Factors contributing to observed declines in pheasant harvest and population size in California and strategies for mitigating impacts to wild pheasants:

Findings from the California pheasant workshop; Yolo Wildlife Area – April 30 - May 1 2015

Factors Affecting Pheasant Decline	Possible Actions / Mitigation Strategies
Landscape Changes	Promote habitat restoration;
*Agriculture	Work with landowners through educational
-Clean farming practices	outreach and departmental programs (PLM) to
-Changes in crop type and distribution	encourage farming practices that favor pheasants;
*Successional change in historic habitats	Experimental removal of trees from CDFW managed lands;
Pesticide Application	Avoid spraying for public health by more closely
*Increasing use of Neonicotinoids	controlling the timing and duration of water
*Direct effects	delivery for cover and forage; educate landowners
*Decreased insect forage	about risks to wildlife
Changes in predator /competitor communities	Reduce trees in historic upland / grassland habitat
*Avian	types.
*Mammalian	Provide non-linear habitats in managed landscapes
<u>Weather / Climate</u>	Habitat improvements to provide water; More
* Currently, California is in its 4 th consecutive year	closely controlling the timing and duration of
of drought.	watering events for cover and forage
Impacts of released farm raised birds on wild	Current research to determine the prevalence of
populations	disease in wild and pen-reared birds
*Genetic mixing	
*Disease transmission	

Density Dependence: "Allee Effect"	Target site-specific variables that have negative
-As pheasant populations fall below the	impacts on population growth rate.
threshold for positive population growth,	Improve the quality of existing habitat
some harvest may become "additive".	Experiment with reduced harvest

1) Landscape Changes

- a. Agriculture
 - i. intensification and "clean farming" practices
 - 1. Larger monocultures; fewer fence rows; laser leveling with larger field size; less edge habitat; less "dirty" (surface) water
 - 2. Post 2006 E.coli outbreak in Southern California, crop producers requires growers to remove habitat within 150 yards of crop (no supporting scientific evidence; possible expansion of practice)
 - 3. Recent change in northern California growing practices to disc fields before the onset of winter: the perception is that a disked field looks better/uses less water
 - ii. Changes in harvested croplands
 - 1. Overall harvested acreage has remained stable;
 - 2. Decrease in CRP / Farm Bill enrolled lands
 - a. Primarily in the Central California region
 - 3. Increased rice agriculture (especially in north central California)
 - a. Post 1991, more disking and fallowing after harvest, less residual rice straw and less burning of rice straw
 - 4. Increases in orchards / nut tree production (north and central California)
 - 5. Decreases in cereal grain crops (statewide)
 - a. Especially barley
 - b. Sorghum, Winter wheat, Sugar beets
 - 6. Changes in the distribution of harvested cropland
 - a. Decreases in coastal agriculture
 - b. Increases in central valley agriculture
- b. Successional changes in managed habitats for wildlife
 - i. Proliferation of tree sp. in fertile central valley soils that were once wetland, riparian or grasslands.
- 2) Pesticide Application: Zn₃P₂ (Zinc phosphide); Neonicotinoids & others
 - a. Statewide, total pesticide use has not increased however the chemistry of pesticides has changed.
 - b. There has been a major increase in a new class of "neonicotinoid" pesticides since the mid-1990's
 - c. Implications of pesticide application for avian species:
 - i. Lethal effects
 - ii. Sub-lethal effects
 - iii. Reduction in cover for ground nesting birds
 - iv. Reduction in insects for grassland & gallinaceous birds

- 3) Changes in predator communities
 - a. Nest Predators:
 - i. Common Raven +800% since 1970's
 - ii. Crows + 100% since 1970's
 - b. Raptors:
 - i. Swainson's Hawk +4000% since 1970's
 - ii. Red-Shouldered Hawk +1000% since 1970's
 - iii. Coopers Hawk +100% since 1970's
 - iv. Red Tailed Hawk +50% since 1970's
 - c. Mammals:
 - i. Difficult to quantify but likely significant at local levels
 - d. Competitors:
 - i. Turkeys are increasing in all regions of the state
 - 1. Disrupt pheasant breeding behavior
 - 2. Displace pheasants
- 4) Weather and Climate
 - a. Low temperatures and high precipitation during the breeding season lead to favorable conditions for pheasant reproduction;
 - b. Current state of drought is certainly a factor impacting success in the short term.
- 5) Unknown whether the release of game farm pen raised pheasants are impacting the health of wild populations
 - a. Game farm birds have low survival in the wild; however it is not known whether infrequent mixing of pen-raised birds with wild birds has negative consequences for the genetic fitness of the population at large.
 - b. It is not known, the extent to which game farm birds harbor diseases that are common to the poultry industry and potentially serve as a vector for disease transmission to wild type pheasants
- 6) Density Dependence- Inverse effects on greater population: "Allee Effect"
 - a. As pheasant population density decreases and pheasant habitat becomes more fragmented, the ability of remaining birds to locate and acquire mates decreases, lowering reproductive success.