Lobster FMP Science and Technical Presentation: Cable Model for Calculation of a SPR biological reference point

Peer Review Webinar - Continued March 18, 2015

Presented by: Tom Mason, Julia Coates, Carlos Mireles and Tony Shiao CA Department of Fish and Wildlife Marine Region

Outline

- Background
- Reference point review
- Origin of Cable model
- Model structure and use
- CDFW growth analyses
- Results

- Cable to Cable-CDFW changes
- Sensitivity analyses, limitations, future work
- Management implications

Catch reference point

Identifies possible change in stock stability, particularly growth overfishing

$$
\frac{\text { average catch for } 3 \text { most recent seasons }}{\text { average catch for } 10 \text { most recent seasons }} \leq 0.8
$$

Data Source

Annual commercial landings recorded on CDFW landing receipts

CPUE reference point

Identifies potential adverse changes in the fishery, mainly economic overfishing

$$
\frac{C P U E \text { for } 3 \text { most recent seasons }}{\text { CPUE for } 10 \text { most recent seasons }} \leq 0.8
$$

Data Source

Total number of legal lobster caught per total trap pulls recorded on CDFW commercial fishing logs

SPR reference point

Spawning Potential Ratio detects biological sustainability, particularly recruitment overfishing

$S P R_{\text {current }} \leq S P R_{\text {Threshold (avg wt-2000/01-2009/10 seasons) }}$

Data Source

Mean weight of lobsters landed based on total \# of individuals retained on CDFW commercial fishing logs and total commercial landings (lbs) from receipts
*Only data from landing receipts that can be matched to a specific fishing log are included

Cable Model

- FMP process sought a model to calculate a biological reference point and incorporate Marine Protected Areas (MPAs)
- Developed by Dr. Richard Parrish through contract with the South Bay Cable Liaison Committee (provides estimate of SPR)
- Dr. Parrish aided CDFW with refinements to model and proposed new growth models
- CDFW has updated the model:

1) Addition of new growth model
2) Changes to initial time step (i.e. size, age, season)
3) Streamlining of model

Model features

- Cohort analysis
- Equilibrium
- No stock-recruitment
- No set spatial scale
- No recreational component

Overview

The Population Model

Graphical Output

Female Growth, Fecundity \& Maturity

Management Regime

Male Growth

Output

> Common Growth, Vulnerability \& Fishing Effort

Unrecorded Fishing Mortality

Model structure \& use

Model flow

MODEL																					
	Seasor	Male	Male	Male	Male	Male*	Male		MALE	Male	Male	Male	Male	Male							
Age	Quarte	ength	vt gms	Vulner	F	var M	FNR	Sur in-in	Sur in	Sur oper	N in-in	N in	Nopen	cat in	Catoper	Nland	kgin-in	kg in 0.34	kg open	TOT kg	land kg
1.42		17.7		0.000	0.000	-0.3770	0.0000	0.6859	0.6859	0.685	36.5	36.5	427.0	0.00		0.00	0.34	0.34	3.96	4.64	0.00
1.67		25.	2	0.000	0.000	-0.1600	0.0000	0.8521	0.8521	0.852	25.0	25.0	292.9	0.00	0.0	0.00	0.65	0.65	7.62	8.93	0.00
1.92		33.9	5.	0.000	0.000	-0.0968	0.0000	0.9077	0.9077	0.907	21.3	21.3	249.6	0.00	0.0	0.00	1.17	1.17	13.73	16.08	0.00

Females

Egg Production

Growth

Quarterly growth

$$
S_{t+1}=0.25\left(f\left(S_{t}\right)\right)
$$

- Dr. Parrish identified von Bertalanffy model a poor fit
- CDFW developed growth models using raw tagrecapture data (Engle, Hovel, Kay)

Size \& area-based mortality

- Vulnerability - gear selectivity
- Instantaneous fishing mortality (F)
- Natural mortality
- Unrecorded fishing mortality
- Survival

Vulnerability

- Legal lobsters 84% vulnerable
- After CL reaches VulLT, vulnerability is dampened by a subtracting factor
- Vulnerability parameters adjusted to produce \% shorts in the catch from logs

Instantaneous fishing mortality

- Iteratively found by adjusting until Mean Ibs is equal to log and landing receipt data
- Multiplied by
- Vulnerability
- Foct if in quarter 4
- Fjan if quarter 1
- If quarter $=2$ or $3, F=0$

MODEL	Season	Male	Male	Male	Male	Male*	Male	Male		Male	Male N in-in	Male N in	Male Nopen	Male Cat in	Male Catopen	MALE Nland	Male kgin-in	Male kg in	Male kg open	Male TOT kg	Male
Age	Quarter	length	wt gms	Vulner	F	var M	FNR	Sur in-in	Sur in	Sur open											and kg
1.42	1	17.2	9	0.000	0.000	-0.3770	0.0000	0.6859	0.6859	0.6859	36.5	36.5	427.0	0.00	0.00	0.00	0.34	0.34	3.96	4.64	0.00
1.67	2	25.5	26	0.000	0.000	-0.1600	0.0000	0.8521	0.8521	0.8521	25.0	25.0	292.9	0.00	0.00	0.00	0.65	0.65	7.62	8.93	0.00
1.92	3	33.9	55	0.000	0.000	-0.0968	0.0000	0.9077	0.9077	0.9077	21.3	21.3	249.6	0.00	0.00	0.00	1.17	1.17	13.73	16.08	0.00

Model structure \& use

Survival (Incorporating MPAs)

- Allows F to be applied differently relative to MPAs
- IN-IN: no F
- IN: 20\% F
- Open: full F

Number of lobsters

- Initial state assumes even lobster density along the coastline
- Incorporates survival and movement rates in $\mathrm{N}_{\mathrm{t}+1}$
- 2% of lobster move 0.75 miles or more in 3 months (Lindberg 1955)

Spawning potential ratio

- SPR = (current egg production) / (unfished egg production)
- Current

- F matched to average weight of lobster in catch
- 14.6\% habitat in MPAs
- Unfished
- $\mathrm{F}=0.0001$

Egg Production

Spawning potential ratio

Graphical output - 3d plots

Model structure \& use

Graphical output - 3d plots

Graphical output - 2d (MPA)plots

Model structure \& use

Challenges With Lobster Growth

Growth

- Collected all available mark and recapture raw data (Engle, Hovel, Kay)
- Data treatment
- Only initial and most recent capture used
- Days at liberty > 150 days for individuals $<50 \mathrm{~mm} \mathrm{CL}$
- Days at liberty > 200 for individuals >50 mm CL and span molting season
- Removed negative growth
- Removed extreme outliers
- Kept zero growth

Growth model fitting

- Raw data (Engle, Hovel, Kay):
- Sub-legal males and females combined (0-82.5 mm)
- Legal males and females separate ($>55 \mathrm{~mm}$)
- Growth models presented in Rogers-Bennet et al., 2003 used as a template for invertebrates
- Models tested include: von Bertalanffy, Ricker, Logistic, Weibull, and Gaussian
- Fits tested

Model fitting comparisons (sub-legals)

Model	\# of parameters	R-sq	Adj R-sq	SE	RSS	AIC
Gaussian	4	90%	81%	4.8	12284	1690
Logistic	4	79%	79%	5.0	13472	1741
Weibull	4	89%	79%	5.0	13565	1744
Ricker	2	88%	78%	5.2	14281	1767
Logistic	3	88%	77%	5.2	14700	1785
von Bertalanffy	2	83%	69%	6.1	20073	1950

Male \& Female Gaussian 4-parameter

Female Exponential Decay 2 parameter

Male Gaussian 4-parameter

All Growth Models

Yield

SPR

Average weight

Average Weight of Lobster (lbs) in Landings
sq7 $4!$ Ұчб!əМ

-3.08-3.42

-2.74-3.08
-2.39-2.74
-2.05-2.39
ㅁ1.71-2.05
ロ1.37-1.71
ㅁ.03-1.37
-0.68-1.03
-0.34-0.68
■0.00-0.34

2-way table outputs

OUTPUT TO	2-WAY TABLES AND FIGURES
YieldT	$\underline{32.657}$ Yield per 1000 recruits (kgs)
Fect	$\underline{19.1}$ Millions of eggs
AveWt	$\underline{0.694}$ Mean weight in landings (kgs)
HR	$\frac{13.7 \%}{}$ Harvest rate of legals
Yield Ibs	$\underline{71.995}$
SPR	$\underline{41 \%}$
Mean lbs	$\underline{1.530}$

Fecundity: Total fecundity of the cohort over its lifetime in terms of millions of eggs and ratio over an unfished population

Average Weight: Average weight of a landed lobster in lbs and kgs

Harvest rate: Harvest rate of the legal-size individuals over a cohort's lifetime
Yield: Lifetime yield of a cohort in lbs and kgs

Reference points

	CURRENT MODEL REFERENCE POINTS	This Rur Unfished $0.9100 \mathrm{~F}=0.00001$		Percentage of Bun
	Fishing Mortality Rate (cell B5) F=			
	Size Limit in mm (cell B6) CL=	82.5	82.5	
	Total Biomass of Cohort (October lbs)	1613	2152	75\%
	Total Biomass legal males (October Ibs)	92	379	24\%
	Total Biomass legal females (October lbs)	108	359	30\%
\longrightarrow	Total Biomass legals (October Ibs)	200	739	27\%
	Total Fecundity (millions of eggs)	19	46	41\%
	Percentage Shorts	74.1\%	36.9\%	
	Average size in landings lbs	1.53	2.08	74\%
	Total Yield of Cohort lbs	71.99	0.01	
	Harvest Rate Yield/Age 1+ Biom	4.5\%		
	Harvest Rate Yield/Legals Biom	36.0\%		
	Males in landings	21		
	Females in Landings	26		
	Female sex ratio in landings	55.8\%	59.4\%	

Total Biomass of Cohort: Total cumulative biomass at the start of each fishing season (Season 4)
Total Biomass legal males: Cumulative biomass of male lobsters at the start of each season (Season 4) over the lifespan of the cohort (starting at row 87)
Total Biomass legal females: Cumulative biomass of female lobsters at the start of each season (Season 4) over the lifespan of the cohort (starting at row 87 as well)

Total Biomass legals: males + females
CDFW growth models produce slower juvenile growth, resulting in lower number of lobsters ultimately recruited into the fishery from each cohort

Males initially suffer higher natural mortality

Modifications from Cable 6.0 to Cable-CDFW 1.0 Substantive Changes

1. New growth model
2. Iterative adjustment of aVul
3. Set handling and ghost fishing parameters to 0
4. Change the age at first time step from 1 to 1.42
5. Initial size at first time step changed to 17.2 mm

Modifications from Cable 6.0 to Cable-CDFW 1.0 Removed Components

1. All notes and inputs associated with the Bertalanffy equations
2. Graphs, tables, and features that contain redundant or outdated information
3. All components related to the value-per-recruit outputs

Sensitivity analyses

- Growth model
- Growth schedule

Sensitivity \& limitations

Model limitation - discrete growth

- Annual growth - annual molt
- Quarterly growth - more continuous
- Discrete growth causes "knife edge" selection problem

First fishing season at legal size (CL > 82.5mm)	Age	Quarter	length	wt lbs	length	wt lbs
	11.92	3	80.3	1.17	80.3	1.29
	12.17	4	81.1	1.20	81.1	1.32
	12.42	1	81.9	1.23	81.9	1.36
First fishing season after reaching legal size	12.67	2	82.7	1.26	82.7	1.39
	12.92	3	83.7	1.30	83.5	1.42
	13.17	4	84.7	1.34	84.2	1.45

Sensitivity analyses

Growth Model	CDFW		von Bertalanffy
Growth Schedule	Quarterly	Annual	Quarterly
SPR Threshold	40%	44%	18%
SPR Current	41%	44%	20%
Age to legal male	12.7	12.7	6.4
Age to legal female	12.7	12.7	6.9
\% survival to legal	6.6%	6.7%	27.9%

*CDFW currently employs quarterly growth model

Model limitation - minimum weight

Future work

- Data collection and/or parameterization
- Vulnerability
- Fecundity \& size at maturity
- Natural mortality
- Movement
- Average weight
- Sensitivity analyses
- Recreational

Management implications

- Current SPR calculation of 41% shows that we are close to the SPR threshold of 40%

Management implications

Cable Model \& Future Management

- SPR provides a metric to measure the status of the stock in ways that catch and CPUE cannot
- Function of Cable Model provides ability to incorporate the effects of MPAs into SPR calculation
- Proposed regulation changes (e.g. trap limit) and maturing MPAs may effect all three FMP thresholds

