in the capture probabilities between releases in a paired release. The measure is based on duration of sampling and the channel width sampled relative to the the length of out-migration time and total channel width at Chipps Island (or Antioch) during that time. The relative width of channel sampled is calculated by dividing the net width by the estimated channel width; e.g., at Chipps Island the channel width is 3900 feet, the midwater trawl net is 30 feet wide, thus the fraction sampled is $30 / 3900=0.00769$. The fraction of out-migration time sampled is calculated by dividing the total minutes the net was towed by the number of minutes elapsed between the first and last days of recovery; e.g., if the first recovery was on May 5 and the last on May 11, and the net was towed for 2608 minutes, the fraction is $2608 /\left(7^{*} 24^{*} 60\right)=0.259$. Trawl efficiency is then the product of these two fractions, e.g., $0.259 * 0.00769=0.00199$. More generically, letting f denote the trawl efficiency measure:

$$
f=\left[\frac{\text { Sampling duration }}{\text { Out-migration duration }}\right] \times\left[\frac{\text { Trawl net width }}{\text { Channel width }}\right]
$$

Since the calculated out-migration duration is tied to the recovery dates, efficiency estimates can differ between paired releases if the dates of first and last capture do not coincide. Problems with this measure are discussed later.
2.2. DCC studies. The Delta Cross Channel (DCC) was built in 1951 by the US Bureau of Reclamation to increase the amount of water transferred from the Sacramento River across the Delta to the federal pumping plant at Tracy (the CVP), which in turns pumps water into the Delta Mendota Canal. There are two movable gates, the DCC gate, which can be opened to let water from the Sacramento River enter the Delta or closed to stop such transfer. Just below the entrance to the DCC on the Sacramento River is the entrance to the Georgiana Slough, which is another way for water, and fish, to enter the Delta. Once
fish enter the Delta, because of the stream geometry and the relative proximity of the SWP and CVP, they are presumably more vulnerable to mortality induced by the pumps.

To understand how the position of the Delta Cross Channel gate, as well as release location relative to the entrance to Georgiana Slough, affected the survival of fish out-migrating down the mainstem of the Sacramento River, a total of thirteen paired releases were made during the spring months (usually May) between 1983 and 1989 at Courtland and at Ryde (Figure 1). All of the releases were juvenile fall run Chinook salmon that had been raised at the California Department of Fish and Game's Feather River fish hatchery. The Courtland site is on the mainstem of the Sacramento River just above the entrances to the Delta Cross Channel and Georgiana Slough, while Ryde is on the mainstem below both entrances; thus fish released from Ryde are much less likely to enter the interior Delta. Four pairs were released with the DCC gate closed and nine pairs were released with the DCC gate open. Table 3 shows the numbers released at Courtland and Ryde and the number of recoveries at Chipps Island and the expanded ocean recoveries.

Simple summaries. The combined Chipps Island and ocean fishery recovery fractions for the Courtland ($\hat{r}_{C t \rightarrow C I+O c}$) and Ryde ($\hat{r}_{R y \rightarrow C I+O c}$) releases for different gate positions in Figure 3. Given that Courtland is upstream of Ryde, one might expect the Ryde recovery rate to be higher than the Courtland rate no matter what the gate position. However, in 2 of the 4 open gate and 2 of the 9 closed gate situations the point estimate of the Ryde recovery rate is less than the Courtland rate, presumably a reflection of sampling variation. Figure 4, which compares the ratio of recovery fractions, $\hat{r}_{C t \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}$, for different gate positions, suggests that Courtland releases tend to survive better when the DCC gates are closed. There was one outlier $\left(\hat{r}_{C t \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}>3\right)$ for the open gate release pairs; this is from a 1989 release (Table 3, Group 13), where there were relatively few ocean recoveries from the Ryde release.

Regarding other recoveries, the estimated number of juvenile fish salvaged by the fish export facilities varied widely between releases (Table 3). For only one of the Ryde releases were there ever any salvaged fish at the export facilities. For the Courtland releases there were four releases with a considerable number of salvaged fish, ranging from 182 to 1075; there was no association with gate position, however, in that the gate was closed for two of these four cases. When the gate was closed, some of the salvaged fish likely entered the Delta via Georgiana Slough (since no Ryde fish were recovered for those four cases). Inland recoveries were minimal (fourteen fish total from all 13 pairs), none of which were to their hatchery of origin at Feather River.

Previous USFWS analyses. A USFWS analysis of DCC studies (Brandes and McLain, 2001) was based on survival indices to Chipps Island and expanded ocean recovery rates for both Courtland and Ryde releases. Per release pair, the Chipps Island indices were calculated by dividing the observed number of recoveries at Chipps Island by the estimates of trawl efficiency, $f_{C t}$ and $f_{R y}$, and by the number released, $R_{C t}$ and $R_{R y}$:

$$
\hat{I}_{C t \rightarrow C I}=\frac{y_{C t \rightarrow C I}}{f_{C t} R_{C t}}=\frac{\hat{r}_{C t \rightarrow C I}}{f_{C t}} \quad \hat{I}_{R y \rightarrow C I}=\frac{y_{R y \rightarrow C I}}{f_{R y} R_{R y}}=\frac{\hat{r}_{R y \rightarrow C I}}{f_{R y}} .
$$

expanded ocean fishery recovery rates were also calculated, $\hat{r}_{C t \rightarrow O c}$ and $\hat{r}_{R y \rightarrow O c}$. Brandes and McLain then carried out four paired t-tests for equality of the indices and ocean recovery rates:

$$
\begin{array}{ll}
H_{o}: I_{C t \rightarrow C I}=I_{R y \rightarrow C I} \mid \text { DCC gate open } & H_{o}: I_{C t \rightarrow C I}=I_{R y \rightarrow C I} \mid \text { DCC gate closed } \\
H_{o}: r_{C t \rightarrow O c}=r_{R y \rightarrow O c} \mid \text { DCC gate open } & H_{o}: r_{C t \rightarrow O c}=r_{R y \rightarrow O c} \mid \text { DCC gate closed }
\end{array}
$$

The null hypotheses for the Chipps Island indices were rejected, but were not rejected for the ocean recovery rates.

Manly analyses. The hypotheses tested by Brandes and McLain were hypotheses of no locational differences in survival probabilities between Courtland and Ryde releases conditional on a particular DCC gate position.

In contrast, Manly (2002) used the pairing of Courtland and Ryde to advantage by comparing the ratios of Chipps Island indices between the open and closed gate situations using two sample t-tests for the following hypotheses.

$$
\begin{aligned}
H_{o} & : \left.\frac{I_{C t \rightarrow C I, t}}{I_{R y \rightarrow C I, t}} \right\rvert\, \text { Open } \left.=\frac{I_{C t \rightarrow C I, t}}{I_{R y \rightarrow C I, t}} \right\rvert\, \text { Closed } \\
H_{a} & : \left.\frac{I_{C t \rightarrow C I, t}}{I_{R y \rightarrow C I, t}} \right\rvert\, \text { Open } \left.<\frac{I_{C t \rightarrow C I, t}}{I_{R y \rightarrow C I, t}} \right\rvert\, \text { Closed }
\end{aligned}
$$

Manly also tested for the equality of differences in indices. In both cases he did not find statistically significant differences (using a pooled estimate of variance in each case, the P values were 0.393 for ratios and 0.250 for differences). These tests are more directly focused on the effect of gate position and are more appropriate than the tests carried out by Brandes and McLain.
2.3. Interior studies. In contrast to the DCC studies where the relative survival in the interior Delta was measured indirectly from the Courtland releases which might enter the interior Delta (via the DCC or entering Georgiana Slough), the Interior studies focused directly on the relative survival of fish known to be in the interior Delta A total of 15 paired releases of late fall run fish (reared at Coleman National Fish Hatchery) were made during the months of December and January in Georgiana Slough and at Ryde between 1993/1994 and 2005/2006 to study how the interior Delta releases' survival compared to mainstem releases (and for the related DA 8 study, to study how the relative survival related to exports). The late fall run was chosen with the intent to imitate, to the degree possible, the natural winter run, hoping to to perhaps gain understanding of how export operations impacted the winter run. Releases in Georgiana Slough were made far enough into the slough as to make it unlikely that fish would go upstream to Sacramento River and then travel down the river. Table 4 shows release and recovery data for the Interior studies.

Simple summaries. The overall recovery fractions, recoveries at Chipps Island and in the ocean fisheries divided by release number, are compared for the Georgiana Slough and Ryde release pairs in Figure 5. While there is considerable between-pair variation, the overall recovery fractions for Ryde releases remained higher than those for Georgiana Slough in all cases.

Figure 6 compares the four sets of recovery fractions, at Chipps Island, in the ocean, at the fish facilities, and at inland locations. The straight line drawn on each plot has a slope equal to the mean of the ratio of recovery fractions of Georgiana Slough to Ryde releases, e.g., $\left(y_{G S \rightarrow C I} / R_{G S}\right) /\left(y_{R y \rightarrow C I} / R_{R y}\right)$. The means of the ratios were $0.26,0.43$, and 0.39 for at Chipps Island, in the ocean, and inland, respectively, consistent evidence that Georgiana Slough fish were surviving with a lower probability. Conversely, the relative fraction of fish salvaged was proportionately much higher for Georgiana Slough releases compared to Ryde releases, over 16 times greater.

The inland recoveries are perhaps comparable in this study given that the stray rates, calculated as the relative fraction of inland recoveries returning to Coleman National Fish Hatchery (CNFH), e.g., $y_{G S \rightarrow C N F H} / y_{G S \rightarrow \text { Inland }}$, were much the same for Georgiana Slough and Ryde. Excluding one extreme observation, the relationship was quite linear and the correlation coefficient was 0.93 .

Previous USFWS analyses. The published analyses (Brandes and McLain, 2001) were made using the data available at the time and it is these results that are discussed below. Since then the analyses have been updated to include the most recent data (Pat Brandes,
personal communication), but the analyses have been similar to what is described here. Brandes and McLain (2001, pp 72-77) calculated survival indices to Chipps Island for the Georgiana Slough and Ryde releases,

$$
\hat{I}_{G S \rightarrow C I}=\frac{\hat{r}_{G S \rightarrow C I}}{f_{G S}} \quad \hat{I}_{R y \rightarrow C I}=\frac{\hat{r}_{R y \rightarrow C I}}{f_{R y}}
$$

and ocean recovery rates, $\hat{r}_{G S \rightarrow O c}$ and $\hat{r}_{R y \rightarrow O c}$. Paired t-tests were used to test hypotheses of equality of survival indices or ocean recovery rates for Georgiana Slough and Ryde releases.

$$
H_{o}: I_{G S \rightarrow C I}=I_{R y \rightarrow C I} \quad H_{o}: r_{G S \rightarrow O c}=r_{R y \rightarrow O c}
$$

The test results were highly significant in both cases, with Chipps Island survival indices and ocean recovery fractions for Georgiana Slough releases significantly lower than for Ryde releases.
2.4. Delta Action 8 Experiments. These experiments overlap with the Interior studies in that the same release-recovery data are used. How the two studies differ is that the Interior studies focus on identifying whether or not differences in survival exist, and, if so, what the magnitude of the differences are, while DA 8 is aimed at modeling differences as a function of exports. Thus, on one hand, the DA 8 studies are not so much studies but different analyses of the data provided by the Interior studies. On the other hand, however, export levels have been deliberately manipulated to increase the scope of inference about the possible relationship with survival. Furthermore, in recent years the spatial scope of the DA 8 studies has expanded by additional releases being made at Sacramento, Sherman Island, Vorden, and Port Chicago. These additional releases are, however, not discussed in this report.

Simple summaries. The estimated fractions of juvenile fish salvaged are plotted against exports for both release groups (Figure 7). The loess smooth drawn across the plot suggests a positive association between exports and the fraction of the Georgiana Slough releases that is salvaged. With the exception of the 1995 release, the fraction salvaged for Ryde releases appears to be unrelated to exports.

Previous USFWS analyses. Brandes and McLain (2001, p 75) used an indirect approach to model the ratio of Chipps Island survival indices for Georgiana Slough releases to Ryde releases as a function of exports. Data from some fall run releases (raised at Feather River hatchery) made in the spring months of 1992-1994 were also included in the analysis. The

Chipps Island survival indices were first calculated for the Georgiana Slough and Ryde releases separately and then the ratio of indices was regressed against exports:

$$
\frac{I_{G S \rightarrow C I}}{I_{R y \rightarrow C I}}=\beta_{0}+\beta_{1} \text { Exports }+\epsilon
$$

The resulting slope estimate, $\hat{\beta}_{1}=-0.03$, was significantly less than zero, which suggested a negative relationship between exports and the ratio of survival indices.
2.5. VAMP and earlier studies. Prior to VAMP which began in 2000, between 1985 and 1999, several release and recovery experiments were carried out in the lower San Joaquin river system and Delta. The objectives of these studies included comparing survival between fish that traveled down Old River, which branches off the San Joaquin River, with the survival of those that continued down the San Joaquin River. Old River passes by the CVP and SWP pumping plants (Figure 1), and water, and fish, from Old River are drawn directly towards the water export pumps. During the first years of experimentation, 1985-1990, paired releases were made directly into Old River and directly into the San Joaquin River near Dos Reis, which is a short distance downstream of the head of Old River. In terms of recovery fractions at Chipps Island, the Old River releases had considerably lower fractions than did Dos Reis releases (the median ratio of fraction for Old River releases to fraction of Dos Reis releases was 0.46 (Table 5)).

Given what was learned about apparent survival in Old River, no further releases were made directly into Old River after 1990, and a removable barrier was installed at the head of Old River (HORB) starting in 1992 to lower the probability that an out-migrating salmon would go down Old River. Partially to study the effectiveness of the HORB, paired releases were made at Mossdale, just upstream of the head of Old River, at Dos Reis, and Jersey Point starting in 1994. The HORB, however, cannot be placed in the river when flows are above 5000 cfs and it cannot be present in the river at flows above 7000 cfs (San Joaquin River Group Authority 2006), so it has not always been in place every year.

The VAMP studies (year 2000 to the present) have the primary aim of studying the effects of flow and exports on salmon survival given that the HORB is in place. During the VAMP studies exports are not to exceed 3000 cfs. The intended experiment design is to make near-simultaneous releases from three locations: (1) at Durham Ferry on the San Joaquin River, about 12 miles upstream of Old River, (2) Mossdale, and (3) Jersey Point (relatively near the confluence with the Sacramento River); and then to make recoveries downstream at Antioch by a kodiak trawl, further downstream at Chipps Island by a mid-water trawl, and in the ocean fishery (Figure 1). In 2005 and 2006 flows were too high for HORB installation,
however, and releases were made at Dos Reis instead of Mossdale in 2005, and at Mossdale instead of Durham Ferry in 2006.

Table 5 includes the release and recovery data from the pre-VAMP and VAMP studies. Some of the associated covariates used in modeling recoveries are also shown and definitions are provided in Table 6.

The fish used in the pre-VAMP and VAMP studies were all fall run, but the hatchery from which the fish came has varied over time (see the stock column in Table 5). In the earliest years, 1989-1995 most fish came from Feather River Hatchery. For 1996-1999 fish came from both the Feather River Hatchery and the Merced River Fish Facility, but within any given release set all fish came from the same hatchery. Since the VAMP studies began, all fish have come from the Merced River Fish Facility.

A schematic of the release and recovery locations by year is shown in Table 7. A relatively large number of observations (206 in total) have been generated, but imbalance in the releaserecovery locations is evident. Lack of balance in the design is also apparent in terms of the covariates of interest, HORB position, flow, and exports (see Figure 8), the export and flow levels are always relatively low when the HORB is in (due to the cfs bound mentioned previously). The imbalance can cloud interpretation of the parameter estimates due to potential confounding. For example, recovery fractions may be higher for Mossdale releases when the barrier is in than when the barrier is out, but exports are (by design), on average, lower when the barrier is in. Fortunately, there are observations with low exports and the barrier being out. Similarly, there are observations with low flows and the barrier out, thus potential confounding may be somewhat alleviated.

A comparison of the combined recovery fractions $\left(\hat{r}_{x \rightarrow A n t+C I+O c}\right)$ for different release sites is shown in Figure 9. Such a comparison is quite simplistic in that the pairing of releases is not accounted for and sampling variation is ignored. With these limitations in mind, Durham Ferry and Mossdale releases have relatively similar recovery rates, Old River recovery rates are generally lower than Dos Reis recovery rates, and Jersey Point release recovery rates are highest.

Salvage and adult inland recoveries. The estimated numbers of juvenile fish salvaged at the fish facilities have been, on occasion, relatively large (Table 5). For example, a 1986 release from Old River of 100,181 fish had an estimated 62,564 fish salvaged, or about 62% of the number released. The relationship between the HORB (in or out) and the estimated fraction salvaged is plotted in Figure 10 (excluding Old River releases). For Durham Ferry
and Mossdale, both located upstream of the head of Old River, there was a sizeable difference in the fraction salvaged depending on HORB placement with the fraction decreasing with the HORB in; note, however, sampling variation is not being accounted for in this comparison and that for Durham Ferry, in particular, there were only two releases with the barrier out. For Dos Reis and Jersey Point, the HORB had little to no relationship on the fraction salvaged (ignoring the four extreme fractions).

The fraction of observed adult inland recoveries are shown in Figure 11. During the early years (1985-1996) just a few recoveries were made anywhere (it could be due to lower survival or sampling effort); for releases from recent years (2004-2006), adults have yet to return to freshwater (in any numbers). During the intervening years (1997-2003), the observed fraction returning was consistently highest for the Jersey Point releases, while the fraction for Durham Ferry tended to be lower than for Mossdale. When release were made from both Dos Reis and Mossdale, the fraction was slightly higher for Dos Reis releases. Thus the general pattern was higher adult return fractions for releases made further down river. As for the Interior/DA 8 studies, the amount of straying from the natal hatchery was considerable, but an effect of release location on straying was evident in the VAMP releases. For example, for a 2001 release set from Merced River Fish Facility (group 25 in Table 5), fish released from Durham Ferry returned to Feather River Hatchery, Nimbus Hatchery, Stanislaus River, Tuolumne River, as well as the Merced River Fish Facility. Fish released from Jersey Point strayed even more, including above Red Bluff Diversion Dam, Butte Creek, Feather River Hatchery, and Coleman National Fish Hatchery.

Previous USFWS analyses. Previous analyses by the USFWS of the juvenile recoveries (in the trawl samples) and adult recoveries (in the ocean fishery catch samples) from the VAMP and pre-VAMP experiments are described in Chapter 5 of the 2005 Annual Technical Report for the San Joaquin River Agreement (San Joaquin River Group Authority 2006). Discussion herein focuses on some of the analyses on pages 61 through 70 of that report. The VAMP analyses primarily used recovery fractions with no trawl efficiency adjustments. In some cases the observed recovery fraction was calculated with recoveries at a single recovery location, Chipps Island alone or ocean fisheries alone (denoted RR in the Technical Report), i.e., for release $x, \hat{r}_{x \rightarrow C I}$ and $\hat{r}_{x \rightarrow O c}$. In other cases the observed recovery rate was based on recoveries at two locations, Antioch and Chipps Island, (denoted CRR for Combined Recovery Rate in the Technical Report), namely, $\hat{r}_{x \rightarrow(A n t+C I)}$. In all cases ocean fisheries recoveries were analyzed separately from Antioch and Chipps Island recoveries. The ratio of recovery fractions for upstream releases (Durham Ferry, Mossdale, or Dos Reis) to recovery fractions for downstream releases (Jersey Point) was the response variable used to study
the relationships with flow, export, or HORB effects ${ }^{2}$. Thus releases from Jersey Point were viewed as controls for upstream releases. For example, the response variable used in regression models for Durham Ferry releases relative to Jersey Point releases was $\frac{\hat{r}_{D F \rightarrow C I}}{\hat{r}_{J P \rightarrow C I}}$. As will be shown later, these ratios can be interpreted as estimates of the ratio of survival probabilities for upstream releases to survival probabilities for downstream releases.

Analysis of the ratios of recovery fractions was carried out in a somewhat piecemeal fashion with freshwater recovery fractions and ocean fishery recovery fractions analyzed separately and analyses primarily examining one covariate at a time, e.g., ratio of ocean fishery recovery fractions regressed on flow, with HORB value fixed (either HORB was in or it was not). Some of the results are summarized in Table 8. In all cases, there were positive associations (although sometimes quite weak) between ratios of recovery rates and flows, but the regression coefficient was statistically significant (at $\alpha=0.10$ level) with HORB in and non-significant when HORB was not in. Somewhat paradoxically, exports were positively associated with ratios of recovery fractions; an explanation offered for this paradox is that exports and flows were highly positively correlated (the correlation coefficient is 0.88).

2.6. Comments about previous analyses.

- Pairing is advantageous. A strength of all four designs is the use of paired releases. For the DCC studies, the Ryde releases served as controls to the Courtland releases in that river conditions (temperature, salinity, turbidity, etc) were relatively similar for the two groups. For the Interior and DA 8 studies, the Ryde releases served as controls to the Georgiana Slough releases. For the VAMP studies, the Jersey Point releases were controls for the upstream releases at Dos Reis, Mossdale, and Durham Ferry, although the similarity in river conditions were perhaps weakest in these studies given the greater distances between release locations. This pairing is advantageous in the sense that if these extraneous variables which could (and likely do) affect survival are controlled for, then the statistical efficiency (as measured by standard errors, say) is greater than what unpaired releases could achieve.
- Trawl efficiency measures and survival indices have questionable accuracy. Ideally, the trawl efficiency measure would be an estimate of the probability of capturing a fish given that it survived to the trawl location. Then the expected number caught would be the product of number released, survival probability (S) between point of

[^1]release and trawl location, and trawl capture probability p, say, $E[Y]=R S p$. Then an estimate of survival is $y / R \hat{p}$. The survival index calculation implicitly aims to make such an estimate using f as an estimate of p.

However, there are several problems with the calculation of f. Mathematically there is the problem that the observed recovery rate, y / R, can exceed the trawl efficiency measure, f, which then results in survival "indices" exceeding 1. For example, with one of the DCC releases at Courtland (1983), the survival index was 1.22. There is also the potential that prior to the day of first recovery, or after the day of last capture, there were fish passing but none were caught. Assuming, momentarily, that the use of duration of sampling and relative width of river sampled were adequate measures of capture probability, the omission of days prior to first capture and after last capture where fish were still passing would lead to an underestimate of p. Thus the estimate of $S, y / R \hat{p}$, is an overestimate. There is also the practical problem that when there are no captures, the measure of trawl efficiency is zero.

The efficiency calculation should involve a comparison of the volume of water swept by the net with the total volume of water passing Chipps Island during the out-migration period. For example, assuming that the gear has 100% efficiency for fish in the water the mouth of the net passes through, i.e., there is no net avoidance or selectivity for these smolt sized salmon, the probability of capture could be defined to be the fraction of the total water volume passing Chipps Island, say, during the out-migration, that the net passes through.

Due to the likely biases in trawl efficiency estimates, working with the unadjusted recoveries, or raw recovery proportions (numbers caught/number released) seems preferable. Some releases were made downstream of a recovery site, e.g., Chipps Island, and capture probabilities can be estimated directly (Newman 2003 and see Section 6.1).

- Combined analysis of in-river and ocean recoveries would be more efficient. Both the Chipps Island and the ocean recoveries provide information about the survival between release points and Chipps Island. Separate analyses of recoveries are not as statistically efficient as analyses that incorporate both sets of recoveries simultaneously, or in the case of VAMP, not as efficient as analyses incorporating Antioch, Chipps Island, and ocean recoveries.
- Accounting for unequal sampling variability. None of the analyses for any of the four studies accounts for the fact that the level of sampling variation is not constant. As release numbers change, for one thing, the precision of estimation recovery probabilities will change.

For example, in the 1987 DCC pair, over 100,000 were released from Courtland, in contrast to releases of around 50,000 in 1989; the variances for estimated recovery probabilities will differ even if the underlying true probabilities of recovery were identical.

- Accounting for between-release pair variability. The environmental conditions of each paired release vary over time, i.e., between release pairs. The survival and capture probabilities can be viewed as random variables. Ignoring this between-release pair variation may result in overestimates in the precision of the inferences.
- Indirect analyses may be less accurate than integrated analyses. Statistical analyses of the data from all four studies proceeded in somewhat of a two-step manner, which will be labeled an indirect analysis. For the DCC studies, the survival indices were calculated first, and then paired t-tests were carried out treating these calculated indices as if they were observations. Similarly, for the Interior studies, the survival indices were calculated for the Georgiana Slough and Ryde releases separately, and then paired t-tests were conducted with these indices. For the DA 8 studies, the ratio of survival indices were first calculated, and then the ratio was regressed against exports. Similarly for the VAMP studies, ratios of recovery fractions were calculated first and then regressed against covariates like flow and exports.

The criticism leveled at this indirect approach is related to the previously mentioned issues of unequal sampling variability and between-release variability. Ignoring such variability may bias the inferences, or at least provide inaccurate measures of the degree of uncertainty. A more integrated approach for data analysis is to work directly with the observed recoveries and to explicitly allow for unequal sampling variability and environmental variability, and that is the basis for the hierarchical models described in Section 3.

- Study-specific comments. For the DA 8 analyses by Brandes and McLain (2001), the use of fall and late-fall races in the same regression implies a rather strong assumption that the ratio of survival indices, for a fixed export level, is the same for both races. It should be noted that at the time of the previous analysis considerably less data were available (only up through 1998 for Chipps Island recoveries) and fall run results were included to increase sample size. More recent analyses (Pat Brandes, personal communication) have been based on larger sample sizes and only late fall releases.

For the VAMP analyses, fitting multiple regressions that included flow, exports, and HORB simultaneously would be more statistically efficient and perhaps easier to interpret than doing several simple linear regressions.

3. Hierarchical Probability Models

The objectives of each of the four studies can be restated as aims to estimate unknown parameters of probability models, namely, survival probabilities and parameters for covariates, e.g., water exports, thought to affect survival. Probability models provide a rigorous, statistically defensible basis for both estimating such parameters as well as providing measures of uncertainty about the estimates. Additionally, such models are useful for evaluating study designs and assessing the impact of changes in sample sizes.

Hierarchical, or multi-level, probability models can be used as a common framework for analyzing each of the four studies. Hierarchical models can explicitly account for two levels of variation, temporal and sampling, which exist with the studies. Temporal or environmental variation is the variation over time in survival and capture probabilities. Because each of the studies took place over several years with multiple pairs or sets of releases made, such temporal or between group variation undoubtedly exists. Sampling variation is the betweenfish variation within a single release in terms of their fates, e.g., whether or not they are caught at Chipps Island. A third level of variation, reflecting a Bayesian approach, can be included to quantify uncertainty about parameters that characterize the between group variation in survival and capture probabilities.

The hierarchical framework has an additional benefit, which will manifest itself in the VAMP analysis, in that information available in one time period for one spatial location can be used to make inferences for other time periods where such data were not available. For example, releases were only made in Old River during some years of the pre-VAMP period but that data can be used to make inferences about survival in Old River during the other years.

A simplified representation of Bayesian hierarchical models as they relate to the analysis of the release-recovery tag data is shown below.

Level 1, Observations: y 's $\sim \operatorname{Probability~Distribution~}\left(R, S_{t}\right.$ and $\left.p_{t}\right)$
Level 2, Random effects: $S_{t}, p_{t} \sim$ Probability Distribution(η, Covariates)
Level 3, Hyperparameters: $\eta \sim$ Prior Probability Distribution

The first level describes how the number of recoveries varies at random as a function of number released (R) and the survival and capture probabilities, describing sampling variation. The second level describes how survival and capture probabilities vary with time (or release set) and how they depend upon hyperparameters (η) and covariates, e.g., flow. The third level describes prior opinion about the hyperparameters, for example, $\eta=\mathrm{E}\left[S_{t}\right]$, an average or expected survival probability. Scientific interest is largely focused on these hyperparameters. A non-Bayesian hierarchical model would simply remove Level 3 and view the hyperparameters as constants to be estimated along with standard errors and confidence intervals, while Bayesian inference will yield a posterior probability distribution for the hyperparameters.

3.1. General description of Bayesian hierarchical models (BHMs) for recoveries.

Let $S_{i \rightarrow j, t}$ denote the probability of surviving from location i to location j for release pair or set t and let $p_{k, t}$ be the probability of capture at location k for set t. Also let $R_{i, t}$ equal the number of fish released at location i for release set t and let $y_{i \rightarrow j, t}$ be the number of fish out of the $R_{i, t}$ that were recovered at location j. Unless deemed necessary, the subscript for set t will often be omitted. The notation r will be used for recovery probabilities which are the product of survival and capture probabilities, e.g., $r=S p$.

Level 1, within release sampling variation: The first level in the hierarchy is a probability model for the recoveries given the release group specific survival and capture probabilities. For example, suppose $R_{\text {Ryde }}$ fish are released at Ryde and captures are then made at Chipps Island. The recoveries, $y_{R y d e \rightarrow C I}$, follow some distribution that depends on $R_{\text {Ryde }}$ and the product $S_{R y d e \rightarrow C I} p_{C I}$:

$$
y_{\text {Ryde } \rightarrow C I} \sim \text { Distribution }\left(R_{\text {Ryde }}, S_{\text {Ryde } \rightarrow C I} p_{C I}\right)
$$

Particular distributions will be described later ${ }^{3}$.
Level 2, between release temporal variation: The second level in the hierarchy is a probability model for the survival and capture probabilities, S and p. Referring to the previous Ryde to Chipps Island example:

$$
\begin{aligned}
S_{R y d e \rightarrow C I} & \sim \text { Distribution }\left(\mu_{S_{R y d e \rightarrow C I}}, \sigma_{S_{R y d e \rightarrow C I}}^{2}\right) \\
p_{C I} & \sim \text { Distribution }\left(\mu_{p_{C I}}, \sigma_{p_{C I}}^{2}\right)
\end{aligned}
$$

[^2]where μ and σ^{2} are the mean and variance, respectively. For all four studies the questions to be answered can be re-expressed as questions about how S, or, more basically, how μ_{S} varies between release locations or under different experimental conditions.

Level 3, parameter value uncertainty. The third level of the hierarchy consists of probability distributions for the unknown parameters of the distributions in the second level. These distributions are called prior probability distributions, or simply priors. In particular, priors are specified for the parameters of the distributions for survival and capture probabilities. For example, again referring to the Ryde to Chipps Island example:

$$
\begin{aligned}
\mu_{S_{\text {Ryde } \rightarrow C I}} & \sim \operatorname{Distribution}\left(\alpha_{1}, \beta_{1}\right) & & \sigma_{S_{\text {Ryde } \rightarrow C I}}^{2} \sim \operatorname{Distribution}\left(\alpha_{2}, \beta_{2}\right) \\
\mu_{p_{C I}} & \sim \operatorname{Distribution}\left(\alpha_{3}, \beta_{3}\right) & & \sigma_{p_{C I}}^{2} \sim \operatorname{Distribution}\left(\alpha_{4}, \beta_{4}\right),
\end{aligned}
$$

where $\alpha_{i}, \beta_{i}, i=1,2,3,4$, are fixed hyperparameters.
3.2. Remarks. Before describing the specific hierarchical model formulations for the four studies, some general comments about BHMs for release-recovery data are made.
(1) Bayesian vs Frequentist inference. With Bayesian methods (Carlin and Louis 1996, Gelman, Carlin, Stern, and Rubin 2004), uncertainty about unknown parameters before analyzing (and sometime before collecting) the data is expressed by means of specifying prior probability distributions for these parameters; e.g., Level 3 above. Bayesian inference proceeds by calculating the posterior distribution for the parameters conditional on the data. This procedure is known as updating the prior with the data and proceeds by using Bayes theorem, which can be written generically as follows. Letting θ denote the unknown parameters,

$$
\operatorname{Pr}(\theta \mid \text { Data })=\frac{\operatorname{Pr}(\theta, \text { Data })}{\operatorname{Pr}(\text { Data })}=\frac{\operatorname{Pr}(\text { Data } \mid \theta) \operatorname{Pr}(\theta)}{\operatorname{Pr}(\text { Data })}
$$

where $\operatorname{Pr}(\theta)$ is the prior distribution and $\operatorname{Pr}(\theta \mid$ Data) is the posterior distribution. Note that $\operatorname{Pr}(\operatorname{Data} \mid \theta)$ is the likelihood, i.e., the probability of the observed data viewed as a function of the parameter θ.

An alternative is classical frequentist inference whereby parameters are viewed simply as unknown constants and no probability distributions are used to characterize uncertainty about them. In the case of a hierarchical model, there are just two levels, the first and second levels. Inference calculations are based solely on the likelihood, $\operatorname{Pr}(\operatorname{Data|} \mid \theta)$ and maximum likelihood estimates of the unknown parameters, e.g., $\mu_{S_{i \rightarrow j}}$, are calculated. Such estimates are, somewhat confusingly, called empirical Bayes estimates; however, the inference procedure is frequentist, not Bayesian.

A Bayesian approach has been chosen here for pragmatic reasons. With modern computing resources, integration algorithms such as Markov chain Monte Carlo (MCMC, Gilks, Spiegelhalter, and Richards, 1996), and associated software such as WinBUGS (Spiegelhalter, Thomas, and Best, 2003), it is easier to fit a hierarchical model using Bayesian methods than it is using frequentist methods.

However, the most common complaint about Bayesian methods is the influence of prior distributions on the results. If there are sufficient data and if the prior distributions are sufficiently "non-informative", then the resulting posterior distribution is largely a function of the data. In the analyses described later, sensitivity to the choice of prior is assessed.

For the sake of comparison, however, for the DCC and Interior studies it turns out that classical analyses of hierarchical models are relatively easy to carry out and will be presented along with the Bayesian analyses.
(2) Level 1 models. Multinomial distributions for recoveries are one possibility for the first level. Such distributions result by assuming that within and between release groups the fates of each fish are independent and that within a particular release group, all fish have the same probabilities of survival and capture. For example, suppose releases are made at Ryde and recoveries are made at Chipps Island and in the ocean fisheries. The conditional distribution for recoveries at Chipps Island and in the ocean fisheries is multinomial (Mn):

$$
y_{R y \rightarrow C I}, y_{R y \rightarrow O c} \mid \Theta \sim \operatorname{Mn}\left(R_{R y}, S_{R y \rightarrow C I} p_{C I}, S_{R y \rightarrow C I}\left(1-p_{C I}\right) r_{C I \rightarrow O c}\right),
$$ where $\Theta=\left(S_{R y \rightarrow C I}, p_{C I}, r_{C I \rightarrow O c}\right)^{4}$.

On the other hand, if fish within a single release do not behave independently, e.g., they school, then the variability in observed recoveries can be larger than that expected according to multinomial (or binomial) distributions. When the observed variance exceeds that expected for a particular distribution, then it is said that there is overdispersion. For example, suppose $R=50,000$ fish are released on ten occasions, the expected recovery probability is $S p=0.02$, and the number of recoveries is hypothesized to be $\operatorname{Binomial}(R=50,000, S p=0.02)$. The expected number of recoveries is $R S p=1000$ and the theoretical variance is $R S p(1-S p)=50,000 * 0.02 * 0.98=980$. Suppose the observed number of recoveries from ten groups of 50,000 releases was ($951,1026,955,942,945,1021,1059,955,1059,998$). The average is 991 , close to the expected number, but the variance is 2236 , much larger than 980 , and evidence for overdispersion. An alternative to the binomial distribution is the negative binomial and details as to its formulation are given later.

[^3]Overdispersion can also result from the fact that expanded ocean recoveries, $\hat{y}_{1 \rightarrow 3, t}$, will be used instead of actual recoveries and the negative binomial distribution is again one means to approximately account for this.
(3) Level 2 models. The Level 2 models that will be considered are all based on normal distributions for transformations of survival and capture probabilities or their products. The logistic-normal formulation is commonly used to model probabilities (Newman 2003), and often done for convenience. The logit transformation of a probability π is

$$
\operatorname{logit}(\pi)=\log \left(\frac{\pi}{1-\pi}\right)
$$

While π is restricted to the interval $[0,1], \operatorname{logit}(\pi)$ can take on any real number value, thus capable of being modeled by a normal distribution. Logistic-normal probability models for the survival and capture probabilities would be

$$
\begin{aligned}
\operatorname{logit}\left(S_{i \rightarrow j, t}\right) & \sim \operatorname{Normal}\left(\mu_{S_{i \rightarrow j}}, \sigma_{S_{i \rightarrow j}}^{2}\right) \\
\operatorname{logit}\left(p_{k, t}\right) & \sim \operatorname{Normal}\left(\mu_{p_{k}}, \sigma_{p_{k}}^{2}\right) .
\end{aligned}
$$

The expected values, e.g., $\mu_{S_{i \rightarrow j}}$, will in some cases be modeled as functions of covariates.

Even if independence does hold at the observation level (Level 1), the variation in the survival and capture parameters between releases will induce overdispersion in the observations. In other words, the variation in the observed recoveries will be larger than that due to a multinomial distribution with parameters equaling the expected survival and capture probabilities. As a simple example,

$$
\begin{aligned}
y \mid S, p & \sim \operatorname{Binomial}(R, S p) \\
S & \sim \operatorname{Distribution}\left(\mu_{S}, \sigma_{s}^{2}\right) \\
p & \sim \operatorname{Distribution}\left(\mu_{p}, \sigma_{p}^{2}\right)
\end{aligned}
$$

While the conditional variance of y is $R S p$, the unconditional variance is not $R \mu_{S} \mu_{p}$, it is larger than that ${ }^{5}$.
(4) Accounting for the pairing of releases. The grouping or pairing of releases will be reflected in levels 1 and 2 of the hierarchical model. Within a release pair a shared capture probability will be assumed. Thus a single value of p realized at Level 2 will be used for the paired releases in the Level 1 distributions. Furthermore, within a release pair, when one release is made directly upstream of another release, then

[^4]the survival probabilities are assumed the same for the stream sections that both groups travel down. Note that this assumption means that fish released downstream of an upstream release do not experience any additional mortality at time of release, say a release shock effect, as might be due to a temperature difference between water temperature in the truck transporting the fish and the water temperature in the river. Additionally, there is an assumption that the upstream and downstream releases essentially overlap one another spatially and temporally from the downstream location onwards - i.e., the two releases temporally and spatially coincide; the issue of timing is discussed in the next enumerated point.

For example, consider a paired release made at Durham Ferry and Mossdale with kodiak trawl sampling at Antioch. The recovery probability for Durham Ferry releases is the product $S_{D F \rightarrow M D} S_{M D \rightarrow A n t} p_{A n t}$, while the recovery probability for Mossdale releases is $S_{M D \rightarrow A n t} p_{A n t}$.

The efficiency of the paired release design manifests itself by these shared parameter values, e.g., $S_{M D \rightarrow A n t}$ and $p_{A n t}$. Not only are there fewer parameters to estimate, but also variation in capture probabilities and other shared survival probabilities have been controlled for within the release pair. There are many environmental conditions, e.g., water temperature, turbidity, or salinity, that can influence survival and capture probabilities in addition to the factors of interest, e.g., DCC gate position, geographic location, exports. With paired releases, however, the environmental conditions are often quite similar meaning that parameters that do differ within a release pair can be estimated more precisely than for unpaired releases.
(5) Assumption of equal capture probabilities. Within a release set, parameters for which shared values are assumed include the freshwater capture probabilities (i.e., Chipps Island midwater trawl for all four studies, and Antioch kodiak trawl for VAMP studies). This assumption can be assessed if releases are made downstream of the freshwater trawl sites and if the ocean recovery probabilities are assumed the same, because then estimates of the freshwater capture probabilities can be made (Newman 2003, and see later in this report). In the absence of such data, a less formal comparison can be made by examining the recovery pattern over time along with the trawl fishing schedule and effort. If the trawl effort is more or less consistent throughout the outmigration periods of releases in a release pair, then whether or not the out-migration timing is the same does not matter.

As an informal check, the distributions of recoveries at Chipps Island over time were compared within release pairs for a few cases. Figure 12 shows the percentage of total recoveries by date for three sample sets, one from DCC, one from Interior/DA 8, and one from VAMP. For the DCC example (from 1983), the time intervals of
recovery were very similar (both had first recoveries on 19 May, Courtland's last recovery was 20 June and Ryde's last was 7 June), and the general distribution is relatively similar. For the Interior/DA 8 example (from 1999), the Ryde recoveries tended to arrive earlier than the Georgiana Slough recoveries, but the duration of the recovery period was longer for the Ryde releases. For the VAMP example (from 2000), the recovery distributions by date are consistent with what one would expect, with Jersey Point recoveries tending to precede those from Mossdale which in turn preceding those from Durham Ferry.
(6) Estimability of survival and capture probabilities. The release-recovery design affects the estimability of parameters. Unless a release is made downstream of a recovery location (say j), the capture probability at the recovery location cannot be estimated separately from the survival probability for the next-nearest upstream release (located at i say). What can be estimated is the product of the survival probability and the capture probability, $S_{i \rightarrow j} p_{j}$. In the case of two releases made above a single recovery point, assuming equal recapture probabilities at a downstream location, the ratio of survival probabilities can be estimated. In the case where the furthest upstream releases must travel past the downstream release location, this ratio will be the survival probability between the two upstream locations.

For example, the case where releases are made in the same linear stretch of waterway (locations 1 and 2) with a single downstream recovery site (location 3) is shown schematically as:

In this case the parameter combinations $S_{1} S_{2} p_{3}$ and $S_{2} p_{3}$ are estimable; e.g., $\widehat{S_{1} S_{2} p_{3}}$ $=y_{1 \rightarrow 3} / R_{1}$ and $\widehat{S_{2} p_{3}}=y_{2 \rightarrow 3} / R_{2}$. The upstream survival, S_{1}, is then estimable, e.g., $\hat{S}_{1}=\widehat{S_{1} S_{2} p_{3}} / \widehat{S_{2} p_{3}}$, but downstream survival, S_{2} is not.

When releases are made at locations upstream of a recovery point where one release group's travel path does not completely coincide with the other group's path is shown schematically as:

where releases are made at locations A and B, but not 2. In this case $S_{A} S_{2} p_{3}$ and $S_{B} S_{2} p_{3}$ are estimable, as is the ratio S_{A} / S_{B}. In the case of non-estimable parameters, notation for estimable combinations of parameters will be written; e.g., r for $S p$.

4. Methods

4.1. DCC Studies. The primary objective is to determine how DCC gate position affected the relative survival of Courtland to Ryde releases. This relative survival will be quantified in the hierarchical model(s) by a parameter θ_{t} that is the ratio of the survival probability between Courtland and Chipps Island to the survival probability between Ryde and Chipps Island, where θ_{t} is a function of DCC gate position. It was assumed that gate position did not affect Ryde releases.

Several different Bayesian hierarchical models were fit (and one non-Bayesian model) but for all the models the parameterization of the ocean recovery probabilities were the same. The probability that a fish from a Ryde release is recovered in the ocean fishery is denoted $r_{R y \rightarrow O c}$ and can be viewed as being the following product of survival and capture probabilities:

$$
r_{R y \rightarrow O c}=S_{R y \rightarrow C I}\left(1-p_{C I}\right) r_{C I \rightarrow O c} .
$$

Furthermore, this probability was assumed the same for Ryde and Courtland releases within the same release pair. Within a release pair, it was also assumed that the capture probability at Chipps Island was the same.

Bayesian hierarchical model. The details of one of the BHMs are shown here. Variations on this BHM included changes in all of the three levels of the model (possibilities are discussed in Section 4.6). This BHM was based on the following assumptions (repeating some stated previously):

- individual fish fates are independent;
- within a single release, S and p are identical for all travel paths and recovery locations;
- the survival probability from Courtland to Chipps Island is no greater than the survival probability from Ryde; i.e., $0 \leq \theta_{t} \leq 1$;
- within a paired release, the capture probability at Chipps Island is the same;
- within a paired release, the probability that a fish alive just below Chipps Island (thus not captured at Chipps Island) is then caught in the ocean fisheries is the same.

Level 1:

$$
\begin{align*}
y_{C t \rightarrow C I, t}, \hat{y}_{C t \rightarrow O c, t} \mid \theta_{t}, r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t} & \sim \operatorname{Mn}\left(R_{C t, t}, \theta_{t} r_{R y \rightarrow C I, t}, \theta_{t} r_{R y \rightarrow O c, t}\right) \tag{1}\\
y_{R y \rightarrow C I, t}, \hat{y}_{R y \rightarrow O c, t} \mid \theta_{t}, r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t} & \sim \operatorname{Mn}\left(R_{R y, t}, r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t}\right) . \tag{2}
\end{align*}
$$

Level 2:

$$
\begin{align*}
\operatorname{logit}\left(\theta_{t}\right) & \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} I_{D C C_{t}=c l o s e d}, \sigma_{\theta}^{2}\right) \tag{3}\\
\operatorname{logit}\left(r_{R y \rightarrow C I, t}\right) & \sim \operatorname{Normal}\left(\mu_{r_{R y \rightarrow C I}}, \sigma_{r_{R y \rightarrow C I}}^{2}\right) \tag{4}\\
\operatorname{logit}\left(r_{R y \rightarrow O c, t}\right) & \sim \operatorname{Normal}\left(\mu_{r_{R y \rightarrow O c}}, \sigma_{r_{R y \rightarrow O c}}^{2}\right) \tag{5}
\end{align*}
$$

where $I_{D C C_{t}=\text { closed }}$ equals 1 when the cross-channel gates are closed, and 0 otherwise.

Level 3:

$$
\begin{align*}
\beta_{0}, \beta_{1}, \mu_{R y \rightarrow C I, t}, \mu_{R y \rightarrow O c, t} & \sim \operatorname{Normal}(0,1.0 E+6) \tag{6}\\
\sigma_{\theta}^{-2}, \sigma_{r_{R y \rightarrow C I}}^{-2}, \sigma_{r_{R y \rightarrow O c}}^{-2} & \sim \operatorname{Gamma}(0.001,0.001) \tag{7}
\end{align*}
$$

Priors for the variances were specified in terms of the inverse of variance, the precision, i.e., inverse gamma prior distributions were used.

The key parameter in this formulation is β_{1} in Level 2. Positive values would be consistent with the DCC closure increasing survival.

The Level 2 modeling of the Ryde recovery probabilities, $r_{R y \rightarrow C I, t}$ and $r_{R y \rightarrow O c, t}$, is simplistic in that variation in the survival and capture probabilities is to some degree a function of nonrandom measurable factors. For example, the capture probabilities at Chipps Island are indeed a function of the amount of trawling that occurs; similarly, capture probabilities in the ocean fishery are a function of fishing seasons and gear regulation. The overall results are thought to be relatively robust to ignoring such structural, i.e., nonrandom, effects, unless there is some systematic trend in such factors, and one consequence of such coarse modeling will likely be relatively large variances in the logit normal model.

Non-Bayesian hierarchical model. In this formulation the Level 1 formulation is identical to the BHM. For Level 2, however, the exact distributions for the survival and capture probabilities were not specified, just the means and variances are denoted.

Level 1:

$$
\begin{aligned}
y_{C t \rightarrow C I, t}, \hat{y}_{C t \rightarrow O c, t} \mid \Theta & \sim \operatorname{Mn}\left(R_{C t, t}, \theta_{t} r_{R y \rightarrow C I, t}, \theta_{t} r_{R y \rightarrow O c, t}\right) \\
y_{R y \rightarrow C I, t}, \hat{y}_{R y \rightarrow O c, t} \mid \Theta & \sim \operatorname{Mn}\left(R_{R y, t}, r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t}\right) .
\end{aligned}
$$

Level 2:

$$
\begin{align*}
\theta_{t} & \sim \text { Distribution }\left(\mu_{\theta\left(D C C_{t}\right)}, \sigma_{\theta\left(D C C_{t}\right)}^{2}\right) \tag{8}\\
r_{R y \rightarrow C I, t} & \sim \text { Distribution }\left(\mu_{r_{R y \rightarrow C I}}, \sigma_{r_{R y \rightarrow C I}}^{2}\right) \tag{9}\\
r_{R y \rightarrow O c, t} & \sim \text { Distribution }\left(\mu_{r_{R y \rightarrow O c}}, \sigma_{r_{R y \rightarrow O c}}^{2}\right) \tag{10}
\end{align*}
$$

where $D C C_{t}=$ Open or Closed and μ and σ^{2} denote the mean and variance of the (unspecified) distribution.

Under this formulation, the key parameter is $\mu_{\theta(\text { Closed })} / \mu_{\theta(\text { Open })}$. To estimate this ratio, the individual release specific θ 's are estimated as follows.

$$
\begin{equation*}
\hat{\theta}=\frac{\hat{r}_{C t \rightarrow C I+O c}}{\hat{r}_{R y \rightarrow C I+O c}} \tag{11}
\end{equation*}
$$

The parameters $\mu_{\theta(\text { Open })}$ and $\mu_{\theta(\text { Closed })}$ can be estimated by weighted averages of the $\hat{\theta}$'s:

$$
\begin{align*}
\hat{\mu}_{\theta(\text { Open })} & =\sum_{t=1}^{n_{\text {Open }}} w_{t \mid \text { Open }} \hat{\theta}_{t \mid \text { Open }} \tag{12}\\
\hat{\mu}_{\theta(\text { Closed })} & =\sum_{t=1}^{n_{\text {Closed }}} w_{t \mid \text { Closed }} \hat{\theta}_{t \mid \text { Closed }} \tag{13}
\end{align*}
$$

where the weights are inversely proportional to the estimated variances:

$$
\begin{equation*}
w_{t}=\frac{1 / \operatorname{var}\left(\hat{\theta}_{t}\right)}{\sum_{i=1}^{n} 1 / \operatorname{var}\left(\hat{\theta}_{i}\right)} . \tag{14}
\end{equation*}
$$

The variances are estimated using the delta method. Details of the delta method are given Appendix A (in particular a sample based estimate of $V\left(\hat{\theta}_{t}\right)$, shown in the lines following Equation (59), is used).

The ratio of $\mu_{\theta(\text { Open })}$ and $\mu_{\theta(\text { Closed })}$ can be estimated using (12) and (13):

$$
\begin{equation*}
\left(\frac{\widehat{\mu_{\theta(\text { Open })}}}{\mu_{\theta(\text { Closed })}}\right)=\frac{\hat{\mu}_{\theta(\text { Open })}}{\hat{\mu}_{\theta(\text { Closed })}} \tag{15}
\end{equation*}
$$

The standard error for (15) can be calculated by using a hierarchical bootstrapping procedure (described in Appendix B) to produce resampled estimates of $\hat{\mu}_{\theta(\text { Closed })}$ and $\hat{\mu}_{\theta(\text { Open })}$.
4.2. Interior studies. For the Interior studies, interest is solely in the ratio of survival probabilities of interior Delta releases (Georgiana Slough) and mainstem releases (Ryde), which will be denoted θ and defined equal to $S_{G S \rightarrow C I} / S_{R y \rightarrow C I}$.

Several BHMs and one non-Bayesian hierarchical model were fit to the Interior data. Just one of the BHMs is shown in detail here, and the assumptions for this model are essentially identical to the one shown for DCC and are not repeated here.

Bayesian hierarchical model.

Level 1:

$$
\begin{align*}
y_{G S \rightarrow C I, t}, \hat{y}_{G S \rightarrow O c, t} \mid \theta_{t}, r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t} & \sim \operatorname{Mn}\left(R_{G S, t}, \theta_{t} r_{R y \rightarrow C I, t}, \theta_{t} r_{R y \rightarrow O c, t}\right) \tag{16}\\
y_{R y \rightarrow C I, t}, \hat{y}_{R y \rightarrow O c, t} \mid r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t} & \sim \operatorname{Mn}\left(R_{R y, t}, r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t}\right) . \tag{17}
\end{align*}
$$

Level 2:

$$
\begin{align*}
\log \left(\theta_{t}\right) & \sim \operatorname{Normal}\left(\mu_{\theta}, \sigma_{\theta}^{2}\right) \tag{18}\\
\operatorname{logit}\left(r_{R y \rightarrow C I, t}\right) & \sim \operatorname{Normal}\left(\mu_{r_{R y \rightarrow C I}}, \sigma_{r_{R y \rightarrow C I}}^{2}\right) \tag{19}\\
\operatorname{logit}\left(r_{R y \rightarrow O c, t}\right) & \sim \operatorname{Normal}\left(\mu_{r_{R y \rightarrow O c}}, \sigma_{r_{R y \rightarrow O c}}^{2}\right) \tag{20}
\end{align*}
$$

Level 3:

$$
\begin{align*}
\mu_{\theta}, \mu_{R y \rightarrow C I, t}, \mu_{R y \rightarrow O c, t} & \sim \operatorname{Normal}(0,1.0 E+6) \tag{21}\\
\sigma_{\theta}^{-2}, \sigma_{r_{R y \rightarrow C I}}^{-2}, \sigma_{r_{R y \rightarrow O c}}^{-2} & \sim \operatorname{Gamma}(0.001,0.001) \tag{22}
\end{align*}
$$

The key parameter in this model is the parameter μ_{θ}, where negative values would indicate lower survival for Georgiana Slough releases relative to Ryde releases.

Non-Bayesian hierarchical model. The level 1 model is identical to the BHM.
Level 1:

$$
\begin{aligned}
y_{G S \rightarrow C I, t}, \hat{y}_{G S \rightarrow O c, t} \mid \theta_{t}, r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t} & \sim \operatorname{Mn}\left(R_{G S, t}, \theta_{t} r_{R y \rightarrow C I, t}, \theta_{t} r_{R y \rightarrow O c, t}\right) \\
y_{R y \rightarrow C I, t}, \hat{y}_{R y \rightarrow O c, t} \mid r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t} & \sim \operatorname{Mn}\left(R_{R y, t}, r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t}\right) .
\end{aligned}
$$

Level 2:

$$
\begin{align*}
\theta_{t} & \sim \text { Distribution }\left(\mu_{\theta}, \sigma_{\theta}^{2}\right) \tag{23}\\
r_{R y \rightarrow C I, t} & \sim \text { Distribution }\left(\mu_{r_{R y \rightarrow C I}}, \sigma_{r_{R y \rightarrow C I}}^{2}\right) \tag{24}\\
r_{R y \rightarrow O c, t} & \sim \text { Distribution }\left(\mu_{r_{R y \rightarrow O c}}, \sigma_{r_{R y \rightarrow O c}}^{2}\right) \tag{25}
\end{align*}
$$

The parameter of primary interest in this formulation is μ_{θ} which can be estimated by

$$
\begin{equation*}
\hat{\mu}_{\theta}=\sum_{t=1}^{n} w_{t} \frac{\hat{r}_{G S \rightarrow C I+O c, t}}{\hat{r}_{R y \rightarrow C i+O c, t}} \tag{26}
\end{equation*}
$$

where the weight, w_{t}, is equation (14). For the 2005 and 2006 release pairs, only the Chipps Island recoveries are available (Table 4), and $\hat{r}_{G S \rightarrow C I} / \hat{r}_{R y \rightarrow C I}$ was used instead. Bootstrapping was used to estimate standard errors and calculate confidence intervals.
4.3. Delta Action 8 Experiments. The Bayesian hierarchical models tried were nearly identical to those for the Interior study except that the ratio $\theta=S_{G S \rightarrow C I} / S_{R y \rightarrow C I}$ was modeled as a function of exports.

The assumptions are the same as for the Interior model with an additional assumption about export effects.

- releases from Ryde are unaffected by export levels.

One of the Bayesian hierarchical models fit (similar to the Interior model shown in Equations 16-22) is the following.

Level 1:

$$
\begin{align*}
y_{G S \rightarrow C I, t}, \hat{y}_{G S \rightarrow O c, t} \mid \theta_{t}, r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t} & \sim \operatorname{Mn}\left(R_{G S}, \theta_{t} r_{R y \rightarrow C I, t}, \theta_{t} r_{R y \rightarrow O c, t}\right) \tag{27}\\
y_{R y \rightarrow C I, t}, \hat{y}_{R y \rightarrow O c, t} \mid r_{R y \rightarrow C I, t}, r_{R y \rightarrow O c, t} & \sim \operatorname{Mn}\left(R_{R y}, r_{R y \rightarrow C I, t}, r_{R y \rightarrow O C, t}\right) \tag{28}
\end{align*}
$$

Level 2:

$$
\begin{align*}
\operatorname{logit}\left(\theta_{t}\right) & \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} E x p_{t}^{*}, \sigma_{\theta}^{2}\right) \tag{29}\\
\operatorname{logit}\left(r_{R y \rightarrow C I, t}\right) & \sim \operatorname{Normal}\left(\mu_{r_{R y \rightarrow C I}}, \sigma_{r_{R y \rightarrow C I}}^{2}\right) \tag{30}\\
\operatorname{logit}\left(r_{R y \rightarrow O c, t}\right) & \sim \operatorname{Normal}\left(\mu_{r_{R y \rightarrow O c}}, \sigma_{r_{R y \rightarrow O c}}^{2}\right) \tag{31}
\end{align*}
$$

$E x p_{t}^{*}$ were scaled exports, $\frac{\left(\text { Exports }_{t}-\overline{E x p}\right)}{s_{E x p}}$.
Level 3:

$$
\begin{align*}
\beta_{0}, \beta_{1}, \mu_{R y \rightarrow C I}, \mu_{R y \rightarrow O c} & \sim \operatorname{Normal}(0,1.0 E+6) \tag{32}\\
\sigma_{\theta}^{-2}, \sigma_{r_{R y \rightarrow C I}}^{-2}, \sigma_{r_{R y \rightarrow O c}}^{-2} & \sim \operatorname{Gamma}(0.001,0.001) \tag{33}
\end{align*}
$$

The key parameter in terms of an export effect is β_{1}; if β_{1} equals 0 there is no export effect, while $\beta_{1}<0$ indicates a negative export effect.
4.4. VAMP studies. The hierarchical models considered for the VAMP studies were much more complicated than for the other three studies due to the greater number of release and recovery locations, more complex stream geometry, and additional covariates of interest (flow, exports, HORB). The models defined below aim to estimate, and model as a function of covariates, the survival through different "reaches" of the out-migration path. For example, suppose a release is made at Durham Ferry, and assume that with the HORB in place, there is 100% probability that a fish passing the entrance to Old River will stay in the San Joaquin River. Then the probability of surviving to Antioch, say, could be viewed as the product of four reach-specific survival probabilities:

$$
S_{D F \rightarrow A n t}=S_{D F \rightarrow M D} S_{M D \rightarrow D R} S_{D R \rightarrow J P} S_{J P \rightarrow A n t}
$$

The hierarchical models aim to model some of these reach-specific survival probabilities when they are estimable. Before describing the hierarchical model details, the geometry of the out-migration routes and the issue of estimability of survival probabilities are discussed.
4.4.1. Geometry of out-migration routes. A simplistic network of the relative positioning of the five release locations and the three recovery locations for the VAMP and pre-VAMP studies is shown below, with approximate distances (miles) between locations in parentheses.

HOR denotes the head of Old River.

The actual geometry is considerably more complex. The distances marked with an asterisk, Dos Reis to Jersey Point and Old River to Jersey Point, denote situations where the actual distances traveled by salmon between locations can vary considerably. Between Dos Reis and Jersey Point there are multiple routes that salmon could take, e.g., after passing Stockton on the San Joaquin River they could turn toward the CVP and SWP facilities at several other locations (Turner Cut, Middle River, and at Franks Tract where Old River reconnects with the San Joaquin River).

Similarly, distances traveled between "an" Old River release site and Jersey Point can vary for several reasons: (a) there are multiple alternate channels a fish can take to reach Jersey Point, (b) some of the Old River releases are "salvaged" at the CVP and SWP fish facilities and then transported by truck to one of four possible locations on the Sacramento or San Joaquin rivers (see Section 2), thus some of the surviving Old River releases would have less chance of passing Jersey Point than others; (c) in 1985 the Old River release site was approximately 6 miles further downstream than the location used for 1986-1990 releases.

While the term reach-specific survival probability will be used, it admittedly may be a misnomer due to this complex stream geometry. One may want to mentally substitute the phrase, "probability of reaching point B from point A", for the notation $S_{A \rightarrow B}$.
4.4.2. Estimability of survival probabilities using paired releases. Survival probabilities are a component of the second level of the hierarchical models and these survival probabilities can, in principle, be modeled as functions of covariates. One might reasonably question whether or not such functional models can be fit given the complex geometry and variation in the grouping of release locations, i.e., "are the parameters of such models estimable?". Explanations for the estimability, or not, of some of the survival probabilities in the context of paired releases are given first and followed by explanations for the use of underlying models for survival to facilitate reach-specific survival probability estimation at time t when releases were not made at both endpoints of the release.

To begin, survival probabilities immediately above recovery locations cannot be estimated separately from capture probabilities. The lack of releases below the recovery locations (Table 7), e.g., between Antioch and Chipps Island, means that the survival and capture probabilities are confounded. However, the recovery probabilities, combinations of survival and capture probabilities, between Jersey Point and the three recovery locations are estimable; e.g., the recovery probability from Jersey Point to Antioch, $r_{J P \rightarrow A n t}$, is estimable, but the components of $r_{J P \rightarrow A n t}$, namely the survival probability for that reach, $S_{J P \rightarrow A n t}$, and the capture probability at Antioch, $p_{A n t}$, are not individually estimable. The following notation is used for these recovery probabilities.

$$
\begin{aligned}
r_{J P \rightarrow A n t} & \equiv S_{J P \rightarrow A n t} p_{A n t} \\
r_{J P \rightarrow C I} & \equiv S_{J P \rightarrow A n t}\left(1-p_{A n t}\right) S_{A n t \rightarrow C I} p_{C I} \\
r_{J P \rightarrow O c} & \equiv S_{J P \rightarrow A n t}\left(1-p_{A n t}\right) S_{A n t \rightarrow C I}\left(1-p_{C I}\right) S_{C I \rightarrow O c} p_{O c}
\end{aligned}
$$

The survival probability between Durham Ferry and Mossdale can be estimated quite simply, given paired releases at both locations and assuming that survival and capture probabilities are identical from Mossdale onwards, namely the assumption that pairing of releases is intended to ensure. For example, given recoveries at Antioch, Chipps Island, and in the ocean,

$$
\begin{equation*}
\hat{S}_{D F \rightarrow M D}=\frac{\left(y_{D F \rightarrow A n t}+y_{D F \rightarrow C I}+y_{D F \rightarrow O c}\right) / R_{D F}}{\left(y_{M D \rightarrow A n t}+y_{M D \rightarrow C I}+y_{M D \rightarrow O c}\right) / R_{M D}} . \tag{34}
\end{equation*}
$$

Such an estimate is a method of moments estimate. This can be made clear by substituting the expected number of recoveries for the observed recoveries.

$$
\hat{S}_{D F \rightarrow M D} \approx \frac{\left(R_{D F} S_{D F \rightarrow M D}\left(r_{M D \rightarrow A n t}+r_{M D \rightarrow C I}+r_{M D \rightarrow O c}\right)\right) / R_{D F}}{\left(R_{M D}\left(r_{M D \rightarrow A n t}+r_{M D \rightarrow C I}+r_{M D \rightarrow O c}\right)\right) / R_{M D}}=S_{D F \rightarrow M D}
$$

Similarly, the survival between Dos Reis and Jersey Point can be estimated for paired releases, assuming identical survival and capture probabilities from Jersey Point onwards:

$$
\begin{equation*}
\hat{S}_{D R \rightarrow J P}=\frac{\left(y_{D R \rightarrow A n t}+y_{D R \rightarrow C I}+y_{D R \rightarrow O c}\right) / R_{D R}}{\left(y_{J P \rightarrow A n t}+y_{J P \rightarrow C I}+y_{J P \rightarrow O c}\right) / R_{J P}} \tag{35}
\end{equation*}
$$

To estimate survival for a reach including the head of Old River, however, is not so straightforward. For example, for a release at Mossdale, located just above the head of Old River, the expected number of recoveries at Antioch (or Chipps Island or in the ocean) is a weighted sum of survival probabilities. Assuming that all surviving fish will go by Jersey

Point, the expected number of recoveries at Antioch is:

$$
E\left[y_{M D \rightarrow A n t}\right]=R_{M D}\left(p_{O R} S_{O R \rightarrow J P} r_{J P \rightarrow A n t}+\left(1-p_{O R}\right) S_{M D \rightarrow D R} S_{D R \rightarrow J P} r_{J P \rightarrow A n t}\right),
$$

where $p_{O R}$ is the probability of going down Old River, $S_{O R \rightarrow J P}$ is the survival probability between the head of Old River and Jersey Point, and survival between Mossdale and Old River is assumed to be 100%. The ratio of recovery fractions at Antioch between a Mossdale release and a Dos Reis release is approximately

$$
\begin{equation*}
\frac{y_{M D \rightarrow A n t} / R_{M D}}{y_{D R \rightarrow A n t} / R_{D R}} \approx \frac{p_{O R} S_{O R \rightarrow J P}+\left(1-p_{O R}\right) S_{M D \rightarrow D R} S_{D R \rightarrow J P}}{S_{D R \rightarrow J P}} . \tag{36}
\end{equation*}
$$

If one assumes that the probability of going down Old River is zero when the HORB is in place, then the right hand side of the above equation reduces to $S_{M D \rightarrow D R}$. However, if that assumption is not made, or if the HORB is not in place, then to estimate $S_{M D \rightarrow D R}$, one needs estimates of $p_{O R}, S_{O R \rightarrow J P}$, and $r_{J P \rightarrow A n t}$. If releases are made in Old River and at Jersey Point, then $S_{O R \rightarrow J P}$ and $r_{J P \rightarrow A n t}$ can be estimated. Estimation of $p_{O R}$ is problematic, however, due to a lack of data.
4.4.3. Modeling of survival probabilities. The previous examples of estimating reach-specific survival were based on the use of paired releases that were made at both endpoints of the reach. Implicit to the calculations was the notion that the survival estimates were release-time specific. Unfortunately, as was discussed previously and as Table 7 makes clear, the release location "pairings" have varied considerably. For example, direct estimation of $S_{D R \rightarrow J P}$ between 2000 and 2004 using equation (35) is not possible due to the absence of Dos Reis releases ${ }^{6}$.

However, if an underlying structure is assumed for reach-specific survival, one which is not over-parameterized given the number of observations, survival for reaches which lack releases at both endpoints can be estimated (or predicted) so long as such paired releases at those endpoints have occurred at some time during the study. The following heuristic example is given to provide some intuition as to why this is possible, but the actual estimation details are omitted.

Suppose that at time t releases were made at Mossdale and Jersey Point but not Dos Reis and the objective is to separately estimate $S_{M D \rightarrow D R, t}$ and $S_{D R \rightarrow J P, t}$. To keep the example simple, assume the HORB was in place and prevented all fish from entering Old River, thus

[^5]all the Mossdale fish reaching Old River stayed in the San Joaquin River, and $S_{M D \rightarrow J P, t}$ can be defined as the product $S_{M D \rightarrow D R, t} S_{D R \rightarrow J P, t}$. Also assume that $S_{M D \rightarrow D R}$ is a function of flow at Mossdale and $S_{D R \rightarrow J P}$ is a function of flow at Dos Reis. Note first that $S_{M D \rightarrow J P, t}$ can be directly estimated using the method of moments procedure (e.g., equation 35). $S_{M D \rightarrow D R, t}$ and $S_{D R \rightarrow J P, t}$ can be individually estimated given (a) recovery data from other sets of paired releases made at Mossdale and Dos Reis and at Dos Reis and Jersey Point; (b) underlying models for $S_{M D \rightarrow D R}$ and $S_{D R \rightarrow J P}$; (c) relevant covariates at time t. Given a sufficient number of these other paired releases and corresponding flow data, the following models can be fit:
\[

$$
\begin{aligned}
\operatorname{logit}\left(S_{M D \rightarrow D R}\right) & =\beta_{0}+\beta_{1} \text { Flow }_{M D} \\
\operatorname{logit}\left(S_{D R \rightarrow J P}\right) & =\gamma_{0}+\gamma_{1} \text { Flow }_{D R}
\end{aligned}
$$
\]

Given estimates of $\beta_{0}, \beta_{1}, \gamma_{1}$, and γ_{2} and the flow measurements at time $t, S_{M D \rightarrow D R, t}$ and $S_{D R \rightarrow J P, t}$ can be predicted. Thus, if $S_{M D \rightarrow J P, t}$ can be directly estimated and $S_{M D \rightarrow D R, t}$ and $S_{D R \rightarrow J P, t}$ can be predicted, then one can imagine (in a hand-waving way) that an integrated procedure could be carried out to use all the release-recovery data simultaneously to both estimate the parameters $\beta_{0}, \beta_{1}, \gamma_{0}$, and γ_{1} and the time t-specific probabilities $S_{M D \rightarrow D R, t}$ and $S_{D R \rightarrow J P, t}$.
4.4.4. Hierarchical models. Several different formulations for the modeling of reach-specific survival were considered, but a common underlying out-migration framework was assumed. Durham Ferry releases go downstream to Mossdale. Fish at Mossdale go to the head of Old River and proceed on to Dos Reis if they stay in the San Joaquin or they enter Old River. Fish entering Old River then pass the Old River release site(s) and proceed to Jersey Point (even fish that are salvaged at the fish facilities are assumed to have a positive probability of going by Jersey Point). Fish passing Dos Reis proceed to Jersey Point, too. From Jersey Point, fish pass Antioch, then Chipps Island, and then enter the ocean.

The following additional assumptions were made:

- When the HORB is in place, Durham Ferry and Mossdale releases do not enter Old River.
- When the HORB is not in place, Durham Ferry and Mossdale releases enter Old River with probability $p_{O R}$, which is either a constant or a function of relative flow.
- Survival between the head of Old River and Dos Reis (about 3 miles) is 100%, and survival between the head of Old River and the Old River release point(s) (about 0.25 miles) is 100%.

The last assumption is made for reasons of parameter estimability for releases at Durham Ferry or Mossdale. The survival probability from Mossdale to Jersey Point can be written as follows.

$$
S_{M D \rightarrow J P}=S_{M D \rightarrow H O R}\left[p_{O R} S_{H O R \rightarrow O R} S_{O R \rightarrow J P}+\left(1-p_{O R}\right) S_{H O R \rightarrow D R} S_{D R \rightarrow J P}\right]
$$

Given paired releases from Old River and Jersey Point, and Dos Reis and Jersey Point and recoveries at Chipps Island, say, it is clear that $S_{O R \rightarrow J P}$ and $S_{D R \rightarrow J P}$ can be estimated; e.g., $\hat{S}_{O R \rightarrow J P}=\left[y_{O R \rightarrow C I} / R_{O R}\right] /\left[y_{J P \rightarrow C I} / R_{J P}\right] \approx\left[S_{O R \rightarrow J P} r_{J P \rightarrow C I}\right] / r_{J P \rightarrow C I}=S_{O R \rightarrow J P}$. That leaves four unknown parameters, $S_{M D \rightarrow H O R}, p_{O R}, S_{H O R \rightarrow O R}$, and $S_{H O R \rightarrow D R}$, and only one can be estimated using Mossdale or Durham Ferry recoveries at Chipps Island, say. Assuming that $S_{H O R \rightarrow O R}=1$ and $S_{H O R \rightarrow D R}=1$, leaves $S_{M D \rightarrow H O R}$ and $p_{O R}$ unknown. The probability of traveling down Old River, $p_{O R}$, was, for some models, set equal to the relative flow-based values shown in Table 5, and then $S_{M D \rightarrow H O R}$ was estimable. The basis for the calculated values of $p_{O R}$ are described in Table 6. In other models, $p_{O R}$ was a fixed but unknown parameter to be estimated and $S_{M D \rightarrow H O R}$ was set equal to 1.0.

The three levels of the hierarchical models are as follows; release set subscripts (t) have been omitted.

Level 1: the distributions for the recoveries of fish released at Durham Ferry, Mossdale, Dos Reis, Old River, and Jersey Point (Θ denotes survival and recovery probabilities)

$$
\begin{align*}
& y_{D F \rightarrow A n t}, y_{D F \rightarrow C I}, \hat{y}_{D F \rightarrow O c} \mid \Theta \sim \operatorname{Mn}\left(R_{D F}, S_{D F \rightarrow M D} S_{M D \rightarrow J P} r_{J P \rightarrow A n t},\right. \tag{37}\\
& S_{D F \rightarrow M D} S_{M D \rightarrow J P} r_{J P \rightarrow C I}, \\
&\left.S_{D F \rightarrow M D} S_{M D \rightarrow J P} r_{J P \rightarrow O c}\right) \\
& y_{M D \rightarrow A n t}, y_{M D \rightarrow C I}, \hat{y}_{M D \rightarrow O c} \mid \Theta \sim \operatorname{Mn}\left(R_{M D}, S_{M D \rightarrow J P} r_{J P \rightarrow A n t},\right. \tag{38}\\
&\left.S_{M D \rightarrow J P} r_{J P \rightarrow C I}, S_{M D \rightarrow J P} r_{J P \rightarrow O c}\right) \\
& y_{D R \rightarrow A n t}, y_{D R \rightarrow C I}, \hat{y}_{D R \rightarrow O c} \mid \Theta \sim \operatorname{Mn}\left(R_{D R}, S_{D R \rightarrow J P} r_{J P \rightarrow A n t},\right. \tag{39}\\
&\left.S_{D R \rightarrow J P} r_{J P \rightarrow C I}, S_{D R \rightarrow J P} r_{J P \rightarrow O c}\right) \\
& y_{O R \rightarrow C I}, \hat{y}_{O R \rightarrow O c} \mid \Theta \sim \operatorname{Mn}\left(R_{O R}, S_{O R \rightarrow J P} r_{J P \rightarrow C I}, S_{O R \rightarrow J P} r_{J P \rightarrow O c}\right) \tag{40}\\
& y_{J P \rightarrow A n t}, y_{J P \rightarrow C I}, \hat{y}_{J P \rightarrow O c} \mid \Theta \sim \operatorname{Mn}\left(R_{J P}, r_{J P \rightarrow A n t}, r_{J P \rightarrow C I}, r_{J P \rightarrow O c}\right) \tag{41}
\end{align*}
$$

where by assumption

$$
\begin{equation*}
S_{M D \rightarrow J P}=S_{M D \rightarrow H O R}\left[p_{O R} S_{O R \rightarrow J P}+\left(1-p_{O R}\right) S_{D R \rightarrow J P}\right] \tag{42}
\end{equation*}
$$

and when HORB is in place, $S_{M D \rightarrow J P}=S_{M D \rightarrow H O R} S_{D R \rightarrow J P}$.

Level 2: Random effects models for survival and recovery probabilities; ($X=$ covariates)

$$
\begin{align*}
\operatorname{logit}\left(S_{D F \rightarrow M D}\right) & \sim \operatorname{Normal}\left(X_{1}^{\prime} \beta, \sigma_{D F \rightarrow M D}^{2}\right) \tag{43}\\
\operatorname{logit}\left(S_{M D \rightarrow H O R}\right) & \sim \operatorname{Normal}\left(X_{2}^{\prime} \gamma, \sigma_{M D \rightarrow D R}^{2}\right) \tag{44}\\
\operatorname{logit}\left(S_{D R \rightarrow J P}\right) & \sim \operatorname{Normal}\left(X_{3}^{\prime} \xi, \sigma_{D R \rightarrow J P}^{2}\right) \tag{45}\\
\operatorname{logit}\left(S_{O R \rightarrow J P}\right) & \sim \operatorname{Normal}\left(X_{4}^{\prime} \zeta, \sigma_{O R \rightarrow J P}^{2}\right) \tag{46}\\
\operatorname{logit}\left(r_{J P \rightarrow A n t}\right) & \sim \operatorname{Normal}\left(\mu_{J P \rightarrow A n t}, \sigma_{J P \rightarrow A n t}^{2}\right) \tag{47}\\
\operatorname{logit}\left(r_{J P \rightarrow C I}\right) & \sim \operatorname{Normal}\left(\mu_{J P \rightarrow C I}, \sigma_{J P \rightarrow C I}^{2}\right) \tag{48}\\
\operatorname{logit}\left(r_{J P \rightarrow O c}\right) & \sim \operatorname{Normal}\left(\mu_{J P \rightarrow O c}, \sigma_{J P \rightarrow O c}^{2}\right) \tag{49}
\end{align*}
$$

Level 3:

$$
\begin{align*}
\beta, \gamma, \xi, \kappa, \zeta, \mu_{J P \rightarrow A n t}, \mu_{J P \rightarrow C I}, \mu_{J P \rightarrow O c} & \sim \operatorname{Normal}(0,1.0 E+6) \tag{50}\\
\sigma_{i \rightarrow j}^{-2}, & \sim \operatorname{Gamma}(0.001,0.001) . \tag{51}
\end{align*}
$$

The Level 1 models for the years 1985-1999 excluded Antioch recoveries (since the trawl was not in place) and for the years 2005-2006 excluded ocean recoveries (because none were available at the time of analysis). Also the first release set used spray-dying to mark individuals and ocean recoveries were not available (Table 5). When flow and export levels were used as covariates in the Level 2 models they were standardized (mean was subtracted and the difference divided by standard deviation); how flow and exports were calculated is described in Table 6.

Given the multiple reaches and branching, the number of potential models is very large, far more than for the other three data sets. A relatively small set was fit, however, due to time constraints. As a demonstration of the general utility, or not, of random effects, some models were fit without any random effects (thus resulting in Bayesian logistic regressions) and some were fit with random effects only in the recovery probabilities, the $r_{J P \rightarrow A n t}, r_{J P \rightarrow C I}$, and $r_{J P \rightarrow O c}$ terms, with the intent of allowance for temporal variation in capture probabilities but not survival probabilities.
4.5. BHM fitting and assessment. For the Bayesian analysis of the hierarchical models, the program WinBUGS (Spiegelhalter, Thomas, and Best 2003) was used to generate samples
from the posterior distributions for the parameters, random effects, and expected numbers of recoveries. WinBUGS is based on a technique known as Markov chain Monte Carlo, MCMC (Gilks, Richardson, and Spiegelhalter 1996). MCMC is a computer simulation method where samples are generated from a Markov chain which has a limiting distribution equal to the distribution of interest, in this case the posterior distribution.

By a limiting distribution it is meant that the samples do not initially come from the desired distribution, but once "enough" samples are generated, the so-called burn-in period, all additional samples do come from the desired distribution. WinBUGS includes measures (e.g., the Brooks-Gelman-Rubin statistic) for determining an adequate burn-in period which are based upon the results of simulating from multiple Markov chains. Informally stated, the point at which the chains begin to overlap is the necessary burn-in period. For all four studies, three different chains were run in parallel and the summary statistics are based on the pooled output.

Quality of fit was assessed in two general ways, by making between model comparisons of DIC, deviance information criterion (Gelman, et al. 2004), and, within a given model, by examining the quality of fit to individual observations. The deviance for a particular observation y and a particular parameter value θ is defined as follows:

$$
D(y, \theta)=-2 \log (p(y \mid \theta)),
$$

where $p(y \mid \theta)$ is the probability (or density) of y given θ. The total deviance for a set of observations is the sum of individual deviances. When comparing two models, say two different values of θ, the model with the smaller deviance is preferred. In the case of normal linear models, the total deviance is proportional to the sum of squared deviations of the observed values from the fitted values; e.g., with a simple linear model, $D\left(y, \beta_{0}, \beta_{1}\right)=\frac{1}{2 \sigma^{2}}(y-$ $\left.\beta_{0}-\beta_{1} x\right)^{2}$. MCMC yields a sample from the posterior distribution of θ and the mean deviance, based on an MCMC sample of size L, is calculated by

$$
\hat{D}_{\text {avg }}(\mathbf{y})=\frac{1}{L} \sum_{l=1}^{L}-2 \log \left(p\left(\mathbf{y} \mid \theta^{l}\right)\right)
$$

where \mathbf{y} is the entire vector of observed values.
Increasing the number of parameters typically decreases deviance and to compare models with differing numbers of parameters, a measure that includes deviance but exacts an increasing penalty for an increasing number of parameters is DIC, the deviance information criterion, defined as follows.

$$
D I C=2 \hat{D}_{\text {avg }}(y)-D(\mathbf{y}, \hat{\theta})
$$

where $\hat{\theta}$ is the posterior mean for θ.

Assessment of quality in terms of fit to individual observations was examined by calculating Bayesian P-values and scaled residuals. Bayesian P-values are defined as the proportion of time a predicted value exceeds the observed value:

$$
\text { Bayesian P-value }=\frac{1}{L} \sum_{l=1}^{L} I\left(y_{l}^{\text {pred }} \geq y\right)
$$

where $I()$ is an indicator function equaling 1 when the condition inside () is met. The predicted value, $y_{l}^{\text {pred }}$ is found by simulating y from its probability distribution evaluated at the parameter value θ^{l} (taken from the MCMC sample). Bayesian P-values near 0 or 1 are indicative of a poor fit. Scaled residuals are defined by

$$
\text { Scaled residual }=\frac{y-\bar{y}^{\text {pred }}}{s_{y^{\text {pred }}}}
$$

where $\bar{y}^{\text {pred }}$ and $s_{y^{\text {pred }}}$ are the mean and standard deviation of the predicted values.
4.6. Sensitivity analysis. The sensitivity of the results to the particular Bayesian hierarchical formulations was evaluated by making changes in each of the three levels of the hierarchy. In Bayesian methods sensitivity analysis is often focused on the choice of prior distributions (Level 3), however, it can also include comparisons with alternative likelihood models (Level 1) and random effects models (Level 2). The latter comparisons sometimes are viewed as problems of model selection, but they can also be viewed as a form of sensitivity analysis. Several of the alternatives discussed below were either directly suggested or indirectly stimulated by comments from reviewers.

Negative Binomial likelihood (Level 1): A distribution sometimes used for overdispersed count data is the negative binomial. Overdispersed in this case is with reference to a Poisson distribution where the variance equals the mean. The Poisson distribution itself is often used as an approximation to the binomial distribution when the probability of success is relatively small, the number of trials is large, and the expected number of successes is relatively small; and in that case, if $X \sim \operatorname{Binomial}(n, p)$, then $X \approx \operatorname{Poisson}(n p)$. Thus the negative binomial can be used to approximate "overdispersed" binomial data in such a setting (large n, small p, etc).

An example formulation for one of the outcomes, recoveries at Chipps Island of releases from Ryde, is the following.

$$
y_{R y \rightarrow C I} \sim \operatorname{NegBinom}\left(k_{C I}, \frac{k_{C I}}{R_{R y} r_{R y \rightarrow C I}+k_{C I}}\right)
$$

where k is a non-negative constant that affects the degree of overdispersion (relative to a Poisson, or indirectly a Binomial, random variable). The larger k is, the less the overdispersion. Let $p=\frac{k_{C I}}{R_{R y} r_{R y} \rightarrow C I}+k_{C I}$

$$
E\left[y_{R y \rightarrow C I}\right]=\frac{k_{C I}(1-p)}{p} \equiv R_{R y} r_{R y \rightarrow C I}
$$

and

$$
V\left[y_{R y \rightarrow C I}\right]=\frac{k_{C I}(1-p)}{p^{2}} \equiv R_{R y} r_{R y \rightarrow C I} \frac{R_{R y} r_{R y \rightarrow C I}+k_{C I}}{k_{C I}}
$$

Negative binomial formulations were applied independently to recoveries at two (Chipps Island and the ocean) or three (Antioch, Chipps Island, and the ocean) locations from the same release. This univariate treatment ignores the Level 1 probabilistic dependence between $y_{C I}$ and $y_{O c}$, say, that the multinomial likelihood models recognize. While multivariate negative binomial distributions do exist (Winkelmann 2000), the use of independent marginal negative binomial distributions for each of the outcomes is probably adequate given how extremely small the covariances are between the outcomes (due to the very small capture probabilities).

Alternative random effects models (Level 2): Reviewers of an earlier draft had several useful suggestions regarding Level 2 models. They are described below for completeness, but all suggestions were not tried for all four studies.
(1) Log link function for θ. A ratio between survival probabilities, denoted by θ, was of interest in all four studies. The logit link function bounds the ratio between 0 and 1 , thus the survival in the numerator of the ratio was implicitly assumed to be less than the value in the denominator. An alternative link function is the natural log which would allow the survival in the numerator to exceed that in the denominator; e.g., in the case of the Interior and DA 8 studies, the Georgiana Slough releases could potentially have higher survival rates than the Ryde releases. In contrast to the logit link function, there is the potential that fitted probabilities could mathematically exceed 1 (which will cause the fitting algorithm in the multinomial case to fail).
(2) Correlated random effects. Survival rates in different parts of the river, particularly for the VAMP studies, might be positively correlated in the sense that when conditions are good in one part of the river, it could well be that conditions are good in other parts of the river (Bryan Manly, personal communication). One way to allow for this possibility to specify a multivariate distribution for the Level 2 random effects. For example, with the Interior study, a multivariate normal distribution could be specified for the (logit transformed) vector of $\left(\theta, r_{R y \rightarrow C I}, r_{R y \rightarrow O c}\right)$:
(3) Extended logit-type link functions for $r_{i \rightarrow j}$ and $r_{i \rightarrow k}$. For both the non-Bayesian and Bayesian formulations the sum $r_{R y \rightarrow C I, t}+r_{R y \rightarrow O c, t}$ must be less than 1 by definition, but such constraints are not built in. However, recovery probabilities are so small in practice that the chance of estimating $r_{R y \rightarrow C I, t}+r_{R y \rightarrow O c, t}$ to be >1 is negligible. An alternative logit-like formulation (Russell Millar, personal communication) that does satisfy this constraint is the following:

$$
\begin{align*}
& \log \left(\frac{r_{R y \rightarrow C I, t}}{1-r_{R y \rightarrow C I, t}-r_{R y \rightarrow O c, t}}\right) \tag{52}\\
& \log \left(\frac{r_{R y \rightarrow O c, t}}{1-r_{R y \rightarrow C I, t}-r_{R y \rightarrow O c, t}}\right) .
\end{align*}
$$

Then in the case of the Bayesian model,

$$
E\left[r_{R y \rightarrow C I, t}\right] \approx \frac{\exp \left(\mu_{r_{R y \rightarrow C I}}\right)}{1+\exp \left(\mu_{r_{R y \rightarrow C I}}\right)+\exp \left(\mu_{r_{R y \rightarrow O c}}\right)}
$$

(4) Secondary release-specific covariates. The random effects components at Level 2 will to some degree account for factors influencing survival over and above the primary covariates that are being structurally modeled, namely DCC gate position (DCC), location (Interior), location and exports (DA 8), and flow, exports, and HORB (VAMP). For example with the Interior study, $\theta_{t} \sim \operatorname{Normal}\left(\mu_{\theta}, \sigma_{\theta}^{2}\right)$. Deviations from μ_{θ} are in a sense a function of secondary covariates that are not modeled, such as temperature (Baker, Speed, and Ligon, 1995). If the values of such covariates vary widely and have a large effect on survival, then the variation in the random effects parameter will be large, e.g., σ_{θ}^{2} is large, and predictions of release-specific parameters, such as θ_{t}, will have considerable uncertainty. Including such covariates into the Level 2 model can however increase precision. After-the-fact assessment of secondary covariate influence can be done by comparing fitted values, e.g., $\hat{\theta}_{t}$, or random effect "residuals",
with covariate values, and/or by including such covariates in the Level 2 model and comparing the quality of fit.

Alternative priors (Level 3): Gelman (2006) has discussed potential problems with inverse gamma priors for the variance components of a hierarchical model. While he describes sophisticated alternatives, a relatively simple choice is the use of a uniform distribution for the standard deviation. For example,

$$
\sigma_{\theta}, \sigma_{r_{R y \rightarrow C I}}, \sigma_{r_{R y \rightarrow O c}} \sim \operatorname{Uniform}(0,20)
$$

was tried for some of the models.

Sensitivity to the above changes were assessed in terms of changes in the posterior means for observations and parameters and by examining DIC, Bayesian p-values, and scaled residuals.

5. Results

The R package R2WinBUGS was used as an interface to WinBUGS to fit the BHMs and the code for both are given in the appendices. For all models fit, three Markov chains were run using different starting values. The Brooks-Gelman-Rubin statistic (see documentation in WinBUGS and Brooks and Gelman (1998)) was calculated to assess convergence; values near 1 are consistent with convergence, i.e., the variance within a chain is more or less the same as the variance between chains.

5.1. DCC studies.

5.1.1. Non-Bayesian results. Recall $\hat{\theta}=\hat{r}_{C t \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}, \theta=S_{C t \rightarrow C I} / S_{R y \rightarrow C I}$, and $\mu_{\theta}=\mathrm{E}[\theta]$. The weighted estimates of μ_{θ} were 0.40 when the DCC gate was open and 0.64 when the gate was closed. The estimate of $\mu_{\theta(\text { Open })} / \mu_{\theta(\text { Closed })}$ was $0.40 / 0.64=0.63$ with a standard error of 0.20 . The bootstrapped 95% confidence interval (using the percentile method, Efron and Tibshirani (1993, p 170)) was ($0.28,1.10$). Thus there is evidence suggesting that when the gate is open, the survival of Courtland releases decreases, but there is considerable uncertainty about this conclusion (see the bootstrap histogram of ratio estimates in Figure 13).

The weighting of the $\hat{\theta}$'s had considerable effect on the results. Assigning equal weights to each release pair yielded $\hat{\mu}_{\theta(\text { Open })}=0.92$ and $\hat{\mu}_{\theta(\text { Closed })}=1.02$ and the estimate of $\mu_{\theta(\text { Open })} / \mu_{\theta(\text { Closed })}$ was 0.89 . If the 1989 observation was removed (an apparent outlier), however, the equally weighted estimate of $\mu_{\theta(\text { Open })} / \mu_{\theta(\text { Closed })}$ was 0.60 , quite similar to the weighted results.
5.1.2. Bayesian results. A combination of model formulations were fit, with multinomial or negative binomial likelihoods at Level 1 , logit or \log transformations of θ at Level 2, and inverse gamma or uniform priors for the variances or standard deviations of the random effects at Level 3. One combination that did not work was the multinomial with a log transformation of θ which sometimes led to the recovery "probabilities", θr_{c} and θr_{o}, exceeding one. Table 9 shows the DIC values for some of the models tried. The model selected for inference was the negative binomial with \log transformed θ and uniform priors for the standard deviations. The R and WinBUGS program code are shown in Appendix E.1. For the negative binomial binomials, a burn-in of 10,000 samples was used for each chain and an additional 40,000 samples were generated. Based on the Brooks-Gelman-Rubin statistic for
convergence, all values lying between 1.00 and 1.04 , the chains had converged to the posterior distribution.

Parameters of interest. Summaries of the posterior distributions of the selected model are shown in Table 9. Of most relevance to the objectives of the DCC studies is the slope coefficient β_{1}, which when positive, suggests that closing the DCC gate increases survival for Courtland releases. The mean value of β_{1} was 0.33 , but the posterior distribution is quite wide. A more direct measure of the DCC gate effect is the ratio of the closed gate ratio (Courtland/Ryde) to the open gate ratio, $\theta_{\text {Open }} / \theta_{\text {Closed }}$, which when less than 1.0 indicates that survival for Courtland releases relative to Ryde releases is less with the DCC gates open than with the gates closed. The posterior median for $\theta_{\text {Open }} / \theta_{\text {Closed }}{ }^{7}$ is 0.72 , but the probability that $\theta_{\text {Open }} / \theta_{\text {Closed }}$ is less than 1.0 is only 64%.

While not of direct relevance to the DCC studies, some of the other parameters are of interest. The median recovery probability for Ryde releases at Chipps Island was 0.0008 , and for ocean recoveries it was 0.0080, an order of magnitude larger. The negative binomial parameter $k_{C I}$ for Chipps Island recoveries is very large (mean value $=493$), which indicates little evidence for overdispersion, in contrast to $k_{O c}$ for ocean recoveries which was considerably smaller (mean value $=17$). The group 13 pair is perhaps to some degree responsible for $k_{O c}$'s value since the estimated ocean recoveries for Ryde were so much less than those for Courtland.

Quality of fit. Forty-seven of the 52 observations (90\%) had Bayesian P-values within the middle 90% of the posterior predictive distributions. The five "outlying" observations were the group 13 Ryde recoveries at Chipps Island (P -value $=0.98$) and in the ocean fisheries (P value $=0.99$) (see Figures 14 and 15), and Courtland recoveries at Chipps Island for groups 3, 9, and 10 (Figure 16). The scaled residuals are plotted against mean posterior predictions in Figure 17 The largest scaled residuals are for the Chipps Island recoveries from Courtland releases in groups 3 and 9, but, in contrast to the P-values, the group 13 Ryde residuals are not outliers.

The influence of group 13 was assessed by removing those observations and re-fitting the negative binomial model. The median value for $\theta_{\text {Open }} / \theta_{\text {Closed }}$ changed only slightly (from 0.72 to 0.65) and the probability that $\theta_{\text {Open }} / \theta_{\text {Closed }}$ was less than 1.0 only went from 64% to 70%. Thus the effect of this group on the most relevant parameters was minor.

[^6]Random effects. Sensitivity to the Level 2 formulation was also examined by fitting a multivariate normal random effects model for $\theta, r_{R y \rightarrow C I}$, and $r_{R y \rightarrow O c}$. The extended logit transformation was used for $r_{R y \rightarrow C I}$ and $r_{R y \rightarrow O c}$. An inverted Wishart distribution was used for the joint prior distribution of random effects. WinBUGS model code is shown in Appendix E.2. The DIC value (Table 9) was slightly higher than for uncorrelated multinomial models, and considerably higher than for the negative binomial models. The posterior median for the ratio of ratios was 0.96 . Negative correlations (on the logit and extended logit scales) were found between θ and $r_{R y \rightarrow C I}$ (correlation coefficient $=-0.58$), between θ and $r_{R y \rightarrow O c}$ (correlation coefficient $=-0.53$), while the correlation between $r_{R y \rightarrow C I}$ and $r_{R y \rightarrow O c}$ was positive (correlation coefficient $=0.62$).

The value of random effects in the model was examined by fitting a negative binomial model without any random effects for $\theta_{t}, r_{R y \rightarrow C I}$, and $r_{R y \rightarrow O c}$, i.e., purely deterministic Level 2 models. The apparent benefit to survival of having the DCC gates closed increased sizeably, the probability that $\theta_{\text {Open }} / \theta_{\text {Closed }}$ was less than 1.0 went from 64% to 95%. However, the model fit and predictive power worsened notably: the DIC increasing from 567.3 to 656.7, the Bayesian P-values tended to become more extreme (particularly for ocean recoveries), and the magnitude of scaled residuals in some cases nearly doubled (Figure 18).

5.2. Interior studies.

5.2.1. Non-Bayesian results. The estimate of the expected ratio of Georgiana Slough survival to Ryde survival, μ_{θ}, based on a weighted average of $\hat{\theta}\left(\hat{r}_{G S \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}\right)$ was 0.33 with a bootstrap standard error of 0.038 and a 95% confidence interval of $(0.26,0.41)$. The unweighted average of the $\hat{\theta}$'s was 0.40 (median $=0.33$) with a standard error 0.055 and a 95% confidence interval of $(0.30,0.51)$. In either case the evidence that the survival for Georgiana Slough releases was low relative to Ryde releases was strong.
5.2.2. Bayesian results. Several combinations of models were fit to the Interior data. Based on the DIC values, the multinomial models were all quite similar in terms of fit and preferable to the negative binomial models (Table 10). However, the parameter estimates under the negative binomial were very similar to those for the multinomial distribution. There was little evidence for overdispersion based on the negative binomial model; e.g., for the log transformed θ and uniform priors on the σ 's of the random effects, the median values for $k_{C I}$ and $k_{O c}$ equaled 15 and 208. The results presented below are based on the multinomial model with \log transformed θ and uniform priors for the σ 's. The WinBUGS program code
for the multinomial model is shown is shown in Appendix E.3. For each of the three chains a burn-in of 50,000 samples was used and an additional 150,000 samples were generated. The Brooks-Gelman-Rubin statistics were between 1.00 and 1.04 for all parameters.

Parameters of interest. Summary statistics for the posterior distributions are shown in Table 10. The key parameter is θ, the ratio of Georgiana Slough to Ryde recoveries, and the posterior mean predicted value was around 0.44 , strong evidence, consistent with the nonBayesian analysis, that the Georgiana Slough recovery rates are considerably less than the recovery rates for Ryde releases. However, the upper 4.9% of the distribution for θ was above 1.0, meaning that there was a 4.9% chance that Georgiana Slough recovery probabilities could be higher than the Ryde recovery probabilities. The posterior mean predicted value of θ was quite similar for all models, ranging from 0.41 to 0.44 . The median recovery probability at Chipps Island, $r_{R y \rightarrow C I}$, was 0.0004 and, as for DCC studies, the ocean fisheries recovery probability was an order of magnitude higher, 0.0036 .

Quality of fit. Of the 60 observations, 55 (or 92%) fell within the middle 90% of the posterior predictive distributions. The five observations with extreme Bayesian P-values were groups 1 and 6 Ryde recoveries at Chipps Island, the group 5 Georgiana Slough recoveries at both Chipps Island and in the ocean, and the group 12 Georgiana Slough recoveries at Chipps Island. In each case, the observed value was either exceptionally small or large relative to the predicted values; e.g., for the group 1 Ryde releases, the observed 37 recoveries at Chipps Island were larger than 98% of the predicted values (Figure 19). The scaled residuals are plotted against mean posterior predictions in Figure 20, and the largest residuals are for those Chipps Island recoveries of Ryde releases with extreme P-values.

Random effects. A multivariate normal random effects model was also fit (using the same approach as for the DCC implementation). Based on the DIC value, this model was of nearly equivalent quality to the uncorrelated multinomial models (Table 10). The correlations between the random effects were relatively low; correlation between θ and $r_{R y \rightarrow C I}$ (on the logit scales) was 0.11 , between θ and $r_{R y \rightarrow O c}$ it was 0.23 , and between $r_{R y \rightarrow C I}$ and $r_{R y \rightarrow O c}$ it was 0.31 .

To determine the impact on results of including random effects, the multinomial model with \log transformed θ was fit without any random effects, i.e., deterministic Level 2 models. The posterior mean for the expected value of θ, μ_{θ}, was -0.86 , in contrast to -1.02 for the value for the model that included random effects. However, $\exp \left(\mu_{\theta}\right)=0.42$, which is quite similar to the posterior mean for the simulated value θ in the model including random effects ($\mathrm{E}[\theta]$ ≈ 0.44). The key difference was in the considerably greater variability in the distribution
for θ, with the coefficient of variation for the random effects model equal to 82% compared to 3% for the model without random effects. The expected recovery probability for Ryde releases at Chipps Island was 0.00045 and in the ocean was 0.0044 , about 20% less than for the random effects model. The prediction ability and quality of fit was considerably worse when random effects were removed: the DIC value increased from 428 to 2184 , the frequency of relatively extreme Bayesian P-values increased considerably, and the magnitude of scaled residuals increased four- to five-fold (Figure 21). The variation in the observed recovery fractions was simply far larger than could be explained by a model without random effects.

Secondary covariates. The effect of secondary covariates was examined by plotting the median fitted θ 's per release set against release temperature at Georgiana Slough and average length of fish at release (Figure 22). No pattern was apparent. The release temperatures at Ryde were very similar to those at Georgiana Slough with one exception, the tenth set, in year 2000 with tags $05-51-31$ and $05-51-33$, where Ryde temperature was 50 degrees Fahrenheit in contrast to 63 degrees at Georgiana Slough. However, this release pair was not unusual in terms of Bayesian P-values or scaled residuals, and it may be that the 63 degrees was a data recording error (Pat Brandes, personal communication).

It is worth noting that the use of temperature at time of release is only a very limited measure of the temperatures possibly experienced by a fish as it out-migrates. Potentially, during the period of out-migration the variation in water temperatures could be extreme and temperature at time of release would not necessarily be very reflective of the temperatures encountered enroute.

Analyses with inland recoveries. Given the relatively similar stray rates for inland recoveries between Georgiana Slough and Ryde releases, additional model runs were made using the inland recoveries in combination with the expanded ocean recoveries. The results for the selected multinomial model (\log transformed θ and uniform priors for the σ 's) were very similar, e.g., the posterior mean for μ_{θ} was -1.03 compared to -1.02 for the results without inland recoveries, but the posterior standard deviations for some of the fitted θ 's were slightly smaller with inland recoveries included.

5.3. Delta Action 8 Experiments.

5.3.1. Exploratory data analysis. Non-BHM estimates of the ratio $\theta=S_{G S \rightarrow C I} / S_{R y \rightarrow C I}$, namely $\hat{\theta}=\hat{r}_{G S \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}$, are plotted against exports in Figure 23. The vertical lines in the plot mark ± 1 standard error, which was calculated using delta method (i.e.,
the sample based estimates of $\sqrt{V\left(\hat{\theta}_{t}\right)}$ shown in Appendix A). Thus these standard errors reflect within release pair variability only. The two especially large standard errors (middle and right side of the plot) are for 2005 and 2006 and their magnitude is due to the lack of ocean recovery information to date.

Also plotted in Figure 23 is a weighted,nonparametric regression curve. The curve was fit using a supersmoother function in R and weights based on the delta method standard errors. While this graph is a non-Bayesian, non-hierarchical, and indirect analysis, the gist of the results is, as will be shown next, consistent with the Bayesian, hierarchical, and integrated analysis, i.e., suggesting a slight negative association between exports and θ.
5.3.2. Bayesian analysis. As for the Interior analysis multinomial and negative binomial distributions, logit and \log transformations of θ (with θ now defined as a function of exports), and uniform and gamma distributions for σ 's were all tried. The WinBUGS code for the multinomial distribution is shown in Appendix E.4. Burn-in time was set at 50,000 iterations and then at least 100,000 iterations were used for the posterior samples. The Brooks-Gelman-Rubin statistics were between 1.0 and 1.03 for all parameters and trace plots of the parameters were consistent with good mixing.

The preferred model based on DIC is the multinomial with \log transformed θ and uniform priors for the σ 's (Table 11), but all the multinomial models yielded quite similar results. The DIC for this model, 427.0, however, was only slightly less than the DIC for the models without exports (the "Interior" models where minimum DIC was 427.7). Summary statistics from the posterior distributions are shown in Table 11. The negative binomial's overdispersion parameters were quite large (median values of 192 for $k_{C I}$ and 311 for $k_{O c}$) indicating very little overdispersion relative to a multinomial distribution.

Parameters of interest. The key parameter is β_{1} (the coefficient for exports in the logistic regression of θ; see equation 29). It had a 98% probability of being negative, indicative of a negative association between the relative survival of Georgiana Slough and Ryde releases (θ) and exports. A posterior sample of predicted θ for different levels of exports was generated and the results are plotted in Figure 24. The plot shows the decline in mean θ as exports increases (when exports are at 2000 cfs , mean θ is 0.62 , and when exports are at 10,000 cfs, mean θ is 0.31). The plot also shows the considerable range of variability in θ for any given level of exports. The noise in this relationship is indirectly apparent given that the DIC value for a model without exports (an Interior model) was not much higher than the corresponding model with exports. Note that upper bounds on θ for lower levels exceed 1.0,
allowing for the possibility that Georgiana Slough releases could have better survival than Ryde releases (consistent with results for the Interior model).

Figure 25 compares the BHM predicted values of θ at different export levels with predictions from indirect, non-Bayesian analyses. Model M1 mimics Brandes and McLain (2001) in that a linear regression of the ratio of Chipps Island recovery fractions ($\hat{r}_{G S \rightarrow C I} / \hat{r}_{R y \rightarrow C I}$) was regressed against (standardized) exports. Another model, M2, is a regression of the natural logarithm of $\hat{r}_{G S \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}$ against (standardized) exports; the predicted values are $\exp \left(\hat{\beta}_{0}+\hat{\beta}_{1} E x p^{*}+\sigma^{2} / 2\right)$. All three models had a negative association with exports but the BHM results (M3) had a higher relative survival for Georgiana Slough releases than the two non-Bayesian models.

Table 12 compares the BHM fitted values of θ compared to non-BHM estimates. The BHM fitted values are the posterior means for the particular releases in contrast to posterior predicted values for any release at a specified export level (as shown in Figure 25). The non-BHM estimates are simply the release-specific ratios, $r_{G S \rightarrow C I+O c} / r_{R y \rightarrow C I+O c}$, i.e., not modeled as a function of exports. Despite the underlying differences in estimation procedures, the posterior means of fitted values and non-BHM estimates are quite similar. The posterior standard deviations and standard errors are also similar with the exception of the two most recent years without ocean data, where the posterior standard deviations are considerably smaller than the standard errors, indicative of the information from other releases that BHMs utilize. The last column of Table 12 shows the estimates of the survival ratios using the method of Brandes and McLain (2001) with the Chipps Island recoveries. While there are several release pairings with values similar to θ (a 1995 pairing, a 1999 pairing, 2000, 2004, and 2005), there are several, sometimes large differences as well (e.g., 1994 and a 1995 pairing).

The posterior distributions of recovery probabilities for Ryde releases at Chipps Island and in the ocean fisheries were nearly identical to the Interior study (Table 11).

Quality of fit. The Bayesian P-values and scaled residuals were essentially the same as for the fitted Interior model. The relationship between temperature and length and fitted θ 's would be similar to that for the fitted Interior model, too.

Additional analyses. The multivariate random effects model was also fit. The DIC value was only slightly higher for the uncorrelated random effects models with log transformed θ. The correlation between random effects, as compared to the Interior study, was slightly
higher: between θ and $r_{R y \rightarrow C I}$ (on the logit scales) it was 0.33 , between θ and $r_{R y \rightarrow O c}$ it was 0.47 , and between $r_{R y \rightarrow C I}$ and $r_{R y \rightarrow O c}$ it was 0.33.

As for the Interior model, the inland recoveries were added to the ocean recoveries and the preferred multinomial model was fit. The results were quite similar to those excluding the inland recoveries. The DIC value was 427.6 (versus 427.0). The probability that $\beta_{1}<0$ was again 98%, although the posterior mean fitted values for $\theta \mid$ Exports differed by as much as 10% from the model without inland recoveries (e.g., for group 10, the posterior fitted value of θ was 0.55 versus 0.65 , Table 12).

Based on suggestions from anonymous reviewers, the ratio of exports to flow was substituted for absolute exports as a covariate. The DIC value was very similar (426.9 versus $427.0)$ and the probability that $\beta_{1}<0$ was 0.98 still. Bayesian P-values and scaled residuals were nearly identical.
5.4. VAMP studies. Initial analyses compared multinomial and negative binomial formulations at Level 1. For the negative binomial model, three dispersion parameters were included, for Antioch, Chipps Island, and the ocean recoveries. For further analyses and the results presented here, the multinomial formulation was selected over the negative binomial based on the facts that the dispersion parameters were all very large (at least 500 in all three cases), indicating little overdispersion, and that the Bayesian P-values and and scaled residuals were considerably better for the multinomial model.

The particular multinomial model used for inference used logit transformations of survival probabilities for Level 2 and uniform priors for the σ 's for Level 3. The use of \log transformations for Level 2 was not tried to lessen problems with probabilities exceeding one during the fitting process. Inverse gamma priors for σ^{2} at Level 3 led to similar results. The R and WinBUGS code used to fit a multinomial model is shown in Appendix E.5.

Including random effects had a considerable impact on DIC values. Table 13 compares the DIC values for three models with only a single covariate (an indicator for HORB was used to model $\left.S_{D R \rightarrow J P}\right)$. When no random effects were included, the DIC was about six times larger than for a model with random effects for the recovery probabilities, and inclusion of random effects for survival and recovery probabilities further reduced DIC by about $2 / 3$'s. Thus including random effects considerably improved the DIC values.

Models where $p_{O R}$ was assumed known and a function of the relative flow into Old River (see Table 6) were compared to models where $p_{O R}$ was fixed but unknown were compared. To otherwise make the two situations equal, in both cases $S_{M D \rightarrow H O R}$ was fixed equal to 1.0, even though it was estimable with $p_{O R}$ known. For a model with no covariates, the DIC values were nearly equal ($\mathrm{DIC}=1499$ with $p_{O R}$ known and $\mathrm{DIC}=1496$ with $p_{O R}$ estimated). Somewhat arbitrarily, believing that $p_{O R}$ does in fact vary as a function of flow, and not wanting to necessarily assume $S_{M D \rightarrow H O R}=1.0$, results for varying $p_{O R}$ are presented and discussed below. The quality of fit and the relative magnitude of coefficients were much the same for known and varying $p_{O R}$ and unknown and fixed $p_{O R}$, however.

Table 14 summarizes results for some of the models (with varying $p_{O R}$). The model with the smallest DIC value models $S_{D R \rightarrow J P}$ and $S_{O R \rightarrow J P}$ both as functions of flow and export levels (labeled Null.FE.FE); i.e.,

$$
\begin{aligned}
\operatorname{logit}\left(S_{D R \rightarrow J P}\right) & \sim \operatorname{Normal}\left(\xi_{0}+\xi_{1} \text { Flow }_{D R}+\xi_{2} \text { Exports }_{D R}, \sigma_{D R \rightarrow J P}^{2}\right) \\
\operatorname{logit}\left(S_{O R \rightarrow J P}\right) & \sim \operatorname{Normal}\left(\zeta_{0}+\zeta_{1} \text { Flow }_{U O R}+\xi_{2} \text { Exports }_{M D}, \sigma_{O R \rightarrow J P}^{2}\right)
\end{aligned}
$$

Figure 26 contains histograms of a sample from the posterior distribution for the flow and export coefficients $\left(\xi_{1}, \xi_{2}, \zeta_{1}, \zeta_{2}\right)$ for this model. While the DIC value was lower than for models without export coefficients and upper Old River flow, the posterior probabilities suggested only weak effects of exports and the upper Old River flow on survival. Also based on this model, Figure 27 plots, for each of the 35 release sets, the posterior mean survival probabilities for travel down Old River exclusively, travel down the San Joaquin River exclusively, and the expected values down the combination of rivers (given HORB and $\left.p_{O R}\right)$. The expected survival probability down Old River was always less than the survival down the San Joaquin River. Different models yielded somewhat different expected values, but the survival down Old River was generally, if not always, lower than those for the San Joaquin.

The PI for the VAMP study asked how different the results would be if the release sets from 2003 through 2006 were removed, since these were years with particularly low recovery numbers for Durham Ferry and Mossdale releases. Only a couple of models were tried, but the results were quite similar to those for the full data set. The most practically significant results were that the positive effect of flow on $S_{D R \rightarrow J P}$ and $S_{O R \rightarrow J P}$ was considerably stronger: the probability that the coefficients was positive was 100% for $S_{D R \rightarrow J P}$ and 97% for $S_{O R \rightarrow J P}$.

Quality of fit. The posterior mean predicted values for the Null.FE.FE model are plotted against the observed values for some of the data in Figure 27 (excluding Old River just to avoid clutter). Note that these are predicted, not fitted values which include case-specific
random effects. The observed values are in many cases far from the mean predicted values; for cases of relatively large numbers of ocean recoveries in particular, the posterior mean values are underestimates. The Bayesian P-values are perhaps more informative in that they indicate just how extreme, or not, the observations are relative to the entire predictive distribution. Of the 206 outcomes, 197 (96%) of the observations fell within the middle 90% of the posterior predictive distributions. The "minimum" P-values, and posterior predictive samples, for the worst fitting subset, recoveries at Antioch from Mossdale releases, are shown in Figure 28, where there were three releases with one or zero recoveries at Antioch. The scaled residuals, grouped by release-recovery category (again excluding Old River releases), are plotted against posterior predictive means in Figure 29. For a few observations, e.g., Chipps Island recoveries from a Jersey Point release, the residuals exceeded 2 in absolute value.

Secondary covariates. At a presentation of preliminary results to the VAMP science group, the question of the effects of water temperature on survival was raised. The observed, or in some cases estimated, water temperatures at release points were compared to the Level 2 random effects residuals, i.e., deviations from the mean value (on the logit scale), using the Null.FE.FE model. For example, the survival, on the logit scale, between Durham Ferry and Mossdale for release set t can be written as follows.

$$
\operatorname{logit}\left(S_{D F \rightarrow M D, t}\right)=\beta_{0}+\epsilon_{D F \rightarrow M D, t},
$$

where

$$
\epsilon_{D F \rightarrow M D, t} \sim \operatorname{Normal}\left(0, \sigma_{S_{D F \rightarrow M D}}^{2}\right)
$$

WinBUGS output included samples from the posterior distribution for these ϵ 's and the means from these samples are what are plotted against the stream section temperatures in Figure 30. The Jersey Point plot is based on the residuals for relative survival to Chipps Island, where $\epsilon_{J P \rightarrow A n t \rightarrow C I, t}$ and $\epsilon_{J P \rightarrow C I, t}$ have been combined. The scatterplot smooths over the plots suggests at most a slightly negative association between temperature and the random effects for Durham Ferry releases, i.e., as release temperature increases the estimated survival (on a logit scale) tends to decrease, but otherwise there was no evidence for an association.

As an aside, there was a single very large negative random effect for one of the Durham Ferry releases (this was from a year 2000 release, group 24), as can be seen in Figure 30. This was undoubtedly the cause of the very large variance term, $\sigma_{D F \rightarrow M D}^{2}$. The reason for the large "residual" may be due to the low percentage of ocean recoveries, 0.2%, relative to Jersey Point release which had 1.5%, in comparison to other Durham Ferry releases. It is worth noting that the scaled residuals did not reveal this outlier because the large random
effects variance scaled down the residual considerably. Thus scaled residuals alone are not an adequate diagnostic of model fit in some cases.

Another concern raised by the VAMP science group and one of the reviewers was the use of two different hatchery stocks, from Feather River Hatchery and Merced River Fish Facility. There is some degree of temporal confounding in that Feather River Hatchery fish were used only during the early years (1985-1998), while Merced River Fish Facility fish were (mostly) used in the later years (1996-2006). If environmental conditions during the early years were particularly poor for survival, for any stock, then it would be incorrect to attribute the cause to stock. It should also be noted that another possible confounding factor is that beginning in 1998, the sampling effort at Chipps Island essentially doubled, relative to previous years. With these caveats in mind, the random effects residuals (Null.FE.FE model) for two river sections, $D R \rightarrow J P$ and $J P \rightarrow C I$ for the two stocks were compared and side-by-side boxplots are shown in Figure 31. The Durham Ferry to Mossdale section was not included since all releases from Durham Ferry came from Merced River Fish Facility; and the Mossdale to Dos Reis section was treated as having constant survival. Evidence for a higher survival probability for the MRFF stock is apparent, particularly for the Jersey Point releases. To allow for a stock effect, an expanded model for the recovery probabilities was fit, i.e.,

$$
\operatorname{logit}\left(r_{J P \rightarrow x}\right) \sim \operatorname{Normal}\left(\mu_{J P \rightarrow x}+\chi I_{M R F F}, \sigma_{J P \rightarrow x}^{2}\right)
$$

where $x=A n t, C I$, or $O c$ and $I_{M R F F}$ is an indicator variable for Merced River Fish Facility stock. Some results for a model including this stock effect and $S_{D R \rightarrow J P}$ modeled as a function of flow are shown in Table 14. The DIC was higher than for a model without the stock effect but the posterior means for parameters were much the same, suggesting that general conclusions are robust to a possible stock effect.

Lastly, another concern expressed by reviewers was how recoveries of fish at the fish facilities at CVP and SWP might affect results. Random effects residuals (Null.FE.FE model) for different reaches were plotted against the estimated salvage (Figure 32). The residuals for the logit of $S_{O R \rightarrow J P}$ did not necessarily always apply to the Durham Ferry and Mossdale releases because the HORB was sometimes in position and by assumption those fish would only travel down the San Joaquin River. For the Old River releases, the residuals for the logit of $S_{O R \rightarrow J P}$ did tend to increase as fish salvaged increased, i.e., the fitted survival probabilities were elevated somewhat as number of fish salvaged increased. For the Durham Ferry, Mossdale, Dos Reis, and Jersey Point releases there is no apparent relationship between number salvaged and the survival random effects.

6. STUDY DESIGN AND SAMPLE SIZE ISSUES

The objectives for all four multi-year studies have been translated into parameter estimation problems, namely

- $D C C$: for comparing open gate to closed gate effects on survival, estimate $\mu_{\theta(\text { Close })} / \mu_{\theta(\text { Open })}$ (equation 8);
- Interior: for comparing survival from Georgiana Slough to survival from Ryde, estimate μ_{θ} (equation 23);
- DA 8: for evaluating the effect of exports on the survival of Georgiana Slough releases (relative to the survival of Ryde releases), estimate β_{1} (equation 29);
- VAMP: for evaluating the effect of flow on survival from Dos Reis to Jersey Point, for example, estimate a parameter ξ_{1}, say (equation 45).

Sample size and design issues translate into statements about bias and precision of these parameter estimates.
6.1. Bias. Bias in parameter estimates depends primarily on model correctness, i.e., whether or not the model assumptions hold. For example, at Level 1 were multinomial models appropriate? Were the fish fates independent? Were the capture probabilities the same for all fish within a paired release, e.g., the same probability of capture at Chipps Island or in the ocean fisheries? At Level 2 were normal distributions appropriate for the random effects?

The question of independence was addressed indirectly by using the negative binomial model as an alternative to the multinomial, and in the case of the DCC studies, the negative binomial was preferable ${ }^{8}$. The question of equal capture probabilities within a release pair was addressed non-rigorously (Section 3.2) by comparing the distribution of recovery times at Chipps Island within a release pair for a few cases (Figure 12). To better answer these two questions, two additions to the general release-recovery design are recommended.
(1) Use embedded replicates for some release groups. Embedded replicate tags provide a means of detecting whether or not the assumption of independence has been violated. With embedded replicate tags, the tag numbers vary from tag to tag within the same "spool" of tagging wire that is used to tag a given release group. Schnute (1992)

[^7]pointed out that embedded replicate tags provide no additional information regarding sampling variation if fish are independent and identically distributed. However, if fish are not independent and identically distributed, then embedded replicates can provide evidence for lack of independence, e.g., clustering. If variation between embedded replicates is higher than expected according to the underlying multinomial models, then dependence, such as clustering, could be the explanation. The negative binomial distribution is one possible remedy in that case, but the development of other alternative probability models would be worth exploring.

While embedded replicate data are not currently available, there were some "near" replicate tag codes used for some of the releases in the VAMP studies. Table 15 contains information from five sets of Durham Ferry releases. The fish within each set were reared in the same pond but differed by tag code. This is not exactly the same as embedded replicate groups in that the lots tagged with different tag numbers were tagged at different times. For each set a χ^{2} test was carried out to test that the proportions recovered by location were the same within a set. The P-values shown in Table 15 suggest departures from homogeneous multinomial distributions for four of the five sets. The underlying probability distribution for the χ^{2} test is multinomial. However, because ocean recoveries are estimated, not observed directly, this assumption is not true and some extra-multinomial variation undoubtedly exists. The ocean recoveries were then aggregated into the "non-caught" group and the χ^{2} tests were repeated, and this time no departures from homogeneity were observed. Note that these results indicate that using multinomial distributions for Level 1 of the hierarchical model is likely inaccurate, but they do not necessarily indicate a lack of independence between fish.
(2) Make releases below the recovery locations. By making releases immediately downstream of capture locations, i.e. Chipps Island and Antioch, assuming that subsequent ocean recovery probabilities are the same for releases within a pair or grouping, the capture probabilities at Chipps Island or Antioch can be estimated separately of the survival probability of the immediately upstream section (Newman 2003). Furthermore, estimates of capture probabilities provide a means of evaluating the assumption of constant capture probabilities for paired releases.

For some of the releases in the DCC and the Interior/DA8 studies, downstream releases were made below Chipps Island at Port Chicago or Benicia (see Tables 3 and 4). Method of moments estimates of the capture probabilities for the Courtland or Georgiana Slough releases and the Ryde releases were calculated as follows

$$
\hat{p}_{C I}=\frac{y_{U p \rightarrow C I}}{y_{U p \rightarrow C I}+\frac{\hat{y}_{U p \rightarrow O c} * R_{P C}}{\hat{y}_{P C \rightarrow O c}}},
$$

where the subscript $U p$ is for any release location above Chipps Island. The resulting estimates of $p_{C I}$ for the paired upstream releases are shown in Table 16. On average the capture probabilities were higher for Ryde releases than for the Courtland or Georgiana Slough releases. For the DCC studies, a simple paired t-test of equal capture probabilities yielded a P-value of 0.21 , suggesting that the differences could be due to sampling variation alone (a more refined test would account for different estimation errors). For the Interior/DA8 studies, however, the same test resulted in a P-value of 0.017 suggesting that Ryde releases were indeed captured with a higher probability than Georgiana Slough releases.

If in fact, the Ryde releases were recovered at a higher rate, then estimates of the relative survival rates of Georgiana Slough to Ryde releases are likely biased low, i.e., Georgiana Slough releases are surviving at a higher rate. Excluding the three release pairs without associated Port Chicago releases, the non-Bayesian estimate of μ_{θ} (equation 26) assuming equal capture probabilities is 0.46 , while if different capture probabilities are allowed the estimate is 0.57 .

The hierarchical model can be modified to accommodate both recoveries of Port Chicago releases, and separable upstream survival and capture probabilities, e.g., for the Interior studies,

Level 1:

$$
\begin{aligned}
y_{G S \rightarrow C I}, y_{G S \rightarrow O c} & \sim \operatorname{Mn}\left(R_{G S}, \theta S_{R y} p_{G S, C I}, \theta S_{R y}\left(1-p_{G S, C I}\right) r_{P C \rightarrow O c}\right) \\
y_{R y \rightarrow C I}, y_{R y \rightarrow O c} & \sim \operatorname{Mn}\left(R_{R y}, S_{R y} p_{R y, C I}, S_{R y}\left(1-p_{R y, C I}\right) r_{P C \rightarrow O c}\right) \\
y_{P C \rightarrow O c} & \sim \operatorname{Binomial}\left(R_{P C}, r_{P C \rightarrow O c}\right)
\end{aligned}
$$

Level 2:

$$
\begin{aligned}
\operatorname{logit}(\theta) & \sim \operatorname{Normal}\left(\mu_{\theta}, \sigma_{\theta}^{2}\right) \\
\operatorname{logit}\left(S_{R y}\right) & \sim \operatorname{Normal}\left(\mu_{S_{R y}}, \sigma_{S_{R y}}^{2}\right) \\
\operatorname{logit}\left(p_{G S, C I}\right) & \sim \operatorname{Normal}\left(\mu_{p_{G S, C I}}, \sigma_{G S, C I}^{2}\right) \\
\operatorname{logit}\left(p_{R y, C I}\right) & \sim \operatorname{Normal}\left(\mu_{p_{R y, C I}}, \sigma_{R y, C I}^{2}\right) \\
\operatorname{logit}\left(r_{P C \rightarrow O c}\right) & \sim \operatorname{Normal}\left(\mu_{r_{P C \rightarrow O c}}, \sigma_{P C \rightarrow O c}^{2}\right)
\end{aligned}
$$

The assumption of equal ocean recovery probabilities has not been addressed. Earlier unpublished work by the author used cluster analyses to analyze the ocean recovery patterns for some Sacramento River and Delta releases. The estimated proportions caught by age-port-time strata were used as the variable to cluster on and
the results indicated greater similarities between releases made in the same year than between years. More work is needed in this area.
6.2. Precision. Precision is the magnitude of the sampling error as measured by the size of the standard error of parameter estimates (classical analysis) or the size of the standard deviation of posterior distributions (Bayesian analysis). Sampling error of estimated survival probabilities and related parameters is a function of the parameter values, capture probabilities, inherent between year variation, sample size, and the degree of blocking or controlling for variation. With regard to blocking, the pairing (or tripling, etc) of releases is a positive feature of all the studies because it controls for at least some confounding factors and thereby increases precision.

As sample sizes increase and capture probabilities increase, the standard error or standard deviation of posterior distributions for the survival probabilities will generally decrease. For these multi-year studies there are two kinds of sample sizes: the number of fish released (R) and the number of years (or replications) of study (n). Increasing R or n will increase precision.

With paired releases there are at least two R 's and how fish numbers are allocated to each R will affect precision. For example, in a VAMP release group with 100,000 total fish available, one could allocate 25,000 fish each to Durham Ferry, Mossdale, Dos Reis, and Jersey Point, or one could put 40,000 at Durham Ferry and 20,000 each at the other three sites. Determining "optimal" allocation is thus another problem.

Covariate values affect precision, too. For the DA 8 studies, increasing the number of observations at the "extremes" of export levels will increase the precision in the estimate of the slope parameter (β_{1} in Equation 29). Similarly, for the VAMP studies, increasing the number of observations at the "extremes" of flow and exports will increase the precision of the related (partial) slope parameters (Equations 43-46).

Thus there are an infinite number of ways to achieve a desired precision by varying the number of years of study, varying the total number of fish released, varying the allocation of fish to release sites within a pairing, and by manipulating the covariate values to the degree possible. Ideally an analytic formula is derived which takes as input n, the total release numbers, e.g., $R_{1}+R_{2}$, and the allocation to release sites $\left(R_{1}, R_{2}\right)$, covariate values when appropriate, guesses as to parameter values, and inherent between year variation (e.g., σ_{θ}^{2}), and then outputs the standard error or standard deviation of the posterior distribution for
the parameter of interest. Or, more directly, an analytic formula takes as input the desired standard error or posterior standard deviation, and whatever non-manipulable factors there are (e.g., σ_{θ}^{2}), and outputs the combinations of n, R_{1}, R_{2}, and covariate values that will achieve the target precision.

The complexity of the hierarchical models for the DCC, DA 8, and VAMP studies is such that analytic solutions are difficult, at best, to derive. In these cases, simulation studies are an alternative: for different sample sizes and input values, simulate the data generation and estimation processes and then look at the resulting standard deviation of estimates (or posterior means). The following sections discuss sample size determination for each of the studies.
6.2.1. DCC: Sample size for estimating $\mu_{\theta(\text { Open })} / \mu_{\theta(\text { Closed })}$. Simulations of the data generation and data analysis processes were used to study the effect of changing n, the number of replications of paired releases, on the standard error of the estimate of $\mu_{\theta(\text { Open })} / \mu_{\theta(\text { Closed })}$. Results from the Bayesian analysis were used for the simulation of observations, but the estimation procedure was non-Bayesian and bootstrapping was used to calculate standard errors. Carrying out a full Bayesian analysis using WinBUGS to produce posterior standard deviations would have taken considerably longer.

The simulations used recovery probabilities estimated from a BHM fit to the DCC data. The BHM used the multinomial distribution at Level 1 and the 1989 outlier had been removed from the data set. The median posterior values for β_{0} and β_{1} were used to generate the relative survival probability for Courtland releases compared to Ryde releases (θ); the true value of θ was around 0.73 . Similarly recovery probabilities at Chipps Island and in the ocean were generated. Recoveries at Chipps Island and in the ocean were simulated using the multinomial distributions, and $\mu_{\theta(\text { Open })} / \mu_{\theta(\text { Closed })}$ was estimated using equation (15). Bootstrapping was then used to estimate the standard error. The R code for this exercise is given in Appendix D.4.

The above procedure was carried out 100 times for $n=10,14,20$, and 24 , where gates were open in exactly half the replications, i.e., $5,7,10$ and 12 replications of open gates. The release numbers were fixed at 100,000 each for Courtland and for Ryde releases. The bootstrap standard errors for the estimates are plotted in Figure 33. The median standard errors for $10,14,20$, and 24 replications were $0.72,0.46,0.42$, and 0.36 , which are large relative to ratio value of 0.73 .

The effect of doubling the release numbers to 200,000 was examined. The reduction in standard errors was negligible, indicating that the between replication variation, as reflected in $\sigma_{\theta}, \sigma_{R y \rightarrow C I}$, and $\sigma_{R y \rightarrow O c}$, overshadows the sampling variation (given that R is at least $100,000)$.

The DCC studies consisted of only 13 replications, 4 with gates closed and 9 with gates open, and the average release numbers were 90,000 for Courtland releases and 64,000 for Ryde releases. Thus even if the true value of the ratio were 0.73 , the chance of an estimated value being found to be "statistically significant" is likely relatively low for this amount of data.
6.2.2. Interior: Sample size for estimating μ_{θ}. An analytic formula for the variance of $\hat{\mu}_{\theta}$ was calculated in a classical, non-Bayesian framework (Appendix A). The resulting formula can be used to determine the effect of release numbers and the number of replicate pairs on the variance. Assuming that the same number are released in each group every year, i.e., $R_{1 t}=R_{2 t}=R$, simplifies the weights to $w_{t}=1 / n$. The formula, in this case, for $\hat{\mu}_{\theta}$ (equation (26)) is:

$$
\hat{\mu}_{\theta}=\frac{1}{n} \sum_{t=1}^{n} \hat{\theta}_{t}=\frac{1}{n} \sum_{t=1}^{n} \frac{y_{13, t}+y_{14, t}}{y_{23, t}+y_{24, t}} .
$$

Calculation of the variance of $\hat{\mu}_{\theta}$ is quite lengthy and the details are provided in Appendix A. After some algebra the theoretical variance of $\hat{\mu}_{\theta}$ can be rewritten as follows:

$$
\begin{equation*}
V\left(\hat{\mu}_{\theta}\right) \approx \frac{1}{n}\left[\frac{X}{R}+\sigma_{\theta}^{2}\right] \tag{54}
\end{equation*}
$$

where X is a long tedious calculation (see Appendix C, where $X=A+0.5 B$ and equation (62)).

For a given release number R and specified variance, the necessary number of years can be calculated:

$$
\begin{equation*}
n=\frac{\frac{X}{R}+\sigma_{\theta}^{2}}{V} \tag{55}
\end{equation*}
$$

Similarly for a fixed number of years n and specified variance, the necessary release numbers can be calculated:

$$
\begin{equation*}
R=\frac{X}{V n-\sigma_{\theta}^{2}} \tag{56}
\end{equation*}
$$

One crucial factor in sample size determination is σ_{θ}^{2}. The output from a BHM fit (logit transformed θ with inverse gamma priors for the σ^{2} 's) was used to estimate σ_{θ}^{2}. A median value for σ_{ϵ}^{2} of 1.05 and the median value for μ_{θ} of -0.40 were used to generate a sample of $1000 \operatorname{logit}(\theta)$'s. The inverse logit transformation was applied to calculate θ and the sample variance of θ, an estimate of σ_{θ}^{2}, was calculated to be 0.044 . Also needed (in the " X " term) are values for the means and variances of the recovery probabilities at the two recovery locations. For the demonstration below values were chosen arbitrarily, but similar to estimated values from BHM fits to the real data.

Figure 34 is a plot of the number of replications, n, to achieve a range of desired standard errors for $\hat{\mu}_{\theta}$ based on $\sigma_{\theta}^{2}=0.044$ and $R=50,000,75,000$, or 150,000 . The effect of numbers released (over this range of values) is minor in comparison to the number of years of experimentation. If σ_{θ}^{2} were smaller, then the relative importance of R would increase.

As a check on the theoretical calculations, the plotted values were compared to the bootstrap standard error for $\hat{\theta}$ in the Interior studies. There were 14 "years" of release pairings and the bootstrap standard error for $\hat{\theta}$ was 0.055 . The mean number released at Georgiana Slough was 58,000 and at Ryde it was 45,000 , so assume roughly 50,000 for both groups. If one plots the point $(0.055,14)$ on Figure 34 , the point is very close to the line for $R=50,000$.
6.2.3. $D A$ 8: estimating β_{1}. To study the effect of sample size (both n and R) on the precision of estimates of β_{1}, the slope coefficient in a linear model of the relative survival of Georgiana Slough releases regressed against exports (equation 29)), simulation of the data generation and data estimation was processes was used. To be consistent with a fully Bayesian analysis, WinBUGS would be used to generate samples from the posterior distribution for β_{1} and calculate the standard deviations. This would be very computer intensive and take a considerable amount of time.

An approximate, but easier alternative was chosen. Recoveries were simulated according to the hierarchical model but the approximate indirect estimation procedure (which ignores unequal sampling and between pair variation) was used to estimate β_{1}. To simulate the recoveries the medians of the posterior distributions for the parameters $\left(\sigma_{\theta}^{2}, \sigma_{r_{R y \rightarrow C I}}^{2}, \sigma_{r_{R y \rightarrow O c}}^{2}\right.$, β_{0}, and β_{1}) from one of the fitted BHMs were used. The export levels were randomly selected from a Uniform $(1500,11000)$ distribution, and then standardized using the mean (6376) and standard deviation (3284) of the observed data. The logit transform of θ was simulated using Equation 29. The fitted regression was of the logit transform of $\hat{\theta}$ on standardized exports.

The standard errors of $\hat{\beta}_{1}$ based on 10,000 simulations per combination of R and n are shown in Table 17. The R code is given in Appendix D.6. Again the standard errors are more sensitive to n than R, at least for $R \geq 50,000$ per release. In relative terms the standard errors were large given that the true value of β_{1} was 0.57 ; even with 25 release pairs with $R=150,000$, the coefficient of variation was 40% ($0.228 / 0.57$). Thus the between pair variation is the factor most affecting how easily a "significant" export effect can be detected. The coefficient of variation could be reduced to around 20% if $n=100$ paired releases were made.
6.2.4. VAMP: estimating regression coefficients for flow, exports, and HORB. As for the DA 8 studies, linear regression coefficients are of primary interest. The analysis of sample size effects on estimates of coefficients discussed here is based on a version of a VAMP model that precedes those presented in this report (subsequently modified based on suggestions from reviewers). With the earlier version there were no branching probabilities at the head of Old River and survival between Mossdale and Dos Reis was modeled without explicit allowance for travel down Old River when the HORB was not in place. Due to time limitations, the sample size analysis was not repeated with the newer models. However, the analysis was based on data simulated from the earlier model and the general conclusions are expected to be consistent with what would be observed if the analysis were carried out using simulated data from the final VAMP models.

Data were simulated according to the following reach-specific survival probability models:

$$
\begin{aligned}
\operatorname{logit}\left(S_{D F \rightarrow M D}\right) & \sim \operatorname{Normal}\left(\beta_{0}+\beta_{1} \text { Flow, } \sigma_{D F \rightarrow M D}^{2}\right) \\
\operatorname{logit}\left(S_{M D \rightarrow D R}\right) & \sim \operatorname{Normal}\left(\gamma_{0}+\gamma_{1} \text { Flow }+\gamma_{2} I_{H O R B}+\gamma_{3} \text { Exports } \times\left(1-I_{H O R B}, \sigma_{M D \rightarrow D R}^{2}\right)\right. \\
\operatorname{logit}\left(S_{D R \rightarrow J P}\right) & \sim \operatorname{Normal}\left(\xi_{0}+\xi_{1} \text { Flow }+\xi_{2} I_{H O R B}+\xi_{3} \text { Exports, } \sigma_{D R \rightarrow J P}^{2}\right)
\end{aligned}
$$

Again, for convenience, simulations from the hierarchical model were used to generate observations, then non-Bayesian estimates of the section-specific survival probabilities (or $\theta \mathrm{s}$) were regressed, on a per river segment basis, against the relevant covariates.

The simulated model structure and parameter values are shown in Appendix D.7. A positive flow effect was assumed between Durham Ferry and Mossdale. To reduce the probability of maximum likelihood estimates being truncated at 1, the intercepts for the logit transforms were made relatively negative. For reporting the effect of sample sizes, the interquartile range was calculated instead of the standard deviation to lessen the impact of potentially skewed sampling distributions.

The results are shown in Table 18. Again number of replications of the release sets has a larger effect on the variability of point estimates than number released. The relative error, IQR/true value, tends to decrease the further downstream the releases are made. This is presumably due to the fact that more fish are providing information about survival for the lower reaches; e.g., from Dos Reis to Jersey Point there are the Dos Reis releases as well as surviving fish from the Durham Ferry and the Mossdale releases. This suggests that a more refined sample size determination could lead to fewer releases for further downstream releases relative to upstream releases.
6.3. Acoustic tagging studies as an alternative. Acoustic tagging experiments have been, and are currently being, conducted in the Sacramento-San Joaquin system. It would be worthwhile to make a cost and precision comparison between acoustic tagging and CWTs in terms of estimating survival probabilities and related parameters. Acoustic tags and receivers are quite expensive compared to CWTs; e.g., the cost for a single acoustic tag in early 2008 was around $\$ 300$ while an individual CWT costs a fraction of a cent. On the other hand, detection probabilities using hydrophonic receivers are orders of magnitude greater than capture probabilities at Chipps Island, for example, and the precision of estimated survival probabilities, per number of fish, are considerably greater with acoustic tags compared to CWTs. Furthermore, acoustic tags combined with strategically placed receivers can more readily provide information about the out-migration route taken by the juvenile salmon. Statistical analysis procedures are not yet entirely worked out for such studies but Skalski, et al. (2002) and Muthukumarana, Schwarz and Swartz (2008) have developed methodologies for radio-tagged salmon that could be applicable to the Sacramento-San Joaquin system. The general features of BHMs would still be appropriate for multi-year studies using acoustic tags.

7. Conclusions and Recommendations

7.1. Comparison with previous analyses. The reanalysis of the four studies within a Bayesian hierarchical framework led to conclusions that were more often consistent with previous analyses than not and a comparison of the alternative analyses is summarized below. Major differences between previous analyses and the BHM analyses for all studies were that previous analyses did not account for unequal sampling variation and between release pair variation while the BHMs did.
(1) $D C C$: The analysis of Manly (2002) is more directly comparable to the hierarchical model than the previous USFWS analyses (Brandes and McLain, 2001). Manly used only Chipps Island recoveries and calculated survival indices (recovery rates adjusted by Chipps Island sampling effort). The ratio of the Courtland to Ryde survival indices when the gates were open was estimated to be 0.650 , and 0.705 when the gates were closed. Using t-tests, Manly found no significant difference in these ratios.

The Bayesian hierarchical model analysis used Chipps Island and ocean recoveries simultaneously and, with the negative binomial formulation, allowed for overdispersion relative to binomial models. The conclusions were similar to those of Manly: survival for Courtland releases relative to Ryde releases appears to be lower with the gates open (median=0.54) than with the gates closed (median=0.75), with the median ratio of ratios equal to 0.72 . The BHM median ratio of ratios was lower than Manly's implied value of 0.92 ($0.650 / 0.705$), but the BHM posterior 97.5 percentile value was over 5.
(2) Interior: Brandes and McLain (2001) had a shorter time series available when they did their analyses so results are not directly comparable with the BHM results. They analyzed the available recoveries from Georgiana Slough and Ryde releases of Chipps Island (using survival indices) and ocean recoveries separately. Based on paired t tests of the null hypothesis of equal survival indices for Georgiana Slough and Ryde, they found statistically significant differences between the two release locations.

The Bayesian hierarchical model (while using Chipps Island and ocean recoveries simultaneously) led to conclusions similar to Brandes and McLain: Georgiana Slough releases have a lower survival probability than Ryde releases with the median value of the posterior distribution for the ratio of the survival probabilities equal to 0.36 .
(3) DA 8: Again, using the shorter time series available at the time Brandes and McLain (2001) used an indirect approach (applied separately to Chipps Island and ocean recoveries, and using a combination of fall run and late fall run releases) to analyze
the effect of exports on the relative survival of Georgiana Slough releases. They found a statistically significant negative association between exports and survival.

The Bayesian hierarchical model (fitted only to the late fall run) used Chipps Island and ocean recoveries simultaneously, and modeled the relationship between exports and survival directly. The hierarchical model results again led to conclusions similar to Brandes and McLain: there is over a 98% probability that as exports increase the survival decreases for Georgiana Slough releases. The posterior median value for the slope coefficient was -0.31 . This is just slightly less negative than a non-Bayesian indirect estimate of -0.39 , where $\operatorname{logit}(\hat{\theta})$ was regressed on exports. However, the intercept in the linear model regression survival against exports was considerably higher for the BHM than for the non-Bayesian models; thus the BHM was suggesting an overall higher relative survival for Georgiana Slough releases.
(4) VAMP: Previous analyses of VAMP and pre-VAMP data (2005 Annual Technical Report by San Joaquin River Group Authority) were carried out in a piecemeal fashion using several simple linear regressions of release-specific recovery rates against flow, exports, and flow/exports when HORB was either in or out (see Table 8. Also the recovery fractions for the freshwater recoveries (Antioch and Chipps Island combined) and ocean recoveries were analyzed separately, and releases at Durham Ferry and Mossdale were treated as a single release. The results were that with the HORB out, survival of releases above the head of Old River was not significantly related to flow, exports, or flow/exports (at $\alpha=0.05$). However, with HORB in, survival of releases made above the head of Old River was significantly related to flow, but the relationship with exports and flow/exports was inconsistent and sometimes paradoxical (e.g., exports were positively associated with survival, weakly statistically significant using Antioch and Chipps Island recoveries and insignificant using ocean recoveries). The fact that the presence of the HORB affected the relationships with flow suggests an interaction between flow and HORB.

The Bayesian hierarchical model analyzed the multiple release and recovery data, including Antioch, Chipps Island, and ocean recoveries, simultaneously. Reachspecific survival probabilities were linked together, along with recovery probabilities at the three recovery sites. Logit transformations of survival and recovery probabilities were modeled with random effects and various covariates, particularly flow and exports, were tried. For the various models fitted, there were two in-common conclusions: (1) flow is positively associated with the probability of surviving from Dos Reis to Jersey Point and (2) the survival probability for that reach is generally greater than the survival probability for fish traveling down Old River. Assuming that the HORB effectively keeps out-migrating salmon from entering Old River, the
second conclusion implies that the HORB can increase salmon survival. For fish that do enter Old River, there was some evidence that flow in Old River was positively associated with survival between Old River and Jersey Point, but the evidence was not as consistently strong as for the Dos Reis to Jersey Point reach. There was little evidence for any association between exports and survival, and what evidence there was pointed towards a somewhat surprising positive association with exports.
7.2. Criticisms of and concerns about the BHMs. The BHMs as formulated for the CWT release-recovery data do not provide the ultimate definitive explanations of what affects the survival of out-migrating juvenile Chinook salmon through the Delta, nor of the magnitude of effect of the factors of interest. Some of the limitations are inherent to CWT release-recovery data: the fish can only be captured once, the capture probabilities are relatively low, and information about out-migration paths through the Delta is difficult to acquire unless recoveries can be made at multiple locations.

Other limitations are a function of the accuracy of assumptions made, in particular, that capture probabilities are the same for temporally paired releases, relatedly that ocean survival, spatial-distribution, and maturation probabilities are the same for such paired releases, and, in the case of the VAMP model, that the survival in downstream sections is the same for all fish within a paired release that pass through the section. A potential violation of this last assumption could occur if downstream releases experienced some additional mortality at the time of release, such as might be caused by extreme differences in truck water temperatures and river water temperatures, a shock effect (Newman 2003), that is not experienced by fish released upstream that are passing by. Regarding the assumption of equal ocean capture probabilities, a relatively simple cluster analysis of catch recoveries (unpublished work) had been done prior to earlier analyses of Sacramento River releases (Newman and Rice 2002). The results suggested greater between release year variation than within release year variation, but a more rigorous examination may be fruitful.

The BHMs for the DCC, Interior, and Delta Action 8 studies are relatively simple and the number of models considered was relatively few. However, for the VAMP data, the number of models and complexity of models considered was much greater. The use of DIC to select amongst the different VAMP models is not entirely satisfying and the use of posterior model probabilities may be a better alternative (see comments by Giminez, et al. (in review)). A Reversible Jump MCMC add-on procedure for WinBUGS, which allows one to search through model space, is now available (http://www.winbugs-development.org.uk/rjmcmc.html)
and might be usable for some of the BHMS considered. In short, a more thorough model selection procedure needs to be carried out, particularly for the VAMP models.

While acoustic tags and receivers are not necessarily a complete solution, due to occasional difficulty in successfully placing receivers in the Sacramento-San Joaquin system (Pat Brandes, personal communication), they potentially offer considerable advantages over CWT release-recovery data. First, multiple recaptures are possible, which thereby increases precision. Second, capture probabilities with acoustic receivers are sometimes two orders of magnitude greater than capture probabilities by a mid-water trawl. Third, judicious placement of receivers at junctions can provide information about out-migration paths that are much more difficult to determine using CWT data, which require trawling at the same junctions, and preferably the release of additional fish at those same points.
7.3. Recommendations. Recommendations on alternative data generation procedures were made earlier (Section 6.1). These recommendations are summarized briefly here along with additional recommendations.
(1) Use embedded replicate tags to check for violations of the assumption of independence between fish.
(2) Make releases below freshwater recovery locations, e.g., below Chipps Island, so as to allow separate estimation of capture probabilities at the recovery location.
(3) Carry out a more detailed analysis of the ocean catch recovery patterns by age-portmonth of recovery to better determine how similar the recovery patterns are within paired releases.
(4) Carry out a benefit-cost comparison of CWTs and acoustic tags, including a comparison of the precision of estimates of survival probabilities per number of fish released.
(5) Specify an underlying probability model for any analyses of release-recovery data, and in the case of multi-year survival studies, in particular, formulate hierarchical probability models.
(6) Use such probability models prior to carrying out release-recovery experiments to evaluate design and sample size options.
(7) Estimate the sampling errors for estimated ocean recoveries and incorporate the errors into the probability model for observed and estimated recoveries; hierarchical models can be extended to another level to include such variation.
(8) Carry out a more rigorous model-selection procedure for the various VAMP models using Reversible Jump MCMC.

8. ACKNOWLEDGMENTS

This work was supported financially by funding from the CalFed Science program. The principal investigator for the four studies, Pat Brandes, was responsible for formulating the proposal and acquiring the funding for this work, and has generously provided considerable assistance, comments, and help with the data. Jonathan Speegle also helped get the necessary pieces of data together and Russ Gartz provided information about the fish facilities at SWP and CVP. David Hankin, Bryan Manly, and Russell Millar each provided detailed technical review of an earlier draft of this work which led to substantial changes, especially in the area of sensitivity analysis and alternative model formulations. Dean Marston and Carl Mesick made several insightful comments about the analysis of the VAMP studies that led to considerably revised models which incorporated branching at Old River, and Kim Webb provided helpful remarks to improve the readability of the report.

9. REFERENCES

Baker, P.F., Speed, T.P., and Ligon, F.K., (1995), "Estimating the influence of temperature on the survival of Chinook salmon smolts (Oncorhynchus tshawytscha) migrating through the Sacramento-San Joaquin River Delta of California", Canadian Journal of Fisheries and Aquatic Sciences, 52:855-863.

Brandes, P.L., and McLain, J.S., (2001), "Juvenile Chinook Salmon Abundance, Distribution, and Survival in the Sacramento-San Joaquin Estuary" in R. Brown ed. Contributions to the Biology of Central Valley Salmonids, Fish Bulletin 179, Vol 2, 39-136.

Brooks, S.P. and Roberts, G.O., (1998). "Convergence assessment techniques for Markov chain Monte Carlo", Statistics and Computing, 8(4): 319-335.

Burnham, K.P., and Anderson, D.R., (1998), Model Selection and Inference: A Practical Information-Theoretic Approach, Springer, New York, New York.

Carlin, B.P., and Louis, T.A., (1996), Bayes and Empirical Bayes Methods for Data Analysis, Chapman and Hall, New York, New York.

Davison, A.C., and Hinkley, D.V., (1997), Bootstrap Methods and Their Application, Cambridge University Press, New York, New York.

Efron, B., and Tibshirani, R.J., (1993), An Introduction to the Bootstrap, Chapman \& Hall, New York, New York.

Gelman, A., (2006), "Prior distributions for variance parameters in hierarchical models", Bayesian Analysis, 1, 515-533.

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B., (2004), Bayesian Data Analysis, 2nd Ed., Chapman and Hall, New York, New York.

Gimenez, O., Bonner, S., King, R., Parker, R.A., Brooks, S.P., Jamieson, L. E., Grosbois, V., Morgan, B. J. T., and Thomas, L. (in review) WinBUGS for population ecologists: Bayesian modeling using Markov Chain Monte Carlo methods.

Gilks, W.R., Richardson, S., and Spiegelhalter, D.J., (1996) Markov chain Monte Carlo in practice, Chapman \& Hall, New York, New York.

Manly, B.F.J., (2002), "Analysis of Cross Channel Effects", unpublished report for Western EcoSystems Technology, Inc.

Muthukumarana, S, Schwarz, C.J., and Swartz, T.B., (to appear 2008), "Bayesian analysis of mark-recapture data with travel-time-dependent survival probabilities", Canadian Journal of Statistics, 35(2), XX-XX.

Newman, K.B., (2003), "Modelling paired release-recovery data in the presence of survival and capture heterogeneity with application to marked juvenile salmon, "Statistical Modelling, 3, 157-177.

Newman, K.B., and Rice, J., (2002), "Modeling the survival of chinook salmon smolts outmigrating through the lower Sacramento river system", Journal of the American Statistical Association, 97, 983-993.

San Joaquin River Group Authority, (2006), On Implementation and Monitoring of the San Joaquin River Agreement and the Vernalis Adaptive Management Plan: 2005 Annual Technical Report.

Schnute, J., (1992), "Statistical analysis of embedded replicates in mark-recovery experiments", Canadian Journal of Fisheries and Aquatic Sciences, 49, 439-442.

Skalski, J.R., Townsend, R., Lady, J., Giorgi, A.E., Stevenson, J.R., and McDonald, R.D., (2002), "Estimating route-specific passage and survival probabilities at a hydroelectric project from radiotelemetry studies", Canadian Journal of Fisheries and Aquatic Sciences, 59: 1385-1393.

Stuart, A., and Ord, J.K., (1987), Kendall's Advanced Theory of Statistics, Volume 1, 5th Ed., Oxford University Press, New York, Hew York.

Spiegelhalter, D. Thomas, A., and Best, N. (2003), WinBUGS, Version 1.4. User Manual, MRC, Cambridge, and Imperial College of Science, Technology, and Medicine, London. (available at http://www.mrc-bsu.cam.ac.uk/bugs).

Winkelmann, R., (2000), "Seemingly unrelated negative binomial regression", Oxford Bulletin of Economics and Statistics, 62, 553-560.

TABLES

TABLE 1. Overview of the release and recovery locations, and duration, of the four studies.

Study	Duration	Primary Release Locations	Recovery Locations
DCC	$1983-1989$	Courtland and Ryde	Chipps Island, Ocean
Interior and DA 8	1994-present	Georgiana Slough and Ryde	Chipps Island, Ocean
VAMP	1985-present	Durham Ferry, Mossdale,	Antioch, Chipps Island, Ocean
(and pre-VAMP)		Dos Reis, Jersey Point	

TABLE 2. Summary of notation for releases, recoveries, and model parameters.

Symbol	Definition
$C t, R y, G S$	release locations: Courtland, Ryde, Georgiana Slough
$D F, M D, D R, J P$	release locations (VAMP): Durham Ferry, Mossdale, Dos Reis, and Jersey Point
$C I, O c, A$	recovery locations: Chipps Island, Ocean, and Antioch
R_{a}	number of fish released at location a
$y_{a \rightarrow b}$	number of recoveries at location b of CWT fish that were released at location a
$\hat{y}_{a \rightarrow O c}$	estimated number of ocean recoveries of CWT fish that were released at location a
$\hat{r}_{a \rightarrow b}$	observed recovery fraction, $y_{a \rightarrow b} / R_{a}$
$S_{a \rightarrow b}$	probability of surviving between location a and location b
p_{b}	probability of capture at location b (given alive at that location)
$\operatorname{logit}(\pi)$	logistic transform of a probability, $\pi, \log \left(\frac{\pi}{1-\pi}\right)$
μ_{θ}	expected (average) value of a random variable θ
σ_{θ}^{2}	standard deviation of a random variable θ

Notation used in DCC BHM
$\theta(D C C) \quad S_{C t \rightarrow C I} / S_{R y \rightarrow C I}$, which varies as a function of DCC gate position
$I_{D C C=\text { closed }}$ indicator variable that equals 1 when DCC gate is closed, else equals 0
β_{0}, β_{1} intercept and slope in logit model for $\theta(D C C)$,
$\mathrm{E}[\operatorname{logit}(\theta(D C C))]=\beta_{0}+\beta_{1} I_{D C C=\text { closed }}$
$r_{R y \rightarrow C I} \operatorname{Pr}$ (fish released from Ryde survives to and is captured at Chipps Island)
$r_{R y \rightarrow O c} \operatorname{Pr}$ (fish released from Ryde survives to and is captured in the ocean)

Notation used in Interior BHM

	Notation used in Interior BHM
θ	$S_{G S \rightarrow C I} / S_{R y \rightarrow C I}$
$r_{R y \rightarrow C I}$	$\operatorname{Pr}($ fish released from Ryde survives to and is captured at Chipps Island)
$r_{R y \rightarrow O c}$	$\operatorname{Pr}($ fish released from Ryde survives to and is captured in the ocean)
	Notation used in Delta Action 8 BHM
β_{0}, β_{1}	intercept and slope in logit model for θ (as a function of standardized exports),
	$\mathrm{E}[\operatorname{logit}(\theta)]=\beta_{0}+\beta_{1}\left(\frac{(\text { Exports- } \overline{\text { Exp })}}{s_{E x p}}\right)$

Notation used in VAMP BHM
$r_{J P \rightarrow A} \operatorname{Pr}$ (fish released from JP survives to and is captured at Antioch)
$r_{J P \rightarrow C I} \operatorname{Pr}$ (fish released from JP survives to and is captured at Chipps Island)
$r_{J P \rightarrow O c} \operatorname{Pr}$ (fish released from JP survives to and is captured in Ocean)
β parameter(s) for $\mathrm{E}\left[\operatorname{logit}\left(S_{D F \rightarrow M D}\right)\right]$
$\gamma \quad$ parameter(s) for $\mathrm{E}\left[\operatorname{logit}\left(S_{M D \rightarrow D R}\right)\right]$
$\xi \quad$ parameter (s) for $\mathrm{E}\left[\operatorname{logit}\left(S_{D R \rightarrow J P}\right)\right]$
ζ parameter(s) for $\mathrm{E}\left[\operatorname{logit}\left(S_{O R \rightarrow J P}\right)\right]$

Table 3. DCC: Release and recovery data. Recoveries at Chipps Island, in the ocean fisheries, and at the SWP and CVP fish salvage facilities are in the columns headed $C I, O c$, and $F F$, respectively. Ryde releases were occasionally made at Isleton and some of the Port Chicago releases were actually at Benicia.

Table 4. Interior and DA 8: Release and recovery data. Recoveries at Chipps Island, in the ocean fisheries, at the SWP and CVP fish salvage facilities, and at Inland locations (expanded numbers) are in the columns headed $C I, O c, F F$, and $I L$, respectively. Ryde releases were occasionally made at Isleton (denoted by asterisk by tag code) and some of the Port Chicago releases were actually at Benicia (denoted by asterisk by tag code). Exports are a three day average volume of water exported from SWP and CVP.

Release	Tag Codes				Georgiana Slough					Ryde				Pt.Chicago			
Date	Grp	Georg.Sl.	Ryde	Pt Chicago	$R_{G S}$	$C I$	Oc	FF	IL	$R_{R y}$	CI	Oc	FF	IL	Exports	$R_{P C}$	Oc
12/02/93	1	06-45-21	06-45-22	NA	33,668	5	80	248	12	34,650	37	292	10	36	10,434	NA	NA
12/05/94	2	05-34-25	05-34-26*	NA	31,532	4	11	87	8	30,220	15	29	6	13	5,988	NA	NA
01/04-05/95	3	06-25-25	06-25-24*	NA	31,328	2	101	837	53	31,557	13	266	231	138	10,403	NA	NA
01/10-11/96	4	05-41-13	05-41-14	05-41-11	33,670	5	146	768	9	30,281	21	240	12	23	9,523	34,596	265
12/04-05/97	5	05-50-50	05-50-60	05-50-61	61,276	2	7	153	4	46,756	22	41	18	11	10,570	48,080	141
01/13-14/97	6	05-50-49	05-50-62	"	66,893	18	240	24	51	49,059	48	167	0	70	3,887		"
12/01-02/98	7	05-23-08	05-23-20	05-23-22	69,180	12	173	28	44	48,207	30	182	0	102	1,868	45,195	140
12/29-30/98	8	05-23-12	05-23-21	"	68,843	12	150	48	54	48,804	17	156	0	88	1,984	"	"
12/10-11/99	9	05-51-30	05-51-32*	05-51-34	65,517	3	43	24	9	53,426	16	128	0	20	3,237	49,208	274
12/20-21/99	10	05-51-31	05-51-33*	"	64,515	21	151	82	32	49,341	19	161	4	66	4,010		
01/03-05/02	11	05-07-76	05-07-67	05-07-68	77,053	18	248	390	110	52,327	34	520	18	366	7,789	47,876	314
12/05-06/02	12	05-10-98,05-11-68	05-11-67	05-11-66	90,219	1	68	700	10	49,629	18	147	42	15	5,007	47,048	458
12/09-10/03	13	05-17-71:72	05-17-81:82	05-17-80*	68,703	5	50	306	2	45,981	13	128	24	12	4,016	24,785	156
12/08-09/04	14	05-22-92:93	05-22-80:81	05-22-82	72,082	10	NA	0	NA	50,397	28	NA	0	NA	6,092	25,132	NA
12/08-09/05	15	05-27-84:87	05-27-88:91	05-27-94,95	70,414	6	NA	165	NA	51,017	23	NA	12	NA	10,837	NA	NA

Table 5. VAMP: Release and recovery data from pre-VAMP (19851991, 1994-1999) and VAMP (2000-2006) studies. Recovery locations are Antioch (Ant), Chipps Island (CI), ocean fisheries (Oc), and the SWP and CVP fish salvage facilities (FF). Stock designations FRH and MRFF denote Feather River Hatchery and Merced River Fish Facility (excepting group 4, all releases in same group have same stock). Flow and Exports (Exp) column headings DF, MD, DR, and UOR are for Durham Ferry, Mossdale, Dos Reis, and Upper Old River. Flows, exports, por, and temperature are defined in Table 6.

Group No.	Stock	Release Location	Release Date	Tag Codes	Release Number	Recovery Location				HORB	$\begin{array}{r} \text { DF } \\ \text { Flow } \end{array}$	MD Flow	$\begin{array}{r} \text { DR } \\ \text { Flow } \end{array}$	UOR Flow	$\begin{aligned} & \text { MD } \\ & \text { Exp } \end{aligned}$	$\begin{gathered} \text { DR } \\ \text { Exp } \end{gathered}$	$p_{\text {OR }}$	Temp
						Ant	CI	Oc	FF									
1	MRFF	Dos Reis	4/30/85	Yellow	149968	-	94	-	4450	Out	-	-	384	-	-	5794	81	21.1
		Old River	4/29/85	Red	150048	-	99	-	37299		-	2475	-	1928	5257	5709		21.1
2	MRFF	Dos Reis	5/29/86	064658,B61101	95595	-	36	2068	2960	Out	-	-	2442	-	-	5626	73	20.0
		Old River	5/30/86	064659,B61102	100181	-	21	1139	62564		-	7140	-	4842	4096	5626		21.1
3	MRFF	Dos Reis	4/27/87	06450:3,4,5	92612	-	79	1219	5469	Out	-	-	391	-	-	5856	90	21.1
		Old River	4/27/87	06450:6,7,8	90952	-	17	500	24019		-	2480	-	2057	7370	5856		22.2
4	MRFF	Dos Reis	5/02/89	06011101:07,08,13	76073	-	12	78	428	Out	-	-	577	-	-	1798	66	21.7
		Old River	5/03/89	060111010:4-6	74341	-	4	16	1439		-	2500	-	1522	1797	1798		21.7
	FRH	Jersey Pt	5/05/89	06011101:09,10	56233	-	56	283	824		-	-	-	-	-	-		20.0
5	FRH	Dos Reis	4/20/89	063114	52962	-	11	34	2714	Out	-	-	-17	-	-	10212	104	20.6
		Old River	4/21/89	063113	51972	-	5	38	2916		-	1945	-	2049	10295	10212		19.5
		Jersey Pt	4/24/89	060111011:1-2	56816	-	53	180	144		-	-	-	-	-	-		17.8
6	FRH	Dos Reis	4/16/90	060114010:7-8	105742	-	4	23	1766	Out	-	-	48	-	-	9597	119	20.0
		Old River	4/17/90	060114010:5-6	106267	-	2	14	2613		-	1400	-	1060	9400	9597		21.1
		Jersey Pt	4/18/90	0601140109	52962	-	32	224	156		-	-	-	-	-	-		17.2
7	FRH	Dos Reis	5/02/90	060114011:0-1	103533	-	4	34	150	Out	-	-	431	-	-	2353	84	20.0
		Old River	$5 / 03 / 90$	060111011:2-3	103595	-	1	11	1346		-	1400	-	934	3276	2242		22.2
		Jersey Pt	$5 / 04 / 90$	063119		-	56	204	62		-	-	-	-	-	-		20.0
8	FRH	Dos Reis	4/15/91	060114011:4-5	102999	-	17	86	7130	Out	-	-	-49	796	-	5990	126	15.6
		Jersey Pt	4/19/91	0601140206	52139	-	94	358	331		-	-	-	-	-	-		17.2
9	FRH	Mossdale	4/11/94	0601140315	51804	-	0	62	705	Out	-	1580	466	1018	2087	1725	67	17.2
		Jersey Pt	4/13/94	0601140403	50689	-	10	420	14		-	-	-	-	-	-		17.8
10	FRH	Mossdale	4/26/94	0601140404	50726	-	2	89	0	In	-	3115	2891	0	1120	1598	11	15.6

Group	Stock	Release Location	Release Date	Tag Codes	Release Number	Recovery Location				HORB	$\begin{array}{r} \text { DF } \\ \text { Flow } \end{array}$	MD Flow	$\begin{array}{r} \text { DR } \\ \text { Flow } \end{array}$	UOR Flow	$\begin{aligned} & \text { MD } \\ & \text { Exp } \end{aligned}$	$\begin{gathered} \text { DR } \\ \text { Exp } \end{gathered}$	$p_{O R}$	Temp
No.						Ant	CI	Oc	FF									
11	FRH	Jersey Pt	4/27/94	0601140408	53810	-	16	756	0		-	-	-	-	-	-		17.2
		Mossdale	4/17/95	0601140:414,501	100969	-	20	461	2682	Out	-	18700	8267	9192	3707	3684	55	13.9
		Dos Reis	4/17/95	0601140412	50848	-	8	234	0		-	-	8267	-	-	3684		13.9
		Jersey Pt	4/19/95	0601140413	50779	-	26	280	0		-	-	-	-	-	-		15.6
12	FRH	Mossdale	5/05/95	06315:0-1	102562	-	13	392	1883	Out	-	21250	9316	9801	3770	3958	58	16.7
		Dos Reis	5/05/95	063147	52097	-	21	393	0		-	-	9316	-	-	3958		17.2
13	FRH	Mossdale	5/17/95	$0601140504,$														
				63148	1041245	-	8	353	1628	Out	-	23100	9545	10066	3507	4209	59	17.2
		Dos Reis	5/17/95	063149	51665	-	9	245	12		-	-	9545	-	-	4209		18.3
14	FRH	Mossdale	4/15/96	060106011:4-5	100742	-	2	100	1084	Out	-	6665	3296	3499	2040	1614	53	15.6
		Jersey Pt	4/18/96	0601060113	50041	-	25	332	0		-	-	-	-	-	-		16.7
15	FRH	Mossdale	4/30/96	060106020:1,5	99656	-	1	26	1432	Out	-	6565	3113	3378	1660	1629	52	17.8
		Dos Reis	5/01/96	0601060:110,203	98638	-	3	67	0		-	-	3113	-	-	1629		17.2
		Jersey Pt	5/03/96	0601060109	50820	-	24	311	12		-	-	-	-	-	-		17.8
16	MRFF	Dos Reis	5/01/96	0601110:412-415	107961	-	10	58	0	Out	-	-	3113	3378	-	1629	52	17.2
		Jersey Pt	5/03/96	0601110501	51737	-	39	186	0		-	-	-	-	-	-		18.9
17	FRH	Mossdale	4/28/97	060106030:2-3	48730	-	10	329	226	In	-	6135	4709	284	2330	2329	16	16.1
		Dos Reis	4/29/97	060106030:4-5	49784	-	10	259	125		-	-	4709	-	-	2329		15.6
		Jersey Pt	5/02/97	060106020:7-8	49815	-	55	697	12		-	-	-	-	-	-		17.2
18	MRFF	Dos Reis	4/29/97	06254:5,6	102431	-	16	348	394	In	-	-	4709	284	-	2329	16	15.6
		Jersey Pt	5/02/97	062547	51540	-	27	355	24		-	-	-	-	-	-		17.8
19	MRFF	Dos Reis	5/08/97	062548	46682	-	5	90	78	In	-	-	4740	268	-	2410	21	17.2
		Jersey Pt	5/12/97	062549	47208	-	18	192	14		-	-	-	-	-	-		19.4
20	MRFF	Mossdale	4/16/98	06011108:09-11	77430	-	88	157	48	Out	-	24950	9645	10356	805	1722	60	13.9
		Dos Reis	4/17/98	06011108:06-08	77180	-	93	145	0		-	-	9645	-	-	1722		15.0
		Jersey Pt	4/20/98	06011108:12-13	50050	-	187	201	0		-	-	-	-	-	-		17.2

Continued on next page

Group	Stock	Release Location	Release Date	Tag Codes	Release Number	Recovery Location				HORB	$\begin{array}{r} \mathrm{DF} \\ \text { Flow } \end{array}$	$\begin{aligned} & \text { MD } \\ & \text { Flow } \end{aligned}$	$\begin{gathered} \text { DR } \\ \text { Flow } \end{gathered}$	UOR Flow	$\begin{aligned} & \text { MD } \\ & \text { Exp } \end{aligned}$	$\begin{gathered} \text { DB6 } \\ \text { Exp } \end{gathered}$	$p_{\text {OR }}$	Temp
No.						Ant	CI	Oc	FF									
21	FRH	Mossdale	4/23/98	060106050:5-6	33800	-	7	13	192	Out	-	20250	8447	9404	1932	1926	57	18.9
		Dos Reis	4/24/98	060114060:6-7	47874	-	17	56	0		-	-	8447	-	-	1926		18.9
		Jersey Pt	4/28/98	060106050:3-4	31091	-	40	47	0		-	-	-	-	-	-		18.9
22	MRFF	Mossdale	4/19/99	06264:2-4	74646	-	36	395	2940	Out	-	6905	3180	3429	2683	3105	55	16.7
		Dos Reis	4/19/99	06264:5-6	49636	-	39	376	185		-	-	3180	-	-	3105		17.2
		Jersey Pt	4/21/99	$\begin{aligned} & 062647, \\ & 0601110815 \end{aligned}$	48907	-	59	715	60		-	-	-	-	-	-		17.2
23	MRFF	Durham F.	4/17/00	06040:1-2,64563	72094	27	28	693	521	In	6690	6995	5918	296		2366	18	13.9
		Mossdale	4/18/00	06440:1-2	46111	30	18	381	457		-	6995	5918	-	2265	2366		13.3
		Jersey Pt	$4 / 20 / 00$	06440:3-4	51098	97	65	1353	0		-	-	-	-	-	-		17.8
24	MRFF	Durham F.	4/28/00	060106091:4-5,														
				601110814	74001	31	22	162	279	In	5665	5969	5062	560	2238	2196	11	17.2
		Jersey Pt	5/01/00	060106100:1-2	49871	152	78	589	6		-	-	-	-	-	-		17.2
25	MRFF	Durham F.	4/30/01	0644:29-31	68192	76	53	366	84	In	4125	4170	3630	687	1475	1482	12	21.7
		Mossdale	5/01/01	06443:2-3	44923	33	31	232	48		-	4170	3630	-	1475	1482		19.4
		Jersey Pt	5/04/01	06443:4-5	49161	329	111	1031	0		-	-	-	-	-	-		20.0
26	MRFF	Durham F.	5/07/01	06443:6-8	71744	29	9	92	39	In	4135	4145	3610	654	1566	1495	12	18.9
		Mossdale	5/08/01	0644:39-40	48888	19	8	52	36		-	4145	3610	-	1566	1495		21.1
		Jersey Pt	5/11/01	06444:1,2	51107	96	44	581	0		-	-	-	-	-	-		22.8
27	MRFF	Durham F.	4/18/02	06447:1-4	97318	63	21	270	207	In	3165	3255	2671	549	1536	1532	19	15.0
		Mossdale	4/19/02	06445:7-8	50411	42	13	145	234		-	3255	2671	-	1536	1532		13.9
		Jersey Pt	4/22/02	0644:59-60	48496	190	83	951	48		-	-	-	-	-	-		18.0
28	MRFF	Durham F.	4/25/02	0644:70,75-77	98082	18		58		In	3356			570			20	
		Mossdale	$4 / 26 / 02$	06447:8-9	48924	7	5	40	129		-	3356	2814	-	1523	1507		17.5
		Jersey Pt	$4 / 30 / 02$	06448:0-1	46469	75	46	597	0		-	-	-	-	-	-		17.5
29		Durham F.	4/21/03	06028:2-3,62742	74377	6	3	19	51	In	3430	3345	2904	297	1494	1497	7	15.0
		Mossdale	4/22/03	06274:3,8	49827	4	5	8	0		-	3345	2904	-	1494	1497		15.2
		Jersey Pt	4/25/03	062744	24441	71	57	263	0		-	-	-	-	-	-		16.5
30	MRFF	Durham F.	4/28/03	06274:5-7	74491	0	0	10	24	In	3370	3370	3017	299	1481	1479	11	16.5
		Mossdale	4/29/03	0627:49-50	48317	0	1	5	12		-	3370	3017	-	1481	1479		15.7
		Jersey Pt	5/02/03	062751	25732	35	39	415	0		-	-	-	-	-	-		15.0
31	MRFF	Durham F.	4/22/04	06275:2-5	91867	2	3	3	96	In	3170	3160	2831	297	1483	1483	11	15.5

[^8]| Group | Stock | Release
 Location | Release Date | Tag Codes | Release Number | Recovery Location | | | | HORB | $\begin{array}{r} \mathrm{DF} \\ \text { Flow } \end{array}$ | $\begin{gathered} \text { MD } \\ \text { Flow } \end{gathered}$ | $\begin{gathered} \mathrm{DR} \\ \text { Flow } \end{gathered}$ | UOR
 Flow | $\begin{aligned} & \text { MD } \\ & \text { Exp } \end{aligned}$ | $\begin{gathered} \text { DR } \\ \text { Exp } \end{gathered}$ | $p_{O R}$ | Temp |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | | | | | | Ant | CI | Oc | FF | | | | | | | | | |
| 32 | | Mossdale | 4/23/04 | 064670,06458:2-3 | 73258 | 1 | 3 | 2 | 30 | | - | 3160 | 2831 | - | 1483 | 1483 | | 17.0 |
| | MRFF | Jersey Pt | 4/26/04 | 064580 | 22708 | 22 | 25 | 117 | 12 | | - | - | - | - | - | - | | 21.5 |
| | | Durham F. | 5/02/05 | 06467:2-5 | 93833 | 6 | 12 | - | 1527 | Out | 8250 | 8195 | 3743 | 3934 | 1961 | 2293 | 56 | 16.0 |
| | | Dos Reis | 5/03/05 | 064591,06469:7,8 | 69125 | 7 | 3 | - | 7 | | - | - | 3743 | - | - | 2293 | | 17.0 |
| | | Jersey Pt | 5/06/05 | 064588 | 22767 | 31 | 32 | - | 0 | | - | - | - | - | - | - | | 18.0 |
| 33 | MRFF | Durham F. | 5/09/05 | 06458:4-6 | 91563 | 7 | 6 | - | 844 | Out | 8940 | 9085 | 4147 | 4529 | 2303 | 2300 | 55 | 14.9 |
| | | Dos Reis | 5/10/05 | 0645:89-90,
 064699 | 68646 | 7 | 6 | - | 6 | | - | - | 4147 | - | - | 2300 | | 15.0 |
| | | Jersey Pt | 5/12/05 | 064700 | 23231 | 27 | 38 | - | 0 | | - | - | - | - | - | - | | 19.0 |
| 34 | MRFF | Mossdale | 5/04/06 | 06471:3-4 | 48828 | 9 | 9 | - | 18 | Out | - | 29350 | 10756 | 11130 | 1538 | 1544 | 61 | 18.0 |
| | | Dos Reis | 5/05/06 | 064716 | 25463 | 3 | 7 | - | 0 | | - | - | 10756 | - | - | 1544 | | 17.5 |
| | | Jersey Pt | 5/06/06 | 064715 | 26119 | 26 | 58 | - | 0 | | - | - | - | - | - | - | | 19.0 |
| 35 | MRFF | Mossdale | 5/19/06 | 0647:2-3 | 73764 | 0 | 8 | - | 48 | Out | - | 24650 | 10018 | 10423 | 6283 | 6046 | 59 | 19.5 |
| | | Jersey Pt | 5/22/06 | 064724 | 24757 | 14 | 44 | - | 0 | | - | - | - | - | - | - | | 19.5 |

TABLE 6. VAMP: Definitions of covariates used in modeling (and listed in Table 5). DAYFLOW is a California Department of Water Resources (CDWR) database and DSM2 is a CDWR model; Yiguo Liang and Min Yu (personal communication) supplied the DSM2 model-based values. Vernalis is 6 miles upstream of Durham Ferry.

Covariate	Definition	Source
DF Flow	Mean flow at Vernalis for day of and day after release at Durham Ferry.	DAYFLOW
MD Flow	Mean flow at Vernalis for day of and day after release at Mossdale.	DAYFLOW
DR Flow	Median flow at Stockton for 8 days starting on day of release at Dos Reis. In absence of Dos Reis release, day of release $=$ day of a Mossdale release or day after a Durham Ferry release.	
UOR Flow	Median (Vernalis Flow- Stockton Flow) starting on day of release at Upper Old River, Dos Reis, or Mossdale, in that order of priority. For group 24, started day after release at Durham Ferry	1985-1989: Vernalis Flow (DAYFLOW) Stockton Flow (DWR equ'ns) 1990-2006: Flows (DSM2)
MD Exp	Mean of combined CVP and SWP exports for the day of and day after release at Mossdale.	
DR Exp	Median of combined CVP and SWP exports for 8 days starting on day of release at Dos Reis.	
POR	Proportion of San Joaquin River flow diverted into Old River = 1-(Dos Reis or Stockton flow)/Vernalis flow calculated for day of Mossdale or upper Old River release, or day before a Dos Reis release, or day after a Durham Ferry release.	1985-1989: Dos Reis, Stockton Flows (DWR equ'ns Vernalis Flow (DAYFLOW) 1990-2006: Dos Reis, Stockton Flows (DSM2)
Temp	Temperature (in Celcius) in the river at the release site	

Table 7. VAMP: Year specific schematic of the release and recovery locations in the VAMP and related San Joaquin studies since 1985. Release locations (marked by R) are Durham Ferry (DF), Mossdale (MD), Old River (OR), Dos Reis (DR), and Jersey Point (JP). Recovery locations (marked by X) are Antioch (Ant), Chipps Island (CI), and ocean fisheries (Oc). X^{*} denotes recoveries that are not yet available.

Group	Year	Release Locations					Recovery Locations			\#Obs'ns
		DF	MD	OR	DR	JP	Ant	CI	Oc	
1	1985			R	R			X		2
2	1986			R	R			X	X	4
3	1987			R	R			X	X	4
4	1989			R	R	R		X	X	6
5	1989			R	R	R		X	X	6
6	1990			R	R	R		X	X	6
7	1990			R	R	R		X	X	6
8	1991				R	R		X	X	4
9	1994		R			R		X	X	4
10	1994		R			R		X	X	4
11	1994		R		R	R		X	X	6
12	1995		R		R			X	X	4
13	1995		R		R			X	X	4
14	1996		R			R		X	X	4
15	1996		R		R	R		X	X	6
16	1996				R	R		X	X	4
17	1997		R		R	R		X	X	6
18	1997				R	R		X	X	4
19	1997				R	R		X	X	4
20	1998		R		R	R		X	X	6
21	1998		R		R	R		X	X	6
22	1999		R		R	R		X	X	6
23	2000	R	R			R	X	X	X	9
24	2000	R				R	X	X	X	6
25	2001	R	R			R	X	X	X	9
26	2001	R	R			R	X	X	X	9
27	2002	R	R			R	X	X	X	9
28	2002	R	R			R	X	X	X	9
29	2003	R	R			R	X	X	X	9
30	2003	R	R			R	X	X	X	9
31	2004	R	R			R	X	X	X	9
32	2005	R			R	R	X	X	X*	6
33	2005	R			R	R	X	X	X*	6
34	2006		R		R	R	X	X	X*	6
35	2006		R			R	X	X	X*	4

Table 8. VAMP: Summary of analyses in 2005 Annual Technical Report for San Joaquin River Agreement. Response variable, $R R_{a / b \rightarrow c}$, denotes ratio of recovery fractions at location c from releases at location a and location b. Abbreviations are DF (Durham Ferry), MD (Mossdale), DR (Dos Reis), JP (Jersey Point), Ant (Antioch), CI (Chipps Island), and Oc (ocean fisheries). Sign refers to the slope coefficient. The P-value refers to a test that the slope coefficient equals 0 .

Response variable	Covariate(s)	Sign	P-value	R^{2}	n
$R R_{(D F+M D) / J P \rightarrow A n t+C I}$	Vernalis Flow (HORB in)	+	<0.01	0.50	15
$R R_{(D F+M D) / J P \rightarrow A n t+C I}$	Vernalis Flow (HORB out)	+	>0.10	0.29	8
$R R_{(D F+M D) / J P \rightarrow A n t+C I}$	Vernalis Flow/Exports (HORB in)	+	<0.02	0.30	18
$R R_{(D F+M D) / J P \rightarrow A n t+C I}$	CVP+SWP Exports (HORB out)	+	<0.10	0.38	9
$R R_{(D F+M D) / J P \rightarrow O c}$	Vernalis Flow (HORB in)	+	<0.01	0.58	15
$R R_{(D F+M D) / J P \rightarrow O c}$	Vernalis Flow (HORB out)	+	>0.10	0.36	7
$R R_{(D F+M D) / J P \rightarrow O c}$	Vernalis Flow/Exports (HORB in)	+	<0.10	0.20	17
$R R_{(D F+M D) / J P \rightarrow O c}$	CVP+SWP Exports (HORB out)	+	>0.10	0.40	7
$R R_{M D / J P \rightarrow A n t+C I}$					
$R R_{M D / J P \rightarrow O c}$	Vernalis Flow/Exports (HORB out)	+	>0.10	0.10	9
		Vernalis Flow/Exports (HORB out)	+	>0.10	0.08
$R R_{D R / J P \rightarrow A n t+C I}$					
$R R_{D R / J P \rightarrow O c}$	Modeled SJ Flow	+	>0.10	0.19	12
	Modeled SJ Flow	+	<0.01	0.64	12

Table 9. DCC: Summary of BHMs fit and model selected for inference. Top table compares DIC values for several BHMs. Column headed $f(\theta)$ refers to the transformation used and column headed σ 's refers to the priors used for standard deviations of random effects. The column headed by $\frac{\theta_{\text {Open }}}{\theta_{\text {Closed }}}$ gives the posterior median of the ratios. Bottom table contains summaries for the model selected for inference. The σ^{2} values are the posterior medians for σ_{θ}^{2}, $\sigma_{\mu_{R y \rightarrow C I}}^{2}$, and $\sigma_{\mu_{R y \rightarrow O c}}^{2}$.

Level 1 Dist'n	$f(\theta)$	σ 's	DIC	$\frac{\theta_{\text {open }}}{\theta_{\text {Closed }}}$
Negative Binomial	\log	Uniform	567.3	0.73
Multinomial	logit	Uniform	649.8	0.94
Multinomial (correlated))	logit	Inv. Wishart	655.1	0.96

Negative Binomial, $\log \theta$, Uniform priors for σ
Percentiles

Parameter	Mean	0.025	0.50	0.975	σ^{2}
β_{0}	-0.62	-1.06	-0.62	-0.13	
β_{1}	0.32	-0.56	0.32	1.18	
θ (open)	0.69	0.13	0.54	2.20	0.62^{2}
θ (closed)	1.00	0.17	0.75	3.33	0.62^{2}
θ (open) $/ \theta$ (closed)	1.32	0.09	0.73	5.67	
$k_{C I}$	492.9	17.1	492.1	974.7	
$k_{O c}$	16.9	2.68	7.12	25.1	
$\mu_{R y \rightarrow C I}$	-7.09	-7.49	-7.09	-6.71	0.67^{2}
$\mu_{R y \rightarrow O c}$	-4.82	-5.57	-4.82	-4.06	1.24^{2}
$r_{R y \rightarrow C I}$	0.0011	0.0002	0.0008	0.0037	
$r_{R y \rightarrow O c}$	0.0195	0.0005	0.0081	0.1108	

Table 10. Interior: Summary of BHMs fit and model selected for inference. Top table compares DIC values for several BHMs and the mean posterior predicted survival of Georgiana Slough relative to Ryde survival ($\bar{\theta}$). Column headed $f(\theta)$ refers to the transformation of θ used and column headed σ 's refers to the priors used for standard deviations of random effects (the inverse gamma is actually the gamma on the precision, inverse of σ^{2}). Bottom table contains summaries for the model selected for inference. The σ^{2} values are the posterior medians for $\sigma_{\theta}^{2}, \sigma_{\mu_{R y \rightarrow C I}}^{2}$, and $\sigma_{\mu_{R y \rightarrow O c}}^{2}$.

Level 1 Dist'n	$f(\theta)$	σ 's	DIC	$\bar{\theta}$
Multinomial	\log	Uniform	427.6	0.44
Multinomial	\log	Inv. Gamma	427.6	0.43
Multinomial	logit	Inv. Gamma	428.2	0.42
Multinomial	logit	Uniform	428.3	0.42
Multinomial (correlated)	logit	Inv. Wishart	428.8	0.41
Negative Binomial	\log	Uniform	441.7	0.42

Multinomial, $\log \theta$, Uniform priors for σ

	Percentiles				
Parameter	Mean	0.025	0.50	0.975	σ^{2}
μ_{θ}	-1.02	-1.35	-1.02	-0.70	0.50^{2}
$\mu_{R y \rightarrow C I}$	-7.72	-7.94	-7.72	-7.51	0.36^{2}
$\mu_{R y \rightarrow O c}$	-5.61	-6.11	-5.61	-5.12	0.88^{2}
θ	0.44	0.10	0.36	1.26	
$r_{R y \rightarrow C I}$	0.0005	0.0002	0.0004	0.0009	
$r_{R y \rightarrow O c}$	0.0057	0.0006	0.0036	0.0226	

TABLE 11. DA 8: Posterior distribution summaries for the multinomial model (with \log transformed θ and uniform priors on the σ 's). The σ^{2} values are the posterior medians of $\sigma_{\theta}^{2}, \sigma_{r_{R y \rightarrow C I}}^{2}$, and $\sigma_{r_{R y \rightarrow O c}}^{2}$.

Percentiles

Parameter	Mean	0.025	0.50	0.975	σ^{2}
β_{0}	-1.05	-1.38	-1.04	-0.75	
β_{1}	-0.29	-0.61	-0.28	0.02	0.54^{2}
$\mu_{R y \rightarrow C I}$	-7.72	-7.94	-7.72	-7.65	0.36^{2}
$\mu_{R y \rightarrow O c}$	-5.61	-6.08	-5.61	-5.07	0.86^{2}
$r_{R y \rightarrow C I}$	0.0005	0.0002	0.0004	0.0010	
$r_{R y \rightarrow O c}$	0.0057	0.0006	0.0036	0.0227	

TABLE 12. DA 8: Comparison of BHM and non-Bayesian estimates of release pair-specific θ, ratio of the Georgiana Slough survival probability to the Ryde survival probability. BHM values are mean and standard deviation of posterior distribution. Non-Bayesian values are the MLEs (maximum likelihood estimates) and standard errors (using the delta method). Ratio of survival indices is based upon the Chipps Island recoveries alone (Pat Brandes, personal communication).

	BHM		Non-Bayesian		Ratio of
Group	Mean	Std Dev	MLE	Std Error	Survival Indices
1	0.27	0.032	0.27	0.032	0.14
2	0.33	0.085	0.33	0.098	0.27
3	0.37	0.041	0.37	0.043	0.16
4	0.51	0.052	0.52	0.053	0.26
5	0.14	0.041	0.11	0.039	0.05
6	0.87	0.080	0.88	0.081	0.28
7	0.61	0.060	0.61	0.061	0.24
8	0.65	0.069	0.66	0.072	0.72
9	0.27	0.044	0.26	0.044	0.16
10	0.72	0.075	0.73	0.078	0.67
11	0.33	0.024	0.33	0.024	0.31
12	0.24	0.033	0.23	0.033	0.04
13	0.27	0.041	0.26	0.041	0.28
14	0.30	0.089	0.25	0.226	0.32
15	0.22	0.076	0.19	0.298	0.16

TABLE 13. VAMP: Comparison of DIC values for simple models with and without random effects. Only covariate is an indicator variable for HORB in a logit transformation of $S_{D R \rightarrow J P}$.

Model Class	DIC
No Random Effects	25,000
Recovery random effects	4,300
Survival and recovery random effects	1,500

Table 14. VAMP: Comparison of model results for $p_{O R}$ known, multinomial distributions, logit θ 's, and Uniform priors for σ 's. When entries under S are decimals, the value shown is the posterior median probability of survival. When entries contain covariate names, the reported percentage is the posterior probability that the flow coefficient is positive or that the exports coefficient is negative.

Label	$S_{\text {DF } \rightarrow M D}$	$S_{\text {DR } \rightarrow J P}$	$S_{O R \rightarrow J P}$	DIC
Null.Null.Null	0.62	0.21	0.09	1499.1
Null.FE.FE	0.63	Flow: $89 \%+$ Exports: 21\%-	Flow: 65\% + Exports: 33\%-	1474.8
Null.F.Null	0.63	Flow: $86 \%+$	0.10	1491.4
Null.F.Null.Stk 0.63 (Stock, 100\%+)	Flow: $90 \%+$	0.10	1494.5	

Table 15. Recoveries from replicate releases made at Durham Ferry and χ^{2} tests of homogeneity. χ^{2} values are based on Antioch, Chipps Island, and Ocean recoveries. P-values were calculated by Monte Carlo simulations; Pvalues were calculated with Antioch, Chipps Island, and Ocean categories (w/ ocean) and with Antioch and Chipps Island categories (w/o ocean). Number in parentheses next to year is the release set number.

					P-Values		
Set	R	$y_{A n t}$	$y_{C I}$	$y_{O c}$	χ^{2}	$\mathrm{w} / \mathrm{ocean}$	w / o Oc
$2000(19)$							
60401	23529	6	7	217			
60402	24177	10	10	232			
64563	24457	11	11	247	3.1	0.80	0.70
$2001(21)$							
64429	23351	28	14	96			
64430	22720	30	22	159			
64431	22376	18	17	112	24.0	<0.01	0.27
$2001(22)$							
64436	24029	8	2	17			
64437	23907	11	5	47			
64438	24054	10	2	28	17.8	<0.01	0.64
$2002(23)$							
64471	23920	11	4	33			
64472	23920	20	9	96			
64473	23872	12	4	73			
64474	24747	20	4	68	34.6	<0.01	0.32
$2002(24)$							
64470	24680	6	3	23			
64475	24659	2	5	22			
64476	24783	4	3	8		0.02	0.78
64477	24381	6	4	6	19.6		0.0

Table 16. Estimated capture probabilities at Chipps Island for the DCC and Interior/DA 8 studies (based on ocean recoveries of Port Chicago releases).

Year	DCC Tag Code	Ct	Ryde

TABLE 17. DA 8: Standard errors for $\hat{\beta}_{1}$, estimated slope coefficient, as a function of R (number released, $R_{G S}=R_{R y d e}$) and n (number of release pairs). Calculations are based upon simulations and regression of $\operatorname{logit}(\hat{\theta})$ against standardized exports where the true value of β_{1} was 0.57 .

R	n		
	15	20	25
50,000	0.333	0.275	0.236
100,000	0.299	0.261	0.230
150,000	0.300	0.267	0.228

TABLE 18. VAMP: Interquartile range for parameter estimates for different stream sections as a function of number released $\left(R=R_{D F}=R_{M D}=R_{D R}\right.$ $=R_{J P}$) and number of release sets (n). Calculations are based upon 10,000 simulations and regressions of point estimates of survival probabilities (logit transformed) against the covariates. The true values are shown for each parameter. HORB is an indicator equal to 1 when the barrier is in.

Durham Ferry to Mossdale				
$\beta_{1}=1.0$				
flow				
	n			
R	15	20	25	
50,000	1.476	1.279	1.123	
100,000	1.418	1.200	1.063	
150,000	1.388	1.179	1.018	

Mossdale to Dos Reis

	$\gamma_{1}=0.32$ flow			$\begin{aligned} & \gamma_{2}=5 \\ & \text { HORB } \end{aligned}$			$\begin{gathered} \gamma_{3}=-1.4 \\ \text { exports } \times(1-\mathrm{HORB}) \end{gathered}$		
		n			n			n	
R	15	20	25	15	20	25	15	20	25
50,000	1.347	1.097	0.965	3.048	2.529	2.244	1.264	1.077	0.896
100,000	1.270	1.060	0.898	2.868	2.429	2.135	1.230	1.029	0.877
150,000	1.209	1.030	0.873	2.778	2.415	2.087	1.184	0.997	0.854

Dos Reis to Jersey Point

	$\xi_{1}=0.71$ flow			$\begin{aligned} & \xi_{2}=5 \\ & \text { HORB } \end{aligned}$			$\xi_{3}=-0.5$ exports		
		n			n			n	
R	15	20	25	15	20	25	15	20	25
50,000	0.527	0.447	0.396	1.839	1.533	1.336	0.529	0.432	0.375
100,000	0.520	0.427	0.375	1.654	1.419	1.265	0.484	0.415	0.360
150,000	0.517	0.433	0.367	1.579	1.365	1.215	0.487	0.408	0.352

FIGURES

Figure 1. Map of release and recovery locations used by the USFWS for the multi-year studies.

Figure 2. Schematics of release and recovery locations for the four multi-year studies. $S_{A \rightarrow B}$ is the survival probability between point A and point B, and p_{C} is the capture probability at location C.

DCC Studies

$S_{C t \rightarrow R y}$
Courtland

DCC Gate \begin{tabular}{c}
$S_{R y \rightarrow C I}$

Ryde \longrightarrow

$p_{C I}$

CI

$S_{C I \rightarrow O c} p_{O c}$

Ocean
\end{tabular}

Interior/DA 8 Studies

VAMP Studies

Figure 3. DCC: Recovery fractions for Courtland ($\hat{r}_{C t \rightarrow C I+O c}$) and Ryde $\left(\hat{r}_{R y \rightarrow C I+O c}\right)$ releases by release pair. First four pairs are from releases that occurred when the gates were closed (with plotting character C), and the last nine are when the gates were open (plotting character O).

Figure 4. DCC: Boxplots of the ratio of recovery fractions for Courtland to Ryde releases, $\hat{r}_{C t \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}$, when the DCC gates were open and closed.

Figure 5. Interior/DA 8: Recovery fractions for Georgiana Slough $\left(\hat{r}_{G S \rightarrow C I+O c}\right)$ and Ryde ($\hat{r}_{R y \rightarrow C I+O c}$) releases by release pair.

Figure 6. Interior/DA 8: Comparison of recovery fractions at Chipps Island, in the ocean fisheries, in fish facility salvage, and from inland recoveries for Georgiana Slough and Ryde releases by release pair. Straight lines on plots have slope equal to mean of the ratios of recovery fractions, with slope written below x-axis label.

Salvage

Ryde

Inland-Expanded

Figure 7. DA 8: Estimated fraction of the release that is salvaged at the SWP and CVP fish facilities plotted against the export level (for both Georgiana Slough and Ryde releases). Solid line and dashed line are scatterplot smooths of fraction salvaged for Georgiana Slough and Ryde releases, respectively.

Figure 8. VAMP: Combinations of flow and export volumes when the HORB is in and when it is out. The flow and export measurements were those measured or estimated effective near Mossdale.

Figure 9. VAMP: Recovery fractions by release site; i.e., for release site x, $\left(y_{x \rightarrow A n t}+y_{x \rightarrow C I}+y_{x \rightarrow O c}\right) / R_{x}$.

Figure 10. VAMP: Estimated fraction of releases salvaged at SWP and CVP fish salvage facilities when the HORB is in or out.

Figure 11. VAMP: Adult inland recovery fractions for Durham Ferry, Mossdale, Dos Reis, and Jersey Point releases by release pair.

Figure 12. CWT recovery pattern by date at Chipps Island for examples taken from DCC, Interior/DA 8, and VAMP studies.
(c) 1983 DCC study

(b) 1999 DA 8 study

(c) 2000 VAMP study

Figure 13. DCC: Bootstrap sample ($B=10,000$) of the estimated ratio, $\left(\frac{\mu_{\theta(\text { Open })}}{\mu_{\theta(\text { Closed })}}\right)$, equation (15). Vertical line marks the point estimate.

Figure 14. DCC: Predicted recoveries at Chipps Island of Ryde releases, $y_{R y \rightarrow C I}$ (red vertical line), and Bayesian P-values.

Figure 15. DCC: Predicted recoveries in Ocean fisheries of Ryde releases, $\hat{y}_{R y \rightarrow O c}$ (red vertical line), and Bayesian P-values.

13 P-value $=0.99$

Figure 16. DCC: Predicted recoveries at Chipps Island of Courtland releases, $y_{C t \rightarrow C I}$ (red vertical line), and Bayesian P-values.

Figure 17. DCC: scaled residuals plotted against predicted values.

Figure 18. DCC: scaled residuals plotted against predicted values for model without random effects.

Figure 19. Interior: Predicted recoveries at Chipps Island of Ryde releases, $y_{R y \rightarrow C I}$ (red vertical line), and Bayesian P-values.

15 P-value $=0.5$

Figure 20. Interior: scaled residuals plotted against predicted values.

Figure 21. Interior: scaled residuals plotted against predicted values for model without random effects.

Figure 22. Interior: Posterior median θ 's plotted against secondary covariates, Georgiana Slough release temperatures and mean fish lengths at time of release.

Figure 23. DA 8: $\hat{\theta}\left(=\hat{r}_{G S \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}\right)$ plotted against export levels. Vertical lines extend up and down one standard error. Fitted line is a nonparametric weighted regression using the supersmoother function in R with weights being the inverse of the standard errors squared.

Figure 24. DA 8: Posterior means (solid) and medians (dashed line) for θ from the BHM (with \log transformed θ and uniform priors on standard deviations of random effects) plotted against export levels. The 2.5% and 97.5% intervals are indicated by vertical lines.

Figure 25. DA 8: Predicted $\theta\left(S_{G S \rightarrow C I} / S_{R y \rightarrow C I}\right)$ values for different levels of exports for three different models, M1, M2, and M3. M1 is a linear regression of $\hat{r}_{G S \rightarrow C I} / \hat{r}_{R y \rightarrow C I}$ on exports. The M 2 values are the exponentiated values of a linear regression of $\log \left(\hat{r}_{G S \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}\right)$ on exports. M3 is a BHM (with \log transformed θ and uniform priors on standard deviations of random effects). Also plotted are the non-BHM point estimates $\hat{r}_{G S \rightarrow C I+O c} / \hat{r}_{R y \rightarrow C I+O c}$ for the individual releases (denoted by X).

Figure 26. VAMP: Histograms of posterior distributions for coefficients, ξ_{1}, $\xi_{2}, \zeta_{1}, \zeta_{2}$, corresponding to flow at Dos Reis and exports following the time of releases from Dos Reis, and flow in Upper Old River and exports following the time of releases from Upper Old River (or Mossdale). (Based on Null.FE.FE model.)

$$
\zeta_{1}: \text { OR->JP UOR flow }
$$

Figure 27. VAMP: Posterior mean survival probabilities for each of the release sets through the Dos Reis to Jersey Point reach, the Upper Old River to Jersey Point "reach". Blue vertical bars on x-axis denote when the HORB was in place. (Based on Null.FE.FE model.)

Survival from Mossdale -> JP w/ and w/o HORB

Figure 28. VAMP: Posterior predictive distribution and Bayesian P-values for recoveries at Antioch of releases from Mossdale. P-values are the minimum of the two tail probabilities. (Based on Null.FE.FE model.)

Mossdale -> Antioch: posterior dist'n

23 P-val= 0.36

25 P-val= 0.26

26 P-val= 0.44

28 P-val= 0.36

29 P-val= 0.25

30 P-val $=0.06$
31 P-val= 0.08

34 P-val= 0.25
35 P-val= 0

Figure 29. VAMP: Scaled residuals versus posterior predictive means. (Based on Null.FE.FE model.)

Predicted

Figure 30. VAMP: Random effects residuals, by stream section, for logit of survival plotted against water temperature at release with supersmoother fit superimposed. The effects for Jersey Point are for the logit of Chipps Island recovery rate, either $r_{J P \rightarrow A n t \rightarrow C I}$ or $r_{J P \rightarrow C I}$. (Based on Null.FE.FE model.)

VAMP: random effects vs release temperature

Figure 31. VAMP: Random effects residuals, by stream section, for logit of survival plotted against stock origin ($\mathrm{FRH}=$ Feather River Hatchery, MRFF $=$ Merced River Fish Facility). The effects for Jersey Point are for the logit of Chipps Island recovery rate, $r_{J P \rightarrow C I}$. (Based on Null.FE.FE model.)

Figure 32. VAMP: Random effects residuals, by stream section, for logit of survival plotted against the estimated number of salmon salvaged at the fish facilities at CVP and SWP. The effects for Jersey Point are for the logit of Chipps Island recovery rate, $r_{J P \rightarrow C I}$. (Based on Null.FE.FE model.)

Old River: OR -> JP random effects

Fish Facilities Recoveries

Fish Facilities Recoveries

Dos Reis: DR -> JP random effects

Jersey Point: JP -> CI random effects

Figure 33. DCC: Bootstrap standard errors for $\frac{\widehat{\mu_{\theta(\text { Open })}}}{\mu_{\theta(C l o s e d)}}$ as a function of the number of replications. The number of replications on the x-axis refer to the total number of replications, with half being gates open and half with gates closed; e.g., 10 means 5 experiments with DCC gate open and 5 experiments with DCC gate closed. Number of fish released at each site was fixed at $100,000, R_{C t}=R_{R y}=100,000$. An extreme value of 62 , for $n=10$ was deleted before plotting.

Figure 34. Interior: Number of years of experimentation (n) to achieve a specified standard error for $\hat{\mu}_{\theta}$ for expected numbers of recoveries plotted against observed numbers of recoveries, by release site and recovery location. ($\mu_{\theta}=0.8$.)

APPENDICES

Appendix A. DCC and Interior: Theoretical variance of $\hat{\mu}_{\theta}$

The expected value of the ratio of the survival probabilities for two "upstream" releases, μ_{θ}, can be estimated by averaging year specific estimates of θ_{t} :

$$
\begin{aligned}
\hat{\mu}_{\theta} & =\sum_{t=1}^{n} w_{t} \hat{\theta}_{t} \\
& =\sum_{t=1}^{n} w_{t} \frac{\left(y_{13, t}+y_{14, t}\right) / R_{1 t}}{\left(y_{23, t}+y_{24, t}\right) / R_{2 t}},
\end{aligned}
$$

where w_{t} are weights, $\sum_{t=1}^{n} w_{t}=1$. Variation in this estimate arises from between year variation in the survival and capture probabilities and within year sampling variation. The following standard result from probability theory reflects these two levels of variation and is used to calculate the variance of $\hat{\mu}_{\theta}$:

$$
\begin{equation*}
V\left(\hat{\mu}_{\theta}\right)=E\left[V\left(\hat{\mu}_{\theta} \mid \theta_{t}, S_{23, t}, p_{t}, \pi_{t}\right)\right]+V\left[E\left(\hat{\mu}_{\theta} \mid \theta_{t}, S_{23, t}, p_{t}, \pi_{t}\right)\right] . \tag{57}
\end{equation*}
$$

A.1. $V[E]$ calculation. Regarding the second term on the righthand side of (57), the expectation portion can be written:

$$
E\left[\hat{\mu}_{\theta} \mid \theta_{t}, S_{23, t}, p_{t}, \pi_{t}\right]=\sum_{t=1}^{n} w_{t} E\left[\hat{\theta}_{t} \mid \theta_{t}, S_{23, t}, p_{t}, \pi_{t}\right] \approx \sum_{t=1}^{n} w_{t} \theta_{t}
$$

assuming that $\hat{\theta}_{t}$ is unbiased for θ_{t}. Then

$$
\begin{equation*}
V\left[E\left(\hat{\mu}_{\theta} \mid \theta_{t}, S_{23, t}, p_{t}, \pi_{t}\right)\right] \approx \sum_{t=1}^{n} w_{t}^{2} V\left(\theta_{t}\right)=\sum_{t=1}^{n} w_{t}^{2} \sigma_{\theta}^{2} \tag{58}
\end{equation*}
$$

If each of the yearly estimates of θ are given equal weight (as would be the case with equal release numbers per year), this component reduces to

$$
\left.V\left[E\left(\hat{\mu}_{\theta}\right) \mid \theta_{t}, S_{23, t}, p_{t}, \pi_{t}\right)\right] \approx \frac{\sigma_{\theta}^{2}}{n} .
$$

A.2. $E[V]$ calculation. For the first term on the righthand side of (57), the delta approximation (Stuart and Ord, 1987, p. 324) is used to calculate $V\left(\hat{\mu}_{\theta} \mid \theta_{t}, S_{23, t}, p_{t}, \pi_{t}\right)$:

$$
\begin{equation*}
V\left(\hat{\mu}_{\theta} \mid \mu_{\theta}, S_{23, t}, p_{t}, \pi_{t}\right)=\sum_{t=1}^{n} w_{t}^{2} V\left(\hat{\theta}_{t}\right) \tag{59}
\end{equation*}
$$

where

$$
\begin{aligned}
V\left(\hat{\theta}_{t}\right) \approx & d_{1}^{2}\left(v\left(y_{13, t}\right)+v\left(y_{14, t}\right)+2 \operatorname{cov}\left(y_{13, t}, y_{14, t}\right)\right)+ \\
& d_{2}^{2}\left(v\left(y_{23, t}\right)+v\left(y_{24, t}\right)+2 \operatorname{cov}\left(y_{23, t}, y_{24, t}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
d_{1} & =\frac{R_{2 t}}{R_{1 t}} \frac{1}{E\left[y_{23, t}\right]+E\left[y_{24, t}\right]}=\frac{R_{2 t}}{R_{1 t}} \frac{1}{R_{2 t} S_{23, t}\left(p_{t}+\left(1-p_{t}\right) \pi_{t}\right)} \\
& =\frac{1}{R_{1 t} S_{23, t}\left(p_{t}+\left(1-p_{t}\right) \pi_{t}\right)} \\
v\left(y_{13, t}\right) & =R_{1 t} \theta_{t} S_{23, t} p_{t}\left(1-\theta_{t} S_{23, t} p_{t}\right) \\
v\left(y_{14, t}\right) & =R_{1 t} \theta_{t} S_{23, t}\left(1-p_{t}\right) \pi_{t}\left(1-\theta_{t} S_{23, t}\left(1-p_{t}\right) \pi_{t}\right) \\
\operatorname{cov}\left(y_{13, t}, y_{14, t}\right) & =-R_{1 t} \theta_{t} S_{23, t} p_{t} * \theta_{t} S_{23, t}\left(1-p_{t}\right) \pi_{t} \\
d_{2} & =\frac{R_{2 t}}{R_{1 t}} \frac{E\left[y_{13, t}\right]+E\left[y_{14, t}\right]}{\left(E\left[y_{23, t}\right]+E\left[y_{24, t}\right]\right)^{2}}=\frac{\theta_{t} S_{23, t}\left(p_{t}+\left(1-p_{t}\right) \pi_{t}\right)}{R_{2 t}\left(S_{23, t}\left(p_{t}+\left(1-p_{t}\right) \pi_{t}\right)\right)^{2}} \\
v\left(y_{23, t}\right) & =R_{2 t} S_{23, t} p_{t}\left(1-S_{23, t} p_{t}\right) \\
v\left(y_{24, t}\right) & =R_{2 t} S_{23, t}\left(1-p_{t}\right) \pi_{t}\left(1-S_{23, t}\left(1-p_{t}\right) \pi_{t}\right) \\
\operatorname{cov}\left(y_{23, t}, y_{24, t}\right) & =-R_{2 t} S_{23, t} p_{t} * S_{23, t}\left(1-p_{t}\right) \pi_{t}
\end{aligned}
$$

The expected value, $\left.E\left[V\left(\hat{\mu}_{\theta}\right) \mid \theta_{t}, S_{23, t}, p_{t}, \pi_{t}\right)\right]$, is also approximated using the delta method (with a second order approximation, Stuart and Ord (1987, p 342) ${ }^{9}$). Assuming independence between θ_{t} and the survival and capture probabilities, the approximation has the following form:

$$
\begin{align*}
\left.E\left[V\left(\hat{\mu}_{\theta}\right) \mid \theta_{t}, S_{23, t}, p_{t}, \pi_{t}\right)\right] \approx & \left.\sum_{t=1}^{n} w_{t}^{2} V\left(\hat{\theta}_{t}\right)\right|_{\mu}+ \\
& 0.5 \sum_{t=1}^{n} w_{t}^{2}\left[\left.\frac{d^{2} V}{d \theta_{t}^{2}}\right|_{\mu} \sigma_{\theta_{t}}^{2}+\left.\frac{d^{2} V}{d S_{23, t}^{2}}\right|_{\mu} \sigma_{S_{23, t}}^{2}+\left.\frac{d^{2} V}{d p_{t}^{2}}\right|_{\mu} \sigma_{p_{t}}^{2}+\left.\frac{d^{2} V}{d \pi_{t}^{2}}\right|_{\mu} \sigma_{\pi_{t}}^{2}\right] \tag{60}
\end{align*}
$$

where μ denotes the expected values $\mu_{\theta}, \mu_{S_{23}}, \mu_{p}$, and μ_{π}.

[^9]Formulae for second derivatives. The formulae for the second derivatives are shown below; to reduce notation the t subscripts have been dropped and $S_{23, t}$ is simply written as S. Furthermore, let

$$
\begin{aligned}
& N_{1}=\theta p(1-\theta S p)+\theta(1-p) \pi(1-\theta S(1-p) \pi)-2 \theta^{2} p S(1-p) \pi \\
& N_{2}=\theta^{2} p(1-S p)+\theta^{2}(1-p) \pi(1-S(1-p) \pi)-2 \theta^{2} p S(1-p) \pi \\
& D_{1}=R_{1} S(p+(1-p) \pi)^{2} \\
& D_{2}=R_{2} S(p+(1-p) \pi)^{2}
\end{aligned}
$$

Then

$$
\frac{d^{2} V}{d \theta^{2}}=\frac{d^{2} N_{1}}{d \theta^{2}} D_{1}^{-1}+\frac{d^{2} N_{2}}{d \theta^{2}} D_{2}^{-1}
$$

where

$$
\begin{aligned}
& \frac{d^{2} N_{1}}{d \theta^{2}}=-2 S p^{2}-2 S(1-p)^{2} \pi^{2}-4 S p(1-p) \pi \\
& \frac{d^{2} N_{2}}{d \theta^{2}}=2 p-2 S p^{2}+2(1-p) \pi-2 S(1-p)^{2} \pi^{2}-4 S p(1-p) \pi
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{d^{2} V}{d S^{2}}= & 2\left[\theta^{2} p^{2}+\theta^{2}(1-p)^{2} \pi^{2}+2 \theta^{2} p(1-p) \pi\right] D_{1}^{-2} R_{1}(p+(1-p) \pi)^{2}+ \\
& 2 N_{1} D_{1}^{-3}\left(R_{1}(p+(1-p) \pi)^{2}\right)^{2}+ \\
& 2\left[\theta^{2} p^{2}+\theta^{2}(1-p)^{2} \pi^{2}+2 \theta^{2} p(1-p) \pi\right] D_{2}^{-2} R_{2}(p+(1-p) \pi)^{2}+ \\
& 2 N_{2} D_{2}^{-3}\left(R_{2}(p+(1-p) \pi)^{2}\right)^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{d^{2} V}{d p^{2}}= & \frac{d^{2} N_{1}}{d p^{2}} D_{1}^{-1}-2 \frac{d N_{1}}{d p} D_{1}^{-2} \frac{d D_{1}}{d p}+2 N_{1} D_{1}^{-3}\left(\frac{d D_{1}}{d p}\right)^{2}-N_{1} D_{1}^{-2} R_{1} S\left(2-4 \pi+2 \pi^{2}\right)+ \\
& \frac{d^{2} N_{2}}{d p^{2}} D_{2}^{-1}-2 \frac{d N_{2}}{d p} D_{2}^{-2} \frac{d D_{2}}{d p}+2 N_{2} D_{2}^{-3}\left(\frac{d D_{2}}{d p}\right)^{2}-N_{2} D_{2}^{-2} R_{2} S\left(2-4 \pi+2 \pi^{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\frac{d N_{1}}{d p} & =\theta-2 \theta^{2} S p-\theta \pi-\theta^{2} S(-2+2 p) \pi^{2}-2 \theta^{2} S(1-2 p) \pi \\
\frac{d^{2} N_{1}}{d p^{2}} & =-2 \theta^{2} S-2 \theta^{2} S \pi^{2}+4 \theta^{2} S \pi \\
\frac{d D_{1}}{d p} & =R_{1} S\left(2 p+2 \pi-4 p \pi+(-2+2 p) \pi^{2}\right) \\
\frac{d N_{2}}{d p} & =\theta^{2}-2 \theta^{2} S p-\theta^{2} \pi-\theta^{2} S(-2+2 p) \pi^{2}-2 \theta^{2} S(1-2 p) \pi \\
\frac{d^{2} N_{2}}{d p^{2}} & =-2 \theta^{2} S-2 \theta^{2} S \pi^{2}+4 \theta^{2} S \pi \\
\frac{d D_{2}}{d p} & =R_{2} S\left(2 p+2 \pi-4 p \pi+(-2+2 p) \pi^{2}\right) .
\end{aligned}
$$

Lastly,

$$
\begin{aligned}
\frac{d^{2} V}{d \pi^{2}}= & \frac{d^{2} N_{1}}{d \pi^{2}} D_{1}^{-1}-2 \frac{d N_{1}}{d \pi} D_{1}^{-2} \frac{d D_{1}}{d \pi}+2 N_{1} D_{1}^{-3}\left(\frac{d D_{1}}{d \pi}\right)^{2}-2 N_{1} D_{1}^{-2} R_{1} S(1-p)^{2}+ \\
& \frac{d^{2} N_{2}}{d \pi^{2}} D_{2}^{-1}-2 \frac{d N_{2}}{d \pi} D_{2}^{-2} \frac{d D_{2}}{d \pi}+2 N_{2} D_{2}^{-3}\left(\frac{d D_{2}}{d \pi}\right)^{2}-2 N_{2} D_{2}^{-2} R_{2} S(1-p)^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\frac{d N_{1}}{d \pi} & =\theta(1-p)-2 \theta^{2} S(1-p)^{2} \pi-2 \theta^{2} S p(1-p) \\
\frac{d^{2} N_{1}}{d \pi^{2}} & =-2 \theta^{2} S(1-p)^{2} \\
\frac{d D_{1}}{d \pi} & =2 R_{1} S(1-p)(p+(1-p) \pi) \\
\frac{d N_{2}}{d \pi} & =\theta^{2}(1-p)-2 \theta^{2} S(1-p)^{2} \pi-2 \theta^{2} S p(1-p) \\
\frac{d^{2} N_{2}}{d \pi^{2}} & =-2 \theta^{2} S(1-p)^{2} \\
\frac{d D_{2}}{d \pi} & =2 R_{2} S(1-p)(p+(1-p) \pi)
\end{aligned}
$$

Each of the above second derivatives is then evaluated at the expected values for $\theta_{t}, S_{23, t}$, p_{t}, and π_{t}.
A.3. Summary. Thus equation (57), which is found by adding equations (58) and (60), yields an approximate theoretical variance. This is what is needed for determining sample sizes and making power calculations. One must put in assumed known parameter values, particularly the means and variances of $\theta_{t}, S_{23, t}, p_{t}$, and π_{t}. R code has been written that calculates the theoretical variance approximation (Appendix D.1).

The quality of the approximation to the theoretical variance was evaluated using simulations. The simulation code (in R code) is listed in Appendix D.2. The results based on 30,000 simulations (example code also given in Appendix D.2) are summarized below; $R_{1}=R_{2}=50,000$ in each case and σ_{θ} was fixed at 0.1 , and $\mathrm{E}\left[S_{23}\right]=0.9 \sigma_{S_{23}}=0.15, \mathrm{E}\left[p_{3}\right]=0.002$, $\sigma_{p_{3}}=0.0002, \mathrm{E}[\pi]=0.0079, \sigma_{\pi}=0.00627$.

θ	n	Theoretical Std Error	Simulated SE Std Error	Relative Error (\%)
0.6	5	0.05117	0.05202	-1.7%
0.6	10	0.03618	0.03685	-1.8%
0.8	5	0.05408	0.05663	-4.7%
0.8	10	0.03824	0.03875	-1.3%
0.95	5	0.05646	0.05795	-2.6%
0.95	10	0.03992	0.04092	-2.5%

The theoretical standard error approximation appears to be biased low, with a negative bias from 1 and 5%.

Appendix B. DCC and Interior: Bootstrap estimate of variance of $\hat{\mu}_{\theta}$

To calculate confidence intervals or carry out hypothesis tests in practice, the standard error must be calculated using the data, not hypothesized values for the parameters. Estimates of unknown parameters can be substituted in some cases, but the calculations can be involved. A simpler approach is to use a bootstrap procedure. The general procedure for bootstrapping hierarchical models is described by Davison and Hinkley (1997, pp 100-102).

The gist of the bootstrap procedure is to mimic the original data generation procedure: first, generate samples of the "annual" studies, then generate observations within each generated study. To generate samples of the studies, the release pairs are resampled with replacement; this then reflects between release pair variation. To generate observations, samples are generated from trinomial distributions for recoveries using the observed recovery rates for each sampled group. Thus the recoveries within a group are resampled with replacement. An alternative is to sample without replacement, however, with large release numbers the results will be essentially equivalent.

Bootstrap code has been written in R (Appendix D.3) that is applicable to the Interior studies and the problem of estimating μ_{θ}. The quality of the bootstrap standard errors, and 95% confidence intervals based on ± 2 standard errors, was evaluated by simulation study. The bootstrap standard errors compared favorably to empirical standard errors and the confidence intervals were reasonably accurate for the values of μ_{θ} tried. For example, with $\theta=0.6, R_{1}=R_{2}=50,000$, the median bootstrap standard error was 0.03808 compared to an empirical standard error of 0.03641 . The percentage of bootstrap based 95% confidence intervals that included μ_{θ} was 95.16%, thus accurate coverage.

Appendix C. Interior: Sample size determination

There are two sample sizes that can be manipulated to achieve a specified level of precision (standard error) and these are n, the number of replications of paired releases, and R_{1} and R_{2}, the number of fish released. The variance formula for $\hat{\mu}_{\theta}$ given in Appendix A can be used to solve for R_{1}, R_{2}, and n to achieve a specified standard error. For any given standard error there are multiple combinations of R_{1}, R_{2}, and n that will work. For simplicity assume that $R_{1}=R_{2}=R$ and that the annual weights, w_{t}, are thus $1 / n$. The variance formula (see equations (59) and (60)) can be written:

$$
\begin{equation*}
V\left[\hat{\mu}_{\theta}\right] \approx \frac{\sigma_{\theta}^{2}}{n}+\frac{1}{n}\left[V\left(\hat{\theta}_{t}\right)+0.5\left(\left.\frac{d^{2} V}{d \theta_{t}^{2}}\right|_{\mu} \sigma_{\theta_{t}}^{2}+\left.\frac{d^{2} V}{d S_{23, t}^{2}}\right|_{\mu} \sigma_{S_{23, t}}^{2}+\left.\frac{d^{2} V}{d p_{t}^{2}}\right|_{\mu} \sigma_{p_{t}}^{2}+\left.\frac{d^{2} V}{d \pi_{t}^{2}}\right|_{\mu} \sigma_{\pi_{t}}^{2}\right)\right] \tag{61}
\end{equation*}
$$

The term $V\left(\hat{\theta}_{t}\right)$ and the second derivative terms each have release number, R, in the denominator and the variance formula can be rewritten as:

$$
\begin{equation*}
V\left[\hat{\mu}_{\theta}\right] \approx \frac{\sigma_{\theta}^{2}}{n}+\frac{1}{n}\left[\frac{A}{R}+0.5 \frac{B}{R}\right] \tag{62}
\end{equation*}
$$

where A and B are constants involving the means and standard deviations of $\theta_{t}, S_{23, t}, p_{t}$, and π_{t} (as in equation (61)). One can then solve for n given $V\left[\hat{\mu}_{\theta}\right]$ and R, or for R given n and $V\left[\hat{\mu}_{\theta}\right]$:

$$
\begin{aligned}
n & =\frac{\sigma_{\theta}^{2}+\frac{1}{R}[A+0.5 B]}{V\left[\hat{\mu}_{\theta}\right]} \\
R & =\frac{A+0.5 B}{n V\left[\hat{\mu}_{\theta}\right]-\sigma_{\theta}^{2}}
\end{aligned}
$$

R code has been written for both of these cases (Appendix D.5).

Appendix D. R code

D.1. Interior: Theoretical variance calculation. The R function, theory. exp.var, estimates the variance of $\hat{\mu_{\theta}}$ (the non-Bayesian estimate, see Equation (57)) based on number released, number of replicates (years of experimentation), and parameter values.

```
theory.exp.var <- function(R1,R2,n,mu.theta,sigma2.theta,mu.S,sigma2.S,
    mu.p,sigma2.p,mu.pi,sigma2.pi) {
    # Calculates variance of mu.theta.hat using double variance formula
    # Var() = E[V] + V[E]
    # - delta approximations used for conditional variance and unconditional
    # expectation
    # Input parameters:
# R1, R2 = number released in each group (group 1 is the "upstream" grp)
# n = number of years of experimentation
# mu.theta = expected value of theta, the ratio of survival rates
# sigma2.theta = variance of theta
# mu.S = expected value of S_{23}, survival from location 2 to 3
# sigma2.S = variance of S_{23}
# mu.p = expected probability of capture at location 3
# sigma2.p = variance of p
# mu.pi = expected probability of recovery (S_{34}*p_4) at loc. 4
# sigma2.pi = variance of pi
theta <- mu.theta; S<-mu.S; p <- mu.p; opi <- mu.pi #saves typing
N1 <- theta*p*(1-theta*S*p)+theta*(1-p)*opi*
    (1-theta*S*(1-p)*opi) -2*theta^2*p*S*(1-p)*opi
D1 <- R1*S*(p+(1-p)*opi) ^2
N2 <- theta^2*p*(1-S*p)+theta^2*(1-p)*opi*
        (1-S*(1-p)*opi) -2*theta^2*p*S*(1-p)*opi
D2 <- R2*S*(p+(1-p)*opi) ^2
#-------- 2nd Derivative wrt Theta -------------
d2N1 <- -2*S*p^2 - 2*S*(1-p)^2*opi^2- 4*S*p*(1-p)*opi
d2N2 <- 2*p-2*S*p^2+2*(1-p)*opi- 2*S*(1-p)^2*opi^2- 4*S*p*(1-p)*opi
d2.theta <- d2N1*D1^(-1) + d2N2*D2^(-1)
```

```
#-------- 2nd Derivative wrt S_{23} --------------
d1N1 <- d1N2 <-
    -theta^2*p^2-theta^2*(1-p)^2*opi^2- 2*theta^2*p*(1-p)*opi
d1D1 <- R1*(p+(1-p)*opi)^2
d1D2 <- R2*(p+(1-p)*opi) ^2
d2.S23 <- -2*d1N1*D1^(-2)*d1D1 + 2*N1*D1^(-3)*d1D1^2 +
    -2*d1N2*D2^(-2)*d1D2 + 2*N2*D2^(-3)*d1D2^2
#--------- 2nd Derivative wrt p --------------
d1N1 <- theta - 2*theta^2*S*p - theta*opi -
    theta^2*S*(-2+2*p)*opi^2 - 2*theta^2*S*(1-2*p)*opi
d1N2 <- theta^2 - 2*theta^2*S*p - theta^2*opi -
    theta^2*S*(-2+2*p)*opi^2 - 2*theta^2*S*(1-2*p)*opi
d2N1 <- d2N2 <- -2*theta^2*S*(1+opi^2-2*opi)
d1D1 <- R1*S*(2*p+2*opi-4*p*opi+(-2+2*p)*opi^2)
d1D2 <- R2/R1*d1D1
d2.p <- (d2N1 * D1^(-1) - 2*d1N1*D1^(-2)*d1D1 +
    2*N1*D1^(-3)*d1D1^2 - N1*D1^(-2)*R1*S*(2-4*opi+2*opi^2)) +
    (d2N2 * D2^(-1) - 2*d1N2*D2^(-2)*d1D2 +
    2*N2*D2^(-3)*d1D2^2 - N2*D2^(-2)*R2*S*(2-4*opi+2*opi^2))
#-------- 2nd Derivative wrt pi -------------
d1N1 <- theta*(1-p) - 2*theta^2*S*(1-p)^2*opi - 2*theta^2*S*p*(1-p)
d1N2 <- theta^2*(1-p) - 2*theta^2*S*(1-p)^2*opi - 2*theta^2*S*p*(1-p)
d2N1 <- d2N2 <- -2*theta^2*S*(1-p)^2
d1D1 <- R1*S*2*(1-p)*(p+(1-p)*opi)
d1D2 <- R2/R1*d1D1
d2.pi <- (d2N1*D1^(-1) - 2*d1N1*D1^(-2)*d1D1 + 2*N1*D1^(-3)*d1D1^2 -
                        2*N1*D1^(-2)*R1*S*(1-p)^2) +
        (d2N2*D2^(-1) - 2*d1N2*D2^(-2)*d1D2 + 2*N2*D2^(-3)*d1D2^2 -
                        2*N2*D2^(-2)*R2*S* (1-p) ^2)
#----output ----------
out <- (N1/D1+N2/D2) +
                        0.5*(d2.theta*sigma2.theta + d2.S23*sigma2.S +
                    d2.p*sigma2.p + d2.pi*sigma2.pi)
SE <- sqrt((1/n)*(out + sigma2.theta))
return(SE)
}}
```

D.2. Interior: Simulation of hierarchical recovery model. The R function, two.grp.sim, simulates the recoveries from paired releases for a specified number of years of study, numyrs. The other input parameters are the number of fish released in each group (R 1 and R 2) and the expected values and standard deviations of the parameters, θ, S_{23}, p, and π.

```
#------------------------------------------------------------------------------
# --- Pgm to simulate the hierarchical processes of between year variation
# and within year variation in survival, capture, and then estimate
# expected ratio of survival probabilities (mu.theta)
two.grp.sim <- function(numyrs,R1,R2,mu.theta,sig.theta,mu.S23,sig.S23,
                        mu.p,sig.p,mu.pi,sig.pi) {
    temp <- alpha.beta(mu.theta,sig.theta)
    theta <- rbeta(numyrs,temp$alpha,temp$beta)
    temp <- alpha.beta(mu.S23,sig.S23)
    S23 <- rbeta(numyrs,temp$alpha,temp$beta)
    temp <- alpha.beta(mu.p,sig.p)
    p <- rbeta(numyrs,temp$alpha,temp$beta)
    temp <- alpha.beta(mu.pi,sig.pi)
    pi.o <- rbeta(numyrs,temp$alpha,temp$beta)
    # recoveries from group 1
    y13 <- rbinom(numyrs,R1,theta*S23*p)
    y14 <- rbinom(numyrs,R1-y13,theta*S23*(1-p)*pi.o/(1-theta*S23*p))
    # recoveries from group 2
    y23 <- rbinom(numyrs,R2,S23*p)
    y24 <- rbinom(numyrs,R2-y23,S23*(1-p)*pi.o/(1-S23*p))
    theta.hat <- ((y13+y14)/R1)/((y23+y24)/R2)
    output <- list(theta.hat=theta.hat,y13=y13,y14=y14,y23=y23,y24=y24)
    return(output)
}
```

An example demonstrating use of two.grp.sim, along with output, is shown below.
two.grp.sim(numyrs $=10, R 1=60000, R 2=75000$, mu.theta $=0.8$, sig.theta $=0.12$, mu. $\mathrm{S} 23=0.85$, sig. $\mathrm{S} 23=0.10$, $\mathrm{mu} . \mathrm{p}=0.002$, sig. $\mathrm{p}=0.0003, \mathrm{mu} . \mathrm{pi}=0.008$, sig. $\mathrm{pi}=0.005$)

```
#$theta.hat
# [1] 0.8438486 0.8993476 0.7716049 0.7328767 0.7480971 0.9375000 0.4288026
# [8] 0.9076545 0.8216946 0.7474530
#
#$y13
# [1] }8
#
#$y14
# [1] 339 709 100 143 548 59 65 427 238 696
#
#$y23
# [1] 139
#
#$y24
# [1] 495 992 159 254 880
```

Below is R code that uses two.grp. sim for 30,000 simulations, estimating θ in each case, calculates the empirical standard error of $\hat{\theta}$, and then compares this standard error to the theoretical approximation.

```
set.seed(201)
numsims <- }3000
numyrs.opt <- 10
numrel.opt <- 50000
mu.theta <- 0.6; sig.theta <- 0.1
mu.S <- 0.9; sig.S23 <- 0.15
mu.p <- 0.002; sig.p <- 0.0002
mu.pi <- 0.0079; sig.pi <- 0.00627 #based on Ctland, DCC recoveries
mean.theta.vector <- numeric(numsims)
for(i in 1:numsims) {
    out <- two.grp.sim(numyrs=numyrs.opt,R1=numrel.opt,R2=numrel.opt,
    mu.theta=mu.theta,sig.theta=sig.theta,mu.S=mu.S,sig.S23=sig.S23,
    mu.p=mu.p,sig.p=sig.p,mu.pi=mu.pi,sig.pi=sig.pi)$theta.hat
    mean.theta.vector[i] <- mean(out)
    }
empirical.se <- sd(mean.theta.vector)
#--- theoretical variance approximation
out <- theory.exp.var(R1=numrel.opt,R2=numrel.opt,n=numyrs.opt,
    mu.theta=mu.theta,sigma2.theta=sig.theta^2,mu.S=mu.S,sigma2.S=sig.S23^2,
    mu.p=mu.p,sigma2.p=sig.p^2,mu.pi=mu.pi,sigma2.pi=sig.pi^2)
```

```
#--- 95% confidence intervals, using theoretical SE
lb <- mean.theta.vector-2*out
ub <- mean.theta.vector+2*out
performance <- rep(FALSE,numsims)
performance[lb <= mu.theta & mu.theta <= ub] <- TRUE
#print output
cat("Empirical SE=",empirical.se,"\n",
    "Theoretical SE=",out,"rel err=",1-empirical.se/out,"\n",
    "CI coverage=",sum(performance)/numsims,"\n")
# Empirical SE= 0.03685179
# Theoretical SE= 0.03618268 rel err= -0.01849254
# CI coverage= 0.9508667
```

D.3. Interior: Bootstrap estimate of variance of $\hat{\mu}_{\theta}$. The R function, two.grp.boot, estimates the variance of $\hat{\mu}_{\theta}$ (the non-Bayesian estimate, see Equation 57 in Appendix A) using B bootstrap samples. Other inputs are number of release pairs (numyrs), number released from each group, and number of recoveries from each group. Conceptually, one can view locations $1,2,3$, and 4 as a spatial sequence with 1 furthest upstream and 4 furthest downstream; y13 is the number recovered from the first release group at "downstream" recovery location 3, below release location 2, and y14 is the number recovered at downstream recovery location 4 , below recovery location 4 .

```
two.grp.boot <- function(B, numyrs, R1, R2, \(\mathrm{y} 13, \mathrm{y} 14, \mathrm{y} 23, \mathrm{y} 24, \mathrm{wts}=\mathrm{NULL}, \mathrm{wt} . \mathrm{opt}=\mathrm{FALSE}\) ) \{
    \#K. Newman, 3 October 2006
    \# Modified 7 August 2007 to calculate weighted estimate
    \# Computes a bootstrap estimate of the SE of the estimated
    \# avg. ratio of upstream survival to downstream survival (mu.theta)
    \# given multiple years of paired release and recovery data.
    \# Uses a hierarchical bootstrap:
    \# (1) resample the release pairs (between year variation)
    \# (2) resample the recoveries (within year variation)
    \#Not yet computationally efficient....
    mu.theta.star <- numeric (B)
    if(wt.opt) wts <- wts/sum(wts) \#scale to sum to 1.0
    for (b in 1:B) \{
        \#resample the pairs of release groups first
        n.star <- sample(1:numyrs, numyrs,replace=TRUE)
        R1.star <- R1[n.star]
        R2.star <- R2[n.star]
        p13.star <- y13[n.star]/R1.star
        p14.star <- y14[n.star]/R1.star
        p23.star <- y23[n.star]/R2.star
        p24.star <- y24[n.star]/R2.star
        \#next "resample" within each selected release group pairs
        \# recoveries from group 1
        y13.star <- rbinom(numyrs,R1.star,p13.star)
        y14.star <- rbinom(numyrs,R1.star-y13.star,p14.star/(1-p13.star))
        \# recoveries from group 2
        y23.star <- rbinom(numyrs,R2.star, p23.star)
        y24.star <- rbinom(numyrs, R2.star-y23.star,p24.star/(1-p23.star))
```

```
        theta.hat.star <- ((y13.star+y14.star)/R1.star)/
                        ((y23.star+y24.star)/R2.star)
        #Bootstrap estimate of mu.theta
        if(wt.opt) {
            mu.theta.star[b] <- sum(wts*theta.hat.star)
        } else {
        mu.theta.star[b] <- mean(theta.hat.star)
        }
    }
    boot.se <- sd(mu.theta.star)
    return(boot.se)
}
```

D.4. DCC: Simulating effect of sample sizes on estimate of DCC effect. The R code simulates the survival and recapture processes when the DCC is either open or closed and outputs a bootstrap estimate of the ratio of expected ratios of DCC closed to DCC open.

```
#DCC sample size determination
# Based on underlying hierarchical model with multinomial dist'n
# "True" parameter values based on results from Bayesian analysis
# For specified b0 and b1 and var(theta)
# DCC closed: for n/2 times (and R_1 = R_2)
# (1) generate logit(theta_closed)
# (2) generate r_{Ry -> CI}, r_{Ry -> Oc}
# (3) generate observations
# DCC open: for n/2 times (and R_1 = R_2)
# (4) generate logit(theta_open)
# (5) generate r_{Ry -> CI}, r_{Ry -> Oc}
# (6) generate observations
# then (7) estimate ratio of means
# then bootstrap a SE for this ratio....
# ..repeat the above
#WinBUGS results with last year deleted
b0 <- 0.83; b1 <- 2.29; sig2.theta <- 7.44
mu.r.Ry.CI <- -6.98; sig2.r.Ry.CI <- 0.39
mu.r.Ry.Oc <- -4.62; sig2.r.Ry.Oc <- 0.97
R.Ct <- R.Ry <- 100000
num.reps.seq <- c(5,7,10,12); num.outer <- length(num.reps.seq)
numsims <- 100
ratio.matrix <- se.matrix <- matrix(NA,num.outer,numsims)
dimnames(ratio.matrix) <- dimnames(se.matrix) <- list(2*num.reps.seq,1:numsims)
for(rep in 1:num.outer) {
    num.reps.open <- num.reps.closed <- num.reps.seq[rep]
    print(c("Number of reps=",num.reps.open))
    for(i in 1:numsims) {
        #Simulating the gate-closed group
        theta.closed <- inv.logit(rnorm(num.reps.closed,b0+b1,sqrt(sig2.theta)))
        r.Ry.CI <- inv.logit(rnorm(num.reps.closed,mu.r.Ry.CI, sqrt(sig2.r.Ry.CI)))
        r.Ry.Oc <- inv.logit(rnorm(num.reps.closed,mu.r.Ry.Oc, sqrt(sig2.r.Ry.Oc)))
        y.Ct.CI.c <- rbinom(num.reps.closed,R.Ct,theta.closed*r.Ry.CI)
        y.Ct.Oc.c <- rbinom(num.reps.closed,R.Ct-y.Ct.CI.c,
                                theta.closed*r.Ry.Oc/(1-theta.closed*r.Ry.CI))
    y.Ry.CI.c <- rbinom(num.reps.closed,R.Ry, r.Ry.CI)
```

y.Ry.Oc.c <- rbinom(num.reps.closed,R.Ry-y.Ry.CI.c, r.Ry.Oc/(1-r.Ry.CI))
thetac.hat <- ((y.Ct.CI.c+y.Ct.Oc.c)/R.Ct)/
((y.Ry.CI.c+y.Ry.Oc.c)/R.Ry)
\#Now the gate-open group

```
theta.open <- inv.logit(rnorm(num.reps.open,b0,sqrt(sig2.theta)))
r.Ry.CI <- inv.logit(rnorm(num.reps.open,mu.r.Ry.CI, sqrt(sig2.r.Ry.CI)))
r.Ry.Oc <- inv.logit(rnorm(num.reps.open,mu.r.Ry.Oc, sqrt(sig2.r.Ry.Oc)))
y.Ct.CI.o <- rbinom(num.reps.open,R.Ct,theta.open*r.Ry.CI)
y.Ct.Oc.o <- rbinom(num.reps.open,R.Ct-y.Ct.CI.c,
    theta.open*r.Ry.Oc/(1-theta.open*r.Ry.CI))
y.Ry.CI.o <- rbinom(num.reps.open,R.Ry, r.Ry.CI)
y.Ry.Oc.o <- rbinom(num.reps.open,R.Ry-y.Ry.CI.c, r.Ry.Oc/(1-r.Ry.CI))
thetao.hat <- ((y.Ct.CI.o+y.Ct.Oc.o)/R.Ct)/
    ((y.Ry.CI.o+y.Ry.Oc.o)/R.Ry)
```

```
ratio.pt.est <- mean(thetao.hat)/mean(thetac.hat)
ratio.matrix[rep,i] <- ratio.pt.est
#--- bootstrap se for the ratio estimate
B <- 10000
ratio.boot <- numeric(B)
for(b in 1:B) {
    #resample the pairs of release groups first
    nc.star <- sample(1:num.reps.closed,num.reps.closed,replace=TRUE)
    no.star <- sample(1:num.reps.open, num.reps.open, replace=TRUE)
    p13c.star <- y.Ct.CI.c[nc.star]/R.Ct
    p14c.star <- y.Ct.Oc.c[nc.star]/R.Ct
    p23c.star <- y.Ry.CI.c[nc.star]/R.Ry
    p24c.star <- y.Ry.CI.c[nc.star]/R.Ry
    p13o.star <- y.Ct.CI.o[no.star]/R.Ct
    p14o.star <- y.Ct.Oc.o[no.star]/R.Ct
    p23o.star <- y.Ry.CI.o[no.star]/R.Ry
    p24o.star <- y.Ry.CI.o[no.star]/R.Ry
    #next "resample" within each selected release group pairs
    y13c.star <- rbinom(num.reps.closed,R.Ct,p13c.star)
    y14c.star <- rbinom(num.reps.closed,R.Ct-y13c.star,p14c.star/(1-p13c.star))
    y23c.star <- rbinom(num.reps.closed,R.Ry,p23c.star)
    y24c.star <- rbinom(num.reps.closed,R.Ry-y23c.star,p24c.star/(1-p23c.star))
    thetac.hat.star <- ((y13c.star+y14c.star)/R.Ct)/
```

```
                                    ((y23c.star+y24c.star)/R.Ry)
            y13o.star <- rbinom(num.reps.open,R.Ct,p13o.star)
            y14o.star <- rbinom(num.reps.open,R.Ct-y13o.star,p14o.star/(1-p13o.star))
            y23o.star <- rbinom(num.reps.open,R.Ry,p23o.star)
            y24o.star <- rbinom(num.reps.open,R.Ry-y23o.star,p24o.star/(1-p23o.star))
            thetao.hat.star <- ((y13o.star+y14o.star)/R.Ct)/
                        ((y23o.star+y24o.star)/R.Ry)
            ratio.boot[b] <- mean(thetao.hat.star)/mean(thetac.hat.star)
        }
        boot.se <- sd(ratio.boot)
        se.matrix[rep,i] <- boot.se
        print(c("iter=",i,"pt est of ratio=",round(ratio.pt.est,2),"se =",round(boot.se,2)))
    }
}
```

D.5. Interior: Sample size determination. The R function, sampsize.interior, outputs either the release number R or the number of release pairs n required to achieve a specified standard error targSE for $\hat{\mu}_{\theta}$

```
sampsize.interior <- function(nopt=TRUE,Ropt=FALSE, targSE,
    mu.theta,sigma2.theta,mu.S,sigma2.S,
    mu.p,sigma2.p,mu.pi,sigma2.pi) {
    # Sample size determination
    # Based on theory.exp.var() R function.
    #set nopt=TRUE and Ropt=R to achieve target SE
    #set nopt=n and Ropt=TRUE to achieve target SE
if(nopt) R <- Ropt
if(Ropt) n <- nopt
R1 <- R2 <- R
theta <- mu.theta; S<-mu.S; p <- mu.p; opi <- mu.pi #saves typing
N1 <- theta*p*(1-theta*S*p)+theta*(1-p)*opi*
    (1-theta*S*(1-p)*opi) -2*theta^2*p*S*(1-p)*opi
D1 <- R1*S*(p+(1-p)*opi) ^2
N2 <- theta^2*p*(1-S*p)+theta^2*(1-p)*opi*
    (1-S*(1-p)*opi)-2*theta^2*p*S*(1-p)*opi
D2 <- R2*S*(p+(1-p)*opi) ^2
#-------- 2nd Derivative wrt Theta --------------
d2N1 <- -2*S*p^2 - 2*S*(1-p)^2*opi^2- 4*S*p*(1-p)*opi
d2N2 <- 2*p-2*S*p^2+2*(1-p)*opi- 2*S*(1-p)^2*opi^2- 4*S*p*(1-p)*opi
d2.theta <- d2N1*D1^(-1) + d2N2*D2^(-1)
#-------- 2nd Derivative wrt S_{23} -------------
d1N1 <- d1N2 <-
    -theta^2*p^2-theta^2*(1-p)^2*opi^2- 2*theta^2*p*(1-p)*opi
d1D1 <- R1*(p+(1-p)*opi)^2
d1D2 <- R2*(p+(1-p)*opi)^2
d2.S23 <- -2*d1N1*D1^(-2)*d1D1 + 2*N1*D1^(-3)*d1D1^2 +
    -2*d1N2*D2^(-2)*d1D2 + 2*N2*D2^(-3)*d1D2^2
    #--------- 2nd Derivative wrt p --------------
```

```
    d1N1 <- theta - 2*theta^2*S*p - theta*opi -
        theta^2*S*(-2+2*p)*opi^2 - 2*theta^2*S*(1-2*p)*opi
    d1N2 <- theta^2 - 2*theta^2*S*p - theta^2*opi -
        theta^2*S*(-2+2*p)*opi^2 - 2*theta^2*S*(1-2*p)*opi
    d2N1 <- d2N2 <- -2*theta^2*S*(1+opi^2-2*opi)
    d1D1 <- R1*S*(2*p+2*opi-4*p*opi+(-2+2*p)*opi^2)
    d1D2 <- R2/R1*d1D1
    d2.p <- (d2N1 * D1^(-1) - 2*d1N1*D1^(-2)*d1D1 +
                        2*N1*D1^(-3)*d1D1^2 - N1*D1^(-2)*R1*S*(2-4*opi+2*opi^2)) +
        (d2N2 * D2^(-1) - 2*d1N2*D2^ (-2)*d1D2 +
            2*N2*D2^ (-3)*d1D2^2 - N2*D2^ (-2)*R2*S*(2-4*opi+2*opi^2))
    #-------- 2nd Derivative wrt pi --------------
    d1N1 <- theta*(1-p) - 2*theta^2*S*(1-p)^2*opi - 2*theta^2*S*p*(1-p)
    d1N2 <- theta^2*(1-p) - 2*theta^2*S*(1-p)^2*opi - 2*theta^2*S*p*(1-p)
    d2N1 <- d2N2 <- -2*theta^2*S*(1-p)^2
    d1D1 <- R1*S*2*(1-p)*(p+(1-p)*opi)
    d1D2 <- R2/R1*d1D1
    d2.pi <- (d2N1*D1^(-1) - 2*d1N1*D1^(-2)*d1D1 + 2*N1*D1^(-3)*d1D1^2 -
                        2*N1*D1~}(-2)*R1*S*(1-p)^2) +
                        (d2N2*D2^ (-1) - 2*d1N2*D2^ (-2)*d1D2 + 2*N2*D2^(-3)*d1D2^2 -
                        2*N2*D2^ (-2)*R2*S*(1-p)^2)
A <- R*(N1/D1+N2/D2)
B <- R*(d2.theta*sigma2.theta + d2.S23*sigma2.S +
                                    d2.p*sigma2.p + d2.pi*sigma2.pi)
if(nopt) {
    n <- (sigma2.theta+ (1/R)*(A+0.5*B))/targSE^2
    return(n)
    }
else {
    R<- (A+0.5*B)/(n*targSE^2-sigma2.theta)
    return(R)
}
}
```

Demonstration of usage:

```
mu.theta <- 0.8; sig.theta <- 0.1
```

```
mu.S <- 0.9; sig.S23 <- 0.15
mu.p <- 0.002; sig.p <- 0.0002
mu.pi <- 0.0079; sig.pi <- 0.00627
sampsize(nopt=TRUE,Ropt=50000, targSE=0.05,
    mu.theta=mu.theta,sigma2.theta=sig.theta^2,
    mu.S=mu.S,sigma2.S=sig.S23^2,
    mu.p=mu.p,sigma2.p=sig.p^2,
    mu.pi=mu.pi,sigma2.pi=sig.pi^2)
#[1] 5.8491
```

Thus need 5.85 or 6 years of paired releases, each of size 50,000 , to achieve a standard error of 0.05 .
D.6. DA 8: Simulating the effect of sample size on the precision of β_{1}.

```
#--- Simulating hierarchical model and indirect fitting procedure
# for Delta Action 8 experiments
# and then calculating the Std Deviation of the estimates
b0 <- -0.4; b1 <- -0.57; sig.theta <- sqrt(0.79)
mu.rc <- -7.71; sig.rc <- sqrt(0.1)
mu.ro <- -5.63; sig.ro <- sqrt(0.64)
R.set <- c(50000, 100000, 150000); n.R <- length(R.set)
n.set <- c(15,20,25) ; n.n <- length(n.set)
sd.mat.b1 <- mean.mat.b1 <- matrix(NA,n.R,n.n)
dimnames(sd.mat.b1) <- dimnames(mean.mat.b1) <-
    list(paste("R=",R.set),paste("n=",n.set))
numsims <- 1000
b1.vec <- numeric(numsims)
inv.logit <- function(x) exp(x)/(1+exp(x))
for(i in 1:n.R) {
    R <- R.set[i]
    for(j in 1:n.n) {
        n <- n.set[j]
        cat("R=",R,"n=",n,"\n")
        for(k in 1: numsims) {
            #simulate parameters
            exports <- runif(n,1500,11000)
            std.exports <- (exports-6058)/3158
            temp <- rnorm(n,b0+b1*std.exports,sig.theta)
            theta <- inv.logit(temp)
            temp <- rnorm(n,mu.rc,sig.rc)
            rc <- inv.logit(temp)
            temp <- rnorm(n,mu.ro,sig.ro)
            ro <- inv.logit(temp)
                #simulate recoveries
                y.gs.ci <- rbinom(n,R,theta*rc)
                y.gs.oc <- rbinom(n,R-y.gs.ci,(theta*ro)/(1-theta*rc))
            y.ry.ci <- rbinom(n,R,rc)
            y.ry.oc <- rbinom(n,R-y.ry.ci,ro/(1-ro))
            #estimate theta's (divisions by R cancel)
            theta.hat <- (y.gs.ci+y.gs.oc)/(y.ry.ci+y.ry.oc)
```

```
            logit.theta.hat <- logit(theta.hat)
            miss <- is.na(logit.theta.hat) | is.infinite(logit.theta.hat)
            #regress theta.hats on exports
            temp <- lm(logit.theta.hat[!miss] ~ std.exports[!miss])
            b1.vec[k] <- coef(temp)[[2]]
        }
    sd.mat.b1[i,j] <- sd(b1.vec,na.rm=TRUE)
    mean.mat.b1[i,j] <- mean(b1.vec,na.rm=TRUE)
    }
}
```

D.7. VAMP: Simulating effect of sample size on precision of parameter estimates.
\#--- Simulating hierarchical model and indirect fitting procedure
\# for VAMP experiments and then calculating the IQR of the estimates
numsims <- 10000
\# Utility function
iqr <- function(x) \{
out <- diff(quantile(x,prob=c(0.25,0.75),na.rm=TRUE))
return(out)
\}
\# Durham Ferry to Mossdale Section: function of flow
b0 <- -2.5 ; b1 <- 1.0; sig.df.md <- 1/sqrt(0.1)
\# Mossdale to Dos Reis Section: function of flow, HORB, exports*(1-HORB)
g0 <- -1.5; g1 <- 0.32; g2 <- 5; g4 <- -1.4; sig.md.dr <- 1/sqrt(0.14)
\# Dos Reis to Jersey Point Section: function of flow, HORB, exports
xi0 <- -1.5; xi1 <- 0.71; xi2 <- 5; xi3 <- -0.5; sig.dr.jp <- 1/sqrt (0.79)
\# Jersey Point to Antioch, Chipps Island, and the Ocean
mu.jp.ant <- -6.34; sig.jp.ant <- 1/sqrt(2.4)
mu.jp.ci <- -6.48; sig.jp.ci <- 1/sqrt(12.4)
mu.jp.oc <- -4.61; sig.jp.oc <- 1/sqrt(0.7)
R.set <- c (50000, 100000, 150000) ; n.R <- length(R.set)
n.set <- $\operatorname{seq}(15,25, b y=5) \quad ; n . n<-$ length (n.set)
iqr.mat.b1 <- median.mat.b1 <- matrix(NA,n.R,n.n)
iqr.mat.g1 <- median.mat.g1 <- iqr.mat.g2 <- median.mat.g2 <-
iqr.mat.g4 <- median.mat.g4 <- matrix(NA,n.R,n.n)
iqr.mat.xi1 <- median.mat.xi1 <- iqr.mat.xi2 <- median.mat.xi2 <- iqr.mat.xi3 <median.mat.xi3 <- matrix(NA, n.R,n.n)

```
dimnames(iqr.mat.b1) <- dimnames(median.mat.b1) <-
```

dimnames(iqr.mat.g1) <- dimnames(median.mat.g1) <-
dimnames(iqr.mat.g2) <- dimnames(median.mat.g2) <-
dimnames(iqr.mat.g4) <- dimnames(median.mat.g4) <-
dimnames (iqr.mat.xi1) <- dimnames(median.mat.xi1) <-
dimnames(iqr.mat.xi2) <- dimnames(median.mat.xi2) <-
dimnames(iqr.mat.xi3) <- dimnames(median.mat.xi3) <-

```
    list(paste("R=",R.set),paste("n=",n.set))
b1.vec <- g1.vec <- g2.vec <- g4.vec <- xi1.vec <-
    xi2.vec <- xi3.vec <- numeric(numsims)
for(i in 1:n.R) {
    R <- R.set[i]
    for(j in 1:n.n) {
        n <- n.set[j]
        cat("R=",R,"n=",n,"\n")
        for(k in 1: numsims) {
            #simulate parameters
            flow <- rgamma(n,1.4,0.00013)
            std.flow <- (flow-10400)/8800
            exports <- rgamma(n,3.62,0.0016)
            std.exports <- (exports-2200)/1150
            HORB <- numeric(n)
            barrier <- rbinom(sum(flow<=7000),1,0.5)
            HORB[flow <= 7000] <- barrier
            temp <- rnorm(n,b0+b1*std.flow,sig.df.md)
            df.md <- inv.logit(temp)
            temp <- rnorm(n,g0+g1*std.flow + g2*HORB +
                        g4*std.exports*(1-HORB), sig.md.dr)
            md.dr <- inv.logit(temp)
            temp <- rnorm(n,xi0+xi1*std.flow+xi2*HORB + xi3*std.exports, sig.dr.jp)
            dr.jp <- inv.logit(temp)
            temp <- rnorm(n,mu.jp.ant,sig.jp.ant)
            ra <- inv.logit(temp)
            temp <- rnorm(n,mu.jp.ci,sig.jp.ci)
            rc <- inv.logit(temp)
            temp <- rnorm(n,mu.jp.oc,sig.jp.oc)
            ro <- inv.logit(temp)
            #simulate recoveries at Antioch, Chipps Island, and Ocean
            temp <- df.md*md.dr*dr.jp; p1 <- temp*ra; p2 <- temp*rc; p3 <- temp*ro
            y.df.ant <- rbinom(n,R,p1)
            y.df.ci <- rbinom(n,R-y.df.ant,p2/(1-p1))
            y.df.oc <- rbinom(n,R-y.df.ant-y.df.ci,p3/(1-p2-p3))
```

```
temp <- temp/df.md; p1 <- temp*ra; p2 <- temp*rc; p3 <- temp*ro
y.md.ant <- rbinom(n,R,p1)
y.md.ci <- rbinom(n,R-y.md.ant,p2/(1-p1))
y.md.oc <- rbinom(n,R-y.md.ant-y.md.ci,p3/(1-p1-p2))
temp <- temp/md.dr; p1 <- temp*ra; p2 <- temp*rc; p3 <- temp*ro
y.dr.ant <- rbinom(n,R,p1)
y.dr.ci <- rbinom(n,R-y.dr.ant,p2/(1-p1))
y.dr.oc <- rbinom(n,R-y.dr.ant-y.dr.ci,p3/(1-p1-p2))
y.jp.ant <- rbinom(n,R,ra)
y.jp.ci <- rbinom(n,R,rc)
y.jp.oc <- rbinom(n,R,ro)
#estimate theta's (divisions by R cancel)
theta.df.md <- (y.df.ant+y.df.ci+y.df.oc)/(y.md.ant+y.md.ci+y.md.oc)
theta.df.md[theta.df.md >= 1 | is.infinite(theta.df.md)] <- 0.999
theta.df.md[theta.df.md <= 0] <- 0.001
miss.df <- is.na(theta.df.md)
logit.theta.df.md <- logit(theta.df.md[!miss.df])
theta.md.dr <- (y.md.ant+y.md.ci+y.md.oc)/(y.dr.ant+y.dr.ci+y.dr.oc)
theta.md.dr[theta.md.dr >= 1 | is.infinite(theta.md.dr)] <- 0.999
theta.md.dr[theta.md.dr <= 0] <- 0.001
miss.md <- is.na(theta.md.dr)
logit.theta.md.dr <- logit(theta.md.dr[!miss.md])
theta.dr.jp <- (y.dr.ant+y.dr.ci+y.dr.oc)/(y.jp.ant+y.jp.ci+y.jp.oc)
theta.dr.jp[theta.dr.jp >= 1 | is.infinite(theta.dr.jp)] <- 0.999
theta.dr.jp[theta.dr.jp <= 0] <- 0.001
miss.dr <- is.na(theta.dr.jp)
logit.theta.dr.jp <- logit(theta.dr.jp[!miss.dr])
#regress theta.hats
# survival from Durham Ferry to Mossdale
temp <- lm(logit.theta.df.md ~ std.flow[!miss.df])
b1.vec[k] <- coef(temp)[[2]]
# survival from Mossdale to Dos Reis
temp <- lm(logit.theta.md.dr ~ std.flow[!miss.md] +
    HORB[!miss.md] + (std.exports*(1-HORB))[!miss.md])
g1.vec[k] <- coef(temp)[[2]]
g2.vec[k] <- coef(temp)[[3]]
```

```
                g4.vec[k] <- coef(temp)[[4]]
                # survival from Dos Reis to Jersey Point
                temp <- lm(logit.theta.dr.jp ~ std.flow[!miss.dr] + HORB[!miss.dr] +
                    std.exports[!miss.dr])
                xi1.vec[k]<- coef(temp) [[2]]
                xi2.vec[k]<- coef(temp)[[3]]
                xi3.vec[k]<- coef(temp)[[4]]
        }
    iqr.mat.b1[i,j] <- iqr(b1.vec)
    median.mat.b1[i,j] <- median(b1.vec,na.rm=TRUE)
    iqr.mat.g1[i,j] <- iqr(g1.vec)
    median.mat.g1[i,j] <- median(g1.vec,na.rm=TRUE)
    iqr.mat.g2[i,j] <- iqr(g2.vec)
    median.mat.g2[i,j] <- median(g2.vec,na.rm=TRUE)
    iqr.mat.g4[i,j] <- iqr(g4.vec)
    median.mat.g4[i,j] <- median(g4.vec,na.rm=TRUE)
    iqr.mat.xi1[i,j] <- iqr(xi1.vec)
    median.mat.xi1[i,j]<- median(xi1.vec,na.rm=TRUE)
    iqr.mat.xi2[i,j] <- iqr(xi2.vec)
    median.mat.xi2[i,j]<- median(xi2.vec,na.rm=TRUE)
    iqr.mat.xi3[i,j] <- iqr(xi3.vec)
    median.mat.xi3[i,j]<- median(xi3.vec,na.rm=TRUE)
    }
}
```


Appendix E. WinBUGS code with R interface

E.1. DCC hierarchical model. Negative binomial distribution for Level 1, logit transformation of θ for Level 2, gamma priors for precision for Level 3.

R code frontend to WinBUGS

```
library(R2WinBUGS)
input.data <- list(
    R.Ct = c(96706, 100302, 107249, 106901, 62604, 100626,
        98866, 100919, 102480, 99827, 51211, 50659, 90720),
    R.Ryde=c(92693, 51103, 52741, 53961, 59998, 107161, 101320,
            51008, 53238, 53942, 51046, 50601, 51134),
    y.ct.ci = c(89, 73, 151, 37, 37, 38, 39, 43, 145, 5, 46, 19, 21),
    y.ct.oc = c(428, 1981, 1188, 1037, 399, 313, 1692, 1434, 936, 70, 240, 41, 84),
    y.ry.ci = c(96, 47, 104, 44, 38, 89, 75, 47, 145, 38, 58, 26, 8),
    y.ry.oc = c(368, 1607, 1076, 252, 268, 926, 1979, 1039, 1324, 285, 417, 82, 10),
    gate.pos=c(1,1,1,1,0,0,0,0,0,0,0,0,0), n=13)
n <- input.data$n
init.val.generator <- function(n) {
    eps.theta <- rnorm(n,0,0.1); eps.rc <- rnorm(n,0,0.1)
    eps.ro <- rnorm(n,0,0.1); sigma.theta <- runif(1,0,20)
    sigma.rc <- runif(1,0,20); sigma.ro <- runif(1,0,20)
    b0 <- rnorm(1,-9,1); b1 <- rnorm(1,-2,1)
    mu.rc <- rnorm(1,-1,0.5);mu.ro <- rnorm(1,-1,0.5)
    k.ci <- sample(1:100,1);k.oc <- sample(1:100,1)
    out <- list( b0 = b0,b1=b1,mu.rc=mu.rc, mu.ro= mu.ro,
        k.ci=k.ci,k.oc=k.oc)
    return(out)
}
init.values <- list(init.val.generator(n),
            init.val.generator(n), init.val.generator(n))
params <- c("b0","b1","mu.rc","mu.ro","sigma.theta","sigma.rc","sigma.ro",
    "k.ci","k.oc")
```

out.DCC.negbin <- bugs(data=input.data, inits=init.values,
parameters.to.save=params, model.file=
"C:/Documents and Settings/Ken Newman/Desktop/CalFed_Pat/Model_DCC_NegBin.txt",
n.chains=3, n.iter=50000, n.burnin=10000,n.thin=10,debug=TRUE)

WinBUGS model code

```
# Code for DCC analysis of gate position effect on Courtland
# releases'recovery rate (relative to Ryde releases) that are later recovered at
# Chipps Island, and in the Ocean fisheries.
```

model \{
\#Priors
b0 ~ dnorm(0,1.0E-6); b1 ~ dnorm(0,1.0E-6)
mu.rc ~ dnorm(0,1.0E-6); mu.ro ~ dnorm(0,1.0E-6)
sigma.theta ~ dunif $(0,20)$; sigma.rc ~ dunif $(0,20)$
sigma.ro ~ dunif $(0,20)$
k.ci ~ dunif $(0,1000)$; k.oc ~ dunif $(0,1000)$
tau.theta <- 1/(sigma.theta*sigma.theta)
tau.rc <- 1/(sigma.rc*sigma.rc)
tau.ro <- 1/(sigma.ro*sigma.ro)
for(i in $1: n$) \{
\# random effects
eps.theta[i] ~ dnorm(0.0, tau.theta)
eps.rc[i] ~ dnorm(0.0, tau.rc)
eps.ro[i] ~ dnorm(0.0, tau.ro)
\# rc = recovery probability at Chipps Island
\# ro = recovery probability in Ocean fisheries
\# theta is the ratio of Courtland survival probability to Ryde survival probability
log(theta[i]) <- b0 + b1*gate.pos[i] + eps.theta[i]
logit(rc[i]) <- mu.rc + eps.rc[i]
logit(ro[i]) <- mu.ro + eps.ro[i]
p.ct.ci[i] <- k.ci/(R.Ct[i]*theta[i]*rc[i]+k.ci)
p.ct.oc[i] <- k.oc/(R.Ct[i]*theta[i]*ro[i]+k.oc)
p.ry.ci[i] <- k.ci/(R.Ry[i]*rc[i]+k.ci)
p.ry.oc[i] <- k.oc/(R.Ry[i]*ro[i]+k.oc)
y.ct.ci[i] ~ dnegbin(p.ct.ci[i],k.ci)
y.ct.oc[i] ~ dnegbin(p.ct.oc[i],k.oc)
y.ry.ci[i] ~ dnegbin(p.ry.ci[i],k.ci)
y.ry.oc[i] ~ dnegbin(p.ry.oc[i],k.oc)
\}
\}
E.2. DCC hierarchical model with multivariate Level 2 distribution. The WinBUGS model code is shown below.

```
model {
        #Priors
            b0 ~ dnorm(0, 1.0E-6)
            b1 ~ dnorm(0, 1.0E-6)
            mu.rc ~ dnorm(0,1.0E-6)
            mu.ro ~ dnorm(0,1.0E-6)
            Omega[1:3,1:3] ~ dwish(R[,],4)
            Sigma[1:3,1:3] <- inverse(Omega[,])
        for(i in 1:n) {
            #Mean structure
            mu[i,1] <- b0 + b1*gate.pos[i]
            mu[i,2] <- mu.rc
            mu[i,3] <- mu.ro
            #Correlated random effects
        Y[i,1:3] ~ dmnorm(mu[i,],Omega[,])
        theta[i] <- exp(Y[i,1])/(1+exp(Y[i,1]))
        rc[i] <- exp(Y[i,2])/(1+exp(Y[i,2])+exp(Y[i,3]))
        ro[i] <- exp(Y[i,3])/(1+exp(Y[i,2])+exp(Y[i,3]))
        p13[i] <- theta[i] * rc[i]
        p14[i] <- theta[i] * ro[i]
        condp14[i] <- p14[i]/(1-p13[i])
        p23[i] <- rc[i]
        p24[i] <- ro[i]
        condp24[i] <- p24[i]/(1-p23[i])
        #Two trinomial distributions for the recoveries
        y.ct.ci [i] ~ dbin(p13[i], R.Ct[i])
        condR.Ct[i] <- R.Ct[i]-y.ct.ci [i]
        y.ct.oc[i] ~ dbin(condp14[i], condR.Ct[i])
        y.ry.ci[i] ~ dbin(p23[i], R.Ryde[i])
        condR.Ryde[i] <- R.Ryde[i]-y.ry.ci[i]
        y.ry.oc[i] ~ dbin(condp24[i], condR.Ryde[i])
    }
}
```

E.3. Interior hierarchical model. Multinomial distribution for Level 1; logit (or log) transformation of θ for Level 2, uniform priors on σ for Level 3 .

R code frontend to WinBUGS

\# Georgiana Slough and Ryde releases

library (R2WinBUGS)

```
input.data <- list(
    R.gs= c( 33668, 31532, 31328, 33670, 61276, 66893, 69180,
    68843, 65517, 64515, 77053, 55173, 68703, 72082,70414),
    R.ry= c( 34650, 30220, 31557, 30281, 46756, 49059, 48207, 48804, 53426,
                    49341, 52327, 49629,45981, 50397,51017),
    y.gs.ci= c( 5 ,4,2,5,2,18,12,12,3,21,18,1,5,10, 6),
    y.gs.oc= c( 80,11,101,146,7,240,173,150,43,151, 248,68,50,NA, NA),
    y.ry.ci=c( 37,15 , 13 ,21, 22,48,30,17,16,19,34,18,13,28, 23),
    y.ry.oc= c(292,29, 266,240,41, 167,182, 156,128,161,520,147,128,NA, NA),
    n=15)
init.val.generator <- function(n) {
    eps.theta <- rnorm(n,0,0.1); eps.rc <- rnorm(n,0,0.1)
    eps.ro <- rnorm(n,0,0.1); sigma.theta <- runif(1,1,2)
    sigma.rc <- runif(1,1,2); sigma.ro <- runif(1,1,2)
    mu.theta <- rnorm(1,-5,0.5);mu.rc <- rnorm(1,-5,0.5)
    mu.ro <- rnorm(1,-5,0.5)
    out <- list(eps.theta = eps.theta,eps.rc = eps.rc, eps.ro = eps.ro,
            mu.theta=mu.theta,mu.rc=mu.rc, mu.ro= mu.ro,
            sigma.theta = sigma.theta,sigma.rc = sigma.rc, sigma.ro = sigma.ro)
            # tau.theta = rgamma(1,0.1,0.1), tau.rc = rgamma(1,0.1,0.1), tau.ro = rgamma(1,0.1,0.1))
    return(out)
}
init.values <- list(init.val.generator(n),
    init.val.generator(n), init.val.generator(n))
params <- c("mu.theta","mu.rc","mu.ro","sigma.theta","sigma.rc","sigma.ro")
out.int.multinom <- bugs(data=input.data, inits=init.values,
    parameters.to.save=params, model.file=
    "C:/Documents and Settings/Ken Newman/Desktop/CalFed_Pat/Model_Interior_Multinomial.txt",
    n.chains=3, n.iter=100000, n.burnin=50000,n.thin=1,debug=TRUE)
```


WinBUGS model code

```
model {
    #Priors for the Parameters in the logistic models
            mu.theta ~ dnorm(0,1.0E-6)
            mu.rc ~ dnorm(0,1.0E-6)
            mu.ro ~ dnorm(0,1.0E-6)
            sigma.theta ~ dunif(0,20)
            sigma.rc ~ dunif(0,20)
            sigma.ro ~ dunif(0,20)
            tau.theta <- 1/(sigma.theta*sigma.theta)
            tau.rc <- 1/(sigma.rc*sigma.rc)
            tau.ro <- 1/(sigma.ro*sigma.ro)
        for(i in 1:n) {
            eps.theta[i] ~ dnorm(0.0, tau.theta)
            eps.rc[i] ~ dnorm(0.0, tau.rc)
            eps.ro[i] ~ dnorm(0.0, tau.ro)
            #logit(theta[i]) <- mu.theta + eps.theta[i]
            log(theta[i]) <- mu.theta + eps.theta[i]
            logit(rc[i]) <- mu.rc + eps.rc[i]
            logit(ro[i]) <- mu.ro + eps.ro[i]
            r.gs.ci[i] <- theta[i] * rc[i]
            r.gs.oc[i] <- theta[i] * ro[i]
            cond.gs.ro.rc[i] <- r.gs.oc[i]/(1-r.gs.ci[i])
            cond.ro.rc[i] <- ro[i]/(1-rc[i])
        }
    for(i in 1:(n-2)) {
            #Two trinomial distributions for the recoveries
            y.gs.ci[i] ~ dbin(r.gs.ci[i], R.gs[i])
            cond.R.gs[i] <- R.gs[i]-y.gs.ci[i]
            y.gs.oc[i] ~ dbin(cond.gs.ro.rc[i], cond.R.gs[i])
            y.ry.ci[i] ~ dbin(rc[i], R.ry[i])
            cond.R.ry[i] <- R.ry[i]-y.ry.ci[i]
            y.ry.oc[i] ~ dbin(cond.ro.rc[i], cond.R.ry[i])
    }
```

 \#handling the missing ocean data in the last year
 for (i in (\(\mathrm{n}-1\)): n) \{
 y.gs.ci[i] \(\quad \sim \operatorname{dbin}(r . g s . c i[i], R . g s[i])\)
 y.ry.ci[i] ~ dbin(rc[i], R.ry[i])
 \}
\}
E.4. DA 8 hierarchical model. Multinomial distribution for Level $1 ; \operatorname{logit}(o r \log)$ transformation of θ for Level 2; gamma priors for precision (or uniform for σ 's) for Level 3.

R code frontend to WinBUGS
\# Code for DA 8 analysis of exports effects on Georgiana Slough releases
\# that are later recovered Chipps Island, and in the Ocean fisheries.
library(R2WinBUGS)
exports.raw <- c(10434,5988,10403,9523,10570,3887,1868, 1984, 3237,4010, 7789,5007, 4016,6092,10837)
exports <- as.vector(scale(exports.raw))
input.data <- list(
R.gs $=c(33668,31532,31328,33670,61276,66893,69180$,

68843, 65517, 64515, 77053, 55173, 68703, 72082,70414),
R.ry $=c(34650,30220,31557,30281,46756,49059,48207,48804,53426$, 49341, 52327, 49629,45981, 50397,51017),
y.gs.ci=c($5,4,2,5,2,18,12,12,3,21,18,1,5,10,6)$,
y.gs.oc= c($80,11,101,146,7,240,173,150,43,151,248,49,50, N A, N A)$,
y.ry.ci= c($37,15,13,21,22,48,30,17,16,19,34,18,13,28,24)$,
y.ry.oc=c(292,29, 266, 240, 41, 167, 182, 156, 128, 161, 520, 147, 128, NA, NA),
exports= exports, $\mathrm{n}=15$)
n <- input.data\$n
init.val.generator <- function(n) \{
eps.theta <- rnorm(n,0,0.1); eps.rc <- rnorm(n,0,0.1)
eps.ro <- rnorm(n,0,0.1)
b0 <- $\operatorname{rnorm}(1,-9,1)$; b1 <- rnorm(1,-2,1)
mu.rc <- rnorm(1,-1,0.5);mu.ro <- rnorm(1,-1,0.5)
sigma.theta <- runif $(1,0,20)$;sigma.rc <- runif $(1,0,20)$;sigma.ro <- runif $(1,0,20)$
out <- list(eps.theta = eps.theta,eps.rc = eps.rc, eps.ro = eps.ro, b 0 = b0, b1=b1,mu.rc=mu.rc, mu.ro= mu.ro, sigma.theta $=$ sigma.theta,sigma.rc = sigma.rc, sigma.ro = sigma.ro)
\#tau.theta $=\operatorname{rgamma}(1,0.1,0.1)$, tau. $r c=\operatorname{rgamma}(1,0.1,0.1)$, tau. $\mathrm{ro}=\operatorname{rgamma}(1,0.1,0.1))$
return(out)
\}
init.values <- list(init.val.generator(n), init.val.generator(n), init.val.generator(n))

```
params <- c("b0","b1","mu.rc","mu.ro","sigma.theta","sigma.rc","sigma.ro","theta")
```

out.DA8.multinom <- bugs(data=input.data, inits=init.values, parameters.to.save=params, model.file=
"C:/Documents and Settings/Ken Newman/Desktop/CalFed_Pat/Model_DA8_Multinomial.txt", n.chains=3, n.iter=200000, n.burnin=50000,n.thin=10, debug=TRUE)

WinBUGS model code

```
model {
    #Level 3: Priors for the Parameters in the logistic models
        b0 ~ dnorm(0, 1.0E-6)
        b1 ~ dnorm(0, 1.0E-6)
        mu.rc ~ dnorm(0,1.0E-6)
        mu.ro ~ dnorm(0,1.0E-6)
        sigma.theta ~ dunif(0,20); tau.theta <- 1/(sigma.theta*sigma.theta)
        sigma.rc ~ dunif(0,20); tau.rc <- 1/(sigma.rc*sigma.rc)
        sigma.ro ~ dunif(0,20); tau.ro <- 1/(sigma.ro*sigma.ro)
    #Level 2: Generating random effects and probabilities
    for(i in 1:n) {
        eps.theta[i] ~ dnorm(0.0, tau.theta)
        eps.rc[i] ~ dnorm(0.0, tau.rc)
        eps.ro[i] ~ dnorm(0.0, tau.ro)
        log(theta[i]) <- b0 + b1*exports[i] + eps.theta[i]
        logit(rc[i]) <- mu.rc + eps.rc[i]
        logit(ro[i]) <- mu.ro + eps.ro[i]
        r.gs.ci[i] <- theta[i] * rc[i]
        r.gs.oc[i] <- theta[i] * ro[i]
        cond.gs.ro.rc[i] <- r.gs.oc[i]/(1-r.gs.ci[i])
        cond.ro.rc[i] <- ro[i]/(1-rc[i])
        }
    #Level 1: Obs'ns
    for(i in 1:(n-2)) {
    #Two trinomial distributions for the recoveries
        y.gs.ci[i] ~ dbin(r.gs.ci[i], R.gs[i])
        cond.R.gs[i] <- R.gs[i]-y.gs.ci[i]
        y.gs.oc[i] ~ dbin(cond.gs.ro.rc[i], cond.R.gs[i])
        y.ry.ci[i] ~ dbin(rc[i], R.ry[i])
        cond.R.ry[i] <- R.ry[i]-y.ry.ci[i]
        y.ry.oc[i] ~ dbin(cond.ro.rc[i], cond.R.ry[i])
    }
    #handling the missing ocean data in the last two years
    for(i in (n-1):n) {
        y.gs.ci[i] ~ dbin(r.gs.ci[i], R.gs[i])
        y.ry.ci[i] ~ dbin(rc[i], R.ry[i])
    }
}
```

E.5. VAMP hierarchical model. Multinomial distribution for Level 1; logit transformation of θ for Level 2; uniform priors on σ 's for Level 3 .

R code frontend to WinBUGS
Creating input file.

```
#Flow at Durham Ferry: 2 day avg (day of and day after release) at Vernalis from DAYFLOW
DF.flow.raw <- c(rep(NA,22),6690,5665,4125,4135,3165,3356,3430,3370,3170, 8250,8940,NA,NA)
DF.flow <- as.vector(scale(DF.flow.raw))
DF.flow[is.na(DF.flow)] <- -99
#Flow at Mossdale: 2 day avg (day of and day after release) at Vernalis from DAYFLOW
MD.flow.raw <- c(2475,7140,2480,2500,1945,1400,1400,NA,1580, 3115,18700,21250,23100,6665,6565,NA,6135,
            NA, NA, 24950, 20250, 6905,
            6995, 5969, 4170,4145,3255,3356,3345,3370,3160,
            8195, 9085, 29350, 24650)
MD.flow <- as.vector(scale(MD.flow.raw))
MD.flow[is.na(MD.flow)] <- -99
#Exports at Mossdale: 2 day avg (day of and day after release)
    MD.exp.raw <- c(5257,4096,7370,1797,10295,9400,3276,7610, 2087,1120,3707,3770, 3507,2040,1660,NA,2330,
                NA,NA, 805,1932,2683,
            2265, 2238,1475,1566, 1536, 1523, 1494, 1481, 1483,
                1961, 2303, 1538,6283)
MD.exp <- as.vector(scale(MD.exp.raw))
MD.exp[is.na(MD.exp)] <- -99
#Flow at Dos Reis: 2 Day average (day of and day after release) at Dos Reis
DR.flow.raw <- c (384,2492,391,677, -17,48,431, -49,
    466, 2891, 8267, 9316, 9545, 3296, 3113, 3113, 4709, 4709,4740,9645,
    8447, 3180,
    5918, 5062, 3630, 3610,2671,2814, 2904, 3017, 2831,
    3743, 4147, 10756, 10018)
DR.flow <- as.vector( scale(DR.flow.raw))
#Exports at time of release at Dos Reis
DR.exp.raw <- c(5794,5626,5856,1798,
            10211.5,9597, 2353,5990, 1725,1598, 3684,3958,4209, 1614,1629,1629,
    2329, 2329,2410,1722,1926,3105,
    2366, 2196,1482, 1495,1532,1507,1497,1479,1483,
    2293, 2300,1544,6046)
DR.exp <- as.vector(scale(DR.exp.raw))
#Flow at Upper Old River: median of 5 days, day of release + next 4 days
UOR.flow.raw <- c(1928,4842,2057,1522,2049,1060,934,796,1018,0,
```

9192 , $9801,10066,3499,3378,3378,284,284,268,10356,9404,3429$,
$296,560,687,654,549,570,297,299,297$,
3934, 4529, 11130, 10423)
UOR.flow <- as.vector(scale(UOR.flow.raw))

\#Temperatures at release

DR.temp <- c $(21.1,20.0,21.1,21.7,20.6,20.0,20.0,15.6, N A, N A, 13.9,17.2,18.3, N A, 17.2,17.2,15.6,15.6,17.2,15.0$,
$18.9,17.2, \operatorname{rep}(N A, 9), 17.0,15.0,17.5, N A)$
UOR.temp <- c $(21.1,21.1,22.2,21.7,19.5,21.1,22.2, r e p(N A, 28))$
JP.temp <- c(rep (NA, 3) , 20.0,17.8,17.2,20.0,17.2,17.8,17.2,15.6,NA,NA,16.7,17.8,18.9,17.2,17.8,19.4,17.2,18.9, $17.2,17.8,17.2,20.0,22.8,18.0,17.5,16.5,14.0,21.4,18.0,19.0,19.0,19.5)$
MD.temp <- c (rep $(N A, 8), 17.2,15.6,13.9,16.7,17.2,15.6,17.8, N A, 16.1, N A, N A, 13.9,18.9,16.7,13.3, N A, 19.4,21.1,13.9$, $17.5,15.2,15.7,17.0, N A, N A, 18.0,19.5)$
DF.temp <- c (rep $(N A, 22), 13.9,17.2,21.7,18.9,15.0,17.0,15.0,16.5,15.5,16.0,14.9, N A, N A)$

\#Stock origin

stock. origin <- c (rep("MRFF", 4) , rep("FRH", 11), "MRFF", "FRH", rep ("MRFF", 3) , "FRH", rep("MRFF", 14))
stock <- rep(1,length(stock.origin))
stock[stock.origin=="FRH"] <- 0
\#Year of release
VAMP. Year <- c $(85,86,87,89,89,90,90,91,94,94, \operatorname{rep}(95,3), \operatorname{rep}(96,3)$, rep $(97,3), 98,98$, $99,100,100,101,101,102,102,103,103,104,105,105,106,106)+1900$
\# Indicator variable for Head of Old River Barrier, $1=I n$ and $0=0 u t$ HORB <-c $(\operatorname{rep}(0,4), 0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0$,
$1,1,1,1,1,1,1,1,1$,
$0,0,0,0$)
\#proportion down Old River = 1-(San Joaquin/Vernalis) ;
\# used some eq'n for 1985-1989, and used some model for 1990-2006 p.OR <- c $(0.81,0.73,0.90,0.66$,
$1.04,1.19,0.84,1.26,0.67,0.11,0.55,0.58,0.59,0.53,0.52$,
$0.52,0.16,0.16,0.21,0.6,0.57,0.55,0.18,0.11,0.12,0.12,0.19,0.20,0.07,0.11,0.11$, $0.56,0.55,0.61,0.59)$
\# 1989-1999, MD, OR, DR, and JP releases; CI and Oc recoveries; 22 groups of releases \# 2000-2004, no Dos Reis releases, Antioch, Chipps Island, and Ocean recoveries, 9 groups of releases \# 2005-2006, no Ocean recoveries, 4 release groupings
$\mathrm{n} 1<-22 ; \quad \mathrm{n} 2<-9 ; \quad \mathrm{n} 3<-4$
\#Durham Ferry Release and Recovery Data
R.DF <-c(rep(NA,22),

72094, 74001, 68192, 71744, 97318, 98082, 74377, 74491, 91867,
93833, 91563, NA,NA)

DF.index. 2 <- 23:31; DF.index. 3 <- $32: 33$
y.DF <- cbind(c(rep (NA, 22), 27, 31, 76,29, 63,18, 6, 0, 2,6, 7,NA,NA), $c(r e p(N A, 22), 28,22,53,9,21,15,3,0,3,12,6, N A, N A)$, $c(r e p(N A, 22), 693,162,366,92,270,58,19,10,3, N A, N A, N A, N A)$, c(rep(NA,22),521,279, 84, 39, 207, 175,51, 24, 96, 1527, $844, N A, N A))$

```
#Mossdale Release and Recovery Data
    R.MD <- c(rep(NA,8),51084,50726,100969,102562,104125,100742,99656, NA,
            48730, NA, NA, 77430, 33800, 74646,
            46111, NA, 44923, 48888, 50411, 48924, 49827, 48317, 73258,
            NA, NA, 48828, 73764)
    MD.index.1 <- c(9:15,17,20:22); MD.index.2 <- c(23,25:31); MD.index.3<- 34:35
    y.MD <- cbind(c(rep(NA,22),30,NA,33,19, 42, 7, 4, 0, 1,NA,NA,9,0),
                        c(rep(NA,8), 0, 2,20, 13, 8, 2, 1, NA,10,NA,NA, 88, 7, 36,
                        18, NA, 31, 8, 13, 5, 5, 1, 3,NA,NA,9,2),
                        c(rep(NA , 8) , 62, 89, 461,392, 353,100, 26,NA , 329,NA,NA , 157, 13, 395,
                        381, NA,232,52,145,40, 8, 5,2,rep(NA,4)),
                        c(rep(NA,8) ,705,0, 2682,1883,1628,1084,1432,NA , 226,NA,NA ,48,
                        192, 2940, 457,NA , 48, 36, 234,129, 0, 12, 30, NA ,NA , 18, 48))
#Dos Reis Release and Recovery Data
    R.DR = c(149968,95595,92612,76073,
        52962,105742,103533,102999,NA,NA, 50848,52097, 51665,
        NA,98638, 107961,49784,102431,46682,77180,47874, 49636,
        NA,NA,NA,NA,NA,NA,NA,NA,NA,
        69125, 68646,25463,NA)
    DR.index.1<- c(1:8,11:13,15:22); DR.index.2 <- NULL;DR.index.3 <- 32:34
    y.DR <- cbind(c(rep(NA,22),rep(NA,9),7,7,3,NA),
    c(94, 36, 79, 12,
    11, 4, 4,17, NA,NA, 8, 21, 9, NA,3,10, 10, 16, 5, 93,17, 39,rep(NA,9),
                3,6,7,NA),
                        c(NA, 2068, 1219, 78,
                        34,23,34,86,NA ,NA , 234,393,245,NA,67,58, 259,348,90,145,56,376,rep(NA ,9),
                rep(NA,4)),
                        c(4450, 2960,5469,428, 2714, 1766, 150, 7130,NA ,NA , 234, 393,245,NA , 0, 0, 125,394,
                        78,0,0,185,rep(NA,9),7,6,0,NA))
#---------------------------------
    R.OR <- c(150048, 100181,92612, 74341,51972,106267,103595, rep(NA,28))
    OR.index.1 <- 1:7
    y.OR <- cbind(rep(NA,35),
                        c(99, 21, 17, 4, 5, 2, 1,rep(NA,28)),
                            c(NA,1139,500,16,38,14,11,rep(NA, 28)),
                        c(37299,62564,24019,1439, 2916,2613,1346,rep(NA,28)))
```

```
#--------------
R.JP<- c(rep(NA,3),56233,
        56816, 52962, 50143, 52139,50689, 53810,50779, NA, NA, 50041, 50820,
    51737, 49815, 51540, 47208, 50050, 31091, 48907,
    51098, 49871, 49161, 51107, 48496, 46469, 24441, 25732, 22708,
    22767, 23231, 26113, 24757)
    JP.index.1<- c(4:11,14:22); JP.index.2 <- 23:31; JP.index.3 <- 32:35
    y.JP <- cbind(c(rep(NA,22),97,152, 329, 96,190, 75, 71, 35, 22,
        31,27,26,14),
            c(NA,NA,NA,56,53, 32, 56 ,94, 10, 16, 26,NA,NA, 25, 24, 39, 55, 27, 18,187,40, 59,
                        65, 78, 111, 44, 83, 46, 57, 39, 25,
                        32,38,58,44),
            c(NA,NA,NA, 283,180, 224,204,358,420,756, 280,NA ,NA, 332,311, 186,697,355,192, 201, 47,715,
                        1353,589,1031,581,951,597,263,415,117,
                        rep(NA,4)),
                c(NA,NA,NA, 824,144,156,62,331,14,0,0,NA,NA , 0, 12,0,12,24,14,0,0,185,0,6,0,0,48,0,0,0,
                    12,0,0,0,0))
    #---Creating an input.data object for input to WinBUGS
input.data <- list(
    n1=n1,n2=n2,n3=n3,
    R.DF = R.DF, n.DF.2=length(DF.index.2),n.DF.3=length(DF.index.3),
    DF.index.2=DF.index.2,DF.index. 3=DF.index.3,
    y.DF.Ant=y.DF[,1],y.DF.CI=y.DF[,2],y.DF.Oc=y.DF[,3],
    R.MD = R.MD, n.MD.1 = length(MD.index.1),n.MD.2=length(MD.index.2),n.MD.3=length(MD.index.3),
        MD.index.1=MD.index.1,MD.index.2=MD.index.2,MD.index.3=MD.index.3,
        y.MD.Ant = y.MD[,1], y.MD.CI = y.MD[,2], y.MD.Oc = y.MD[,3],
    R.DR = R.DR, n.DR.1 = length(DR.index.1), n.DR.3 = length(DR.index.3),
        DR.index.1=DR.index.1,DR.index. 3=DR.index.3,
        y.DR.Ant=y.DR[,1],y.DR.CI=y.DR[,2],y.DR.Oc=y.DR[,3],
    R.OR = R.OR, n.OR.1 = length(OR.index.1), OR.index.1=OR.index.1,
        y.OR.CI=y.OR[,2],y.OR.Oc=y.OR[,3],
    R.JP = R.JP, n.JP.1 = length(JP.index.1),n.JP.2=length(JP.index.2),n.JP.3=length(JP.index.3),
        JP.index.1=JP.index.1,JP.index.2=JP.index.2,JP.index.3=JP.index.3,
        y.JP.Ant=y.JP[,1],y.JP.CI=y.JP[,2],y.JP.Oc=y.JP[,3],
    MD.exp=MD.exp,
    DR.flow=DR.flow,
    DR.exp=DR.exp,
    # stock=stock
```

\#DF.flow=DF.flow
\#MD.flow=MD.flow,
UOR.flow=UOR.flow
)
if (branch) \{
input.data[[length(input.data) +1$]$] <- p. $O R$
names (input.data) [length(input.data)] <- "p.OR"
input.data\$p.OR[p.OR>1] <- 1
input.data\$p.OR[HORB==1] <- 0
\} else \{
input.data[[length(input.data) +1]] <- HORB
names(input.data) [length(input.data)] <- "HORB"
\}

Sourcing the input file and calling WinBUGS.

```
library(R2WinBUGS)
#source the input data
branch <- TRUE
source("C:/Documents and Settings/Ken Newman/Desktop/CalFed_Pat/VAMP_inputdata.r")
    #---Creating a list of 3 lists of initial values for input to WinBUGS
n <- input.data$n1+input.data$n2+input.data$n3
init.val.generator <- function(n) {
    eps.df.md <- rnorm(n,0,1); eps.dr.jp <- rnorm(n,0,1); eps.or.jp <- rnorm(n,0,1)
    eps.jp.ant<- rnorm(n,0,0.1);eps.jp.ci<- rnorm(n,0,0.1);eps.jp.oc<- rnorm(n,0,0.1)
    b0 <- rnorm(1,-1,1)
    xi0<- rnorm(1,1,1); xi1 <- rnorm(1,0,0.1); xi2<- rnorm(1,0,0.1) #xi3=rnorm(1,0,0.1)
    z0 <- rnorm(1,1,1); z1 <- rnorm(1,1,1); z2 <- rnorm(1,1,1)
    mu.jp.ant <- rnorm(1,-4,1); mu.jp.ci <- rnorm(1,-4,1); mu.jp.oc <- rnorm(1,-4,1)
    sigma.df.md <- runif(1); sigma.dr.jp <- runif(1); sigma.or.jp <- runif(1)
    sigma.jp.ant <-runif(1); sigma.jp.ci <- runif(1); sigma.jp.oc <- runif(1)
    out <- list(eps.df.md = eps.df.md,eps.dr.jp = eps.dr.jp, eps.or.jp = eps.or.jp,
                eps.jp.ant=eps.jp.ant,eps.jp.ci = eps.jp.ci, eps.jp.oc = eps.jp.oc,
                b0 = b0,xi0=xi0,xi1=xi1,xi2=xi2,
                z0 = z0,z1=z1,z2=z2,
                mu.jp.ant=mu.jp.ant, mu.jp.ci=mu.jp.ci, mu.jp.oc=mu.jp.oc,
                sigma.df.md=sigma.df.md, sigma.dr.jp=sigma.dr.jp, sigma.or.jp=sigma.or.jp,
                sigma.jp.ant=sigma.jp.ant,sigma.jp.ci=sigma.jp.ci,sigma.jp.oc=sigma.jp.oc)
    return(out)
}
init.values <- list(init.val.generator(n),init.val.generator(n),
    init.val.generator(n))
#----- Parameters for which MCMC samples are wanted
params <- c("b0","xi0", "xi1", "xi2", #"xi3",
        "z0", "z1", "z2",
        "mu.jp.ant","mu.jp.ci","mu.jp.oc",
        "sigma.df.md", "sigma.dr.jp","sigma.or.jp","sigma.jp.ant",
        "sigma.jp.ci", "sigma.jp.oc",
        "fit.MD.CI.1","fit.MD.Oc.1","fit.MD.CI.2","fit.MD.Oc.2",
        "fit.MD.CI.3","fit.MD.Oc.3")
#call to WinBUGS vi bugs() function
temp <- bugs(data=input.data, inits=init.values,
    parameters.to.save=params, model.file=
    "C:/Documents and Settings/Ken Newman/Desktop/CalFed_Pat/Model_VAMP_Branch.txt",
    n.chains=3, n.iter=250000, n.burnin=50000,n.thin=10,debug=TRUE)
```


WinBUGS model code

```
# Example Code for branching model used for VAMP data
\begin{tabular}{ll} 
\# Model: & \(\mathrm{DF}->\mathrm{MD}=\) constant + noise \\
\(\#\) & \(\mathrm{MD}->\mathrm{DR}=\) constant \\
\(\#\) & \(\mathrm{DR}->\mathrm{JP}=\mathrm{f}(\) Flow, Exports \()+\) noise \\
\(\#\) & \(\mathrm{OR}->\mathrm{JP}=\mathrm{f}(\) Flow, Exports \()+\) noise
\end{tabular}
```

\# Admittedly clunky use of conditional binomials instead of multinomial.
$\# * ~$
\#Branching Model
model \{
\#Priors for the Parameters in the logistic models
\# DF -> MD
b0 ~ dnorm(0, 1.0E-6)
\# MD -> DR
\#g0 $\sim \operatorname{dnorm}(0,1.0 \mathrm{E}-6)$
\# DR -> JP
xi0 ~ dnorm (0, 1.0E-6); xi1 $\sim \operatorname{dnorm}(0,1.0 \mathrm{E}-6)$
xi2 ~ dnorm (0, 1.0E-6);
\# OR -> JP
z0 ~ dnorm (0, 1.0E-6); z1 $\sim \operatorname{dnorm}(0,1.0 \mathrm{E}-6)$
z2 ~ dnorm (0, 1.0E-6)
\# JP -> Ant, CI, Oc
\# chi ~ dnorm(0, 1.0E-6)
mu.jp.ant ~ dnorm(0,1.0E-6); mu.jp.ci ~ dnorm(0,1.0E-6);
mu.jp.oc
~ dnorm(0,1.0E-6)

nd	; tau.df.md	<-
gma.md.dr	; tau.md.dr	<- 1/(sigma.md.dr*sigma.
igma.dr.jp	nif (0,20) ; tau.dr.jp	<- 1/(sigma.dr.jp*sigma.dr.jp
sigma.or.jp	nif (0,20) ; tau.or.jp	<- 1/(sigma.or.jp*sigma.or.jp
sigma.jp.ant	nif (0,20) ; tau.jp.ant	<- 1/(sigma.jp.ant*sigma.jp.
sigma.jp.ci	dunif $(0,20)$; tau.jp.ci	<- 1/(sigma.jp.ci*sigma.jp.ci)
sigma.jp.oc	\sim dunif $(0,20)$; tau.jp.oc	<- 1/(sigma.jp.oc*sigma.jp.oc)

\# Random effects generation; some unnecessary: early Antioch and recent ocean
for (i in 1: (n1+n2+n3)) \{
eps.df.md[i] ~ dnorm(0.0, tau.df.md)

```
    eps.dr.jp[i] ~ dnorm(0.0, tau.dr.jp)
    eps.jp.ant[i] ~ dnorm(0.0,tau.jp.ant)
    eps.jp.ci[i] ~ dnorm(0.0, tau.jp.ci)
    eps.jp.oc[i] ~ dnorm(0.0, tau.jp.oc)
    eps.or.jp[i] ~ dnorm(0.0, tau.or.jp)
#Mossdale to Dos Reis survival
# logit(S.md.dr[i]) <- g0 + eps.md.dr[i]
S.md.dr[i] <- 1.0
#Old River to Jersey Point survival
#logit(S.or.jp[i]) <- z0+ eps.or.jp[i]
#logit(S.or.jp[i]) <- z0+ z1*UOR.flow[i] + eps.or.jp[i]
#logit(S.or.jp[i]) <- z0+ z2*MD.exp[i]+ eps.or.jp[i]
logit(S.or.jp[i]) <- z0+ z1*UOR.flow[i] + z2*MD.exp[i]+ eps.or.jp[i]
#Dos Reis to Jersey Point survival
#logit(S.dr.jp[i]) <- xiO + eps.dr.jp[i]
#logit(S.dr.jp[i]) <- xi0 + xi1*DR.flow[i] + eps.dr.jp[i]
logit(S.dr.jp[i]) <- xiO + xi1*DR.flow[i] + xi2*DR.exp[i] + eps.dr.jp[i]
#Mossdale to Jersey Point survival: a combination of probabilities
S.md.jp[i] <- p.OR[i]*S.or.jp[i] + (1-p.OR[i])*S.md.dr[i]*S.dr.jp[i]
logit(r.jp.ant[i]) <- mu.jp.ant + eps.jp.ant[i]
logit(r.jp.ci[i]) <- mu.jp.ci + eps.jp.ci[i]
logit(r.jp.oc[i]) <- mu.jp.oc + eps.jp.oc[i]
#logit(r.jp.ant[i]) <- mu.jp.ant + chi*stock[i] + eps.jp.ant[i]
#logit(r.jp.ci[i]) <- mu.jp.ci + chi*stock[i] + eps.jp.ci[i]
#logit(r.jp.oc[i]) <- mu.jp.oc + chi*stock[i] + eps.jp.oc[i]
}
# Modeling the Recoveries
# 1985-1999, MD, DR, and JP releases; CI and Oc recoveries; 18 groups -----------------
# Mossdale recoveries for 1989-1999 (11 releases)
for(j in 1:n.MD.1) {
    p1.MD1[j] <- S.md.jp[MD.index.1[j]]*r.jp.ci[MD.index.1[j]]
    p2.MD1[j] <- p1.MD1[j]*r.jp.oc[MD.index.1[j]]/r.jp.ci[MD.index.1[j]]
    cond.p2.MD1[j] <- p2.MD1[j]/(1-p1.MD1[j])
```

```
    y.MD.CI[MD.index.1[j]] ~ dbin(p1.MD1[j] , R.MD[MD.index.1[j]])
    temp1[j] <- R.MD[MD.index.1[j]] - y.MD.CI[MD.index.1[j]]
    y.MD.Oc[MD.index.1[j]] ~ dbin(cond.p2.MD1[j], temp1[j])
    fit.MD.CI.1[j] <- R.MD[MD.index.1[j]]*p1.MD1[j]
    fit.MD.Oc.1[j] <- R.MD[MD.index.1[j]]*p2.MD1[j]
    }
#Dos Reis recoveries for 1985-1999 (15 releases)
#1985 has only CI recs
p1.DR1[1] <- S.dr.jp[DR.index.1[1]]*r.jp.ci[DR.index.1[1]]
y.DR.CI[DR.index.1[1]] ~ dbin(p1.DR1[1],R.DR[DR.index.1[1]])
for(j in 2:n.DR.1) {
    p1.DR1[j] <- S.dr.jp[DR.index.1[j]]*r.jp.ci[DR.index.1[j]]
    p2.DR1[j] <- S.dr.jp[DR.index.1[j]]*r.jp.oc[DR.index.1[j]]
    cond.p2.DR1[j] <- p2.DR1[j]/(1-p1.DR1[j])
    y.DR.CI[DR.index.1[j]] ~ dbin(p1.DR1[j],R.DR[DR.index.1[j]])
    temp2[j] <- R.DR[DR.index.1[j]]-y.DR.CI[DR.index.1[j]]
    y.DR.Oc[DR.index.1[j]] ~ dbin(cond.p2.DR1[j], temp2[j])
    }
#Old River recoveries for 1985-1999 (7 releases)
#1985 has only CI recs
p1.OR1[1] <- S.or.jp[OR.index.1[1]]*r.jp.ci[OR.index.1[1]]
y.OR.CI[OR.index.1[1]] ~ dbin(p1.OR1[1], R.OR[OR.index.1[1]])
for(j in 2:n.OR.1) {
    p1.OR1[j] <- S.or.jp[OR.index.1[j]]*r.jp.ci[OR.index.1[j]]
    p2.OR1[j] <- S.or.jp[OR.index.1[j]]*r.jp.oc[OR.index.1[j]]
    cond.p2.OR1[j] <- p2.OR1[j]/(1-p1.OR1[j])
    y.OR.CI[OR.index.1[j]] ~ dbin(p1.OR1[j], R.OR[OR.index.1[j]])
    temp.2a[j] <- R.OR[OR.index.1[j]]-y.OR.CI[OR.index.1[j]]
    y.OR.Oc[OR.index.1[j]] ~ dbin(cond.p2.OR1[j],temp.2a[j])
}
#Jersey Point recoveries for 1985-1999 (16 releases)
for(j in 1:n.JP.1) {
    cond.p2.JP1[j] <- r.jp.oc[JP.index.1[j]]/(1-r.jp.ci[JP.index.1[j]])
    y.JP.CI[JP.index.1[j]] ~ dbin(r.jp.ci[JP.index.1[j]],R.JP[JP.index.1[j]])
    temp3[j] <- R.JP[JP.index.1[j]]-y.JP.CI[JP.index.1[j]]
    y.JP.Oc[JP.index.1[j]] ~ dbin(cond.p2.JP1[j], temp3[j])
}
#------
# ----- 2000-2004, DF, MD, and JP releases; Antioch, CI and Oc recoveries; n2=9 groups ----
# ----- loop from 19 to 27
```

```
#Durham Ferry recoveries for 2000-2004 (9 releases)
for(j in 1:n.DF.2) {
    logit(S.df.md.DF2[j]) <- b0 + eps.df.md[DF.index.2[j]]
    p1.DF2[j] <- S.df.md.DF2[j]*S.md.jp[DF.index.2[j]]*r.jp.ant[DF.index.2[j]]
    p2.DF2[j] <- p1.DF2[j]*r.jp.ci[DF.index.2[j]]/r.jp.ant[DF.index.2[j]]
    p3.DF2[j] <- p1.DF2[j]*r.jp.oc[DF.index.2[j]]/r.jp.ant[DF.index.2[j]]
    cond.p2.DF2[j] <- p2.DF2[j]/(1-p1.DF2[j])
    cond.p3.DF2[j] <- p3.DF2[j]/(1-p1.DF2[j]-p2.DF2[j])
    y.DF.Ant[DF.index.2[j]] ~ dbin(p1.DF2[j], R.DF[DF.index.2[j]])
    temp4[j] <- R.DF[DF.index.2[j]] - y.DF.Ant[DF.index.2[j]]
    y.DF.CI[DF.index.2[j]] ~ dbin(cond.p2.DF2[j], temp4[j])
    temp5[j] <- temp4[j] - y.DF.CI[DF.index.2[j]]
    y.DF.Oc[DF.index.2[j]] ~ dbin(cond.p3.DF2[j],temp5[j])
}
#Mossdale recoveries for 2000-2004 (8 releases)
for(j in 1:n.MD.2) {
    p1.MD2[j] <- S.md.jp[MD.index.2[j]]* r.jp.ci[MD.index.2[j]]
    p2.MD2[j] <- p1.MD2[j]*r.jp.ci[MD.index.2[j]]/r.jp.ant[MD.index.2[j]]
    p3.MD2[j] <- p1.MD2[j]*r.jp.oc[MD.index.2[j]]/r.jp.ant[MD.index.2[j]]
    cond.p2.MD2[j] <- p2.MD2[j]/(1-p1.MD2[j])
    cond.p3.MD2[j] <- p3.MD2[j]/(1-p1.MD2[j]-p2.MD2[j])
    y.MD.Ant[MD.index.2[j]] ~ dbin(p1.MD2[j], R.MD[MD.index.2[j]])
    temp6[j] <- R.MD[MD.index.2[j]] - y.MD.Ant[MD.index.2[j]]
    y.MD.CI[MD.index.2[j]] ~ dbin(cond.p2.MD2[j], temp6[j])
    temp7[j] <- temp6[j] - y.MD.CI[MD.index.2[j]]
    y.MD.Oc[MD.index.2[j]] ~ dbin(cond.p3.MD2[j],temp7[j])
    fit.MD.CI.2[j] <- R.MD[MD.index.2[j]]*p1.MD2[j]
    fit.MD.Oc.2[j] <- R.MD[MD.index.2[j]]*p2.MD2[j]
}
```

\#Jersey Point recoveries for 2000-2004 (9 releases)
for (j in 1:n.JP.2) \{
cond.p2.JP2[j] <- r.jp.ci[JP.index.2[j]]/(1-r.jp.ant[JP.index.2[j]])
cond.p3.JP2[j] <- r.jp.oc[JP.index.2[j]]/(1-r.jp.ant[JP.index.2[j]]-r.jp.ci[JP.index.2[j]])
y.JP.Ant[JP.index.2[j]] ~ dbin(r.jp.ant[JP.index.2[j]], R.JP[JP.index.2[j]])
temp8[j]
y.JP.CI[JP.index.2[j]] ~ dbin(cond.p2.JP2[j], temp8[j])
<- R.JP[JP.index.2[j]] - y.JP.Ant[JP.index.2[j]]
temp9[j]
<- temp8 [j]- y.JP.CI[JP.index.2[j]]

```
    y.JP.Oc[JP.index.2[j]] ~ dbin(cond.p3.JP2[j], temp9[j])
}
# -----
# ----- 2005-2006, DF, MD, DR and JP releases; Antioch, CI recoveries; n3=4 groups
#Durham Ferry recoveries (2 releases)
for(j in 1:n.DF.3) {
    logit(S.df.md.DF3[j]) <- b0 + eps.df.md[DF.index.3[j]]
    p1.DF3[j] <- S.df.md.DF3[j]* S.md.jp[DF.index.3[j]]*r.jp.ant[DF.index.3[j]]
    p2.DF3[j] <- p1.DF3[j]*r.jp.ci[DF.index.3[j]]/r.jp.ant[DF.index.3[j]]
    cond.p2.DF3[j] <- p2.DF3[j]/(1-p1.DF3[j])
    y.DF.Ant[DF.index.3[j]] ~ dbin(p1.DF3[j],R.DF[DF.index.3[j]])
    temp10[j] <- R.DF[DF.index.3[j]] - y.DF.Ant[DF.index.3[j]]
    y.DF.CI[DF.index.3[j]] ~ dbin(cond.p2.DF3[j], temp10[j])
}
#Mossdale recoveries (2 releases)
for(j in 1:n.MD.3) {
    p1.MD3[j] <- S.md.jp[MD.index.3[j]]*r.jp.ant[MD.index.3[j]]
    p2.MD3[j] <- p1.MD3[j]*r.jp.ci[MD.index.3[j]]/r.jp.ant[MD.index.3[j]]
    cond.p2.MD3[j] <- p2.MD3[j]/(1-p1.MD3[j] )
    y.MD.Ant[MD.index.3[j]] ~ dbin(p1.MD3[j], R.MD[MD.index.3[j]])
    temp11[j] <- R.MD[MD.index.3[j]] - y.MD.Ant[MD.index.3[j]]
    y.MD.CI[MD.index.3[j]] ~ dbin(cond.p2.MD3[j] , temp11[j])
    fit.MD.CI.3[j] <- R.MD[MD.index.3[j]]*p1.MD3[j]
    fit.MD.Oc.3[j] <- R.MD[MD.index.3[j]]*p2.MD3[j]
}
#Dos Reis recoveries (3 releases)
for(j in 1:n.DR.3) {
    p1.DR3[j] <- S.dr.jp[DR.index.3[j]]*r.jp.ant[DR.index.3[j]]
    cond.p2.DR3[j] <- S.dr.jp[DR.index.3[j]]*r.jp.ci[DR.index.3[j]]/(1-p1.DR3[j])
    y.DR.Ant[DR.index.3[j]] ~ dbin(p1.DR3[j] , R.DR[DR.index.3[j]])
    temp12[j] <- R.DR[DR.index.3[j]] - y.DR.Ant[DR.index.3[j]]
    y.DR.CI[DR.index.3[j]] ~ dbin(cond.p2.DR3[j], temp12[j])
}
#Jersey Point recoveries (4 releases)
for(j in 1:n.JP.3) {
    cond.p2.JP3[j] <- r.jp.ci[JP.index.3[j]]/(1-r.jp.ant[JP.index.3[j]])
```

```
        y.JP.Ant[JP.index.3[j]] ~ dbin(r.jp.ant[JP.index.3[j]] ,R.JP[JP.index.3[j]])
        temp13[j] <- R.JP[JP.index.3[j]] - y.JP.Ant[JP.index.3[j]]
        y.JP.CI[JP.index.3[j]] ~ dbin(cond.p2.JP3[j], temp13[j])
    }
}
```


[^0]: ${ }^{1}$ This material is based upon work supported by a grant from the CalFed Science Program, Project number SCI-06-G06-299. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the California Bay Delta Authority or the CALFED Science Program. Electronic copies of the R and WinBUGS software can be obtained from the author at ken_newman@fws.gov.

[^1]: ${ }^{2}$ When the recovery rates in the ratio were based on recoveries at a single location, the ratio was denoted DRR, Differential Recovery Rate. When recovery rates in the ratio were based on recoveries at Antioch and Chipps Island, the ratio was denoted CDRR, Combined Differential Recovery Rate.

[^2]: ${ }^{3}$ It should also be noted that the expanded ocean recoveries, $\hat{y}_{i \rightarrow O c}$, will be modeled at this level rather than the observed ocean recoveries. Thus in fairness to previous USFWS analyses, this approach is to some degree an indirect approach and is not fully integrated.

[^3]: ${ }^{4}$ The ocean recovery probability $r_{C I \rightarrow O c}$ is a rather coarse summarization. It is a complicated function of survival, movement, maturation, and fishery harvest probabilities.

[^4]: ${ }^{5}$ Suppose $y \mid \theta$ is $\operatorname{Binomial}(R, \theta)$ and $\mathrm{E}[\theta]=\mu_{\theta}$ and $\operatorname{Var}[\theta]=\sigma_{\theta}^{2}$. The conditional variance of y is $R \theta(1-\theta)$ while the unconditional variance is $R \theta(1-\theta)+\sigma_{\theta}^{2} R(R-1)$. Thus $\sigma_{\theta}^{2} R(R-1)$ is the amount of overdispersion.

[^5]: ${ }^{6}$ As an aside, the HORB was in place during this period, 2000-2004, and if one assumes 100% survival between Mossdale and Dos Reis when the barrier is in place, then $S_{D R \rightarrow J P}$ can be directly estimated since $S_{M D \rightarrow J P}$ can be estimated and $S_{M D \rightarrow J P}=S_{M D \rightarrow D R} S_{D R \rightarrow J P}=1^{*} S_{D R \rightarrow J P}$.

[^6]: ${ }^{7}$ The mean is 1.32 , reflecting strong right skewing in the posterior distribution. Note that an approximate estimate of $\mu_{\theta(\text { Open })} / \mu_{\theta(\text { Closed })}$ is $\left.\left.\operatorname{logit}\left(\beta_{0}\right)^{(}-1\right) / \operatorname{logit}\left(\beta_{0}+\beta_{1}\right)^{(}-1\right)$, or $\left(1+\exp \left(\beta_{0}+\beta_{1}\right)\right) /\left(\exp \left(\beta_{1}\right)+\exp \left(\beta_{0}+\right.\right.$ $\left.\beta_{1}\right)$). Substituting the posterior means for β_{0} and β_{1} yields 0.82 .

[^7]: ${ }^{8}$ Although the better fit of the negative binomial in this case could be due to the estimation error in the ocean recoveries more so than dependence between fish.

[^8]: Continued on next page

[^9]: ${ }^{9}$ Note: simply substituting $\left(\mu_{\theta}, \mu_{S_{23}}, \mu_{p}, \mu_{\pi}\right)$ for $\left(\theta_{t}, S_{23, t}, p_{t}, \pi_{t}\right)$ into $V\left(\hat{\theta}_{t}\right)$ is relatively inaccurate. Simulations using beta distributions for the survival and capture probabilities indicated that such an approximation was biased low.

