
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 11. issue 2. March 2011 ISSN 1470-160X

w®

ECOLOGICAL
INDICATORS

in

INTEGRATING, MONITORING, ASSESSMENT

AND MANAGEMENT

* yv

mmmm
T

m*

m
SB

Editor-in-chief
Felix Muller

JROEH
Text Box
04-S03-JA_3-2011_Ecological_Indicators-T4.4

http://www.elsevier.com/copyright


Author's personal copy

Ecological Indicators 11 (2011) 263–273

Contents lists available at ScienceDirect

Ecological Indicators

journa l homepage: www.e lsev ier .com/ locate /eco l ind

Mapping changes to vegetation pattern in a restoring wetland: Finding pattern
metrics that are consistent across spatial scale and time

Maggi Kellya,b,∗, Karin A. Tuxenc, Diana Stralbergd

a Department of Environmental Sciences, Policy and Management, University of California, Berkeley, 137 Mulford Hall, #3114, Berkeley, CA 94720, United States
b Geospatial Innovation Facility, UC Berkeley, CA 94720, United States
c P.O. Box 7092, Redwood City, CA 94063, United States
d PRBO Conservation Science, 3820 Cypress Dr. #11, Petaluma, CA 94954, United States

a r t i c l e i n f o

Article history:
Received 5 February 2010
Received in revised form 3 May 2010
Accepted 16 May 2010

Keywords:
Landscape metrics
Tidal marsh
Wetland restoration monitoring
Remote sensing
San Francisco Bay
Sarcocornia pacifica

a b s t r a c t

Tidal salt marshes in the San Francisco Estuary region display heterogeneous vegetation patterns that
influence wetland function and provide adequate habitat for native or endangered wildlife. In addition
to analyzing the extent of vegetation, monitoring the dynamics of vegetation pattern within restoring
wetlands can offer valuable information about the restoration process. Pattern metrics, derived from clas-
sified remotely sensed imagery, have been used to measure composition and configuration of patches
and landscapes, but they can be unpredictable across scales, and inconsistent across time. We sought
to identify pattern metrics that are consistent across spatial scale and time – and thus robust measures
of vegetation and habitat configuration – for a restored tidal marsh in the San Francisco Bay, CA, USA.
We used high-resolution (20 cm) remotely sensed color infrared imagery to map vegetation pattern over
2 years, and performed a multi-scale analysis of derived vegetation pattern metrics. We looked at the
influence on metrics of changes in grain size through resampling and changes in minimum mapping
unit (MMU) through smoothing. We examined composition, complexity, connectivity and heterogeneity
metrics, focusing on perennial pickleweed (Sarcocornia pacifica), a dominant marsh plant. At our site,
pickleweed patches grew larger, more irregularly shaped, and closely spaced over time, while the over-
all landscape became more diverse. Of the two scale factors examined, grain size was more consistent
than MMU in terms of identifying relative change in composition and configuration of wetland marsh
vegetation over time. Most metrics exhibited unstable behavior with larger MMUs. With small MMUs,
most metrics were consistent across grain sizes, from fine (e.g. 0.16 m2) to relatively large (e.g. 16 m2)
pixel sizes. Scale relationships were more variable at the landcover class level than at the landscape level
(across all classes). This information may be useful to applied restoration practitioners, and adds to our
general understanding of vegetation change in a restoring marsh.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Tidal wetlands, like many other wetland types, have faced a
long history of modification and loss globally. Estimates from North
American suggest that 80% of tidal marshes have been lost or
altered hydrologically since European settlement (Pennings and
Bertness, 2001). In the San Francisco Bay area, our focus in this
paper, up to 95% of tidal wetland have been lost in the last
two centuries (Fretwell et al., 1996; Mitsch and Gosselink, 2000)
leaving a highly fragmented, extremely modified wetland land-
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scape (Euliss et al., 2008). Yet tidal marshes are some of the most
productive ecosystems on the earth and provide a range of valu-
able ecosystem services including habitat provision for a range
of fish, bird and mammals (Mitch and Gosselink, 2000). In the
United States at least, recognition of these ecosystem services
across public, scientific and governmental spheres has slowed the
rate of wetland loss, and there is an increased commitment by
government and land agencies to restore tidal wetlands where
possible, promoting the many physical and biological processes
that interact across multiple scales in wetlands (Baird, 2005). This
change in the perception of their value also means that wet-
lands, and wetland restoration projects, often face expectations
that a broad suite of ecosystem services be delivered (Euliss et al.,
2008). These can include increased primary productivity and car-
bon sequestration; increased bank or levee stabilization; increased
vegetation diversity; and provision of adequate habitat for native
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or endangered wildlife (Philip Williams & Associates Ltd. and Faber,
2004).

These increased expectations necessitate goal-driven monitor-
ing of change (Zedler, 2000). The value of remote sensing for
wetland monitoring has long been recognized (Hinkle and Mitsch,
2005; Phinn et al., 1996), and recent advancements have made
the methods and tools more available to researcher to map and
measure changes in wetland extent, or species extent, or over-
all wetland condition (Cowardin and Myers, 1974; Phinn et al.,
1996). Early work with aerial photography and satellite imagery
used visual interpretation for classification and delineation of wet-
lands (Ozesmi and Bauer, 2002), but increasingly, more automated
computer classification methods that use multivariate clustering
of spectral and spatial data are being employed (Alexandridis et al.,
2009; Andresen et al., 2002; Ausseil et al., 2007; Frohn et al., 2009;
Ramsey and Laine, 1997; Schmidt and Skidmore, 2003).

But importantly, wetlands are not just defined by their extent,
but are complex systems, displaying a dynamic interplay between
structure (the spatial relationship among distinct elements or
structural components of a system) and function (the productiv-
ity, nutrient cycling, animal movement and population dynamics
of a system) (Bedford, 1996; Kelly, 2001; Simenstad et al., 2006;
Turner et al., 2001; Wang et al., 2008). In this landscape ecolog-
ical view, at the regional scale wetlands are part of the complex
matrix of other land cover types that make up the San Francisco Bay
area, and at the scale of the individual wetland, the pattern of the
vegetation and other physical structural elements influences bio-
logical processes like habitat provision (Roe et al., 2009; Turner et
al., 2001) tidal wetlands, because they bridge estuarine systems and
upland areas, contain vegetation that is influenced by and responds
to multiple physical gradients across short distances. As a result,
they often exhibit complex spatial patterns in vegetation cover and
composition that can change through time. Thus, when monitoring
a restoring marsh, we must consider not just the extent of vegeta-
tion change, but also the spatial structural attributes of a site that
relate to specific functions.

On of the best ways to explore the additional component of
structural change in a restoring marsh is through the use of land-
scape or pattern metrics, which explicitly capture spatial structure
of patches, classes and landscapes (Brooks et al., 2006; Frohn,
1998; Kong et al., 2007; Langanke et al., 2007; Turner et al., 2001;
Yang and Liu, 2005). Pattern metrics are calculated using equations
that quantify the spatial characteristics of individual patches, or
a particular class within a landscape, and the spatial pattern of
the landscape as a whole, using remotely sensed imagery as the
input data. The most commonly described and used set of land-
scape metrics are in the FRAGSTATS software package, developed
by McGarigal and Marks in the 1990s and still in frequent use
today. These metrics calculate information on the composition of
patches, or classes or landscapes, or their configuration (McGarigal
et al., 2002; McGarigal and Marks, 1994). There are hundreds of
developed and published metrics; FRAGSTATS will compute more
than a hundred area/density/edge metrics, shape metrics, core
area metrics, isolation/proximity metrics, contrast metrics, con-
tagion/interspersion metrics, connectivity metrics, and diversity
metrics; calculated at the patch-, class-, and landscape-scale.After
calculating metrics, a scientist’s task is to first determine which
metrics provide useful information, as many of these metrics are
redundant (Cushman et al., 2008; Kearns et al., 2004), and second
to link these structural characteristics to real ecological function
(Calabrese and Fagan, 2004; Haines-Young and Chopping, 1996).
These metrics have proved a popular method for measuring the
composition and configuration of patches within a landscape and
for characterizing the landscape as a whole at one time period,
based on single snapshot remotely sensed imagery (Brooks et al.,
2006; Diaz-Varela et al., 2009; Kearns et al., 2004; Li and Wu, 2004;

Mita et al., 2007). A common approach is to calculate metrics for
an area surrounding a wetland site, defined by a simple distance
buffer (Brooks et al., 2006; Walsh et al., 2003). For example, Mita et
al. (2007) examined 73 wetland sites in the Prairie Pothole Region
of North Dakota, USA. For the area within a 300-m buffer around
each site, they calculated from Landsat imagery a suite of land-
scape metrics (number of patches, patch size, edge density, and
other landscape diversity and configuration metrics) to aid in rapid
assessment of wetland condition.

With increased availability of remotely sensed imagery,
researchers are able to calculate identical metrics over time and
evaluate temporal dynamics of landscapes in conservation, restora-
tion and planning applications (Bell et al., 1997; Frohn, 1998;
Lausch and Herzog, 2002; Rocchini et al., 2006; Xu et al., 2009).
For example, Langanke et al. (2007) used a suite of multi-temporal
landscape metrics (class area, patch size number of patches, core
area, number of core areas, and proximity index) to map trends
in harmful vegetation encroachment in a raised bog in Austria.
Rocchini et al. (2006) used temporal metrics based on landscape
composition and patch size, shape and isolation in a natural reserve
in Italy to examine an ongoing process of fragmentation. These
types of analyses of multi-temporal metrics are useful for detecting
and quantifying dynamic ecological processes and for helping plan
and prioritize management activities (Rocchini et al., 2006).

However, there are technical challenges with the use and inter-
pretation of metrics, largely focused around the robustness of
metric behavior across scale. These issues have been discussed in a
number of papers (Birdsey, 2004; Saura, 2004; Saura and Martinez-
Millan, 2001; Turner et al., 1989; Wickham and Riitters, 1995; Wu
et al., 2000) and summarized in recent critical papers (Wu et al.,
2002; Li and Wu, 2004; Wu, 2004). It is clear from this body of
work that pattern metrics are influenced by data scale: both the
pixel resolution and the spatial extent of the imagery can change
the resulting metric calculations. How scale influences metric does
vary. Wu (2004) found that scale relationships were more variable
at the class level (for different mapped land cover classes) than at
the landscape level (the entire mapped product and including all
land cover classes) and that metrics responded more consistently
to changes in grain size than to changes in spatial extent. Saura
and Martinez-Millan (2001) found that simpler metrics like edge
density were the most robust metrics to changing spatial extent.
In an effort to develop a theory of metric response to scale, Wu
et al. (2002) performed resampling to create multiple images with
increasingly large pixel sizes and extents and ran pattern metrics at
each step. They classified the general behavior of pattern metrics to
scale changes into one of three categories: predictable and linear;
stair-stepped (threshold response); or erratic and unpredictable.
In a related follow-up paper, Wu (2004) ran the same multi-scaled
approach across different landscapes, and further classified metrics
into two broad types: those with simple scaling functions and those
that exhibited unpredictable behavior. In addition to discriminat-
ing between predictable and unpredictable metric behavior, Wu
was looking for metric consistency across the different landscapes
and metric robustness within landscapes.

These kinds of multi-scale studies are generally agreed to be
essential for informed and reliable interpretation of landscape met-
rics (Wu, 2004). But there are two additional components that need
to be investigated in order to assist in the monitoring of a heteroge-
neous and dynamic system like a restoring tidal wetland. The first
is an aspect of scale not considered in most of the studies men-
tioned above: the size of the minimum mapping unit (MMU). Most
image classification processes, and especially when performed on
high spatial resolution imagery, require some kind of spatial filter-
ing to remove the spurious pixels or “speckle” that is inherent to
many pixel-based classification routines (Kelly et al., 2004). This
artifact is caused by the high local-scale spectral variability caused
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by shadow, mixed species, and differences in reflectance values
(Townsend, 1986). While this is a large problem with pixel-based
classification of fine-scale images, imagery from all sources (e.g.
satellite and airborne) and of all scales (sub-meters to global) have
some need for post-classification smoothing techniques if spatial
analyses are to be performed on per-pixel classification results. This
post-classification smoothing, which is common in the mapping
process, needs to be considered in addition to pixel size because it
can change the size of the patches in a land cover dataset with which
pattern metrics are computed (Saura, 2002, 2004). In many cases
the choice of a minimum mapping unit is made a priori (Rocchini et
al., 2006). Here we evaluate the effects of minimum mapping unit
size along with grain size on metric behavior. To vary the MMU size,
we used elimination filters, which remove clusters of pixels smaller
than a specified minimum size. These elimination filters are a more
sensitive smoothing technique than simple majority filters as they
retain some of the heterogeneity in a target filter area, but they have
not been evaluated for their effects on landscape metric calculation;
the past studies examining the impact of MMU choice concentrate
on majority filters (e.g. Saura and Martinez-Millan, 2001).

The second important aspect of this work is the examination of
metric consistency across time as well as scale. The identification
of appropriate spatial pattern metrics that correctly and robustly
track changes in ecologically relevant patterns in a restoring marsh
is important for conservation of marsh-associated wildlife species
and for overall understanding of the viability of the marsh as a pro-
ductive and functioning system. Many researchers have examined
the change in time in metrics derived from multi-temporal imagery
(Brooks et al., 2006; Xu et al., 2009), but few have looked at the
effect of scale on metric predictability across time. In other words,
most of these studies choose a scale or minimum mapping unit
first, and compare resultant metrics across time at this scale. When
effect across scale and time on metrics is considered, as in Lausch
and Herzog (2002), the number of suitable metrics can decrease.

This paper examines how vegetation pattern metrics, derived
from fine-scale remotely sensed imagery, behave across (a) pixel (or
grain) size and (b) minimum mapping unit (i.e., elimination filter
smoothing window), and (c) time. We examined how pattern met-
rics responded to combinations of these scale elements in order to

find which metrics were reliable across scale, and consistent across
time. We looked at overall landscape pattern within the marsh
through a suite of landscape metrics, and at the extent and pat-
tern of an individual marsh plant through a suite metrics calculated
for individual vegetation types. Our target species, perennial pick-
leweed (Sarcocornia pacifica) is the primary plant species used for
cover by many endemic tidal marsh species, such as the endangered
salt marsh harvest mouse (Reithrodontomys raviventris), whose
mobility and dispersal in a wetland are highly related to a suit-
able arrangement of pickleweed within the site (Bias and Morrison,
2006; Boul et al., 2009; Shellhammer et al., 1982).

2. Materials and methods

2.1. Study site

The Petaluma River Marsh (PRM) is a tidal salt marsh approxi-
mately 20 ha in size and located 1.6 km upstream from the mouth of
the Petaluma River on San Pablo Bay, in Sonoma County, CA (Fig. 1).
The site was restored to tidal action in 1994, following the dredg-
ing of two main channels from breaches in the north and south
ends of the outboard levee and the removal of soil from the site
to heighten and strengthen the inboard levee, which created linear
features within the site. No vegetation was planted (Siegel, 2002).
The site has a clear history of vegetation change between 1994 and
2004, as measured by Tuxen et al. (2008), who used remote sensing
and a general classification scheme (vegetation vs. no vegetation)
to document the increase in vegetation cover from 0% to 90% over
10 years. The imagery used and the field data collected with that
work were not comparable to this project in terms of floristic detail.

In 2004, dominant vegetation at PRM consisted of perennial
pickleweed, an annual pickleweed (Salicornia europaea), alkali bul-
rush (Bolboschoenus maritimus), and the native Pacific cordgrass
(Spartina foliosa). The marsh is surrounded by agriculture to the
immediate east and north but is in relatively close proximity to
many marshes, including one of the largest remaining natural
marshes in the San Pablo Bay region, the ancient Petaluma Marsh.
The presence of the salt marsh harvest mouse has been documented
at Petaluma Marsh, as well as other sites along the Petaluma River

Fig. 1. Map of vicinity of study site, Petaluma River Marsh (PRM) in the San Francisco Bay Estuary.
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(Shellhammer, 1989). In addition, other endangered species such
as the California clapper rail have been documented at PRM and
surrounding marshes (Liu et al., 2009), which further increases
the need for short- and long-term monitoring and management
of vegetation pattern and other habitat characteristics.

2.2. Imagery

Color infrared (CIR) aerial photography was acquired on August
14, 2003 and August 19, 2004. For the 2003 photo, imagery was
acquired at low tide to optimize potential total vegetation observa-
tion; for the 2004 photo, imagery was acquired at mid- to high-tide
to capture all the channels close to bankfull. This difference in tide
level did not affect the classification of vegetation types. The pho-
tos were scanned at 1200 dots per inch (dpi) at a scale of 1:9600,
to render a pixel size of 20 cm on a side (0.04 m2 pixel area).

The original image from each year (pixel size of 20 cm on a side)
was resampled to larger pixel sizes in increments of 2, ranging from
40 cm (2×) to 4 m (20×) on a side, creating images ranging in size
from 0.16 m2 to 16 m2. Each resample was performed on the orig-
inal image from each year using a pixel mean aggregation, where
the encompassing pixels were averaged to result in the larger pixel
value (Fig. 2). Resampling produced a total of ten images for each
year. For this study, we did not experiment with changing the spa-
tial extent, since the site has a distinct natural boundary.

2.3. Analysis

For both the 2003 and 2004 images, the original images
(20 cm pixel) were classified into seven classes – alkalai bul-
rush (Bolboschoenus maritimus), perennial pickleweed (S. pacifica),
annual pickleweed (Salicornia europaea), Pacific cordgrass (Spartina
foliosa), upland, bare, and water – using the Maximum Likelihood
Classifier (MLC) supervised classification algorithm, using spectral
signatures that were created for each vegetation class based on

Fig. 2. A portion of imagery from the study site, showing four-grain (pixel) sizes
from 20 cm pixels to 1 m pixels.

ground reference data for each year. Fig. 3 shows an example of the
classified version at the 1 m pixel scale. For 2003, 253 randomly
generated ground points were collected, of which 36 were used for
image classification, and 217 were used for accuracy assessment.
For 2004, 272 randomly generated ground points were collected, of
which 25 were used for image classification and 247 were used for
the accuracy assessment. The spectral signatures for each of the 2
years were then applied to all the other resampled images for that
year.

For each of the ten classified images for 2003 and 2004, post-
classification spatial filtering was applied in order to smooth out

Fig. 3. Classified imagery of the site in 2003 and 2004, with 1 m pixels.
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the local heterogeneity inherent in pixel-based classification out-
puts (Townsend, 1986). For this study, we used a pixel threshold
technique that filters the classified output and eliminates clusters
of pixels that fall below a minimum size, or minimum mapping unit
(MMU). These smaller clusters are given the value of their neigh-
boring pixels in an iterative fashion until there are no clusters below
the minimum threshold. Elimination filters with pixel thresholds of
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 200, and 500 were performed. The
eight-neighbor patch definition rule was used, determining that a
cluster be defined as continuous pixels of the same class type in
either the four cardinal directions or the four diagonal directions
(eight neighbors total). We ran the 12 elimination filters on the
classified images for each of the 2 years.

Pattern metrics were calculated using FRAGSTATS 3.3
(McGarigal et al., 2002). Rather than run the many hundreds
of possible metrics and choose among them post-analysis, we
chose a specific suite of ecologically relevant metrics to assess
the progress of the restoring marsh. We chose metrics that mea-
sured landscape complexity and heterogeneity, and metrics that
measured composition, complexity and connectivity of perennial
pickleweed – the dominant salt marsh plant critical for many
marsh species. We calculated 11 metrics; some were calculated for
the entire landscape (shape index, contagion, Shannon’s diversity
and evenness), and some were calculated for the pickleweed
class only (patch area, shape index, clumpiness, patch cohesion,
contiguity, connectivity and nearest neighbor); and we grouped
these 11 metrics into four types: composition, complexity, con-
nectivity and heterogeneity. The metrics used, their definitions,
and ecological relevance are listed in Table 1, and described here.

Composition metrics are among the simplest to measure. We
calculated the area of pickleweed in each year. Complexity refers

to the shape and pattern of individual patches or of the whole
landscape. These characteristics of patches or landscapes can
affect population dynamics via dispersal, colonization, and genetic
exchange (Forman, 1995). We calculated shape index (class and
landscape), clumpiness (class only), and contagion (landscape only)
(McGarigal et al., 2002).

Connectivity in this case deals with the pickleweed class only
and describes how proximate or isolated similar patches are to each
other and how they are connected. It can be important for processes
such as materials exchange, organism dispersal, and predator/prey
dynamics. We calculated the following metrics for the perennial
pickleweed class: patch cohesion index, contiguity index, connec-
tivity index (with a 5-m threshold), and Euclidean nearest neighbor
distance (McGarigal et al., 2002).

Heterogeneity can be defined as the complexity or variability in
space and/or time of a property or phenomenon (Li and Reynolds,
1995). In our case heterogeneity was examined with respect to all
dominant vegetation types or classes in the site. It can be used as an
index of habitat biodiversity and suitability. We calculated Shan-
non diversity index and Shannon evenness index for the landscape
(McGarigal et al., 2002).

We analyzed these 11 metrics for all 120 images and plotted
the output values of each metric in relation to pixel (grain) size
and MMU in graphs named “scalograms” by Wu et al. (2002) and
Wu (2004) with one scalogram per metric per year (Figs. 4–7). In
our scalograms, each line represents a different MMU, rather than
vegetation class (as in Wu, 2004). Scalograms are useful tools for
monitoring pattern, since pattern and processes operate at mul-
tiple scales. In addition, scalograms can identify bias associated
with using one specific pixel size or MMU of remotely sensed
data.

Table 1
Summary of metrics and their link to restoration goals. Metric description from McGarigal et al. (2002).

Metric Type Description Restoration question

Composition
Patch area Class Amount of specific land cover class Did pickleweed increase from 2003 to

2004?

Complexity
Shape index Class Measures patch shape; equals 1 when the patch is maximally compact

(i.e., square or almost square) and increases without limit as patch shape
becomes more irregular

Did pickleweed patches become more
irregularly shaped over time?

Clumpiness Class Measures the clustering of patches: equals 0 when the focal patch type is
distributed randomly, and approaches 1 when the patch type is maximally
aggregated

Are pickleweed patches more
aggregated as they increase in size?

Shape index Landscape The total length of edge involving the corresponding class divided by the
minimum length of class edge for a maximally aggregated class, a measure
of class aggregation or clumpiness

Did all the landcover classes become
more irregular in shape over time?

Contagion Landscape Measures landscape aggregation: approaches 0 when every cell is a
different patch type and interspersed; equals 100 when the landscape
consists of single patch

Are the landcover classes in the
wetland landscape interspersed?

Connectivity
Patch cohesion Class Measures the physical connectedness of the patch as perceived by

organisms dispersing in binary landscapes
Are pickleweed patches more
connected as they increase?

Contiguity Class Spatial connectedness of cells within a patch; it increases to a limit of 1 as
connectedness increases

Are pickleweed patches more
connected as they increase?

Connectivity Class Counts the number of functional joins between all patches of the
corresponding patch type; equals 0 when none of the patches of the focal
class are “connected”; equals 100 when every patch of the focal class is
“connected”

Are pickleweed patches more
connected as they increase?

Euclidean nearest neighbor Class The distance to the nearest neighboring patch of the same type, based on
shortest edge-to-edge distance

Are pickleweed patches closer together
they increase?

Heterogeneity
Shannon’s diversity Landscape Measures landscape diversity; equals 0 when the landscape contains only

1 patch and increases as the number of different patch types increases
and/or the proportional distribution of area among patch types becomes
more equitable

How does the wetland landscape
diversity change over time?

Shannon’s evenness Landscape Measures landscape evenness: equals 0 when the landscape contains only
1 patch and approaches 0 as the distribution of area among the different
patch types becomes increasingly uneven

Are the various landcover classes at the
wetland site becoming more evenly
distributed?
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Fig. 4. Scalogram for patch area (a and b), shape index (c and d) and clumpiness (e and f) metrics for pickleweed in 2003 and 2004. Metric values (y-axis) are plotted against
both pixel (grain) size (x-axis) and smoothing algorithm and level for each year. Pixel size increases from left to right, and the smoothing level increases from the top to the
bottom of the legend (indicated by different colors). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Results

As did Wu (2004), we present our results in a series of
scalograms that display metric behavior across scales. In that
paper, he was interested in discriminating between predictable and
unpredictable metric behavior, and finding consistency (across land-
scapes) and robustness (within landscapes) in metric behavior. Here
we have similar goals in interpreting our scalograms, with three
important differences. First, in addition to grain size, we are also
interested in the behavior of metrics with changing MMU. Second,
in our case consistency refers to similarity of metric response across
time, not landscapes. Third, since many of our scalograms show
some predictability at some scales, we are interested in the thresh-
olds in scale, in both grain and MMU where metric behavior changes
abruptly and thus makes interpretation of change impossible.

Similar to Wu (2004), who split metrics into two classes, based
on their predictability across landscapes, we have defined two
broad classes of metrics based on predictability across time. Type
1 metrics show consistency across time (rather than across land-
scapes, as in Wu, 2004) at some scales, and Type 2 metrics are
inconsistent across time. Of the first type, Type 1a metrics are
consistent only when a small grain (or a small MMU in our imple-
mentation) are used. At larger scales, in either grain or MMU, metric
behavior is unpredictable and inconsistent across time. Type 1b

metrics are consistent across scales but less robust (in our case
only if a small MMU is used). With these metrics, an increase in
MMU, regardless of grain size, will result in inconsistent interpre-
tations. Type 2 metrics are those where MMU results in inconsistent
interpretations across time across all scales and are thus difficult
to interpret in a monitoring context. In each of the scalograms in
Figs. 4–7, we graphically show the scales within which metrics
are predictable in their behavior and consistent across time with
a shaded rectangle. These scale thresholds (in grain size and MMU)
are also summarized in Table 2. It is these metrics at their appropri-
ate scales that can be used in cases like this for monitoring changes
to vegetation pattern in a restoring marsh.

3.1. Behavior across pixel size and minimum mapping unit

We observed the three types of behaviors across pixel sizes
described by Wu et al. (2002): (1) linear, which can be predicted
across scales; (2) stair-stepped, which exhibit multiple thresholds
throughout the scale range; and (3) erratic, which show no con-
sistency or predictability across scales. However, we found that
these characterizations were not appropriate for all scales. Most
metrics exhibited at least some linear and predictable behavior
across the range of pixel sizes, at smaller MMUs; at larger MMUs,
stair-stepped or erratic behavior was exhibited. This means that for
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Fig. 5. Scalograms for landscape shape index (a and b) and landscape contagion (c and d) metrics for 2003 and 2004.

the majority of metrics, if a small minimum mapping unit is used
(elimination threshold of 9 or smaller), relative change in metric
value could be discerned for metrics computed from a range in
pixel sizes.

Five metrics – the composition metric total pickleweed class
area (Fig. 4a and b), three complexity metrics (pickleweed shape
index (Fig. 4c and d), landscape shape index (Fig. 5a and b) and land-
scape contagion (Fig. 5c and d)), and pickleweed contiguity (Fig. 6c
and d) exhibited consistent behavior across MMUs and are classi-
fied as Type 1a metrics (Table 2). This means that a relative change
in metric value could be discerned at the range of minimum map-
ping units, if a suitably small pixel size was used. The thresholds
for these tradeoffs are listed in Table 2, and are no larger than 6×
or a pixel size of 1.2 m on a side or 1.44 m2.

Four metrics – two connectivity and two heterogeneity metrics,
pickleweed connectivity (Fig. 6e and f), pickleweed Euclidean near-
est neighbor (Fig. 6g and h), Shannon’s diversity (Fig. 7a and b) and
Shannon’s Evenness Index (Fig. 7c and d) – exhibited unpredictable

behavior quickly as minimum mapping unit increased. These are
Type 1b metrics. Consistency across time could only be achieved
with small MMUs, usually with a pixel threshold less than 9. But
given this small MMU, the metric revealed relative changes in value
across time, and across pixel size up to 20× in most cases or 12× in
the case of pickleweed connectivity (Table 2).

Two metrics were classified as Type 2: pickleweed clumpiness
(Fig. 4e and f), and pickleweed cohesion (Fig. 6a and b) exhibited
erratic behavior across time. There was no combination of grain
size and minimum mapping unit that were consistent over time.

3.2. Behavior over time

Five metrics – patch area, pickleweed shape index, landscape
shape index, landscape contagion, patch contiguity, and – showed
consistent and reliable change, provided a small MMU (up to 9)
or a small grain size (up to 6×, or 1.2 m on a side, in most cases)
were used. These Type 1a metrics, in this case, can be confidently

Table 2
Summary of metrics and responses to changing scale.

Metric Type Fig. Type Threshold: Type of change

MMU Grain

Composition
Patch area Class 4a and b 1a 9 6 Increased

Complexity
Shape index Class 4c and d 1a 9 4 Increased
Clumpiness Class 4e and f 2 NA NA Unclear
Shape index Landscape 5a and b 1a 9 6 Slight increase
Contagion Landscape 5c and d 1a 9 6 Slight increase

Connectivity
Patch cohesion Class 6a and b 2 NA NA Unclear
Contiguity Class 6c and d 1a 9 6 No change
Connectivity Class 6e and f 1b 9 12 Slight increase
Euclidean nearest neighbor Class 6g and h 1b 9 20 Slight decrease

Heterogeneity
Shannon’s diversity Landscape 7a and b 1b 9 20 Slight increase
Shannon’s evenness Landscape 7c and d 1b 9 20 Slight decrease
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Fig. 6. Scalograms for patch cohesion (a and b), patch contiguity (c and d), patch connectivity (e and f), and Euclidean nearest neighbor distance for pickleweed patches in
2003 and 2004.

used to measure change to marsh vegetation pattern in a restoring
marsh. Four other metrics: pickleweed connectivity, pickleweed
nearest neighbor, and Shannon’s diversity and evenness are Type
1b metrics; they were consistent across time provided a small MMU
was used (up to 9). When a small MMU was used, these results were
consistent across grain sizes (up to 20× for both nearest neighbor
and diversity and up to 12× for connectivity). Use of a larger MMU
resulted in inconsistent results across time. The remaining metrics,
pickleweed clumpiness and pickleweed patch cohesion are Type 2
metrics and are not consistent and not interpretable across scales
or time.

We also found that scale relationships were slightly more vari-
able at the class level than at the landscape level: none of the

landscape metrics were unpredictable at all pixel sizes and min-
imum mapping units.

3.3. Ecological interpretation of metrics

We found that pickleweed increased from 2003 to 2004, and the
simple class area metric was able to capture this change (Table 2)
in relative terms. The amount of change however is not reliable
across all grain sizes (Fig. 4a and b). With increasing pickleweed on
the site, larger grain sizes tend to overestimate the extent of pickle-
weed. As clumps of pickleweed grew, they became more irregularly
shaped, and were closer together over time. While two measures of
patch connectivity and aggregation did not show an increase, one
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Fig. 7. Scalogram for Shannon diversity index (a and b), and Shannon evenness index (c and d) in 2003 and 2004.

did strongly. At the landscape level, all landcover classes became
slightly more irregular in shape over time, and more interspersed
with each other. The site decreased in evenness as pickleweed
began to dominate, but increased in diversity as more vegetation
types were present (based on the Shannon index).

These results show the different sensitivity of metrics. For exam-
ple, as pickleweed increases across the site, we would expect that
metrics of connectedness or contiguity would show this. While
the patch-to-patch contiguity showed no increase (Fig. 6c and d),
patch connectedness increased and Euclidean nearest neighbor
decreased as expected.

4. Discussion

Tidal salt marshes in the San Francisco Estuary region display
heterogeneous landscape structural pattern, a characteristic that is
commonly attributed to tidal wetlands in Mediterranean climates
(García et al., 1993). These patterns are functionally important
– wetland vegetation pattern supports primary productivity and
carbon sequestration, increased vegetation diversity, and the pro-
vision of adequate habitat for native or endangered wildlife – and
thus the vegetation pattern, in addition to vegetation amount,
should be monitored in a restoring marsh. For our restoration site,
we found that pickleweed patches grew larger, more irregularly
shaped, and closely spaced over time, while the overall land-
scape became more diverse (but less even). These relative changes
in landscape pattern will all likely benefit a pickleweed-obligate
species such as the salt marsh harvest mouse, and understanding
these changes are useful in general for understanding restoration
progress and vegetation change in a restoring marsh. However, we
do not think specific targets of metrics would be appropriate in
this context; the point of this research is to find the scale and met-
ric to show the relative change in metrics that correspond with
restoration goals.

We found that capturing pattern change in a heterogeneous
landscape using high-resolution imagery and landscape metrics
is not straightforward, and consideration of grain (pixel size) and

minimum mapping unit are important. With a small MMU (less
than 9–16 pixels), several complexity, connectivity and hetero-
geneity metrics were consistent across time in interpreting relative
change to vegetation structure. However, some of these metrics
exhibited unstable behavior with larger MMUs, making their adop-
tion without a multi-scale analysis potentially problematic, and
two class-focused metrics – patch clumpiness and patch cohesion
– were unpredictable across all scales, making their adoption for
ecological monitoring impossible.

Of the two scale factors, grain size was more reliable, producing
more consistent results than across MMUs. This is a positive result,
as often the choice of grain size for a project is made by the choice
available of image sensor. In general, increases in MMU beyond
16 pixels resulted in unstable metrics and un-interpretable results.
With small MMUs, most metrics were consistent across grain sizes,
from quite fine spatial resolutions (e.g. 0.16 m2) to relatively large
pixel sizes (e.g. 16 m2); many metrics correctly identified relative
change in composition and configuration of wetland marsh vegeta-
tion. This range in scales encompasses the fine resolution imagery
commonly acquired through airborne digital imagery (<0.5 m on
a side) and by commercially available satellites such as Quickbird
and IKONOS (61 cm or 1 m pixels for their respective panchromatic
bands and 240 cm or 4 m pixels for their respective multispectral
bands), and suggests that this kind of monitoring can be done oper-
ationally, provided a small MMU is used. The sensitivity of the MMU
relates to the fact that these changes are small on the ground; small
patches can be missed with large elimination thresholds. This does
not mean that one can resolve very small patches with resolutions
provided by IKONOS and Quickbird, but rather that it is possible to
successfully capture relative changes to spatial structure.

Wu (2004) found that scale relationships were more variable
at the class level (for different mapped land cover classes) than
at the landscape level (the entire mapped product and including
all land cover classes). We found generally similar results; of our
seven class metrics, two were unreliable across all scales, whereas
all of our four landscape metrics had some range of grain size that
produced reliable results.
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While pattern metrics can highlight small but important
changes in vegetation composition and configuration across years,
the use of metrics to track changes over time or to validate restora-
tion management decisions should be done with attention paid
to the impact of scale on the measures. Because pattern metrics
are affected by both pixel size and smoothing technique, we rec-
ommended multi-scale analyses, such as the one performed in
this study, to understand how spatial scale (pixel size and min-
imum mapping unit) affects pattern metrics, and which metrics
are independent of scale, or have a specific type of scaling relation-
ship. Practically, multi-scale analyses can show which metrics show
actual change as restoration progresses. An arbitrary choice of pixel
size or minimum mapping unit might result in a false impression
of change in a site. Of the two characteristics, choice of minimum
mapping unit is the more critical: this could be interpreted as a call
to do as little post-processing analysis as possible.

This paper focused on the rather mechanistic understanding of
scale dependence: the effect of changing scales on image classifi-
cation and pattern analysis. The other related connotation of scale
dependence recognizes that natural processes operate across mul-
tiple scales, and that some functions and patterns have distinctive
“operational” scales at which they can be best characterized (Bian
and Walsh, 1993; Lam and Quattrochi, 1992; Wiens and Milne,
1989; Wu, 2004). Descriptions of such processes should take mul-
tiple scales into account (Hay et al., 2003; Li and Wu, 2004), and
at times landscape pattern metrics have been used to character-
ize these operational scales, and highlight the thresholds between
them. We did not do that here, although further interpretation of
scale thresholds is possible.

We focused on the elimination filter and minimum mapping
unit in this work, but there are other possible processing routines
or analyst choices that will likely influence metric behavior. Chang-
ing spatial extent can greatly affect landscape pattern analyses
(Baldwin et al., 2004; O’Neill et al., 1996; Saura and Martinez-
Millan, 2001; Turner et al., 1989). The classification scheme chosen
will greatly affect the thematic resolution of the classified output,
which will in turn highly affect the pattern metric results and sub-
sequent scaling relationships (Baldwin et al., 2004; Buyantuyev
and Wu, 2007; Turner, 2005). The algorithm or approach cho-
sen to classify remotely sensed imagery will affect the results.
Most pixel-based classification methods (meaning the clustering
algorithm focuses only on the spectral value of each pixel in the
clustering) such Maximum Likelihood Classifier (MLC) or ISODATA
both result in speckle when applied to high-resolution imagery and
can give different classification results depending on input values
(Kelly et al., 2004). Classification approaches that use in addition
to spectral information of a pixel its location and context (called
object-based image analysis, OBIA) can alleviate much of this prob-
lem (Blaschke, 2010; Lang et al., 2008; Langanke et al., 2007). With
this approach, images are segmented into distinct patches, or image
objects, based on spatial and spectral similarity, which are then
classified, reducing the need for post-classification processing and
smoothing filters. Indeed, the OBIA approach in remote sensing is
increasingly being used to understand landscape complexity and
patterns; a good review of these developments is found in Blaschke
(2010).

While sensitive to process and challenging to interpret, pat-
tern metrics shows little sign of being abandoned in conservation,
ecological and planning applications (Uuemaa et al., 2009). The
abundance of remotely sensed images, at a range of resolutions,
makes the process of directly calculating the spatial arrange-
ment and configuration of landscapes computationally simple
and intellectually satisfying. The process has its roots in vertical
aerial photograph interpretation methods developed in the early
decades of the 20th century (Langanke et al., 2007). This top–down
view of the world began with aerial photography and has been

expanded and enhanced with digital remote sensing promotes
discrete and detailed planimetric characterization of landscape
objects. This imaging paradigm captures horizontal composition
and configuration within landscapes well, while overlooking verti-
cal heterogeneity and connectivity (Arnot et al., 2004; Hoechstetter
et al., 2008; McGarigal et al., 2009). This likely will change with
increased use of active remote sensors such as Lidar (light detection
and ranging).

5. Conclusions

Habitat quality is not defined solely by land composition and
amount, but also by configuration and heterogeneity; for this
reason, pattern metrics can play a crucial role in restoration mon-
itoring and management over the long term, as long as sufficient
attention is paid to the effect that scale and pixel resolution will
have on resulting metrics. Detailed mapping and characterization
of restoring wetlands and the use of spatial pattern metrics can
offer valuable information about changes in vegetation, which can
inform the restoration process and ultimately help to improve
chances of restoration success. Vegetation and habitat mapping
projects are increasingly using aerial photography and satellite
imagery with sub-meter pixel sizes for vegetation monitoring
projects, and while understanding change to vegetation pattern is
an important part of restoration evaluation, it is not completely
straightforward; we recommend a multi-scale analysis such as this
one to determine which metrics are consistent across scale and
time.
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