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The Conservation Lecture Series is organized by COFW's Habitat Conservation Planning Branch. The lecture series is
designed to deliver the most current scientific information about species that are of conservation concern.

Videos and Past Lectures

Below is a list of lectures and speakers for the Conservation Lecture Series. Lectures are open to anyone who is interested in
participating. Participants may attend in-person or remotely via webinar. Please be sure to register for each class. Lectures © Design Validation Monitoring Klamath Watershed
are recorded and posted for those unable to attend the day of the event. Visit the archive page to see recordings of past (D.J. Bandrowski, Aaron Marin, and Rocco Fior)
lectures.

© Dogs Moving Conservation Forward (DI". Deborah
(Smith) Woollett and Aimee Hurt)

Subscribe |to receive email updates and invitations to upcoming lectures. © Black Swans. Brown River (Dr. Viers)

© White-Nose Syndrome in Bats (Wyatt)
Upcoming Lectures © Invasive Watersnakes (Dr. Todd)

© Tricolored Blackbird (Dr. Meese)

Coming Soon © Bighorn Sheep (Dr. Villepique)
. . . © Vegetati d Fl f a Biodi ity Hotspot
American Badgers - August 6, 2015, 1:00-3:00 pm. Presented by Dr. Jessie Quinn ([?E i?rf;an SE LA TR s

The American badger (Taxidea faxus) is a Species of Special Concern in California.
Funded by a grant from the CDFW Resource Assessment Program (RAP) Dr. Jessie
Quinn studied the population distribution, movement behavior, and pathogen and
rodenticide exposure in collaboration with the UC Davis Wildlife Health Center, with
support from the OSPR Marine Wildlife Veterinary Care and Research Center. She
completed a Species Status Report for the American badger for CDFW in 2009, and
more recently completed a book chapter on pathogens and parasites in American

© FoothillYellow-legged Frog (Dr. Kupferberg)

© Spartina and California Clapper Rails (Dr. Strong)

& Townsend's Big-eared Bat (Dr. Johnston)

© California Red-Legged Frog (Alvarez)

badgers that will be included in the upcoming text Badgers of the Worid. Dr. Quinn's © Salmon in the Yolo Bypass (Jefires)
lecture will discuss the natural history of the species in California, potential threats to populations, and results of her

research. & White Abalone (Dr. Aquilino)
Location: Natural Resources Building, First Floor Auditorium © Amargosa Vole (Dr. Foley)
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Dimensions and Morphology

Multiple anabranches, islands and side channels.
Morphological features abound in-channel and on
the extensive and fully connected floodplain,
providing a high capacity to store sediment and
wood and supporting diverse wetlands and aquatic
habitats. Bank heights are low with stability
enhanced by riparian margins, but some unvegetated
banks are generated by localized erosion. Network
and floodplain are highly resilient to disturbance,
buffering the system.

michael.pollock@noaa.gov



Vegetation

Frequent, small channel adjustments and high,
reliable water table create ubiquitous settings for
proliferation and succession of aguatic, emergent,
riparian and floodplain plants. Wet woodlands on
Islands and floodplain supply and retain wood, and
widespread vegetation proximal to channels
produces abundant leaf litter. When present, beaver
use vegetation to build dams and lodges. Biogenic
obstructions such as large wood, beaver dams and
live vegetation help to create and retain an
anabranching channel pattern.

michael.pollock@noaa.gov 10



Sediment supply zone:
Weathering and erosion of steep slopes. Multiple tributaries
collect sediment and supply it to the mainstem. Forced
settings have single thread channels. Intermittent mountain
meadows and valleys have Stage 0-1 channels where
undisturbed.

-------

Alluvial fan zone: R
Depositional fans accumulate coarse
sediment, buffering transfers downstream.
Frequent avulsions in multiple Stage 0-1
channels, if undisturbed.

Transfer zone:
Main stream receives and exchanges coarse
sediment loads with floodplain, buffering
downstream transfer. Domain of Stage 0-|
channels if undisturbed.

Deposition zone:

Fine sediment is naturally deposited
on floodplain/coastal plain or as a
delta. Domain of Stage 0-1 channels
if undisturbed.

From Cluer and Thorne 2014
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Stage Zero Examples

Peel River, Canada
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From Cluer and Thorne 2014
See also Walter and Merritts 2008
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STAGE O
Anastomosing Key to percentage of benefits
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9 @ From Cluer and Thorne 2014
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Dynamic Equilibrium
(centuries to
millenia)

Aggrading
(decades to
centuries)

Incising
(vears)

Widening
(years to
decades)

From Pollock et al. 2014
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From Pollock et al. 2014
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Beaver dams create complex habitat that provide
many benefits
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Carol Vc

Since 2009, a
combination of BDAs
and beaver turned a
narrow single thread
channel with an
infrequently inundated
floodplain into a multi-
threaded channel with
water levels close to the
floodplain surface most
of the year

2013 Water extent

2014 Water extent
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Mainstem Below Dam

-=- Open Water of Main Pond |
Substantial hypoorheic

exchange can cool the
entire stream

-=- Upwelling Below Dam

Cool Water Refugia
= 55-65 Degrees
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Wood Jams

michael.pollock@noaa.gov
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Post 5-yr R flood WY15
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LOW WATER SURFACE

LOW WATER SURFACE

DEEP POOL

LOW WATER SURTACE
SHALLOW POOL

PLUNGE POOL




‘What types of str

Non-mobile-->

log
Off-
channel Beave
Location ponds Ponds

Low-gradient Habitat

Tributary channel, unconfined,
unentrenched

Tributary channel, confined
Tributary channel, entrenched
Mainstem channel, unconfined,
unentrenched

Mainstem channel, confined
Mainstem channel, entrenched
Estuary-distributary channels
Estuary-main channel

Medium Gradient, confined tributary
habitat

High gradient, confined tributa




e What are youi

Beaver
Ponds Valley Jams

<50m BFW, <
Stream size 500m VW

Slope 2-20%
Confined/Unconfined/Entrenched C/U/E
Geomorphology
Floodplain reconnectivity X
bedrock to alluvium conversion X
Increased planform complexity X
Increased spawning gravel depths
Decreased spawning gravel mobility
multichannel formation
Sediment storage/aggradation
Hydrology/Hydraulics
Extensive slow-water habitat
Increased streamflow/GW recharge
Hyporheic exchange
Thermal refugia
Upstream backwater pool
Downstream scour pool
Under or lateral scour pool
Biology/Other
ncrease riparian vegetatio
ood product
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Live Vegetation
Large Wood

Levee Setbacks
Landslides
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Sea Level (Ris
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Controls on valley width in mountainous Iandécapes: The role of
landsliding and implications for saimonid habitat

C. May', J. Roering?, L.S. Eaton?, and K.M. Burnett

'Department of Biology, James Madison University, Harrisonburg, Virginia 22807, USA
“Department of Geological Sciences. University of Oregon, Eugene, Oregon 97403, USA

‘Department of Geology and Environmental Science, James Madison University, Harrisonburg, Virginia 22807, USA
)5, Forest Service Pacific Northwest Research Station, Corvallis, Oregon 97331, USA

ABSTRACT

A fundamental yet unresolved guestion in fluvial geomorphology is what controls the width
of valleys in mountainous terrain. Establishing a predictive relation for valley floor width is
critical for realizing links between aguatic ecology and geomorphology becanse the most pro-
ductive riverine habitats often occur in low-gradient streams with hroad floodplains. Working
in the Oregon Coast Range (western United States), we used airborne lidar to explore controls
on valley width, and couple these findings with models of salmon habitat potential. We defined
how valley floor width varies with drainage area in a catchment that exhibits relatively uni-
form ridge-and-valley topography sculpted by shallow landslides and debris Bows. In drain-
age areas >0.1 km’, valley width increases as a power law function of drainage area with an
exponent of ~0.6. Consequently, valley width increases more rapidly downstream than chan-
nel width (exponent of ~0.4), as derived by local hydraulic geometry. We used this baseline val-
ley width—drainage area function to determine how ancient deep-seated landslides in a nearby
catchment influence valley width, Anomalously wide valleys tend to occur upstream of, and
adjacent to, Jarge landslides, while downstream valley segments are narrower than predicted
from our baseline relation. According to coho salmon habitat-potential models, broad valley
segments associated with deep-seated landsliding resulted in a greater proportion of the chan-
nel network hosting productive habitat. Because large landslides in this area are structurally
controlled, our findings indicate a strong link between geologic properties and aquatic habitat.

sediment by providing space for the formation
of debris flow fans. In addition, low-gradient
broad valleys with old-growth forest store the
great majority of above-ground and below-
ground carbon in mountain streams (Wohl et
al., 2012). Understanding the links between hill-
slope processes and riverine habitat is particu-
larly important for Pacific salmon (Oncorhyn-
chus spp.) because these fish are intricately tied
to Pacific Rim topography (Montgomery, 2000;
Waples et al., 2008).

The goals of this paper are twofold, First, we
seek to define an empirical relation between val-
ley width and drainage area (akin to hydraulic
geometry for river channels) in a setting with
negligible influence from variable rock prop-
ertics and deep-seated landslide activity. Our
approach uses high-resolution topography gen-
erated from airborne lidar to define this baseljge
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If all the ice melts, >200 ft
sea level rise

Sea Level Rise-
A Grade Changer

1-3 m rise predicted by
2100, but predicted rates
keep increasing.
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Conclusions

Sediment is a resource
No sediment = no alluvial valleys
Base flow water elevation is key design feature

Three components to stream restoration
Sediment, Water and Biota

These processes play out at multiple
spatio-temporal scales to:

Lower stream and valley slopes

Lower stream power per unit width

Increase retention rates of both sediment and
water

Benefit Fish, Benefit Farmers

michael.pollock@noaa.gov
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Regulatory Scenarios-BDs/BDAsS

Unknown what is in pond above BD nonC/ESA
adult Chinook in pool below, no “human
visible” fish passage

C/ESA juvenile coho in pond above BD C/ESA
adult coho in pool below, no “human visible”
fish passage.

C/ESA juvenile coho abundant in pond above
BD C/ESA juvenile coho in pool below, no
“human visible” fish passage.

Scenario 3 but below BDA, stream is drying up,
and the last remaining wet reach is just below
the beaver dam.

michael.pollock@noaa.gov 60



ST
‘w“

2
e &

Regulatory Scenarios-BDs/BDAsS

C/ESA juvenile coho in pond above BDA nonC/ESA adult
Chinook in pool below, no “human visible” fish passage

C/ESA juvenile coho in pond above BDA C/ESA adult
coho in pool below, no “human visible” fish passage.

C/ESA juvenile coho abundant in pond above BDA C/ESA
juvenile coho in pool below, no “human visible” fish
passage.

Scenario 3 but below BD, stream is drying up, and the
last remaining wet reach is just below the beaver dam.

BD increases total amount of good habitat, but also
increases total habitat that that is less good (e.g. temp,
DO issues)

michael.pollock@noaa.gov 61
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~ Stage Zero Attributes or Tendencies

Multi-threaded or no definable channels (vegetation)
Common in unconfined, low-gradient valleys

Low stream power/unit width

Wide range of hydrologic conditions

Abundant off-channel habitat w/long inundation periods
Elevated water tables

Wide range of Velocity/Depth combinations

Blurred line between wetlands and channels

Biological flow resistance in channels, on banks and on
stream adjacent surfaces (e.g. floodplains and mid-
channel islands)

Aquatic vegetation

Emergent vegetation

Live trees and shrubs

Dead trees

Beaver dams-dead trees and shrubs (N. Hemisphere)

michael.pollock@noaa.gov 64
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Restoration “Too
Stage Zero

Beaver Dams
Live Vegetation
Large Wood
Levee Setbacks
Landslides
Alluvial Fans
Sea Level Rise
Tectonics




Primary Dam
5) Dam-forced ponding
6) High-flow dispersal over
floodplain and high bench
7) Captures material recruited
from constriction dams and
other US sediment sources
causing aggradation

Primary Dam
- Pond creation

Hydraulic jet

Constriction Dams
1) Erode exposed cutbank for
gravel recruitment, increased =
sinuosity and channel lengthen- 3 S Terrace

Contemporary floodplain

Secondary Dam

1 - II;'ond extenrsaigin . lzr;gs ot pocl braiion High floodplain bench
. 3 Issmate 9 en 3) Bar formation -
¥ ™ 4) Incorporate existing features
> : to force flow against or to anchor
to.
* structure spacing not shown to
\ scale Terrace
. o A
o 3\ ~
X Secondary Dam
™~ - Decrease gradient caused by
X o & primary dam
e . - Return flow capture preveting
UL 5
\ to vl head cut formation

* structure spacing not shown to
scale

 Secondary Dam

- - Pond extension
- Return flow capture
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Beaver Restoration
v.2.12.15
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- Where are you in the network?

BFW<8 m*
* Support Vector Machine

Slope < 0.03 Plane-bed = Island-braided

Slope < 0.065 Step-pool —
=

small “Mountain” Channels Large Unconfined Channels

Prediction Model *

Montgomery and Buffington (1997) Beechie and Imaki (in review)
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