MSRC
 Remote Sensing Capability
 The Next Significant Enhancement in Spill Response

OSPR-Chevron Response Technology Workshop
February 25, 2015

MSRC Background

- Extensive Response Experience
$>$ Over 850 spills post-Exxon Valdez
>1996 Portland, Maine tanker spill
$>$ Katrina/Rita -- $\mathbf{3 6}$ responses for $\mathbf{2 2}$ customers
$>$ Deepwater Horizon -- largest surface response contractor
$\checkmark 12$ Responder Class vessels
\checkmark Over 11,000 employee man days offshore
\checkmark Post event interviews with employees for continuous improvement

MSRC DWH Observations/Continuous Improvement

- Operations
$>$ Skimmer effectiveness/efficiency
$>$ Encounter rate tactics
$>$ Debris handling
$>$ Offloading of recovered product
$>$ Sustainability and redundancy (human element)
- All of the above are downstream of the most critical observation:
$>$ Efficiently putting resources in the right position (day and night) to recover the oil

Historical Perspective -- Oil Spill Surveillance in U.S .

Exxon Valdez

Gulf Hurricanes of mid-2000 period

Strategic Tools

- Satellite
- Optical
- Radar

Tactical Tools

- Visual Spotting
- Aerial
- Eye
- Photography
- Video

Deepwater
Horizon

Strategic - COP

- Added satellite sophistication
- Added aerial sophistication (Ocean Imaging multi-spectral/TIR)

Tactical

- Not much change
- Reliance on eye
- Limited shipmounted TIR
- Day light only

Oil Migration

Boat positioning challenges

- Thickest Oil
- False Targets
- Compressed Window (Day light positioning)

Inefficient recovery

MSRC Surveillance Objectives -- Post DWH

- Real Time Tactical Information Besides Visual Spotting
$>$ Classification of oil targets as Recoverable or Nonrecoverable (i.e. sheen)
$>$ Tracking moving oil
$>$ Staying in the recoverable oil as it moves
$>$ Expanding the operating window to low-light conditions (with safety always of highest priority)
> MSRC Strike Team Experts
\checkmark Versed in operationalized remote sensing

Key Criteria for MSRC's New Remote Sensing Tools

- Multiple sensors/platforms since one does not do all
- Multiple platforms given importance of height of eye
- Portability given span of U.S. coastline and lack of dedicated surveillance planes
- Real time information for tactical use
- Provide "feed" to customer Common Operating Picture (COP)

MSRC Level ABC Remote Sensing For Tactical Oil Spill Surveillance

Provides wide-area spill detection, thickness interpretation, and oil distribution mapping

Level B -- Balloon
Maritime Robotics

Tethered up to 500 ft . Medium range coverage with long "hang' time

TIR and HD Cameras

Level C -- Close-In

Optimizes close-in recovery techniques

Level A - Aircraft Using Ocean Imaging System TRACS

- Use pre-identified Aircraft of Opportunity (AOO)
- Systems operated by trained MSRC personnel
> Staged on each coast (NJ, TX, CA)
- Tactical use
> Capture images that can be preprocessed on-board to identify oil as recoverable and direct response resources into thickest oil
- Common Operating Picture (COP) oil mapping
> Capture images over entire spill (or parts) that can be transferred to Ol technologists for detailed oil thickness maps
- Available as post-hurricane assessment tool

Example: Visual vs. Digital Imaging of a Slick

Source: Ocean Imaging, 2010

Potential false positives in

 visual or multispectral mode: Red tide plankton bloom.Cross-checking with thermal image (no oil signal) identifies false target

Ocean Imaging/MSRC Level A System

"Fully Processed" (off plane) services that can be generated after data is transferred to Ol

MSRC Level B - Maritime Robotics Aerostat

- Battery powered, non-wired tether
> Up to 12-hour "hang time"
> Rechargeable battery
- Package includes:
> HD Camera
> TIR Camera
> AIS Repeater
- Small, compact easily transportable package
- Proprietary viewing software and gimbal
- WIFI transfer to host vessel

MSRC Level B - Balloons (Aerostats)

Manufactured by Maritime Robotics: Ocean Eye

NOFO: Oil On Water 2012

Screen Snapshots：

－Geo－positioned display
－Data collection
－Target data e－mailable

MARITIME
R0B0TICS

$+29^{\circ} 57.948^{\prime} \mathrm{N} 090^{\circ} 15.537^{\prime} \mathrm{W}$
298.6 ft
－Viewing：IR／HD Image Fusion
－～75\％IR overlaid with
～25\％HD Visual

Level C - Close In OSRV Mounted Systems for Tactical Optimization

- X Band Radar and Thermal Infrared (TIR) on Responder Class Vessels
- Oil detection (X Band Radar)
- Better view of oil
- Stack oil vs. entrainment

MSRC Level C Close-In Containerized X Band/TIR

Transportable Containers For Use with Barges and Large Vessels of Opportunity

MSRC Future Considerations

- Level A Enhancements
$>$ Data file transfer to vessels
>Portable SAR
- Level D (Drones)
- Level S (Satellites) for tactical use

