COMPOSITE WETLAND DELINEATION

FOR THE

NEWHALL RANCH RESOURCE MANAGEMENT AND DEVELOPMENT PLAN SITE AND ENTRADA PLANNING AREA

Prepared for:
Newhall Land and Farming Company
23823 Valencia Blvd.
Valencia, CA 91355

Prepared by:
130 Robin Hill Road, Suite 100
Santa Barbara, California 93117
(805) 964-6010 ✦ Fax: (805) 964-0259

URS Project Number 28907071

April 2, 2009
COMPOSITE WETLAND DELINEATION
NEWHALL RANCH RESOURCE MANAGEMENT

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 BACKGROUND AND PURPOSE</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 DESCRIPTION OF THE PROPOSED RMDP</td>
<td>1-3</td>
</tr>
<tr>
<td>2.0 PART ONE: URS CORPORATION 2007 FIELD DELINEATION OF WETLANDS</td>
<td>2-1</td>
</tr>
<tr>
<td>IN PROPOSED BRIDGE ALIGNMENT AREAS</td>
<td></td>
</tr>
<tr>
<td>2.1 STUDY AREA</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1.1 Potrero Canyon Road Bridge Alignment</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1.2 Onion Fields Bank Stablization Site</td>
<td>2-3</td>
</tr>
<tr>
<td>2.1.3 Long Canyon Road Bridge Alignment</td>
<td>2-3</td>
</tr>
<tr>
<td>2.1.4 Southern Abutment of Commerce Center Drive Bridge</td>
<td>2-4</td>
</tr>
<tr>
<td>2.1.5 Wetland Defined</td>
<td>2-4</td>
</tr>
<tr>
<td>2.1.6 SWANCC Decision</td>
<td>2-7</td>
</tr>
<tr>
<td>2.1.7 Rapanos/Carabell Decision</td>
<td>2-8</td>
</tr>
<tr>
<td>2.2 METHODS</td>
<td>2-11</td>
</tr>
<tr>
<td>2.2.1 Vegetation</td>
<td>2-11</td>
</tr>
<tr>
<td>2.2.2 Soils</td>
<td>2-11</td>
</tr>
<tr>
<td>2.2.3 Hydrology</td>
<td>2-12</td>
</tr>
<tr>
<td>2.2.4 Classification of Wetlands</td>
<td>2-12</td>
</tr>
<tr>
<td>2.3 WETLAND DELINEATION RESULTS</td>
<td>2-14</td>
</tr>
<tr>
<td>2.3.1 Study Area Overview: Vegetation</td>
<td>2-14</td>
</tr>
<tr>
<td>2.3.2 Study Area Overview: Soils</td>
<td>2-17</td>
</tr>
<tr>
<td>2.3.3 Study Area Overview: Hydrology</td>
<td>2-19</td>
</tr>
<tr>
<td>2.3.4 Determination of Wetlands within the Study Area</td>
<td>2-19</td>
</tr>
<tr>
<td>3.0 PART TWO: COMPOSITE DELINEATION OF WETLANDS WITHIN THE RMDP SITE</td>
<td>3-1</td>
</tr>
<tr>
<td>AND THE ADJACENT ENTRADA PLANNING AREA</td>
<td></td>
</tr>
<tr>
<td>3.1 STUDY AREA</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 METHODS AND SOURCE MATERIALS</td>
<td>3-3</td>
</tr>
</tbody>
</table>
Section | Page
--- | ---
3.2.1 | URS Corporation (2004) Delineation Report for the RMDP Site 3-4
3.2.2 | Lukos and Associates (2008) Delineation Report for the Entrada Planning Area... 3-4
3.2.4 | URS Corporation (2007) Field Delineation of Wetlands in Proposed Bridge Alignment Areas ... 3-6

3.3 RESULTS .. 3-6
3.4 CONCLUSION AND RECOMMENDATIONS .. 3-8

4.0 REFERENCES .. 4-1

List of Tables	Page
Table 1 | Summary of Jurisdictional Wetlands Acreage per Study Location and Vegetation Type .. 2-14
Table 2 | Corps Jurisdictional Wetlands within the RMDP Site and Entrada Planning Area (Acres) ... 3-7

List of Figures	Page
Figure 1 | Project Vicinity Map .. 1-2
Figure 2 | Bridge Alignment Alternatives and Bank Stabilization Location Map 2-2
Figure 3 | Potrero Canyon Bridge Alignment Vegetation Map .. 2-21
Figure 4 | Potrero Canyon Bridge Alignment Soils Map ... 2-22
Figure 5 | Potrero Canyon Bridge Alignment Wetland Delineation Map 2-24
Figure 6 | Onion Fields Bank Stabilization Site Vegetation Map .. 2-26
Figure 7 | Onion Fields Bank Stabilization Site Soils Map ... 2-27
Figure 8 | Onion Fields Bank Stabilization Site Wetland Delineation Map 2-28
Figure 9 | Long Canyon Bridge Alignment Vegetation Map ... 2-30
Figure 10 | Long Canyon Bridge Alignment Soils Map ... 2-31
Figure 11 | Long Canyon Bridge Alignment Wetland Delineation Map 2-33
Figure 12 | Southern Abutment of Commerce Center Drive Bridge Vegetation Map 2-34
Figure 13 | Southern Abutment of Commerce Center Drive Bridge Soils Map 2-36
Figure 14 | Southern Abutment of Commerce Center Drive Bridge Wetland Delineation Map .. 2-37
Figure 15 | Study Area for Composite Wetland Delineation ... 3-2
Figure 16 | Wetlands within the RMDP Site and Entrada Planning Area 3-9
List of Appendices

Appendix A Wetland Determination Data Forms
Appendix B List of On-site Plant Species and their Wetland Indicator Status
Appendix C Photo Documentation
Appendix D URS Corporation (2004) Jurisdiction Delineation for the RMDP Site
 for the Entrada Planning Area
SECTION 1.0
INTRODUCTION

This composite wetland delineation has been prepared by URS Corporation (URS) on behalf of the Newhall Land and Farming Company (Newhall Land). The purpose of this document is to determine the location and extent of all lands within Newhall Land’s Resource Management and Development Plan (RMDP) project site and the adjacent Entrada planning area (Figure 1) that would meet the federal definition of wetlands (see 33 CFR 328.3(b)) promulgated by the U.S. Army Corps of Engineers (Corps). The extent of wetlands presented in this document includes wetland boundaries delineated in previous studies, as well as boundaries delineated specifically for this report. The body of this report is organized in two parts: Part One describes the field study conducted specifically for this report, and Part Two integrates the results of that study with the results of previous investigations to create a comprehensive, composite wetland delineation for the entire project site.

1.1 BACKGROUND AND PURPOSE

In 2003, the Los Angeles County Board of Supervisors approved the Newhall Ranch Specific Plan (Specific Plan), which designated a portion of the currently undeveloped Newhall Ranch site near Valencia, California for residential and other urban uses. However, although approval from the County has been granted, build out of the Specific Plan development cannot proceed without compliance with federal and state statutes including the Clean Water Act and applicable sections of the California Fish and Game Code. Both of these statutes require project proponents to acquire authorizations prior to undertaking development activities that would affect waters and streambeds. To meet this need in a streamlined manner, Newhall Land has proposed the RMDP, a comprehensive, long-term permitting plan intended to obtain the required state and federal approvals to build out the site’s infrastructure and urban land uses over the next 20 years as previously approved by Los Angeles County. Specifically, the RMDP would involve issuance of a long-term, Individual Section 404 Permit from the Corps and a Master Streambed Alteration Agreement from the California Department of Fish and Game (CDFG). For a more detailed description of the RMDP, please refer to Section 1.2 below, or to the RMDP technical document (Dudek 2006b).

As stated above, Newhall Land is currently in the process of obtaining the federal and state authorizations laid out in the RMDP. Because issuance of the requested permits could potentially result in significant effects on the environment, this process includes working with the Corps and CDFG to prepare a joint Environmental Impact Statement/Environmental Impact Report (EIS/EIR) as required by the National Environmental Policy Act (NEPA) and California Environmental Quality Act (CEQA). To assist preparation of the EIS/EIR, numerous jurisdictional delineations and studies have been conducted within the RMDP site.
over the last six years. However, not all of these studies addressed wetlands specifically, and some of the studies were limited to specific portions of the project area.

The most comprehensive jurisdictional delineation for the project was completed in 2004, when URS field mapped all jurisdictional rivers and streams within the RMDP project site. Concurrence with the mapped jurisdictional boundaries was received from the Corps and CDFG in 2004. However, while the 2004 delineation provided comprehensive coverage of the jurisdictional streams on-site, it did not address the presence of special aquatic sites, such as wetlands, within the project site. Because special aquatic sites are afforded additional legal protection beyond that extended to non-wetland waters of the U.S. under the Clean Water Act, it was determined that supplemental delineation work should be performed to identify the location and extent of federally protected wetlands on-site. The 2004 delineation was exhaustive in its treatment of CDFG jurisdictional streambeds on-site, and no additional delineation work is required with regard to those areas. Streambeds under the jurisdiction of CDFG are therefore not discussed further in this document. The wetland boundaries presented in this composite wetland delineation report are compiled from the following sources:

- A field delineation of wetlands within the Entrada portion of the project area conducted by Lukos and Associates in 2008 (Appendix E).
- Interpretation of high-resolution aerial photographs of the Santa Clara River within the RMDP site to obtain a planning-level delineation of wetlands, conducted jointly by URS and Dudek and Associates in 2006.
- A field delineation of on-site wetlands in certain portions of the project site where large-scale project facilities (i.e., bridges across the Santa Clara River mainstem) are proposed, conducted specifically for this composite wetland delineation report. For more information, please refer to Part Two of this document.

A report of the field delineations conducted specifically for this composite report in 2007 is presented in Part One, below. The results of that effort and the other surveys identified above are integrated into a single, project-wide planning-level delineation in Part Two.

1.2 DESCRIPTION OF THE PROPOSED RMDP

The intent of the RMDP is to obtain comprehensive state and federal approvals to construct facilities needed to supply a portion of the infrastructure required to build out the Newhall Ranch Specific Plan site’s urban land uses over the next 20 years as previously approved by Los Angeles County. The proposed RMDP project activities that may affect jurisdictional areas include construction and maintenance of bridges, bank stabilization, grade control structures, utility crossings, storm drains, building pads, debris and detention basins, and a
water reclamation plant outfall. Among the most prominent features proposed are three new roadway bridges across the Santa Clara River, and buried bank stabilization that would line a portion of the river and tributaries. A fully detailed description of the facilities proposed in the Newhall Ranch RMDP project can be found in the RMDP technical document (Dudek 2006b).

By seeking a long-term, comprehensive Section 404 permit and Master 1605 Agreement, Newhall Land can facilitate a well planned and streamlined environmental evaluation and decision process by the Corps and CDFG, and can provide an opportunity to design a long-term, regionally-based planning and mitigation program for impacts to the affected riparian habitats. The Section 404 permit and Master 1605 Agreement would allow project components to be implemented under a comprehensive set of specific conditions, thereby avoiding the traditional case-by-case permitting process, expediting the permitting process for qualified project components, and ensuring consistent mitigation.

The various components of the proposed RMDP would be constructed by Newhall Land or other private or public agencies. Third parties would be allowed to perform some of the activities (such as ongoing maintenance operations) authorized under the proposed Section 404 permit and Master 1605 Agreement issued to Newhall Land, but would be bound by the conditions in those permits.
SECTION 2.0
PART ONE: URS CORPORATION 2007 FIELD DELINEATION OF WETLANDS IN PROPOSED BRIDGE ALIGNMENT AREAS

This Part presents the methods and results of field investigations for wetlands conducted by URS staff in portions of the RMDP site where large-scale facilities, such as bridges across the Santa Clara River mainstem, are proposed that would potentially impact any wetlands present. Field investigations were conducted in August, 2007.

2.1 STUDY AREA

The study area assessed in the 2007 field delineation (Part One study area) consists of four discrete locations within the RMDP project site, including three proposed bridge locations and one area where proposed bank stabilization would impact existing riparian vegetation (Figure 2). From west to east, these locations include: the Potrero Canyon Road bridge alignment (actually two alternative alignments, but located in the same general area); the Onion Fields bank stabilization area; the Long Canyon Road bridge alignment; and the southern abutment of the Commerce Center Drive bridge. All four of these locations that comprise the Part One study area are located immediately adjacent to the Santa Clara River mainstem within the RMDP site.

As shown on Figure 2, the Santa Clara River traverses the RMDP site from east to west and is the dominant hydrologic feature on the site. The current and historic river floodplain are evident from the the existing hydrology, sediment deposition, topographic gradients, and the residual disjunct riparian vegetation. Row-crop agricultural fields are situated on the historic floodplain and adjacent historic river terraces, especially on the north side of the river where the dominant topography is flat to slightly sloping. On the south side of the river, the presence of steeper canyons reduces the available agricultural land near the Santa Clara River. Oil production is the dominant land use in the southern hills, although some of the larger mesas are actively farmed.

Descriptions of the four locations that comprise the Part One study area are provided below. The study area boundary for each of the locations includes the disturbance footprint for the project component proposed at that location (bridge or bank stabilization) and a 100-foot buffer surrounding the footprint.

2.1.1 Potrero Canyon Road Bridge Alignment

The Potrero Canyon Road bridge alignment study location is located in the western portion of the RMDP site at the mouth of Potrero Canyon (Figure 2). This 7.97-acre study location contains the disturbance footprints (including buffers, as described above) of two alternative bridge alignments which will be evaluated in the joint EIS/EIR for the RMDP project. This
Figure 2. Project Location Map

Legend
- Newhall Ranch Boundary
- Bridge Alignment Alternatives and Bank Stabilization
- Aerial Interpreted River
- Basemap
 Aerial flown by Robert J. Lung & Associates, 5/24/2006, 0.5ft resolution

Scale: 1 inch equals 1,525 feet

Newhall Ranch
Resource Management and Development Plan

Potrero Canyon Bridge
Onion Field
Bank Stabilization
Long Canyon Bridge
Santa Clara River

Commerce Center Bridge
Castaic Creek
State Route 126
Santa Clara River

T:\Newhall\deliverables\fieldmaps\bridges_fieldmap_2006aerials\site_location_map.mx
location includes a portion of the Santa Clara River, its floodplain, and riparian, agricultural, and upland sage scrub vegetation. Current land uses within the Potrero Canyon Road bridge study location include agriculture, grazing, and open space.

The majority of the Potrero Canyon Road bridge study location is composed of a flat to slightly sloping floodplain comprised of a main channel and several secondary channels separated by long, narrow sandbars. The study location spans the active channel, and extends into the adjacent uplands on the northern and southern banks. The dynamic nature of the river prevents vegetation within the channel from reaching maturity and limits the type of vegetation to riparian scrub communities, which occur on stable sandbars and terraces within the active channel. Along the banks of the river, mature vegetation communities including cottonwood/willow riparian forest are present. The area beyond the northern bank includes riparian scrub and riparian forest vegetation that are currently separated from the main channel by agricultural fields. The southern bank at this location contains a slightly sloping terrace that begins near a dry secondary channel along the edge of the River and continues south toward a ranch road. This area is within the Santa Clara River floodplain and is dominated by mature riparian forest. Additionally, riparian scrub vegetation occurs in a drainage ditch adjacent to a ranch road in the southernmost portion of the Potrero Canyon Road bridge study location.

2.1.2 Onion Fields Bank Stabilization Site

The Onion Fields bank stabilization study location is located in the western portion of the RMDP site approximately 0.5 miles east of the proposed bridge across the river at Potrero Canyon Road and 30 feet south of the Santa Clara River (Figure 2). This 3.13 acre study location covers an oval shaped area between the river and an east-west trending ranch road. The study location is partly elevated above the Santa Clara River floodplain due to an upward-sloping bank. The majority of the study location is composed of a flat to moderately sloping river terrace containing mature riparian forest. The current land use within the Onion Fields study location is open space, although a dirt road and an irrigated agricultural field occur immediately adjacent to this location.

2.1.3 Long Canyon Road Bridge Alignment

The Long Canyon Road bridge alignment study location is situated in the middle portion of the project site, approximately 1.25 miles east of the proposed bridge across the river at Potrero Canyon Road (Figure 2). This 2.1 acre study area contains the proposed alignment for the Long Canyon Road bridge across the Santa Clara River, including a 100-foot buffer surrounding the proposed disturbance footprint. Within this area, ground covers include the active channel, riparian corridor, and floodplain of the Santa Clara River, and adjacent fallow agricultural fields. Current land uses within the Long Canyon Road bridge alignment study location include agriculture, cattle grazing, and open space.
The majority of this study location is composed of a flat to slightly sloping floodplain containing a primary channel and several secondary channels separated by sandbars. The floodplain is dominated by riparian scrub habitat. There is a river terrace approximately 12 feet high along the southern part of the study area that is situated above the current floodplain. This terrace is also dominated by riparian scrub vegetation. The northernmost and southernmost portions of the study location (ends of the proposed bridge) currently contain row-crop agricultural fields.

2.1.4 Southern Abutment of Commerce Center Drive Bridge

The Commerce Center Drive bridge alignment study location is located very close to the eastern boundary of the RMDP site (Figure 2.) The approximately 2.94 acre study area includes the disturbance footprint for the southern abutment of the Commerce Center Drive bridge across the river, including a 100-foot buffer (The study location was limited to the southern abutment because Newhall Land already holds a valid Section 404 Permit and Streambed Alteration Agreement for the remainder of the bridge, and only the southern abutment would require authorization under the proposed RMDP.). Land covers within the study location include the Santa Clara River, its floodplain, and riparian and sage scrub vegetation. Current land uses within the Commerce Center Drive bridge study location include agriculture and open space.

The majority of the Commerce Center Drive bridge study location is composed of a flat to slightly sloping floodplain dominated by riparian scrub vegetation. The southernmost portion of the study location includes part of a hill dominated by upland sage scrub vegetation.

Pursuant to Section 404 of the Clean Water Act (CWA), the Corps regulates the discharge of dredged and/or fill material into waters of the U.S., including navigable waterways and wetlands adjacent to navigable waterways; relatively permanent, non-navigable tributaries to navigable waterways; and wetlands adjacent to non-navigable waters that are contiguous with navigable waterways. The CWA states that the Corps may only issue a Section 404 Permit for the Least Environmentally Damaging Practicable Alternative (LEDPA), and the U.S. Environmental Protection Agency (EPA) has established guidelines [404(b)(1) Guidelines] enabling the Corps to compare alternatives to a proposed discharge and determine the LEDPA. Certain high-value aquatic resource areas, termed Special Aquatic Sites, are given additional protection by the 404(b)(1) Guidelines and avoidance is required if practicable. Special Aquatic Sites are defined to include wetlands, mudflats, vegetated shallows, riffle/pool complexes, coral reefs, and sanctuaries and refuges. Of these features, only wetlands occur within the RMDP project area.

2.1.5 Wetland Defined

Wetlands are defined by 33 CFR 328.3(b) as “those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under
normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions” (Environmental Laboratory 1987). In 1987, the Corps published the *Corps of Engineers Wetland Delineation Manual* (Environmental Laboratory 1987; Wetland Delineation Manual) to guide its field personnel in determining jurisdictional wetland boundaries. In 2006, the *Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region* (USACE 2006; Arid West Regional Supplement) was published by the Corps for use in California (Region 0) as a complement to the Wetland Delineation Manual. Where differences occur within the two documents, the Arid West Regional Supplement takes precedence. The methodology set forth in the Wetland Delineation Manual and the Arid West Regional Supplement requires that to be considered a wetland, the vegetation, soils, and hydrology of an area must exhibit at least minimal hydric characteristics. While the Wetland Delineation Manual and Arid West Regional Supplement provide great detail concerning methodology and allow for varying special conditions, a wetland should normally meet each of the following three criteria: Hydrophytic Vegetation, Hydric Soils, and Wetland Hydrology. These wetland parameters are discussed in greater detail below.

2.1.5.1 Hydrophytic Vegetation

In order for a site to meet the CWA definition of a wetland, the site must exhibit a prevalence of hydrophytic vegetation. A site is usually considered to have a prevalence of hydrophytic vegetation when 50 percent or more of the dominant plant species of a specific community are classified as obligate, facultative-wetland, or facultative (excluding FAC-) according to the *National List of Plant Species That Occur in Wetlands* (Reed 1988). This list divides plants into five categories that reflect the range of estimated probabilities (expressed as a frequency of occurrence) of a species occurring in a wetland versus a non-wetland.

These categories are as follows:

- **Obligate Wetland (OBL)** – Occur almost always (estimated probability >99 percent) under natural conditions in wetlands.
- **Facultative Wetland (FACW)** – Usually occur in wetlands (estimated probability 67 percent to 99 percent), but occasionally found in non-wetlands.
- **Facultative (FAC)** – Equally likely to occur in wetlands or non-wetlands (estimated probability 34 percent to 66 percent).
- **Facultative Upland (FACU)** – Usually occur in non-wetlands (estimated probability 67 percent to 99 percent), but occasionally found in wetlands.
- **Obligate Upland (UPL)** – May occur in wetlands in another region, but occur almost always (estimated probability >99 percent) under natural conditions in non-wetlands in southern California.
A positive sign (+) or negative sign (-) can be used with the Facultative Wetland, Facultative, and Facultative Upland categories to more specifically define the likelihood of occurrence toward the higher or lower end of the category (positive sign indicates a higher probability that the species occurs in wetlands).

2.1.5.2 Hydric Soils

A hydric soil is defined by the National Technical Committee for Hydric Soils as a soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (NRCS 1994). A hydric soil may be drained or undrained, and a drained hydric soil may not continue to support hydrophytic vegetation yet still retain the appearance of a hydric soil.

The following indicators are used as a guide to determine whether a given soil meets the criteria for hydric soils. These indicators are listed in decreasing order of importance and reliability. In most situations, only one of these indicators is required to make a positive determination.

- Presence of organic soils (Histosols) or soils that have more than 50 percent (by volume) of the upper 32 inches of soil is composed of organic soil materials
- Presence of histic epipedons (i.e., layers of organic matter in the upper soil) that are saturated for 30 days or more during the growing season
- Presence of sulfidic material or odors indicating anaerobic conditions
- Presence of an aquic or peraquic regime in which oxygen in the upper soil has been displaced by surface water or groundwater saturation that causes anaerobic conditions
- Evidence of chemically reducing conditions in the soil based on chemical tests
- Presence of gleyed soil conditions or soils with bright mottles and/or low matrix chroma
- Soils that occur on the National Technical Committee for Hydric Soils list of hydric soils
- Presence of manganese and iron concretions
- Presence of high amounts of organic matter in the upper soil and/or organic matter streaking (sandy soils only)

2.1.5.3 Wetland Hydrology

The term “wetland hydrology” indicates that the hydrology of an area is periodically inundated or that it has soils saturated to the surface at some time during the growing season. Wetlands are characterized by various hydrologic regimes that range from permanently inundated to irregularly inundated or saturated. In other words, some wetlands are always wet while other wetlands may contain water during only part of the year. The minimum threshold for wetland
hydrology under most circumstances is inundation or saturation within 12 inches of the surface for more than five percent of the growing season (Environmental Laboratory 1987). The growing season is defined as the duration between the last freeze of the spring and the first freeze of the fall.

A list of field indicators of wetland hydrology is presented below in decreasing order of importance and reliability:

- Recorded data on inundation or soil saturation from wells or gauges
- Visual observation of inundation or soil saturation within 12 inches of the surface
- Water marks on stems and fixed objects
- Drift lines consisting of debris and waterborne material
- Sediment deposition
- Visual evidence of surface flows and ponding

Secondary indicators, of which two or more are required in order to meet the hydrology criterion, include the following:

- Oxidized root channels in the upper 12 inches of the soil
- Water-stained leaves
- Local soil survey data
- Other site-dependant features based on the professional judgment of the delineator

According to the Wetland Delineation Manual, wetland hydrology can be inferred indirectly if all of the dominant plants in an area are obligate (OBL) species.

2.1.6 SWANCC Decision

Although not related to the three parameters discussed above, the Corps’ jurisdiction over wetlands is also limited by legal interpretations of the CWA statute and associated regulations. In 2001, the United States Supreme Court stated in Solid Waste Agency of Northern Cook Cty. v. Army Corps of Engineers (531 U.S. 159, 168 (2001)), that the Corps’ CWA jurisdiction does not extend to ponds that “are not adjacent to open water,” and determined that the Corps exceeded its statutory authority by asserting CWA jurisdiction over “an abandoned sand and gravel pit in northern Illinois, which provides habitat for migratory birds.” In reaching its decision, the Court concluded that the “Migratory Bird Rule,” which served as the basis for the Corps’ asserted jurisdiction, was not supported by the CWA. The Migratory Bird Rule extended CWA jurisdiction to intrastate waters “which are or would be used as habitat by birds protected by Migratory Bird Treaties or which are or
would be used as habitat by other migratory birds which cross state lines...” (Id. at p. 164). This decision stands for the proposition that non-navigable isolated, intrastate waters lacking interstate commerce connections other than potential to be used by migratory waterfowl are not waters of the United States and thus are not jurisdictional under the CWA.

2.1.7 Rapanos/Carabell Decision

In another example, in 2006 the United States Supreme Court decided Rapanos v. United States, 126 S.Ct. 2208 (2006) (“Rapanos”), consolidated cases regarding the extent of the Corps’ jurisdiction over waters of the United States under the CWA. The court issued no majority opinion in Rapanos. Instead, the justices authored five separate opinions including the “plurality” opinion, authored by Justice Scalia (joined by three other justices), and a concurring opinion by Justice Kennedy. To guide implementation of the decision, the Corps issued a memorandum stating that “regulatory jurisdiction under the CWA exists over a water body if either the plurality’s or Justice Kennedy’s standard is satisfied” (Corps, CWA Jurisdiction Following the United States Supreme Court’s Decision in Rapanos v. United States & Carabell v. United States, December 2, 2008, [“Rapanos Guidance Memorandum”]).

According to the plurality opinion in Rapanos, “the waters of the United States’ include only relatively permanent, standing or flowing bodies of water” and do not include “ordinarily dry channels through which water occasionally or intermittently flows” (Rapanos, 126 S. Ct. 2208, 2221). In addition, while all wetlands that meet the Corps’ definition are considered adjacent wetlands, only those adjacent wetlands that have a continuous surface connection because they directly abut the tributary (e.g., they are not separated by uplands, a berm, dike, or similar feature) are considered jurisdictional under the plurality standard (Rapanos Guidance Memorandum, p. 7).

Under the Kennedy approach, “the Corps’ jurisdiction over wetlands depends upon the existence of a significant nexus between the wetlands in question and navigable waters in the traditional sense” (Rapanos 126 S.Ct. 2208, 2248). “Wetlands possess the requisite nexus, and thus come within the statutory phrase ‘navigable waters,’ if the wetlands, either alone or in combination with similarly situated lands in the region, significantly affect the chemical, physical, and biological integrity of other covered waters more readily understood as ‘navigable.’ When, in contrast, wetlands’ effects on water quality are speculative or insubstantial, they fall outside the zone fairly encompassed by the statutory term “navigable waters” (Ibid.). Justice Kennedy identified “pollutant trapping, flood control, and runoff storage” as some of the critical functions wetlands can perform relative to other waters (Id. at p. 2248). He concluded that, given wetlands’ ecological role, “mere adjacency” to a non-navigable tributary was insufficient to establish CWA jurisdiction, and that “a more specific inquiry, based on the significant nexus standard, is therefore necessary” (Id. at pp. 2249-2252).
Interpreting these decisions, and according to the Rapanos Guidance Memorandum, the Corps and EPA will assert jurisdiction over the following waters:

- Traditional navigable waters
- Wetlands adjacent to traditional navigable waters
- Non-navigable tributaries of traditional navigable waters that are relatively permanent where the tributaries typically flow year-round or have continuous flow at least seasonally (e.g., typically three months)
- Wetlands that directly abut such tributaries

The Corps and EPA will decide jurisdiction over the following waters based on a fact-specific analysis to determine whether they have a significant nexus with a traditional navigable water:

- Non-navigable tributaries that are not relatively permanent
- Wetlands adjacent to non-navigable tributaries that are not relatively permanent
- Wetlands adjacent to but that does not directly abut a relatively permanent non-navigable tributary

Where a significant nexus analysis is required, the Corps and EPA will apply the significant nexus standard as follows:

- A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by all wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical and biological integrity of downstream traditional navigable waters.
- Significant nexus includes consideration of hydrologic and ecologic factors.

The Corps and EPA generally will not assert jurisdiction over the following features:

- Swales or erosional features (e.g., gullies, small washes characterized by low volume, infrequent, or short duration flow)
- Ditches (including roadside ditches) excavated wholly in and draining only uplands and that do not carry a relatively permanent flow of water

A wetland delineation of potentially jurisdictional features was conducted in the study area in accordance with the procedures of the Corps of Engineers Wetlands Delineation Manual (Environmental Laboratory 1987), Department of the Army (DOA) Clarification and Interpretation of the 1987 USACE Wetland Delineation Manual (DOA 1992), and the Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid
West Region (USACE 2006; Arid West Region Supplement). In addition, the United States Geologic Society (USGS) Val Verde, CA (1995) and Newhall, CA (1995) 7.5 minute topographical quadrangle maps, Soil Survey Geographic Database for the San Francis Area, CA (NRCS 2007), and a high quality aerial photograph of the RMDP project site and the surrounding area (Psomas 2003) were utilized in the delineation. Field surveys were conducted by URS staff on September 25, 26, and 28 and included senior biologists John Davis IV, Johanna Kisner, and Erik Larsen and staff biologists Julie Love, Laura Rizzo, and Wayne Vogler. As described above the study area included four discrete locations, each of which contained the disturbance footprint for a proposed project facility (bridge or bank stabilization) and a 100-foot buffer.

The delineation of wetlands within the study area was complicated because the majority of the study locations were located within the active and/or historic floodplain of the Santa Clara River. Sandy soils and current agricultural uses within the floodplain added to the complexity. To address the challenges presented by sandy soils, the wetland delineation included an evaluation of “problem areas” where appropriate. Areas containing high concentrations of sandy soil were analyzed conservatively for evidence of hydric conditions as specified in the Arid West Region Manual. Agricultural operations have greatly changed the vegetation, soil, and hydrology within the RMDP site. In many areas, agricultural fields are located within the historic river floodplain and often physically isolate on-site hydrophytic vegetation from the river’s potential hydrologic influence. Although row-crop agricultural fields within the Santa Clara River floodplain have affected the extent to which flood flows can access floodplain areas beyond the active channel, the RMDP site has been an agricultural operation for many decades, and the existing condition represents “normal circumstances” on the site.

Data collected during the assessment of wetlands were recorded on Wetland Determination Data Forms – Arid West Region Supplement (Corps 2006). Sample point locations were selected for both potential wetland and upland areas to determine the wetland/upland boundary and characterize the vegetation, soils, and hydrology of the area. Soil pits were excavated in areas supporting hydrophytic vegetation to determine the extent of saturation and to examine the soil for positive indicators of hydric soils and wetland hydrology. Soil pits were also excavated in upland areas adjacent to wetlands to aid in delineating the extent of jurisdictional wetlands. At each sample point, plant species composition and indicators of hydric soil and wetland hydrology were recorded. Data forms completed for wetland analysis are included in Appendix A.

Thirty-six sampling points were analyzed to determine boundary between wetland and upland portions of the four study locations. Sample points PC-1 through PC-20 (20 sample points) characterize the Potrero Canyon Road bridge alignment study location; BS-1 (one sample point) characterizes the Onion Fields bank stabilization study location; LC-1 through LC-8 (eight sample points) characterize the Long Canyon Road bridge alignment study location.
location; and, CC-1 through CC-7 (seven sample points) characterize the study location at the
southern abutment of the Commerce Center Drive bridge. To the maximum extent possible,
paired upland and wetland sample points were taken. Sample point locations were captured
in the field using a Trimble GeoExplorer Series 2003 GPS unit capable of sub-meter
accuracy and were plotted on aerial photographs overlaid with the approximate bridge and
bank stabilization footprints and study location boundaries. A sample point was considered to
be within a wetland (an “in” point) if the area met all three wetland parameters: dominance
by wetland plant species; positive wetland hydrology indicators; and hydric soil conditions.
If one or more of these parameters was not met, the point was considered not to be within a
wetland (an “out” point) and a line was drawn between the two sample points on the site
specific aerial photograph.

2.2 METHODS

2.2.1 Vegetation

Prior to field investigations, URS staff obtained a vegetation map of the entire RMDP project
area in GIS format prepared for Newhall Land by Dudek and Associates (2006). The
classification system used for the vegetation map is a combination of the established Holland
(1986) and Sawyer and Keeler-Wolf (1995) classification systems. This map was used in
conjunction with high-resolution aerial photos of the site to predict areas likely to contain
wetlands, and to ensure that areas containing riparian vegetation communities were
thoroughly sampled during field investigations. At each sampling point, the dominant plant
species within each stratum (tree, shrub, herb, woody vine) were determined using the 50/20
rule and were identified to the species level. The wetland status of dominant plant species
present at each sampling point was determined using the National List of Species That Occur
in Wetlands: California (Region 0) (Reed 1988). As defined in Section 2: Regulatory Setting,
this list assigns each plant species an indicator status of OBL, FACW, FAC, FACU, or UPL.
When more than 50 percent of the dominant plants consisted of species rated OBL, FACW,
or FAC (excluding FAC-), the vegetation at the sampling location was classified as
“hydrophytic vegetation” in accordance with the Wetland Delineation Manual and Arid West
Regional Supplement.

2.2.2 Soils

At each sample point, a delineation shovel was used to dig a pit at least 12 inches in depth,
and an intact soil sample allowing inspection of the soil profile was extracted where possible.
The characteristics of on-site soils were compared to the literature results obtained from the
NRCS Soil Survey Geographic Database, San Francis Area, CA (NRCS 2007) for the study
area. The soil profiles were examined for indicators of hydric soils and to determine if the
on-site soils were consistent with the USDA soils map of the area. Soil characteristics
assessed were soil color, texture, and the presence of mottles, organic matter, and other
indicators of hydric soils as listed on the Corps’ Wetland Determination Data Forms for the Arid West region. A Munsell® Soil Color Chart (Munsell Color 2000) was used in the field to identify the color of soil and to assist in soil type verification and the color of mottles, where present.

2.2.3 Hydrology

Each sample point was examined for positive field indicators of wetland hydrology. The soil pit was examined for standing water or saturation, and the surrounding area was investigated for hydrologic indicators as specified on the Wetland Delineation Data Forms, including water marks, sediment deposits, drift lines, and other primary and secondary indicators of wetland hydrology.

2.2.4 Classification of Wetlands

After Corps-jurisdictional wetlands were delineated in the field, URS staff classified the delineated areas into wetland classes using Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al. 1979). This classification system, used by the U.S. Fish and Wildlife Service (USFWS), classifies wetlands into systems and subsystems based on the type of aquatic feature with which the wetland is associated (the five systems are marine, estuarine, lacustrine, riverine, and palustrine) and then further assigns classes, subclasses, and dominance types to wetlands within each system and subsystem. As the study area does not include any marine, estuarine, or lacustrine (lake) environments, Corps-jurisdictional wetlands on-site are limited to the riverine and palustrine (vegetated fringe) systems. The palustrine system includes wetlands that are dominated by trees, shrubs, or persistent emergent vegetation, and includes classes such as aquatic bed, scrub-shrub wetland and forested wetland. Because the classification system is open-ended beyond the class level, site-specific subclasses were defined based on vegetation communities present within the study area. Wetlands delineated were classified into two classes and three subclasses, which are described below.

Class: Scrub-shrub Wetland. Scrub-shrub Wetlands include areas dominated by woody vegetation less than 6 meters (20 feet) tall, including both shrubs and young trees. Dominant species include true shrubs, young trees, and trees or shrubs that are small or stunted because of environmental conditions. Scrub-shrub Wetlands may represent a successional stage leading to the Forested Wetland class, or they may be relatively stable communities. Scrub-Scrub Wetlands are one of the most widespread classes in the United States (Cowardin et al. 1979).

1 It should be noted that, because the USFWS uses a different definition of wetlands than does the Corps, not all wetlands classified by the Cowardin et al. method meet the three-parameter regulatory definition of wetlands promulgated by the Corps and used by URS in this delineation of wetlands within the study area.
Subclass: Riparian Scrub. Within the study area, narrow-leaved deciduous scrub-shrub wetland plant communities dominated by mule fat (*Baccharis salicifolia*), narrowleaf willow (*Salix exigua*), red willow (*Salix laevigata*), arroyo willow (*Salix lasiolepis*), tamarisk (*Tamarix* spp.), giant reed (*Arundo donax*), white sweetclover (*Melilotus alba*), Fremont cottonwood (*Populus fremontii*), salt grass (*Distichlis spicata*), and cattail (*Typha* spp.) were classified as Riparian Scrub Wetland. Although the majority of these species are native to the area, white sweet clover, giant reed, and tamarisk are non-native. Giant reed and tamarisk are also considered to be invasive species by the California Invasive Plant Council (Cal-IPC 2007). The riparian scrub canopy within this community was partially open and dominated by shrubs and tree saplings with an herbaceous understory.

Subclass: Ruderal. Ruderal vegetation generally occurs in areas of past or chronic disturbance, and is characterized by the presence of species adapted to such conditions. Many of the plant species occurring in ruderal communities are non-native, and the habitat quality associated with this vegetation type is generally low. Although most ruderal plant communities occur in upland areas, portions of the study area contain ruderal vegetation dominated by hydrophytic species. The dominant vegetation included mule fat and Bermuda grass (*Cynodon dactylon*). Bermuda grass is an invasive species (Cal-IPC 2007). Many other non-native grasses were present, but in minor amounts. This vegetation may occur when contiguous areas of riparian vegetation are disrupted and fragmented by human alterations, facilitating invasion by non-native plants.

Class: Forested Wetland. The class Forested Wetland is characterized by woody vegetation that is six meters tall or taller. Forested Wetlands are most common in the eastern United States and in those sections of the West where moisture is relatively abundant, particularly along rivers and in the mountains. Forested Wetlands occur only in the palustrine and estuarine systems and normally possess an overstory of trees, an understory of young trees or shrubs, and a herbaceous layer (Cowardin *et al.* 1979).

Subclass: Riparian Forest. This subclass includes broad-leaved deciduous riparian forest vegetation, such as that observed on banks along the Santa Clara River within the study area. The dominant hydrophytic species within this wetland subclass on-site included Fremont cottonwood, mule fat, and an unidentified grass. The riparian forest vegetation contained a closed canopy that was dominated by mature trees and a thick ground cover consisting mostly of leaf litter and woody debris. Sporadic mule fat and California rose (*Rosa californica*) shrubs and grasses were also present in the open areas that received sufficient sunlight.
2.3 WETLAND DELINEATION RESULTS

A total of 9.06 acres of Corps jurisdictional wetlands were delineated in the four discrete study locations that comprise the Part One study area. Table 1 provides a summary of wetlands observed within each study location by wetland subclass.

<table>
<thead>
<tr>
<th>Study Areas</th>
<th>USACE Jurisdictional Wetlands by Vegetation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Riparian Scrub</td>
</tr>
<tr>
<td>Potrero Canyon Road Bridge Alignment</td>
<td>3.82 acres</td>
</tr>
<tr>
<td>Onion Field Bank Stabilization</td>
<td>--</td>
</tr>
<tr>
<td>Long Canyon Road Bridge Alignment</td>
<td>1.33 acres</td>
</tr>
<tr>
<td>Southern Abutment of Commerce Center Bridge</td>
<td>2.84 acres</td>
</tr>
<tr>
<td>Total Wetland Acres</td>
<td></td>
</tr>
</tbody>
</table>

An overview of conditions related to hydrology, vegetation, and soils within the study area is presented below, followed by a determination of the extent of jurisdictional wetlands at each study location. The study area overview is based on a combination of literature reviews and field verifications of vegetation, soils, and hydrology that occur within the boundaries of the study area. The determination of wetlands provides an assessment and reasoning for the delineation of jurisdictional areas. The determination is further supported by vegetation, soils, and wetland delineation maps.

2.3.1 Study Area Overview: Vegetation

The vegetation map of the RMDP site (Dudek 2006) shows eight vegetation/land cover occurring within the four locations that comprise the study area, including arrow weed scrub, mulefat scrub, cottonwood/willow riparian forest, herbaceous wetlands, riverwash, California sagebrush scrub, and agricultural and disturbed lands. These vegetation types can be generally divided into two main categories: riparian communities, which generally occur within and adjacent to areas of ponded or flowing water, and upland communities, which do not. Descriptions of these vegetation types, including mapped locations within the study area and dominant species present, are provided below. A list of all plant species observed in the four locations that comprise the Part One study area and their wetland indicator status is presented in Appendix B.
2.3.1.1 **Riparian Communities**

Based on the vegetation map of the RMDP site (Dudek 2006) five different riparian plant communities occur within the study area. Several of the sample points were located within these vegetation communities, and some of the areas sampled exhibited a predominance of hydrophytic vegetation. However, because not all of the areas within riparian communities were dominated by hydrophytic species, and because hydrophytic vegetation is only one of the three required wetland parameters, not all areas mapped as riparian vegetation are Corps-jurisdictional wetlands. The five riparian plant communities occurring within the study area are described below.

Arrow Weed Scrub. This vegetation type occurs in moderate to dense thickets along stream banks, and is dominated by arrow weed (*Pluchea sericea*). Arrow weed scrub is fairly common is southern California, occurring along sandy streambeds, ditches, and washes. In addition to arrow weed, species commonly found within this community include salt grass, narrow-leaved willow (*Salix exigua*), tamarisk (*Tamarix* spp.), rushes (*Juncus* spp.), and slender cattail (*Typha domingensis*) (Holland 1986). Within the study area, arrow weed scrub occurs in a depression between an agricultural road and a cottonwood/willow riparian forest community at the Potrero Canyon Road bridge alignment study location.

Mulefat Scrub. This relatively dense, shrubby riparian plant community occurs on river terraces, atop the banks of stream channels and in floodplain areas that are open or disturbed. It is dominated by mulefat (*Baccharis salicifolia*) although arroyo willow (*Salix lasiolepis*) individuals, upland shrubs, and facultative herbs are often present in limited numbers (Holland 1986). In areas of human disturbance, non-native annual grasses are frequently present as well. Frequent flooding and/or scouring often maintain this community in an early successional state, limiting the height of the shrubs. Within the study area, mulefat scrub occurs at the Potrero Canyon Road bridge alignment in a relict floodplain area; and at the Long Canyon Road bridge alignment adjacent to the active river channel.

Cottonwood/Willow Riparian Forest. This mature riparian community is a tall, open, broad-leaved winter-deciduous riparian forest dominated by Fremont cottonwood trees (*Populus fremontii*) and various species of willow (Holland 1986). It occurs commonly on stream banks and in floodplain areas where flooding occurs periodically but not so frequently as to preclude the development of mature trees. The understory within this community can be varied, containing riparian and upland shrub and herb species including Great Basin sagebrush (*Artemisia tridentata*), quail bush (*Atriplex lentiformis*), coyote brush (*Baccharis pilularis*), scale-broom (*Lepidospartum squamatum*), California mugwort (*Artemisia douglasiana*), wild cucumber (*Marah marcocarpus*), and many others. Within the study area, cottonwood/willow riparian forest occurs at all four study locations in portions of the Santa Clara River floodplain, and is the most abundant plant community at the Commerce Center Drive and Onion Fields study locations.
Herbaceous Wetland. This vegetation does not conform to a CDFG-defined vegetation community classification, and appears to be an early seral form of riparian vegetation that occurs in perennial stream channels where recent flooding has resulted in substantial scour or sediment deposition. Herbaceous wetlands commonly include thick stands of native seedlings and saplings, including Fremont cottonwood, willows, and mulefat; native herbaceous species, such as broad-leaved cattail (Typha latifolia), Hooker’s evening primrose (Oenothera elata), and bulrushes (Scirpus ssp.); and non-native species, including water cress (Rorippa nasturtium-aquaticum), curly dock (Rumex crispus), and tamarisk (Tamarix spp.). Within the study area, herbaceous wetlands occur within the active channel of the Santa Clara River at the Potrero Canyon Road, Long Canyon Road, and Commerce Center Drive bridge locations, but are not present at the Onion Fields study location.

River Wash. This land cover does not conform to a CDFG-defined vegetation community classification, and is characterized by unvegetated or sparsely vegetated substrate within stream channels. Such areas may contain seedlings, sparse grasses, and forbs, which often begin colonize the channel after storm events, but mature vegetation is absent due to scouring by seasonal storm flows. River wash is a naturally dynamic habitat which may vary in location and extent depending on local hydrology and long-term and seasonal precipitation patterns. Within the study area, river wash is present within the active channel of the Santa Clara River at the Potrero Canyon Road, Long Canyon Road, and Commerce Center Drive bridge locations, but is absent at the Onion Fields study location.

2.3.1.2 Upland Communities

According to the vegetation map of the RMDP site (Dudek 2006), upland land covers within the study area consisted of California sagebrush scrub and agricultural/disturbed lands. These vegetation types are not typically associated with wetlands, and hydrophytic species are usually not present within these habitats.

California Sagebrush Scrub. This scrub community described by Sawyer and Keeler-Wolf (1995) is dominated California sagebrush (Artemisia californica). Other native shrub species present commonly include sages (Salvia spp.), California buckwheat (Eriogonum fasciculatum), and Mexican elderberry (Sambucus mexicana), and components occurring between and beneath these shrubs can include California wishbone-bush (Mirabilis laevis var. crassifolia), yellow pincushion (Chaenactis glabriuscula), lacy phacelia (Phacelia tanacetifolia), long-stem golden yarrow (Eriophyllum confertiflorum), common forget-me-not (Cryptantha intermedia), common owl’s clover, deerweed (Lotus scoparius), and wild cucumber (Marah macrocarpus). Non-native species that commonly occur within California sagebrush scrub communities include red-stemmed filaree (Erodium cicutarium), short-podded mustard (Hirschfeldia incana), horehound (Marrubium vulgare), and tree tobacco (Nicotiana glauca). Within the study area, California sagebrush scrub occurs in the extreme southern portions of the Potrero Canyon and Commerce Center Drive study locations,
farthest from the river channel. None of the dominant species observed in this community were hydrophytic, and sampling points within sagebrush scrub were not found to exhibit a prevalence of hydrophytic vegetation.

Agricultural and Disturbed Lands. These land covers do not occur naturally, but are instead the result of farming, ranching, oil and gas production, and other human activities. Agricultural and disturbed lands within the study area are typically either unvegetated, as is the case with fallow farm fields and operations areas, which are intentionally kept clear of vegetation; or are vegetated with row crops. However it is possible for non-agricultural species (both native and non-native) to colonize agricultural lands, especially when fields are fallow or not in service. Lands disturbed by non-agricultural activities, such as oil production, are often graded, compacted, and kept free of vegetation while operations are active. When oil activities cease, these areas often become invaded by ruderal vegetation such as bromes (*Bromus* spp.), wild oats (*Avena barbata*), and Russian thistle (*Salsola tragus*). Within the study area, areas mapped as agricultural and disturbed lands occur in association with farm fields and associated roads within the Potrero Canyon Road and Long Canyon Road bridge alignments, and at the Onion Fields bank stabilization location. This land cover was dominated by goose grass (*Eleusine indica*), bluegrass species (*Poa* spp.), and crowfoot grass (*Dactyloctenium aegyptium*) at the Potrero Canyon location, and by many unidentified annual grass species and tilled earth at the Long Canyon location.

2.3.2 Study Area Overview: Soils

According to the Soil Survey of San Francis Area, California (USDA 2007), a total of four soil mapping units were identified as occurring in the study area. Of the four, only Sorrento loam is considered to be a true soil type, or a land composition capable of supporting plant life. The other three (Riverwash, Sandy Alluvial Lands, and Terrace Escarpments) are considered land types rather than soils. Land types are defined as areas of frequent disturbance and/or areas harsh to plant life (ice fields, beach sands, riverbeds, etc.). All soils and land types mapped within the study area are described below.

2.3.2.1 Sandy Alluvial Lands

Sandy Alluvial Lands contain alluvial sand, gravel, and cobbles deposited in irregular layers, but do not flood during normal flow periods. Vegetation supported by this land type is sparse, and often consists of scattered sagebrush, small trees, and annual grasses and forbs. This land type is included on the National Hydric Soils List due to frequent flooding and ponding, and occurrence in areas with a high water table. The Sandy Alluvial Lands land type was the dominant “soil type” in the study area according to the County Soil Survey, and occurs throughout the Santa Clara River floodplain in the project region. Because this land type contains a high concentration of fine to coarse sand, hydric soil indicators are often challenging to observe while conducting field investigations in Sandy Alluvial Lands. Soils
in these areas were therefore treated as “Problem Areas,” as specified in the Wetland Delineation Manual.

2.3.2.2 Riverwash

The Riverwash land type consists of sand, gravel, and cobblestones in active stream channels. Rocks and sand are constantly being removed and redeposited in the channel during periods of active flow. Riverwash typically supports very little vegetation due to the instability of the substrate; however, willows, sagebrush, and other plants may be found growing on this land type (SCS 1972). This land type is included on the National Hydric Soils List due to occurrence in areas of frequent flooding and high water table. According to the County Soil Survey, the Riverwash land type was the dominant “soil type” in the vicinity of the Long Canyon Road bridge alignment, occurring throughout the full extent of the Santa Clara River floodplain within that study location (approximately 75 percent of study location). The high concentration of sand present in Riverwash poses as problematic when assessing evidence of hydric characteristics. Hydric soil indicators are often challenging to observe while conducting field investigations in this land type.

2.3.2.3 Terrace Escarpments

Terrace Escarpments consist of steep slopes that result from continual erosion or faulting, and separates terraces from lower lying land. The resulting steep faces are influenced heavily by weather conditions and typically do not support diverse vegetation communities. The County Soil Survey showed this land type to be present in a small percentage in the southern portion of the Long Canyon Road bridge alignment area. Sparse vegetation was observed on the north-facing slopes. Terrace Escarpments are included on the National Hydric Soils List due to occurrence in areas of frequent flooding.

2.3.2.4 Sorrento Loam

Sorrento Loam consists of very deep, well-drained soils that formed in alluvium mostly from sedimentary rocks formations. This soil is similar to the Riverwash and Sandy Alluvial land types in that the original alluvium was deposited in layers; however, Sorrento Loam is less subject to flooding and subsequent reworking. Thus, Sorrento Loam had more time to develop the characteristics of a true soil. This soil is classified as a fluvent, which is a very young soil subject to periodic flooding and occurs on alluvial fans and in stabilized floodplains. Vegetation typically consists of irrigated agriculture or annual grasses and forbs within uncultivated areas. This soil is included on the National Hydric Soils List due to occurrence in areas of frequent flooding.
2.3.3 Study Area Overview: Hydrology

The Santa Clara River is the dominant hydrologic feature in the study area, and the active river channel flows through three of the four study locations (The Onion Fields bank stabilization site is located directly adjacent to the river, but outside of the channel). Within the study area, the river supports a complex mosaic of riparian plant communities along the channel margins, on alluvial terraces, and within the greater floodplain. Surface flows are perennial within this reach, supported in part by effluent discharges from two publicly owned treatment works upstream. For agricultural purposes, Newhall Land maintains a number of dry-season culvert road crossings over the Santa Clara River that are removed prior to high winter flows each year. A portion of one of these crossings is located within the Potrero Canyon Road bridge alignment study location, and another occurs approximately 300 feet downstream of the Long Canyon Road bridge alignment location.

The headwaters of the Santa Clara River are located in the San Gabriel Mountains in Los Angeles County, and the seasonal hydrology of the river is primarily dictated by patterns of precipitation in these mountains. Upstream of the study area, the watershed consists of approximately 680 square miles of mostly natural land with some areas developed for urban and agricultural uses. The total watershed area is approximately 1,600 square miles. The Santa Clara River is one of two rivers in the region that is not channelized and remains in a relatively natural state. Within the project vicinity, the river is a braided system with a primary active channel and several secondary channels, and its banks are constantly in flux due to erosion and sedimentation. According to a recent study by Balance Hydrologics (2005), the morphology of the channel is in a state of dynamic equilibrium, where the influence of large storm events dominates the form of the channel. Smaller-scale events can shape the channel in the short term, but the morphologic effect of these events is eliminated when larger storms “reset” the channel through large-scale erosional and depositional processes.

2.3.4 Determination of Wetlands within the Study Area

Through investigations for on-site indicators of wetland hydrology, hydrophytic vegetation and hydric soils, wetlands were identified and mapped within three of the four discrete locations that comprise the study area. The results and determining factors of the wetland delineation are discussed in this section and presented on location-specific figures.

2.3.4.1 Potrero Canyon Road Bridge Alignment

The Potrero Canyon Road bridge alignment study location is a long, narrow swath that spans the active channel of the Santa Clara River, and includes the wetted channel, riparian corridor, and upland agricultural areas on either bank. Within this study location, a total of 20 data points were investigated for evidence of wetland indicators (Appendix A: Wetland Delineation Forms PC-1 through PC-20). Data points were located in various floodplain
positions, including areas adjacent to the active channel, on alluvial terraces, and within the floodplain beyond the channel banks.

According to the vegetation map for the RMDP site (Dudek 2006), vegetation types within the Potrero Canyon Road study location include arrow weed scrub, cottonwood riparian forest, herbaceous wetlands, mulefat scrub, riverwash, big sagebrush scrub, and agriculture. For a description of these communities, please refer to Section 4.2, above. Of the 20 sampling points within the Potrero Canyon Road study location, three were located within areas mapped as arrow weed scrub, four were within cottonwood/willow riparian forest, two were within herbaceous wetlands, one was in mule fat scrub, seven were in riverwash, and the remaining three were within areas mapped as agricultural and disturbed lands (Figure 3).

All but one of these data points (data point PC-1, located in an agricultural field) showed a dominance of hydrophytic vegetation. Dominant hydrophytic plant species observed within this study location included red willow, narrow-leafed willow, Fremont cottonwood, mulefat, cattail, and white sweetclover. Although most of the hydrophytic vegetation within the study location was associated with the current channel of the Santa Clara River, hydrophytic vegetation was also observed in a strip of agricultural land in the northern portion of the study location. In this area, the historic floodplain of Santa Clara River was evident as riparian scrub and forest bordered the narrow swath of agriculture. The area to the south of this hydrophytic vegetation is occupied by a fallow agriculture field. Vegetation in the field consists of Bermuda grass (*Cynodon dactylon*), Mexican sprangletop (*Leptochloa uninervia*), white sweetclover, and mulefat. The locations of sampling points and presence/absence of hydrophytic vegetation are depicted graphically on Figure 3.

According to the Soil Survey of San Francis Area, California (USDA 2007), the Potrero Canyon Road bridge alignment study location contains three distinct mapped soil types: Riverwash, Sandy Alluvial Lands, and Terrace Escarpments. For a description of these soils, please refer to Section 4.3, above. Soils observed during field investigations within this study location consisted of coarse sand typical of the Sandy Alluvial Land and Riverwash soil mapping units (Figure 4). In areas that experienced recent river deposition, various sized gravels and small cobbles comprised a loose matrix with the coarse sand. The dynamic nature of the on-site river channel and the sandy soil composition posed difficulties in determining the presence of hydric indicators. However, hydric features observed included small reddish mottles often throughout the soil profile (Appendix A: Data Sample Points PC-2 through PC-4, PC-10, PC-11, and PC-17 through PC-20; and Appendix C: Photo 5) and organic material in the top portion of the profile (Sample Point PC-6 and Photo 4). In addition, Sandy Alluvial Land and Riverwash land types are listed by the USDA as hydric soils under flooded conditions, which was the condition of soils observed at several locations during the field survey. Of the 20 data points assessed in this study location, 18 exhibited hydric soil characteristics, while such characteristics were lacking in the remaining two (data points PC-1 and PC-12, located in areas mapped as Sandy Alluvial Lands and Terrace
Figure 3. Potrero Canyon Bridge Alignment Vegetation Map

Legend
- Study Area

Wetland Criteria Sample Locations
- Predominance of Hydrophytic Vegetation
- No Predominance of Hydrophytic Vegetation

Vegetation Mapping Unit
- AGR - Agriculture
- AWS - Arrowweed Scrub
- CSB - California Sagebrush
- CWRF - Cottonwood/Willow Riparian Forest
- DL - Disturbed Land
- HW - Herbaceous Wetlands
- MFS - Mulefat Scrub
- RW - Riverwash

Source:
Vegetation survey performed by Dudek, November 2006; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA

Composite Wetland Delineation
Figure 4. Potrero Canyon Bridge Alignment Soils Map

Legend
- Study Area
- Sample Locations
 - Yellow dot: Hydric Soils Present
 - Orange dot: Hydric Soils Absent

Soil Mapping Unit
- Rg - Riverwash
- Sa - Sandy Alluvial Land
- TsF - Terrace Escarpments

Source:
USDA SSURGO Soil Survey, San Francisco Area, CA, V5 01/04/2007; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA

Composite Wetland Delineation
Escarpments, respectively). The mapped soil types, along with locations of sampling points and presence/absence of hydric soil indicators, are depicted graphically on Figure 4.

Hydrology within the Potrero Canyon Road bridge alignment is dominated by the Santa Clara River mainstem, which flows through this study location. The river supports year-round surface flows at this location, and flows are supplemented by treated wastewater discharges from two treatment works upstream. The study location contains three basic hydrologic zones: the low-flow river channel, which is inundated year-round by surface flows; terraces and secondary channels, which are inundated periodically during periods of high flow but may be saturated at other times depending on the season, flow conditions, and location; and adjacent uplands, which are not regularly or periodically inundated by river flows. Although the boundaries between these zones are not always easily defined and change over time, the 20 sampling points assessed at the Potrero Canyon Road study location were situated to include all hydrologic zones. Wetland hydrology was evident at all data points located within the active river channel and terraces, but was generally absent at points farther removed from the river. However, three data points (PC-2, PC-3, and PC-4) located in a portion of the historic floodplain exhibited wetland hydrology, as did a point (PC-20) located between an artificial berm and a ranch road. Hydrology at these points is dictated by local relief, rather than Santa Clara River flows.

A total of 4.89 acres of wetlands were delineated within the Potrero Canyon Road study location (Figure 5 and Table 1). All of the jurisdictional wetlands identified as this location were within the Palustrine system as described by Cowardin (1979). Based on the vegetation communities present, the wetlands within this study location were classified as Riparian Scrub Wetlands (3.82 acres), Riparian Forest Wetlands (0.56 acres), and Ruderal Wetlands (0.51 acres). The determination of wetlands was difficult given the sandy soil types. In light of problematic sandy soils, the presence of redox mottles and organic matter at several sampling locations provided evidence of hydric soils. Due to the wide distribution of riparian vegetation and problematic sandy soils, the presence of saturated soils, high water table, oxidized roots, and other hydrologic indicators were also used in mapping the wetlands within this study location. Wetlands were mostly located within the active channel of the Santa Clara River, but also occurred in the northern portion of the study area associated with the disjunct historic floodplain and in a small area in the southwest of the study area associated with a small drainage (Figure 5).

2.3.4.2 Onion Fields Bank Stabilization Site

The Onion Fields study location is on the southern bank of the Santa Clara River, on a slope between the river channel and an adjacent agricultural field. Only one data point was assessed in this study location, situated at the bottom of the bank slope (Appendix A: Wetland Delineation Forms BS-1).
Figure 5. Potrero Canyon Bridge Alignment Wetland Delineation Map

Legend
- Study Area

Sample Locations
- Meets Wetland Criteria
- Does Not Meet Wetland Criteria

Soil Mapping Unit
- Riparian Scrub Wetland (3.82 acres)
- Riparian Forest Wetland (0.56 acres)
- Ruderal Wetland (0.51 acres)

Source:
Wetland delineations performed by URS Corporation, 2007; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA
COMPOSITE WETLAND DELINEATION
NEWHALL RANCH RESOURCE MANAGEMENT

According to the vegetation map for the RMDP site (Dudek 2006), the Onion Fields study location is comprised almost exclusively of cottonwood/willow riparian forest, with small patches of disturbed land present along the agricultural road at the southern boundary. For a description of these communities, please refer to Section 4.2, above. The data point assessed at this location was within the cottonwood/willow riparian forest, and exhibited a dominance of hydrophytic vegetation (Figure 6). Dominant hydrophytic plant species within this study location included Freemont cottonwood and red willow trees, confirming the mapped vegetation type. Understory plants included California rose (*Rosa californica*), stinging nettle (*Urtica dioica*) and mugwort (*Artemisia douglasiana*). The riparian canopy was dense with an open to closed shrub layer. In open areas, thick leaf litter covered the majority of the ground.

According to the Soil Survey of San Francis Area, California (USDA 2007), the entire Onion Fields study location is mapped as Sandy Alluvial Lands (Figure 7). For a description of this land cover, please refer to Section 4.3, above. Soils assessed at the sampling point consisted of sandy loam typical of the Sandy Alluvial Lands soil mapping unit. Typical conditions were present during the delineation, and the soils were not determined to be problematic due to the presence of well-established vegetation. No redox features or other hydric soil indicators were observed at the sampling point.

Although the Onion Fields study location is within the Santa Clara River floodplain, it is located on a slope between the river channel and an adjacent agricultural field. The data point assessed at this study location was located at the bottom end of this slope, closest to the river channel (Figure 8). Due to the age and structure of the riparian forest, it is apparent that this location is seldom affected by high flows in the river, and that regular inundation or saturation does not occur. The sampling point was thoroughly examined for evidence of wetland hydrology, but no primary or secondary indicators were present.

No jurisdictional wetlands were found to occur within the Onion Fields Bank Stabilization study location (Table 1). Although hydrophytic vegetation was present, the area lacked hydric soils and wetland hydrology.

2.3.4.3 **Long Canyon Road Bridge Alignment**

The Long Canyon Road bridge alignment study location is a long, narrow swath that spans the active channel of the Santa Clara River, and includes the wetted channel, riparian corridor, transitional vegetation, and upland agricultural areas on either bank. Within this study location, a total of eight data points were investigated for evidence of wetland indicators (Appendix A: Wetland Delineation Forms LC-1 through LC-8). Data points were located in various floodplain positions, including areas adjacent to the active channel, on alluvial terraces, and within the floodplain beyond the channel banks. Within this study location, the active river channel is in the northern portion of the floodplain.
Figure 6. Onion Fields Bank Stabilization Site Vegetation Map

Legend
- Study Area

Sample Locations
- Predominance of Hydrophytic Vegetation
- No Predominance of Hydrophytic Vegetation

Vegetation Mapping Unit
- CWRF - Cottonwood/Willow Riparian Forest
- DL - Disturbed Land

Source:
Vegetation survey performed by Dudek, November 2006; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA
Legend

- Study Area

Sample Locations

- Hydric Soils Present
- Hydric Soils Absent

Soil Mapping Unit

- Sa - Sandy Alluvial Land

Source:
USDA SSURGO Soil Survey, San Francis Area, CA, V 5 01/04/2007; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA

Figure 7. Onion Fields Bank Stabilization Site Soils Map
Figure 8. Onion Fields Bank Stabilization Site Wetland Delineation Map

Legend
- Study Area

Sample Locations
- Yellow dot: Meets Wetland Criteria
- Red dot: Does Not Meet Wetland Criteria

Source:
Wetland delineations performed by URS Corporation, 2007; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA
The vegetation map for the RMDP site (Dudek 2006) shows several vegetation types within the Long Canyon Road study location, including cottonwood/willow riparian forest, herbaceous wetlands, mulefat scrub, riverwash, disturbed land, and agriculture. For a description of these communities, please refer to Section 4.2, above. Of the eight sampling points assessed within the Long Canyon Road bridge alignment study location, one was located within an area mapped as cottonwood/willow riparian forest, one was within mulefat scrub, three were in riverwash, and the remaining three were in areas mapped as agricultural or disturbed land (Figure 9). All but two of these data points (Points LC-1 and LC-8, located in agricultural fields) showed a dominance of hydrophytic vegetation. Dominant hydrophytic plant species within this study location included mulefat, tamarisk, arundo, South American horseweed (*Conyza bonariensis*), red willow, narrow-leaf willow, and willow weed (*Polygonum lapathifolium*). All of the hydrophytic vegetation within this study location was associated with the active channel and riparian corridor of the Santa Clara River. In the southern portion of the Long Canyon Road study location, a terrace at the edge of the riparian corridor contained several hydrophytic vegetation species including mulefat and narrow-leaf willow. Lands within the study location beyond the riparian corridor, at the extreme northern and southern ends of the study location, contained agricultural fields and did not exhibit a dominance of hydrophytic vegetation; these areas were dominated by annual grasses. The locations of sampling points and presence/absence of hydrophytic vegetation are depicted graphically on Figure 9.

According to the Soil Survey of San Francisco Area, California (USDA 2007), the Long Canyon Road bridge alignment study location is underlain primarily by Riverwash, but also includes Sandy Alluvial Lands and Sorrento Loam at the northern and southern ends, respectively. For a description of these soils, please refer to Section 4.3, above. Soils observed during field investigations within this study location consisted of coarse sand typical of the Sandy Alluvial Land and Riverwash land types; and loamy sand, sandy loam, and clay loam typical of the Sorrento Loam soil type (Figure 10). Riverwash was found throughout the majority of the study area (Appendix A: LC-2 through LC-5). In areas that experienced recent river deposition, various sized gravels and small cobbles comprised a loose matrix with the coarse sand. The only hydric soil indicator observed within this study location was depleted matrix (data point LC-3); no sandy redox or other hydric soil indicators were evident during examination of soil profiles. However, the dynamic nature of the on-site river channel and the sandy soil composition posed difficulties in determining the presence of hydric soil indicators. Because the Sandy Alluvial Land and Riverwash land types are listed by the USDA as hydric soils under flooded and/or saturated conditions, these soil types were counted as hydric even in the absence of other indicators when flooding and/or saturation were observed (data point LC-5). The mapped soil types, along with locations of sampling points and presence/absence of hydric soil indicators, are depicted graphically on Figure 10.

Hydrology within the Long Canyon Road bridge alignment is dominated by the Santa Clara River mainstem, which flows through this study location. The river supports year-round
Figure 9. Long Canyon Bridge Alignment Vegetation Map
Figure 10. Long Canyon Bridge Alignment Soils Map

Legend
- Study Area

Sample Locations
- Yellow: Hydric Soils Present
- Red: Hydric Soils Absent

Soil Mapping Unit
- Rg - Riverwash
- Sa - Sandy Alluvial Land
- SsA - Sorrento Loam

Source:
USDA SSURGO Soil Survey, San Francis Area, CA, V5 01/04/2007; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA

Composite Wetland Delineation
surface flows at this location, which are supplemented by treated wastewater discharges from two treatment works upstream. The study location contains three basic hydrologic zones: the low-flow river channel, which is inundated year-round by surface flows; terraces and secondary channels, which are inundated periodically during periods of high flow but may be saturated at other times depending on the season, flow conditions, and location; and adjacent uplands, which are not regularly or periodically inundated by river flows. Although the boundaries between these zones are not always easily defined and change over time, the eight sampling points assessed at the Long Canyon Road study location were situated to include all hydrologic zones. Wetland hydrology was evident at all data points located within the active river channel and terraces, but was absent at points farther removed from the river. A total of 1.34 acres of wetlands were delineated within the Long Canyon Road study location (Figure 11 and Table 1). The determination of wetlands was difficult given the problematic, sandy soil types within the study location. Due to the presence of problematic soils, the mapped soil types and position in the riverbed was used as evidence of hydric soils in some areas. Wetlands were present on both banks of the Santa Clara River, within and adjacent to the active channel. All of the jurisdictional wetlands identified as this location were within the Palustrine system as described by Cowardin (1979). Based on the vegetation communities present, the wetlands within this study location were classified as Riparian Scrub Wetlands. The most appropriate National Wetland Inventory (NWI) classification for this community is PSS6.

2.3.4.4 Southern Abutment of Commerce Center Drive Bridge

The study location at the southern abutment of the Commerce Center Drive bridge is a narrow swath that extends southward from the active channel of the Santa Clara River into the uplands on the southern bank. Within this study location, a total of seven data points were investigated for evidence of wetland indicators (Appendix A: Wetland Delineation Forms CC-1 through CC-7). Data points were located in various floodplain positions, including areas adjacent to the active channel, on alluvial terraces, and beyond the southern bank. At the time of the investigation, the active river channel was within the northernmost portion of the study location.

The vegetation map for the RMDP site (Dudek 2006) shows four vegetation types within the Commerce Center Drive study location, including riverwash, herbaceous wetlands, cottonwood/willow riparian forest, and California sagebrush scrub. For a description of these communities, please refer to Section 4.2, above. Of the eight sampling points assessed within this study location, one was located within an area mapped as riverwash, one was in herbaceous wetlands, three were within cottonwood/willow riparian forest, and the remaining two were mapped as California sagebrush scrub (Figure 12). All of the sampling points assessed exhibited a dominance of hydrophytic vegetation. Dominant hydrophytic plant species within the Commerce Center Drive study location included red willow, sandbar willow, Fremont cottonwood, mulefat, cattails (*Typha* spp.), and giant reed. All of the
Figure 11. Long Canyon Bridge Alignment Wetland Delineation Map

Legend
- Study Area

Sample Locations
- Meets Wetland Criteria
- Does Not Meet Wetland Criteria

Corps Jurisdictional Wetlands
- Riparian Scrub Wetland (1.33 acres)

Source:
Wetland delineations performed by URS Corporation, 2007; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA

T:\Newhall\deliverables\CompositeWetlandDelineation\Long_Wtlnd.mxd

1 inch = 150 feet
Figure 12. Southern Abutment of Commerce Center Drive Bridge Vegetation Map

Legend
- Study Area

Sample Locations
- Predomiance of Hydrophytic Vegetation
- No Predomiance of Hydrophytic Vegetation

Vegetation Mapping Unit
- CSB - California Sagebrush
- CWRF - Cottonwood/Willow Riparian Forest
- HW - Herbaceous Wetlands
- RW - Riverwash

Source:
Vegetation survey performed by Dudek, November 2006; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA
hydrophytic vegetation within this study location was associated with the active channel and riparian corridor of the Santa Clara River. The locations of sampling points and presence/absence of hydrophytic vegetation are depicted graphically on Figure 12.

According to the Soil Survey of San Francis Area, California (USDA 2007), the Commerce Center Drive study location is underlain primarily by Sandy Alluvial Lands, but also includes Terrace Escarpments in the southeastern corner. For a description of these soils, please refer to Section 4.3, above. Soils observed during field investigations within this study location consisted of coarse sand, consistent with the Sandy Alluvial Land and Terrace Escarpments mapping units (Figure 13). In areas that experienced recent river deposition, various sized gravels and small cobbles comprised a loose matrix with the coarse sand. Hydric soil indicators observed within this study location included small reddish mottles, often throughout the soil profile (Appendix A: Data Sample Points CC 1-6 and Appendix B: Photo 4), and organic material in the top portion of the profile. However, the dynamic nature of the on-site river channel and the sandy soil composition posed difficulties in determining the presence of hydric soil indicators. In addition, the Terrace Escarpment land type is especially problematic due to its steep faces and continuing erosional processes. Because Sandy Alluvial Land is listed by the USDA as a hydric soil under flooded and/or saturated conditions, this soil type was counted as hydric even in the absence of other indicators when flooding and/or saturation were observed (data points CC-1, CC-2, and CC-5). The mapped soil types, along with locations of sampling points and presence/absence of hydric soil indicators, are depicted graphically on Figure 13.

Hydrology within the Commerce Center Drive study location is dominated by the Santa Clara River, which flows through the southern end of this study location. The river supports year-round surface flows at this location, which are supplemented by treated wastewater discharges from two treatment works upstream. The study location is sloped, with higher elevation area occurring on the southern river bank and lower elevations at the river channel, in the northern portion of the study location. The sloping topography results in a gradation of hydrologic zones, ranging from the low-flow river channel, which is inundated year-round by surface flows, to upland areas on the southern bank, which are not regularly affected by the river hydrology. The seven sampling points assessed at the Commerce Center Drive study location were situated at various locations throughout the study location, and included all hydrologic zones present. Wetland hydrology was evident at all data points located within the active river channel and terraces, but was absent at points farther removed from the river. Indicators of wetland hydrology included water marks, sediment deposits, and drainage patterns.

A total of 2.84 acres of wetlands were delineated within the Commerce Center Drive study location (Figure 14 and Table 1). The determination of wetlands was difficult given the presence of sandy and eroding soil types, and the mapped soil types and observed inundation/saturation were used as evidence of hydric soils in some areas. Wetlands were
Figure 13. Southern Abutment of Commerce Center Drive Bridge Soils Map

Legend
- Study Area

Sample Locations
- Yellow Circle: Hydric Soils Present
- Black Circle: Hydric Soils Absent

Soil Mapping Unit
- Sa: Sandy Alluvial Land
- TSF: Terrace Escarpments

Source:
USDA SSURGO Soil Survey, San Francis Area, CA, V5 01/04/2007; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA
Figure 14. Southern Abutment of Commerce Center Drive Bridge Wetland Delineation Map

Legend:
- Study Area
- Meets Wetland Criteria
- Does Not Meet Wetland Criteria

Corp Jurisdictional Wetlands:
- Riparian Scrub Wetland (2.84 acres)

Source:
Wetland delineations performed by URS Corporation, 2007; 1-foot resolution aerial basemap, flown July 2007, AirPhotoUSA
present throughout the study location, with the exception of the southeastern corner which lacked hydric soils and wetland hydrology. All of the jurisdictional wetlands identified as this location were within the Palustrine system as described by Cowardin (1979). Based on the vegetation communities present, the wetlands within this study location were classified as Riparian Scrub Wetlands.

As shown in Table 1, URS Corporation has delineated approximately 9.06 acres of jurisdictional wetlands within four discrete locations on the RMDP site that comprise the Part One study area. The study locations within the bridge alignments at Potrero Canyon Road, Long Canyon Road, and Commerce Center Drive contained 4.89 acres, 2.10 acres, and 2.94 acres of jurisdictional wetlands, respectively. No wetlands were identified at the Onion Fields bank stabilization study location. Because the study area included a 100-foot buffer surrounding the proposed bridge alignments and bank stabilization, construction of these facilities would likely not impact the entire wetland acreage delineated within each study location. The locations of jurisdictional wetlands within the Part One study area are displayed on Figures 5, 11, and 14, and acreages are summarized in Table 1. The use of three field indicators for the three defined parameters: hydrophytic vegetation, hydric soils, and wetland hydrology, as well as the application of the routine and problematic methodologies were used to determine the location and extent of wetlands subject to Corps jurisdiction.
SECTION 3.0
PART TWO: COMPOSITE DELINEATION OF WETLANDS
WITHIN THE RMDP SITE AND THE ADJACENT ENTRADA
PLANNING AREA

As stated previously, the field delineation of wetlands undertaken by URS in 2007 and presented in Part One of this document only addressed areas of the RMDP site that are within and adjacent to the disturbance footprints of major project components, such as roadway bridges across the Santa Clara River. Part Two of this study presents a composite wetland delineation, which combines the findings of Part One with the results of previous studies to yield a comprehensive, planning-level delineation of Corps-jurisdictional wetlands within the entire RMDP site.

3.1 STUDY AREA

The study area for this composite wetland delineation includes the entire RMDP site, as well as the adjacent Entrada planning area (Figure 15). The total acreage within the study area is approximately 14,042 acres: 13,651 within the RMDP site and 391 within Entrada. The study area is largely undeveloped, although Newhall Land has historically leased portions of the site for agricultural, grazing, oil and gas production, and filmmaking purposes. Geographically, the study area is bounded by the crest of the Santa Susana Mountains to the south, urban development in the City of Santa Clarita to the east, by the Chiquita Canyon Landfill and the community of Val Verde to the north, and by agricultural lands and open space in Ventura County to the west.

Hydrology within the study area is dominated by the Santa Clara River, which flows through the study area in an east-west direction, and a by a large number of tributary drainages which flow from the mountains on either side of the Santa Clarita Valley to join the river. The river mainstem exhibits perennial flow within the boundaries of the study area, supported in part by treated effluent discharges from two wastewater treatment works located a short distance upstream. This river reach supports substantial habitat for aquatic and riparian plants and wildlife. The majority of the on-site tributaries to the river are ephemeral, first- and second-order streams that exhibit surface flows only immediately following storm events and do not support aquatic life or riparian vegetation. However, the RMDP site does contain seven larger tributaries, some of which exhibit intermittent and perennial flow regimes in some reaches. These larger tributaries convey flows from natural lands outside the study area through the RMDP site and into the Santa Clara River.

The study area contains varied topography due to the presence of low-lying riverbed areas and higher-elevation mountains within the site. At higher elevations within the study area, steep slopes and rugged mountains and foothills dominate the landscape. Vegetation in these
Figure 15. Study Area for Composite Wetland Delineation
areas consists primarily of shrub-dominated upland habitats, such as California sagebrush scrub and chaparral, although oak woodlands and occasional riparian areas are also present.

Although the site’s higher elevations are subject to cattle grazing, human activities within these areas are otherwise minimal. The lower-elevation portions of the study area within the larger tributary valleys and river floodplain, by contrast, have been more heavily impacted by human activities including commercial farming and oil production. These areas have much gentler slopes than the site’s mountainous regions, and support habitats including cottonwood/willow riparian forest and riparian scrub habitats along drainages, annual grassland and various scrub communities in the uplands, and ruderal vegetation and bare ground in disturbed areas.

3.2 METHODS AND SOURCE MATERIALS

This composite wetland delineation presents a single map of jurisdictional wetlands within the study area that has been compiled from several technical documents produced between 2004 and 2009. Because all of the source materials utilized in this study included map data in Geographic Information Systems (GIS) format, GIS software was used to compile and combine the source data.

Each data source contained one or more shape files that spatially defined the location and extent of areas mapped as wetlands by that particular investigation. The wetland areas were mapped in the source material as enclosed shapes, or polygons, and were distinguished from other, non-wetland polygons by attribute information in the data set. The areas evaluated in the four data sources were mutually exhaustive, meaning that there was no portion of the study area that was not covered in one or more of the source materials. However, the areas evaluated were not mutually exclusive, so certain portions of the study area were covered by more than one data source.

In portions of the study area where only one data source provided wetland delineation information, such as the Entrada planning area and portions of the RMDP site that were not within the Santa Clara River corridor, the wetland polygons from that data source were copied into the composite wetland delineation. In portions of the study area where more than one data source provided wetland information, the union of all wetland polygons from those sources was copied into the composite wetland delineation. This is a more conservative approach than choosing to adopt one set of wetland boundaries over another, as it assigns wetland status to a polygon if any one of the data sources evaluated identified the polygon as a wetland.

It should be noted that the composite wetland delineation is a “planning-level” delineation, as it relies on multiple data sources, dating from different years and using different investigation methods. While data sources based on field investigations are available for some portions of the study area, other areas were delineated through analysis of aerial photographs. The four
sources from which spatial wetland data was compiled for the composite wetland delineation are described below.

3.2.1 URS Corporation (2004) Delineation Report for the RMDP Site

In the winter of 2003, URS staff conducted a delineation of all waters exhibiting an ordinary high water mark and all CDFG-jurisdictional streambeds present within the RMDP site; a technical report was completed in early 2004. The Santa Clara River, Salt Creek, and portions of the Potrero Canyon drainage were found to be the only perennial streams on-site; many jurisdictional intermittent and ephemeral streams also were present. The 2004 delineation was conducted by walking the jurisdictional boundaries using sub-meter accurate GPS units capable of mapping polygons in the field; these data were then transferred into a GIS database. Although the 2004 delineation did not evaluate wetland areas specifically, four of the CDFG-jurisdictional streambed areas identified in this report were determined to meet wetland criteria due to the obvious and continuous presence of hydrophytic vegetation, saturated soils, and wetland hydrology. Two of these areas are cismontane alkali marshes within the Potrero Canyon drainage: one is located adjacent to the low-flow stream channel near the canyon mouth and the other is within the low-flow channel approximately one mile upstream. A third wetland area was identified at a confluence of two branches in the Salt Creek drainage, where perennial flows spread out across a flat floodplain area. The fourth jurisdictional wetland within the RMDP site is a spring complex within the river corridor near the mouth of Middle Canyon, where perennial flows down a slope from a spring support extensive, dense riparian vegetation and continuous soil saturation. Because this delineation report did not specifically investigate wetlands, the report does not provide acreage estimates for these sites. However, acreages have been calculated based on the GIS data, and are presented in Section 3.4 Results, below. The URS Corporation 2004 jurisdictional delineation of the RMDP site is included as Appendix D of this composite wetland delineation.

A study conducted by Lukos and Associates in 2008 delineated the limits of waters of the United States, Corps jurisdictional wetlands, and CDFG jurisdictional streams within the Entrada planning area. Methods utilized included field surveys in accordance with the Corps’ Wetland Delineation Manual (Environmental Laboratory 1987), mapping of jurisdictional areas on maps and aerial photographs in the field, and digitizing this information to create a GIS layer. This study identified four jurisdictional drainage systems within the Entrada planning area, one of which was the Magic Mountain Canyon drainage previously delineated by URS during the 2004 delineation of the RMDP site (The drainage generally follows the boundary between the RMDP study area and the Entrada planning area, and portions of the drainage are within each area. However, for simplicity of analysis, the Magic Mountain Canyon drainage is considered to be within the RMDP study area). The study identified
jurisdictional wetlands within two of the drainages within the Entrada planning area, and reported the total acreage of these areas to be 0.15 acres. The 2008 Lukos and Associates delineation report for the Entrada planning area is included as Appendix E to this composite wetland delineation.

3.2.3 URS Corporation/Dudek and Associates (2006) Planning-level Delineation of Wetlands in the Santa Clara River through Interpretation of Aerial Photography

In 2006, biologists from URS Corporation and Dudek and Associates jointly undertook a planning-level delineation of Corps-jurisdictional wetlands within the reach of the Santa Clara River corridor in the RMDP site. The extent of wetlands within this reach was determined through an analysis of high-resolution (6 inch pixels) aerial photographs flown by Robert J. Lung and Associates on May 24, 2006. Although hydrologic and soils maps were reviewed during this effort, it was determined that the available maps lacked the resolution necessary to be useful in delineating wetland boundaries at the desired scale (For example, the Soil Survey of San Francis Area, California [USDA 2007] maps nearly the entire riverbed within this reach as Sandy Alluvial Land, a problematic soil type). Because the extent of hydric soils within the study reach was not discernible from either the aerial photographs or the soils map, soils were not used as a criterion in the delineation. Instead, to be conservative, all areas where wetland hydrology and hydrophytic vegetation were evident were mapped as wetlands, regardless of soil conditions.

Evidence of wetland hydrology was determined though evaluation of the aerial photographs for evidence of scour, and through inspection of the field-delineated ordinary high water mark boundaries presented in the URS 2004 jurisdiction delineation of the RMDP site. All areas within or adjacent to the mapped river channel that showed signs of recent scour on the aerial photos were considered to exhibit wetland hydrology.

Dominance of hydrophytic vegetation was determined through evaluation of the RMDP site vegetation map prepared by Dudek and Associates in 2006 in conjunction with the aerial photographs. Where riparian vegetation communities were identified on the vegetation map, the air photo was examined, and all areas within or adjacent to mapped riparian vegetation that appeared vegetated were considered to exhibit a predominance of hydrophytic vegetation, except when the vegetation map indicated that a different, non-hydrophytic vegetation type was present.

No technical report or other written document was produced from this study; the tangible result of the planning-level delineation of wetlands within the river corridor was a GIS shape file documenting the location and extent of wetlands delineated. Acreages have been calculated based on this GIS data, and are presented in Section 3.4 Results, below.
3.2.4 URS Corporation (2007) Field Delineation of Wetlands in Proposed Bridge Alignment Areas

In 2007, URS Corporation conducted a wetland delineation of potentially jurisdictional features in portions of the RMDP site where major infrastructure improvements, such as roadway bridges across the Santa Clara River, are proposed. This field investigation was performed in accordance with the procedures set forth in the Corps of Engineers Wetlands Delineation Manual (Environmental Laboratory 1987), Department of the Army (DOA) Clarification and Interpretation of the 1987 USACE Wetland Delineation Manual (DOA 1992), and the Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Arid West Region (USACE 2006; Arid West Region Supplement). Data collected during the assessment of wetlands were recorded on Wetland Determination Data Forms – Arid West Region Supplement (Corps 2006). A total of 36 sample point locations were selected in both potential wetland and upland areas to determine the wetland/upland boundary and characterize the vegetation, soils, and hydrology of the area. Soil pits were excavated in areas supporting hydrophytic vegetation to determine the extent of saturation and to examine the soil for positive indicators of hydric soils and wetland hydrology. Soil pits were also excavated in upland areas adjacent to wetlands to aid in delineating the extent of jurisdictional wetlands. At each sample point, plant species composition and indicators of hydric soil and wetland hydrology were recorded. Sample point locations were recorded in the field using a Trimble GeoExplorer Series 2003 GPS unit capable of sub-meter accuracy and were plotted on aerial photographs overlaid with the approximate bridge and bank stabilization footprints and study location boundaries. A sample point was considered to be within a wetland (an “in” point) if the area met all three wetland parameters: dominance by hydrophytic plant species; positive wetland hydrology indicators; and hydric soil conditions. If one or more of these parameters was not met, the point was considered not to be within a wetland (an “out” point) and a line was drawn between the two sample points on the site specific aerial photograph.

The URS 2007 field investigation identified a total of 9.06 acres of Corps-jurisdictional wetlands within the four discrete parts of the RMDP site evaluated. The technical report from this investigation comprises Part One of this composite wetland delineation, and is presented above.

3.3 RESULTS

Based on the four data sources identified above, the study area contains wetlands within the Santa Clara River mainstem and the Potrero Canyon and Salt Creek tributaries within the RMDP site and within two unnamed drainages in the Entrada planning area. Of the acreage delineated within the river corridor, 2.51 acres are attributable to a spring complex near the mouth of Middle Canyon, rather than to the hydrologic influence of the river itself. Table 2 presents the acreages of wetlands delineated, as presented in the source technical reports and
TABLE 2
CORPS JURISDICTIONAL WETLANDS WITHIN THE RMDP SITE AND ENTRADA PLANNING AREA (ACRES)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Santa Clara River</td>
<td>Not Analyzed</td>
<td>Not Analyzed</td>
<td>228</td>
<td>9.06</td>
<td>237.06</td>
</tr>
<tr>
<td>Salt Creek</td>
<td>5.67</td>
<td>Not Analyzed</td>
<td>Not Analyzed</td>
<td>Not Analyzed</td>
<td>5.67</td>
</tr>
<tr>
<td>Potrero Canyon</td>
<td>6.52</td>
<td>Not Analyzed</td>
<td>Not Analyzed</td>
<td>Not Analyzed</td>
<td>6.52</td>
</tr>
<tr>
<td>Spring Complex</td>
<td>2.14</td>
<td>Not Analyzed</td>
<td>Not Analyzed</td>
<td>Not Analyzed</td>
<td>2.14</td>
</tr>
<tr>
<td>Subtotal RMDP Site</td>
<td>14.33</td>
<td>Not Analyzed</td>
<td>228</td>
<td>9.06</td>
<td>251.39</td>
</tr>
<tr>
<td>Entrada Unnamed Drainages</td>
<td>Not Analyzed</td>
<td>0.15</td>
<td>Not Analyzed</td>
<td>Not Analyzed</td>
<td>0.15</td>
</tr>
<tr>
<td>Subtotal Entrada Planning Area</td>
<td>Not Analyzed</td>
<td>0.15</td>
<td>Not Analyzed</td>
<td>Not Analyzed</td>
<td>0.15</td>
</tr>
<tr>
<td>Grand Total</td>
<td>14.33</td>
<td>0.15</td>
<td>228</td>
<td>9.06</td>
<td>251.54</td>
</tr>
</tbody>
</table>
calculated from the source GIS layers. These wetlands are depicted graphically on Figure 16. The four assessments delineated a total of 251.39 acres of jurisdictional wetlands within the RMDP site and an additional 0.15 acres of wetlands within the Entrada planning area, for a grand total of 251.54 acres of jurisdictional wetlands within the study area.

3.4 CONCLUSION AND RECOMMENDATIONS

The composite wetland delineation identified a total of 251.54 acres of jurisdictional wetlands within the study area, most of which occur within the Santa Clara River mainstem. It is important to note that the vast majority of the wetland area delineated in the source studies (228 acres) was identified through the planning-level delineation of the river corridor. While it is almost certainly true that the planning-level delineation methods employed by the biologists at URS Corporation and Dudek and Associates in 2006 determine wetland boundaries with lesser accuracy than the intensive field methods set forth in the Wetland Delineation Manual (Environmental Laboratory 1987), it is important to remember that the Santa Clara River mainstem is a highly dynamic system, and that the proposed RMDP is a long-term project. Even if the extent of wetlands within the river corridor were delineated with the utmost precision today, natural forces such as lateral channel migration, growth and scouring of vegetation, and sediment dynamics would render the delineation progressively less accurate with each passing storm season. The planning-level delineation provides a reasonable estimate (really a conservative estimate, due to the methods employed) of the wetland acreage that occurred within the river corridor in 2006, and the field based source documents provide somewhat more accurate estimates of the location and extent of wetlands in the years when those assessments were conducted. Over the 30-year life of the proposed RMDP project it is not likely that any single delineation of wetlands within the river corridor, regardless of the method employed, would remain accurate.

Despite this reduction in accuracy over time, considerable knowledge can be gained from the results of this composite wetland delineation. Outside the river mainstem, in wetland areas such as Potrero Canyon, Salt Creek, and the unnamed drainages in the Entrada planning area, changes occur much more slowly due to the relative infrequency of extreme flow events in these small watersheds. Wetlands in these areas were delineated using highly accurate field methods, and the delineations should provide useful, accurate information for substantially longer than delineations conducted within the river corridor. In addition, the compilation of many source delineations into a single layer allows an assessment of the proposed RMDP’s impacts on wetlands that would not otherwise be possible. Combining the various spatial data sets serves to eliminate the data gaps that would exist if only one of the assessments were used (since no single assessment delineated wetlands within the entire study area) while also eliminating the overlap in the individual GIS layers that prevents an analyst from mathematically combining data from each layer to get a combined wetland impact total.
Figure 16. Wetlands Within the RMDP Site and Entrada Planning Area

Legend
- M D P and Entrada Study Area
- Corps Jurisdictional Wetlands
 - URS Field Mapped, 2004
 - Glen Lukos Field Mapped, 2007
 - URS Field Mapped, 2007
 - URS/Dudek Aerial Interpreted, 2006

Source:
Wetland delineations performed by Dudek, Glen Lukos and URS;
2-foot resolution aerial basemap, flown July 2007, AirPhotoUSA
Based on the information above, URS recommends that this composite wetland delineation be supplemented by smaller-scale, field-based delineations prior to construction of individual RMDP project components. The RMDP technical document (Dudek 2006b) identifies the types and locations of facilities proposed, but is intended to provide sufficient flexibility for future RMDP components to meet changing demands while avoiding impacts to the aquatic environment to the maximum extent practicable. To this end, the delineations should ideally be conducted close enough to the time of construction to minimize the effects of natural river dynamics, but far enough in advance to allow consideration of design changes that could avoid or minimize impacts to special aquatic sites.
SECTION 4.0
REFERENCES

PACE, Inc. 2007. Proposed Bridge Alignment Alternatives GIS layer.

APPENDIX A

WETLAND DETERMINATION DATA FORMS
Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-1
Investigator(s): J. Kisner, J. Love, W. Vogler, E. Larsen
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain
Local relief (concave, convex, none): None
Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6358923.793640
Long: 1971818.233030
Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land
NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes [] No [x]
(If no, explain in Remarks.)

Are Vegetation [] Soil [] Hydrology [] significantly disturbed?
Are “Normal Circumstances” present? Yes [] No [x]
(If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes [] No [x]</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes [] No [x]</th>
</tr>
</thead>
</table>

Remarks:
SP PC-1 characterizes an agricultural field with mixed grasses approximately 850 feet North of the Santa Clara River. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum			
1.			
2.			
Total Cover:			

Herb Stratum			
1. *Eleusine indica*	25 Y	FACU	
2. *Poa sp.*	25 Y		
3. *Dactyloctenium aegyptium*	25 Y	NI	
4. *Ambrosia acanthacarpa*	3 N	NI	
5. *Brassica nigra*	3 N	NI	
6. *Trifolium sp.*	1 N		
7. *Leptochloa uninervia*	1 N	FACW	
8. *Polygonum arenastrum*	1 N	FAC	
9. *Rumex sp.*	1 N		
10. *Sonchus sp.*	1 N		
11. *Xanthium strumarium*	1 N	FAC+	
Total Cover:	87		

Woody Vine Stratum			
1.			
2.			
Total Cover:			

| % Bare Ground in Herb Stratum | 13 | % Cover of Biotic Crust | |

Remarks:
Reed 1988 was used to determine the wetland indicator status of plants unless otherwise noted.

Hydrophytic Vegetation Indicators:
- Dominance Test is >50%
- Prevalence Index is ≤3.0
- Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
- Problematic Hydrophytic Vegetation (Explain)

1Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes [] No [x]
Profile Description:
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>10YR4/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sandy coarse</td>
<td></td>
</tr>
<tr>
<td>6-16</td>
<td>10YR4/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>coarse sand w/ gravel (riverwash)</td>
<td></td>
</tr>
</tbody>
</table>

1Type: C=Concentration, D=Depletion, RM=Reduced Matrix. 2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators:
(Applicable to all LRRs, unless otherwise noted.)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histosol (A1)</td>
<td>Sandy Redox (S5)</td>
</tr>
<tr>
<td>Histic Epipedon (A2)</td>
<td>Stripped Matrix (S6)</td>
</tr>
<tr>
<td>Black Histic (A3)</td>
<td>Loamy Mucky Mineral (F1)</td>
</tr>
<tr>
<td>Hydrogen Sulfide (A4)</td>
<td>Loamy Gleyed Matrix (F2)</td>
</tr>
<tr>
<td>Stratified Layers (A5) (LRR C)</td>
<td>Depleted Matrix (F3)</td>
</tr>
<tr>
<td>1 cm Muck (A9) (LRR D)</td>
<td>Redox Dark Surface (F6)</td>
</tr>
<tr>
<td>Depleted Below Dark Surface (A11)</td>
<td>Depleted Dark Surface (F7)</td>
</tr>
<tr>
<td>Thick Dark Surface (A12)</td>
<td>Redox Depressions (F8)</td>
</tr>
<tr>
<td>Sandy Mucky Mineral (S1)</td>
<td>Vernal Pools (F9)</td>
</tr>
<tr>
<td>Sandy Gleyed Matrix (S4)</td>
<td></td>
</tr>
</tbody>
</table>

Hydric Soil Present?
- Yes []
- No [X]

remarks:
No hydric soil indicators were present.

HYDROLOGY

Wetland Hydrology Indicators:

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water (A1)</td>
<td>Salt Crust (B11)</td>
</tr>
<tr>
<td>High Water Table (A2)</td>
<td>Biotic Crust (B12)</td>
</tr>
<tr>
<td>Saturation (A3)</td>
<td>Aquatic Invertebrates (B13)</td>
</tr>
<tr>
<td>Water Marks (B1) (Nonriverine)</td>
<td>Hydrogen Sulfide Odor (C1)</td>
</tr>
<tr>
<td>Sediment Deposits (B2) (Nonriverine)</td>
<td>Oxidized Rhizospheres along Living Roots (C3)</td>
</tr>
<tr>
<td>Drift Deposits (B3) (Nonriverine)</td>
<td>Presence of Reduced Iron (C4)</td>
</tr>
<tr>
<td>Surface Soil Cracks (B6)</td>
<td>Recent Iron Reduction in Plowed Soils (C6)</td>
</tr>
<tr>
<td>Inundation Visible on Aerial Imagery (B7)</td>
<td>Other (Explain in Remarks)</td>
</tr>
<tr>
<td>Water-Stained Leaves (B9)</td>
<td></td>
</tr>
</tbody>
</table>

Secondary Indicators (2 or more required)

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Marks (B1) (Riverine)</td>
<td>Sediment Deposits (B2) (Riverine)</td>
</tr>
<tr>
<td>Drift Deposits (B3) (Riverine)</td>
<td>Drainage Patterns (B10)</td>
</tr>
<tr>
<td>Dry-Season Water Table (C2)</td>
<td>Thin Muck Surface (C7)</td>
</tr>
<tr>
<td>Crayfish Burrows (C8)</td>
<td>Saturation Visible on Aerial Imagery (C9)</td>
</tr>
<tr>
<td>Shallow Aquitard (D3)</td>
<td>FAC-Neutral Test (D5)</td>
</tr>
</tbody>
</table>

Field Observations:

<table>
<thead>
<tr>
<th>Observation</th>
<th>Yes [] No [X] Depth (inches):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water Present?</td>
<td></td>
</tr>
<tr>
<td>Water Table Present?</td>
<td></td>
</tr>
<tr>
<td>Saturation Present? (includes capillary fringe)</td>
<td></td>
</tr>
</tbody>
</table>

Wetland Hydrology Present?
- Yes []
- No [X]

Remarks:
No evidence of hydrology was observed.
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-2
Investigator(s): E. Larsen, J. Kisner, W. Vogler, J. Love
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain
Local relief (concave, convex, none): none
Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C)
Soil Map Unit Name: Sany Alluvial
NWI classification: PFO6

Are climatic / hydrologic conditions on the site typical for this time of year?
Yes [] No [X]
(If no, explain in Remarks.)

Are Vegetation [] Soil [] or Hydrology [] significantly disturbed?
Are “Normal Circumstances” present? Yes [X] No []
(If needed, explain any answers in Remarks.)

SP PC-2 characterizes riparian forest North of Santa Clara River. Currently, fragmented from riparian habitat near river due to agricultural use in the area.

The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populus fremontii</td>
<td>95</td>
<td>Y</td>
<td>FACW</td>
</tr>
</tbody>
</table>

Total Cover: 95

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baccharis salicifolia</td>
<td>5</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>Salix exigua</td>
<td>2</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>Tamarix sp.</td>
<td>2</td>
<td>N</td>
<td>FAC</td>
</tr>
</tbody>
</table>

Total Cover: 9

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>grass</td>
<td>25</td>
<td>Y</td>
</tr>
</tbody>
</table>

Total Cover: 25

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th>Absolute % Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

**Total Cover: **

% Bare Ground in Herb Stratum: 75
% Cover of Biotic Crust:

Hydrophytic Vegetation Indicators:

Dominance Test

- Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
- Total Number of Dominant Species Across All Strata: 3 (B)
- Percent of Dominant Species That Are OBL, FACW, or FAC: 66% (A/B)

Prevalence Index

- Total % Cover of:
 - OBL species: 2 x 1 = 2 (A)
 - FACW species: 100 x 2 = 200 (B)
 - FAC species: 2 x 3 = 6 (A)
 - FACU species: 0 x 4 = 0 (B)
 - UPL species: 0 x 5 = 0 (B)
- Column Totals: 104 (A) 208 (B)
- Prevalence Index = B/A = 2

Hydrophytic Vegetation

Yes [X] No []

Remarks:

The vegetation of SP PC-2 most closely corresponds to Cowardin’s (1979) riparian forest.
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>10YR4/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>silty loam</td>
</tr>
<tr>
<td>2-3</td>
<td>10YR4/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sand</td>
</tr>
<tr>
<td>3-16</td>
<td>10YR4/2</td>
<td>80</td>
<td>5YR4/6</td>
<td>20</td>
<td>C</td>
<td>M,RC,PL</td>
<td>silty clay</td>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix. Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

Type: Depth (inches):

Hydric Soil Present? Yes ☐ No ☐

Remarks:
Shovel refusal was experienced due to difficulty getting through the thick layer of grass.

Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☐ Depth (inches):
- Water Table Present? Yes ☐ No ☐ Depth (inches):
- Saturation Present? Yes ☐ No ☐ Depth (inches):

Wetland Hydrology Present? Yes ☐ No ☐

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-3

Investigator(s): J. Kisner, J. Love, W. Vogler, E. Larsen
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain
Local relief (concave, convex, none): none
Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6358781.7248300
Long: 1971508.0936000
Datum: NAD83
Soil Map Unit Name: Riverwash
NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)

Are Vegetation ☐ Soil ☐, or Hydrology ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐

Are Vegetation ☐ Soil ☒, or Hydrology ☐ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ☒ No ☐</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes ☒ No ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes ☒ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes ☒ No ☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

SP PC-3 characterizes riparian habitat north of the Santa Clara River. Currently, fragmented from riparian habitat near river due to agricultural use in the area.

The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

Tree Stratum

<table>
<thead>
<tr>
<th>Species</th>
<th>Use scientific names.</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Baccharis salicifolia</td>
<td>70</td>
<td>Y</td>
<td>FACW*</td>
</tr>
<tr>
<td>2. Salix exigua</td>
<td>15</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>3. Salix lasiolepis</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>4. Tamarix sp.</td>
<td>2</td>
<td>N</td>
<td>FAC</td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Herb Stratum

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Distichlis spicata</td>
<td>85</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2. Ambrosia psilostachya var. californica</td>
<td>5</td>
<td>N</td>
<td>NI</td>
</tr>
<tr>
<td>3. Cynodon dactylon</td>
<td>1</td>
<td>N</td>
<td>FAC</td>
</tr>
<tr>
<td>4. Melilotus alba</td>
<td>1</td>
<td>N</td>
<td>FACU+</td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Woody Vine Stratum

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Bare Ground in Herb Stratum</th>
<th>% Cover of Biotic Crust</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

The vegetation of SP PC-3 most closely corresponds to Cowardin's (1979) riparian scrub.

Dominance Test worksheet:

<table>
<thead>
<tr>
<th>Number of Dominant Species That Are OBL, FACW, or FAC:</th>
<th>2 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Dominant Species Across All Strata:</td>
<td>2 (B)</td>
</tr>
<tr>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC:</td>
<td>100% (A/B)</td>
</tr>
</tbody>
</table>

Prevalence Index worksheet:

<table>
<thead>
<tr>
<th>Total % Cover of: Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBL species:</td>
</tr>
<tr>
<td>FACW species:</td>
</tr>
<tr>
<td>FAC species:</td>
</tr>
<tr>
<td>FACU species:</td>
</tr>
<tr>
<td>UPL species:</td>
</tr>
<tr>
<td>Column Totals:</td>
</tr>
<tr>
<td>Prevalence Index = B/A =</td>
</tr>
</tbody>
</table>

Hydrophytic Vegetation Indicators:

- ☒ Dominance Test is >50%
- ☐ Prevalence Index is ≤ 3.0

- ☐ Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
- ☐ Problematic Hydrophytic Vegetation¹ (Explain)

¹Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes ☒ No ☐

Google's AutoML team used a regression model to provide the prediction. The model was trained on a large dataset of historic data and can be further improved with more data.

Notes:

- Wetland indicator status was assumed FAC for all *Tamarix* species that were not identified to species. *Tamarix* species found in California have indicators of at least FAC.
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type1</th>
<th>Loc2</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>10YR4/3 none</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>silt loam</td>
<td></td>
</tr>
<tr>
<td>2-16</td>
<td>10YR4/2 95 5YR4/6</td>
<td>5</td>
<td>C</td>
<td>RC,M</td>
<td></td>
<td></td>
<td>silty clay</td>
<td>small amount of root channels w/ mottles</td>
</tr>
</tbody>
</table>

Depth Matrix Redox Features

1*Type: C=Concentration, D=Depletion, RM=Reduced Matrix. 2*Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)
- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Hydric Soil Present? Yes ☒ No ☐

Remarks:

Small mottling was found scattered throughout the soil profile. Oxidation was also observed from 2-16 inches around the roots.

Due to the “neutral” characteristics of sandy soils, riverwash is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)
- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

Secondary Indicators (2 or more required):

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☒ No ☐ Depth (inches):________
- Water Table Present? Yes ☒ No ☐ Depth (inches):________
- Saturation Present? (includes capillary fringe) Yes ☒ No ☐ Depth (inches):________

Wetland Hydrology Present? Yes ☒ No ☐

Remarks:

Soil damp throughout soil pit.

US Army Corps of Engineers

Arid West – Version 11-1-2006
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-4

Investigator(s): J. Kisner, J. Love, W. Vogler, E. Larsen
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain
Local relief (concave, convex, none): none
Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6358690.6215500
Long: 1971446.0286400
Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land/Riverwash
NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☐ ☓
Are Vegetation No ☐ ☓, Soil No ☐ ☓, or Hydrology No ☐ ☓ significantly disturbed? Are “Normal Circumstances” present? Yes ☐ ☓
Are Vegetation No ☐ ☓, Soil Yes ☐ ☓, or Hydrology No ☐ ☓ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ☐ ☓ No ☓</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes ☒ ☓ No ☒</th>
</tr>
</thead>
</table>

Remarks:
SP PC-4 characterizes riparian habitat North of the Santa Clara River. Currently, fragmented from riparian habitat near river due to agricultural use in the area.
The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Baccharis salicifolia</td>
</tr>
<tr>
<td>Total Cover: 10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cynodon dactylon</td>
</tr>
<tr>
<td>2. Leptochloa uninervia</td>
</tr>
<tr>
<td>3. Melilotus alba</td>
</tr>
<tr>
<td>4. Echinochloa crus-galli</td>
</tr>
<tr>
<td>5.Polygonum monspeliensis</td>
</tr>
<tr>
<td>6. Chenopodium album</td>
</tr>
<tr>
<td>7. Cyperus erythrorhizos</td>
</tr>
<tr>
<td>8. Eleusine indica</td>
</tr>
<tr>
<td>9. Malveia leprosa</td>
</tr>
<tr>
<td>10. Phalaris aquatica</td>
</tr>
<tr>
<td>11. Poa sp.</td>
</tr>
<tr>
<td>12. Sonchus asper</td>
</tr>
<tr>
<td>13. Typha domingensis</td>
</tr>
<tr>
<td>14. Xanthium strumarium</td>
</tr>
<tr>
<td>Total Cover: 63</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
</tr>
<tr>
<td>2.</td>
</tr>
<tr>
<td>Total Cover:</td>
</tr>
</tbody>
</table>

| % Bare Ground in Herb Stratum | 30 |
| % Cover of Biotic Crust | |

Remarks:

The vegetation of SP PC-4 most closely corresponds to Cowardin’s (1979) riparian scrub.

* = A tentative assignment to that indicator status by Reed, 1988
SOIL

Sampling Point: PC-4

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td>10YR4/3</td>
<td>98</td>
<td>SYR4/6</td>
<td>2</td>
<td>C</td>
<td>R,C,M</td>
<td>silty clay mixed w/ silty loam</td>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix.
Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Restrictive Layer (if present):

<table>
<thead>
<tr>
<th>Type:</th>
<th>Depth (inches):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes ☒ No ☐</td>
</tr>
</tbody>
</table>

Remarks:
Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)
- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

<table>
<thead>
<tr>
<th>Surface Water Present?</th>
<th>Yes ☒ No ☐</th>
<th>Depth (inches):</th>
<th>Wetland Hydrology Present?</th>
<th>Yes ☒ No ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Table Present?</td>
<td>Yes ☒ No ☐</td>
<td>Depth (inches):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturation Present?</td>
<td>Yes ☒ No ☐</td>
<td>Depth (inches):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(includes capillary fringe)

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Project/Site: Newhall Ranch/Potrero Canyon City/County: Los Angeles County Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: PC-5
Investigator(s): J. Kisner, W. Vogler Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Channel Bank Local relief (concave, convex, none): none Slope (%): flat
Subregion (LRR): Mediterranean California (LRR-C) Lab: 6358488.6477700 Long: 1970918.1258500 Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land NWI classification: PSS6
Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)

Are Vegetation No, Soil No, or Hydrology No significantly disturbed? Are “Normal Circumstances” present? Yes No (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No Is the Sampled Area within a Wetland? Yes No No
Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No No
Remarks:
SP PC-5 characterizes the floodplain North of the Santa Clara River. Sandy soils present.
The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata 2 (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC: 50% (A/B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index worksheet:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multiply by</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OBL species 2 x 1 = 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACW species 20 x 2 = 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAC species 13 x 3 = 39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FACU species 50 x 4 = 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UPL species 4 x 5 = 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Column Totals: 89 (A) 301 (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index = B/A = 3.38</td>
</tr>
<tr>
<td></td>
<td>Total Cover:</td>
<td></td>
<td></td>
<td>Hydrophytic Vegetation Indicators:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□ Dominance Test is >50%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□ Prevalence Index is ≤3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□ Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>□ Problematic Hydrophytic Vegetation (Explain)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1Indicators of hydric soil and wetland hydrology must be present.</td>
</tr>
</tbody>
</table>

Hydrophytic Vegetation Indicators:

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Melilotus alba</td>
<td>50 Y</td>
<td>FACU+</td>
<td></td>
</tr>
<tr>
<td>2. Bassia hyssopifolia</td>
<td>10 N</td>
<td>FAC</td>
<td></td>
</tr>
<tr>
<td>3. Ambrosia acanthicarpa</td>
<td>2 N</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>4. Aster subulatus var. iliculatus</td>
<td>2 N</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td>5. Brassica nigra</td>
<td>1 N</td>
<td>FAC</td>
<td></td>
</tr>
<tr>
<td>6. Leptochloa uninervia</td>
<td>1 N</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td>7. unknown grass</td>
<td>1 N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. unknown grass</td>
<td>1 N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 68</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Woody Vine Stratum

<table>
<thead>
<tr>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Bare Ground in Herb Stratum 10 % Cover of Biotic Crust

Remarks: Although the dominance test equals 50% and the Prevalence Test was greater than 3.0, the invasive nature and annual/biannual life cycle of Melilotus alba skewed the results. Most plants are hydrophytic.

The vegetation of SP PC-5 most closely corresponds to Cowardin’s (1979) riparian scrub.

b Wetland indicator status was assumed FAC for all Tamarix species that were not identified to species. Tamarix species found in California have indicators of at least FAC.
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>% Color (moist)</th>
<th>Redox Features %</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-18</td>
<td>10YR6/2</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2Type: C=Concentration, D=Depletion, RM=Reduced Matrix. 2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

- Type:
- Depth (inches):

Hydric Soil Present? Yes ☒ No ☐

Remarks:

Soil pit 3 feet from the bank to the road.

A high water table and saturated soils provided evidence of hydrology.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☒ No ☐ Depth (inches): 0
- Water Table Present? Yes ☒ No ☐ Depth (inches): 15
- Saturation Present? (includes capillary fringe) Yes ☒ No ☐ Depth (inches): 8-15

Water-Stained Leaves (B9)

Wetland Hydrology Present? Yes ☒ No ☐

Remarks:

A high water table and saturated soils provided evidence of hydrology.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/26/07

Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-6

Investigator(s): E. Larsen, J. Love
Section, Township, Range: San Francis Land Grant

Landform (hillslope, terrace, etc.): Channel Bank
Local relief (concave, convex, none): none
Slope (%): 0

Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6358492.1903900
Long: 1970877.0632800
Datum: NAD83

Soil Map Unit Name: Sandy Alluvial Land
NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)

Are Vegetation ☐, Soil ☐, or Hydrology ☐ significantly disturbed? Are "Normal Circumstances" present? Yes ☒ No ☐

Are Vegetation ☐, Soil ☒, or Hydrology ☒ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐

Hydric Soil Present? Yes ☒ No ☐

Wetland Hydrology Present? Yes ☒ No ☐

Is the Sampled Area ☒ within a Wetland? ☐

Remarks:
The vegetation of SP PC-6 most closely corresponds to Cowardin’s (1979) riparian scrub.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Populus fremontii</td>
<td>10</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2. Salix laevigata</td>
<td>10</td>
<td>Y</td>
<td>FACW+a</td>
</tr>
<tr>
<td>3. Salix exigua</td>
<td>10</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>4. Tamarix sp.</td>
<td>10</td>
<td>Y</td>
<td>FACb</td>
</tr>
<tr>
<td>Total Cover:</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Agrostis viridis</td>
<td>20</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>2. Typha domingensis</td>
<td>20</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>3. Eleocharis macrostachya</td>
<td>10</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>4. Juncus torreyi</td>
<td>10</td>
<td>Y</td>
<td>FACW+</td>
</tr>
<tr>
<td>5. Tamarix sp.</td>
<td>10</td>
<td>Y</td>
<td>FAC</td>
</tr>
<tr>
<td>6. Arundo donax</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>7. Cyperus erythrorhizos</td>
<td>5</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>8. Cyperus involucratus</td>
<td>5</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>9. Epilobium ciliatum</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>10. Juncus xiphodes</td>
<td>5</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>11. Melilotus alba</td>
<td>5</td>
<td>N</td>
<td>FACU+</td>
</tr>
<tr>
<td>Total Cover: 100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Bare Ground in Herb Stratum</th>
<th>% Cover of Biotic Crust</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

US Army Corps of Engineers
Arid West – Version 11-1-2006
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Color (moist):** n/a
- **%:**
- **Color (moist):**
- **%:**
- **Type:**
- **Loc:**
- **Texture:** coarse sand
- **Remarks:**

Depth Matrix Redox Features

<table>
<thead>
<tr>
<th>(inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Depressions (F8)
- Vernal Pools (F9)

Restrictive Layer (if present):

- **Type:**
- **Depth (inches):**

Hydric Soil Present? Yes [] No []

Remarks:

Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

- **Primary Indicators (any one indicator is sufficient):**
 - Surface Water (A1)
 - High Water Table (A2)
 - Saturation (A3)
 - Water Marks (B1) (Nonriverine)
 - Sediment Deposits (B2) (Nonriverine)
 - Drift Deposits (B3) (Nonriverine)
 - Surface Soil Cracks (B6)
 - Inundation Visible on Aerial Imagery (B7)
 - Water-Stained Leaves (B9)

- **Secondary Indicators (2 or more required):**
 - Water Marks (B1) (Riverine)
 - Sediment Deposits (B2) (Riverine)
 - Drainage Patterns (B10)
 - Dry-Season Water Table (C2)
 - Thin Muck Surface (C7)
 - Oxidized Rhizospheres along Living Roots (C3)
 - Recent Iron Reduction in Plowed Soils (C6)
 - Presence of Reduced Iron (C4)
 - Other (Explain in Remarks)
 - Shallow Aquitard (D3)
 - FAC-Neutral Test (D5)

Field Observations:

- **Surface Water Present?** Yes [] No [] Depth (inches): 2-16
- **Water Table Present?** Yes [] No [] Depth (inches): 2-16
- **Saturation Present?** Yes [] No [] Depth (inches): 2-16

Wetland Hydrology Present? Yes [] No []

Remarks:

- High water table provided evidence of hydrology.

US Army Corps of Engineers
Arid West – Version 11-1-2006
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon City/County: Los Angeles County Sampling Date: 9/25/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: PC-7
Investigator(s): J. Davis, J. Love Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Channel Bank Local relief (concave, convex, none): None Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C) Lat: 6358467.0973400 Long: 1970634.2451100 Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land NWI classification: PSS6
Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)
Are Vegetation ☒ Soil ☒, or Hydrology ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation ☒ Soil Yes ☒, or Hydrology ☐ naturally problematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐ Hydric Soil Present? Yes ☒ No ☐ Wetland Hydrology Present? Yes ☒ No ☐ Is the Sampled Area within a Wetland? Yes ☒ No ☐

Remarks:
SP PC-7 Characterizes the southern bank of the Santa Clara River.
The 2006-2007 rainy season received an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum</th>
<th>Species</th>
<th>% Cover</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Salix exigua</td>
<td>90</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>2. Populus fremontii</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td>95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th>Species</th>
<th>% Cover</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Typha Sp.</td>
<td>15</td>
<td>Y</td>
<td>OBLc</td>
</tr>
<tr>
<td>2. Salix laevigata</td>
<td>10</td>
<td>Y</td>
<td>FACW+a</td>
</tr>
<tr>
<td>3. Melilotus alba</td>
<td>5</td>
<td>N</td>
<td>FACU+</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th>Species</th>
<th>% Cover</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Bare Ground in Herb Stratum 1 % Cover of Biotic Crust

Remarks:
The vegetation of SP PC-7 most closely corresponds to Cowardin’s (1979) riparian scrub.

Dominance Test worksheet:
Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
Total Number of Dominant Species Across All Strata 3 (B)
Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)
Prevalence Index worksheet:
Total % Cover of:
OBL species 105 x 1 = 105
FACW species 15 x 2 = 30
FAC species 0 x 3 = 0
FACU species 5 x 4 = 20
UPL species 0 x 5 = 0
Column Totals: 125 (A) 155 (B)
Prevalence Index = B/A = 1.24

Hydrophytic Vegetation Indicators:
☒ Dominance Test is >50%
☒ Prevalence Index is ≤ 3.0
☐ Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation (Explain)

Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes ☒ No ☐

1 Wetland indicator status was assumed OBL for all Typha species that were not identified to species. Typha species found in California have indicators of at least OBL
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Redox Features</th>
<th>Matrix</th>
<th>%</th>
<th>Type¹</th>
<th>Loc²</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>10YR 4/2</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Silty clay loam</td>
<td></td>
</tr>
<tr>
<td>5-16</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coarse sand riverwash</td>
<td></td>
</tr>
</tbody>
</table>

¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix. ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils¹:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

- Type: ________________________________
- Depth (inches): ____________________

Hydric Soil Present? Yes [] No []

Remarks:

Organic material visible from the surface down through the top 5 inches of the rhizosphere/soil profile. With the exception of organic material, there was no additional hydric soil indicators. Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes [] No [] Depth (inches): ___________
- Water Table Present? Yes [] No [] Depth (inches): ___________
- Saturation Present? Yes [] No [] Depth (inches): ___________

Wetland Hydrology Present? Yes [] No []

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

High water table provided evidence of hydrology.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/25/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-8

Investigator(s): J. Davis, J. Love
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Channel Bank
Local relief (concave, convex, none): None
Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6358481.1919400
Long: 1970556.5810700
Datum: NAD83

Soil Map Unit Name: Sandy Alluvial Land
NWI classification: PSSG

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)
Are Vegetation ☐ Soil ☐, or Hydrology ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation No, Soil Yes, or Hydrology No naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☒ No ☐

Is the Sampled Area within a Wetland? Yes ☒ No ☐

Remarks:
SP PC-8 characterizes the northern portion of southern abutment within the Santa Clara floodplain. A 2003 aerial review determined a side channel of the river was present at this location. No vegetation existed at that time. Vegetation is immature and tree species are young saplings.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Absolute Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of Dominant Species That Are OBL, FAC, or FAC: 3 (A)</td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata: 3 (B)</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FAC, or FAC: 100% (A/B)</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td>Prevalence Index worksheet: Multiply by</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td>OBL species 65 x 1 = 65</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td>FACW species 32 x 2 = 64</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td>FAC species 3 x 3 = 9</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
<td>FACU species 0 x 4 = 0</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
<td>UPL species 0 x 5 = 0</td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
<td>Column Totals: 100 (A) 138 (B)</td>
</tr>
<tr>
<td>Prevalence Index = B/A = 1.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydrophytic Vegetation Indicators:
☒ Dominance Test is >50%
☒ Prevalence Index is ≤ 3.01
☐ Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation1 (Explain)

1Indicators of hydric soil and wetland hydrology must be present.

WOODY VEGETATION

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th>% Bare Ground in Herb Stratum</th>
<th>% Cover of Biotic Crust</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
The vegetation of SP PC-8 most closely corresponds to Cowardin’s (1979) riparian scrub.
A lot of Fremont cottonwood leaf litter.

1 Wetland indicator status was assumed OBL for all Typha species that were not identified to species. Typha species found in California have indicators of at least OBL

2 Wetland indicator status was assumed FAC for all Tamarix species that were not identified to species. Tamarix species found in California have indicators of at least FAC.

3 Wetland indicator status was assumed FAC for all Tammarix species that were not identified to species. Tamarix species found in California have indicators of at least FAC.
Profile Description:
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type¹</th>
<th>Loc²</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>10YR 2.5/1</td>
<td></td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>2.5 YR 5-4/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-7/8</td>
<td>10YR 4/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-16</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix
²Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)
- Histosol (A1)
- Histic Epepedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils:
- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Hydric Soil Present? Yes [] No []

Remarks:
Some mottling visible in depositional layer.
Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required):
- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)
- FAC-Neutral Test (D5)

Wetland Hydrology Present? Yes [] No []

Remarks:
Surface water and a high water table provided evidence of hydrology.
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Potro Canyon City/County: Los Angeles County Sampling Date: 9/25/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: PC-9
Investigator(s): J. Davis, J. Love Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Channel Bank Local relief (concave, convex, none): None Slope (%): 0
Soil Map Unit Name: Sandy Alluvial Land NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)
Are Vegetation ☐, Soil ☐, or Hydrology ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation ☐, Soil ☒, or Hydrology ☐ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐ Is the Sampled Area within a Wetland? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☒ No ☐

Remarks:
SP PC-9 characterizes the southern embankment of the Santa Clara River within relict alluvial channel.
The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum
1. Populus fremontii 1 Y FACW
2. Tamarix Sp. 1 Y FACb

Total Cover: 2

Herb Stratum
1. Melilotus alba 60 Y FACU+
2. Baccharis salicifolia 30 Y FACWb

Total Cover: 90

Woody Vine Stratum
1. |
2. |
Total Cover: |

% Bare Ground in Herb Stratum 8 % Cover of Biotic Crust

Remarks:
The vegetation of SP PC-9 most closely corresponds to Cowardin’s (1979) riparian scrub.
Tree species are young saplings.

Hydrophytic Vegetation Indicators:
☒ Dominance Test is >50%
☒ Prevalence Index is ≤3.01
☒ Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet)
☒ Problematic Hydrophytic Vegetation1 (Explain)

1Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes ☒ No ☐
Profile Description:
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color (moist)</td>
<td>%</td>
</tr>
<tr>
<td>0-16</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color (moist)</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Type: C=Concentration, D=Depletion, RM=Reduced Matrix. 2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)
- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Depressions (F8)
- Vernal Pools (F9)
- Muck (A9) (LRR C)
- Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

<table>
<thead>
<tr>
<th>Type:</th>
<th>Depth (inches):</th>
<th>Hydric Soil Present?</th>
<th>Yes [] No []</th>
</tr>
</thead>
</table>

Remarks:

No signs of oxidation or organic material.

Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)
- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)
- FAC-Neutral Test (D5)

Field Observations:

<table>
<thead>
<tr>
<th>Surface Water Present?</th>
<th>Yes [] No []</th>
<th>Depth (inches):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Table Present?</td>
<td>Yes [] No []</td>
<td>Depth (inches): 16</td>
</tr>
<tr>
<td>Saturation Present?</td>
<td>Yes [] No []</td>
<td>Depth (inches):</td>
</tr>
<tr>
<td>(includes capillary fringe)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wetland Hydrology Present? Yes [] No []

Remarks:

High water table provided evidence of hydrology.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon City/County: Los Angeles County Sampling Date: 9/25/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: PC-10
Investigator(s): J. Davis, J. Love Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain Local relief (concave, convex, none): None Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C) Lat: 6358522.2620200 Long: 1970339.6556000 Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)
Are Vegetation ☐ Soil ☐, or Hydrology ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation ☐ Soil ☒, or Hydrology ☐ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐ Is the Sampled Area within a Wetland? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☒ No ☐

Remarks:
SP PC-10 characterizes change in soil type and a slight elevation change. SP PC-10 is South of the channel with mature trees.
The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

Tree Stratum (Use scientific names.) Absolute % Cover Dominant Species? Indicator Status
1. Populus fremontii 80 Y FACW
2.
3.
4.
Total Cover: 80

Sapling/Shrub Stratum
1. Salix exigua 80 Y OBL
2.
3.
4.
5.
Total Cover: 80

Herb Stratum
3. Leymus triticoides 35 Y FAC+
2. Baccharis salicifolia 10 Y FACWa

Total Cover: 45

Woody Vine Stratum
1.
2.

Total Cover:

% Bare Ground in Herb Stratum 10 ☐ % Cover of Biotic Crust ☐

Dominance Test worksheet:
Number of Dominant Species That Are OBL, FACW, or FAC: 4 (A)
Total Number of Dominant Species Across All Strata 4 (B)
Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)

Prevalence Index worksheet:
Total % Cover of: Multiply by
OBL species x 1 =
FACW species x 2 =
FAC species x 3 =
FACU species x 4 =
UPL species x 5 =
Column Totals: (A) (B)
Prevalence Index = B/A =

Hydrophytic Vegetation Indicators:
☒ Dominance Test is >50%
☐ Prevalence Index is ≤3.0
☐ Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation2 (Explain)

1Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes ☒ No ☐

Remarks:
The vegetation of SP PC-10 most closely corresponds to Cowardin’s (1979) riparian scrub.
A lot of Fremont cottonwood leaf litter.

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type1</th>
<th>Loc2</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-8</td>
<td>10YR 4/3</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sandy</td>
<td></td>
</tr>
<tr>
<td>8-16</td>
<td>10YR 4/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>silty clay</td>
<td>Oxidation around roots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Type: C=Concentration, D=Depletion, RM=Reduced Matrix. 2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Hydric Soil Present? Yes ☐ No ☑

Restrictive Layer (if present):

- Type: __________________________
- Depth (inches): __________________

Hydric Soil Present? Yes ☐ No ☑

Remarks:

Small mottling was found scattered through the soil profile. Oxidation was also observed from 8-16 inches around the roots.

Due to the "neutral" characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)
- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☑ Depth (inches): ___________
- Water Table Present? Yes ☐ No ☑ Depth (inches): ___________
- Saturation Present? (includes capillary fringe) Yes ☐ No ☑ Depth (inches): ___________

Wetland Hydrology Present? Yes ☐ No ☑

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

- Remarks:

 No evidence of hydrology was observed within one meter of sampling point.
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon City/County: Los Angeles County Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: PC-11

Investigator(s): J. Davis, J. Love Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain Local relief (concave, convex, none): none Slope (%): flat
Soil Map Unit Name: Sandy Alluvial Land NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐
Are Vegetation no, Soil no, or Hydrology no significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation no, Soil Yes, or Hydrology no naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☒ No ☐

Is the Sampled Area within a Wetland? Yes ☒ No ☐

Remarks:
SP PC-11 characterizes mature riparian forest approximately 100 feet away from the southern bank of the Santa Clara River. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Populus fremontii</td>
<td>70</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum			
1. Salix laevigata	15	Y	FACW+a
2. Salix sp.	10	Y	FACW
3. Sambucus mexicana	10	Y	FAC
Total Cover: 35			

Herb Stratum			
1. Salix sp.	10	Y	FACW
2.			
3.			
4.			
5.			
6.			
7.			
8.			
Total Cover: 10			

Woody Vine Stratum			
1.			
2.			
Total Cover:			

| % Bare Ground in Herb Stratum | 90 | % Cover of Biotic Crust | 0 |

Dominance Test worksheet:
Number of Dominant Species That Are OBL, FACW, or FAC: 5 (A)
Total Number of Dominant Species Across All Strata: 5 (B)
Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)

Prevalence Index worksheet:
Total % Cover of:

OBL species ______ x 1 = ______
FACW species ______ x 2 = ______
FAC species ______ x 3 = ______
FACU species ______ x 4 = ______
UPL species ______ x 5 = ______
Column Totals: ______ (A) ______ (B)
Prevalence Index = B/A = ______

Hydrophytic Vegetation Indicators:
☒ Dominance Test is >50%
☐ Prevalence Index is ≤3.01
☐ Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation (Explain)

Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes ☒ No ☐

Remarks:
The vegetation of SP PC-11 most closely corresponds to Cowardin's (1979) riparian scrub.

Wetland indicator status was assumed FACW for all Salix species not identified to species at this SP. All unidentified Salix sp. were either S. lasiolepis (FACW) or S. laevigata (FACW+), which in some cases were difficult to distinguish during the field survey. FACW is the lower wetland indicator between these two species and therefore was chosen.
SOIL

Sampling Point: PC-11

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>% Redox Features Color (moist)</th>
<th>% Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-8</td>
<td>10YR 4/3</td>
<td>N/A</td>
<td></td>
<td></td>
<td>sandy</td>
<td></td>
</tr>
<tr>
<td>8-16</td>
<td>10YR 4/2</td>
<td>N/A</td>
<td></td>
<td></td>
<td>silty clay</td>
<td>Oxidation around roots</td>
</tr>
</tbody>
</table>

1Type: C=Concentration, D=Depletion, RM=Reduced Matrix.
2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Bist (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Hydric Soil Indicators Present? Yes ☒ No ☐

Remarks:
Small mottling was found scattered through the soil profile. Oxidation was also observed from 8-16 inches around the roots.
Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drill Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Salt Crust (B11)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Oxidized Vertic (C7)
- Oxidized Rhizospheres along Living Roots (C8)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☒ No ☐ Depth (inches): _______
- Water Table Present? Yes ☒ No ☐ Depth (inches): _______
- Saturation Present? Yes ☒ No ☐ Depth (inches): _______

Wetland Hydrology Present? Yes ☒ No ☐

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
No evidence of hydrology was observed.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/25/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-12

Investigator(s): J. Davis, J. Love
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain
Local relief (concave, convex, none): None
Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6358800.8811600
Long: 1969648.3912600
Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land
NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐
Are Vegetation No ☐ Soil No ☐ Hydrology No ☐ significantly disturbed?
Are “Normal Circumstances” present? Yes ☒ No ☐

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☒ No ☐

Is the Sampled Area within a Wetland? Yes ☒ No ☐

Remarks:
SP PC-12 characterizes the edge of a ranch road. Recent vegetation removal was evident in the area. Riparian forest surrounds and overhangs this SP.
The 2006-2007 rainy season had an abnormally low amount of precipitation.

VEGETATION

Tree Stratum (Use scientific names.)

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
<th>Dominant Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Salix laevigata</td>
<td>30</td>
<td>Y FACW+a</td>
</tr>
<tr>
<td>2.</td>
<td>3.</td>
<td>Total Cover: 30</td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
<th>Dominant Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Arundo donax</td>
<td>10</td>
<td>Y FACW</td>
</tr>
<tr>
<td>2.</td>
<td>3.</td>
<td>4.</td>
</tr>
</tbody>
</table>

Herb Stratum

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2.</td>
</tr>
</tbody>
</table>

Woody Vine Stratum

<table>
<thead>
<tr>
<th>Species</th>
<th>Absolute % Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Total Cover:</td>
</tr>
</tbody>
</table>

% Bare Ground in Herb Stratum 80
% Cover of Biotic Crust 20

Dominance Test worksheet:
Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
Total Number of Dominant Species Across All Strata 2 (B)
Percent of Dominant Species That Are OBL, FACW, or FAC: 100 (A/B)

Prevalence Index worksheet:
Total % Cover of: Multiply by
OBL species x 1 =
FACW species x 2 =
FAC species x 3 =
FACU species x 4 =
UPL species x 5 =
Column Totals: (A) (B)
Prevalence Index = B/A =

Hydrophytic Vegetation Indicators:
☒ Dominance Test is >50%
☐ Prevalence Index is ≤3.0
☐ Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation (Explain)

Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes ☒ No ☐

Remarks:
The vegetation of SP PC-12 most closely corresponds to Cowardin’s (1979) riparian scrub.
Ruderal with elements of riparian forest.

US Army Corps of Engineers Arid West – Version 11-1-2006
Profile Description:
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
<th>Type</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Soil Pit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Depth Matrix Redox Features
(inches) Color (moist) % Color (moist) % Type Loc Remarks

1. Type: C=Concentration, D=Depletion, RM=Reduced Matrix
2. Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)
- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils:
- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):
Type: ___________________________
Depth (inches): ____________________

Hydric Soil Present? Yes [] No [X]

Remarks:
No soil pit was excavated due to lack of vegetation and observable hydrology.

Hydrology

Wetland Hydrology Indicators:
Primary Indicators (any one indicator is sufficient)
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)
- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:
- Surface Water Present? Yes [] No [] Depth (inches): __________
- Water Table Present? Yes [] No [] Depth (inches): __________
- Saturation Present? Yes [] No [] Depth (inches): __________

Wetland Hydrology Present? Yes [] No [X]

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
No evidence of hydrology was observed.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/25/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-13

Investigator(s): J. Love, L. Rizzo, J. Davis, J. Kisner
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): River Channel Bank
Local relief (concave, convex, none): none
Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C)

Landform: River Channel Bank
Local relief: none
Slope: 0

Soil Map Unit Name: Sandy Alluvial Land
NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☐ No ☐ (If no, explain in Remarks.)

Are Vegetation No, Soil No, or Hydrology No significantly disturbed?
Are “Normal Circumstances” present? Yes ☐ No ☐

Are Vegetation No, Soil Yes, or Hydrology No naturally problematic?
(If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

- **Hydrophytic Vegetation Present?** Yes ☐ No ☐
- **Hydric Soil Present?** Yes ☐ No ☐
- **Wetland Hydrology Present?** Yes ☐ No ☐
- **Is the Sampled Area within a Wetland?** Yes ☐ No ☐

Remarks:

SP PC-13 characterizes the southern edge of a vegetated channel south of the Santa Clara River.

The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Salix exigua</td>
<td>20</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>2. Salix laevigata</td>
<td>20</td>
<td>Y</td>
<td>FACW+a</td>
</tr>
<tr>
<td>3. Baccharis salicifolia</td>
<td>10</td>
<td>N</td>
<td>FACWa</td>
</tr>
<tr>
<td>4. Populus fremontii</td>
<td>10</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>5. Tamarix sp.</td>
<td>5</td>
<td>N</td>
<td>FACb</td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Sapling/Shrub Stratum | | | |
|-----------------------|-----------------|-----------------|
| 1. **Melilotus alba** | 20 | Y | FACU+ |
| 2. **Typha sp.** | 15 | Y | OBL |
| 3. **Arundo donax** | 5 | Y | FACW |
| 4. **Epilobium ciliatum** | 5 | Y | FACW |
| 5. **Euthamia occidentalis** | 5 | Y | OBL |
| 6. **Aster subulatus var. ligulatus** | 2 | N | FAC |
| 7. **Cyperus eragrostis** | 2 | N | FACW |
| 8. **Polygonum lapathifolium** | 2 | N | OBL |
| 9. **Xanthium strumarium** | 2 | N | FAC+ |
| **Total Cover:** | 58 | | |

| Herb Stratum | | | |
|--------------|-----------------|-----------------|
| 1. **Melilotus alba** | 20 | Y | FACU+ |
| 2. **Typha sp.** | 15 | Y | OBL |
| 3. **Arundo donax** | 5 | Y | FACW |
| 4. **Epilobium ciliatum** | 5 | Y | FACW |
| 5. **Euthamia occidentalis** | 5 | Y | OBL |
| 6. **Aster subulatus var. ligulatus** | 2 | N | FAC |
| 7. **Cyperus eragrostis** | 2 | N | FACW |
| 8. **Polygonum lapathifolium** | 2 | N | OBL |
| 9. **Xanthium strumarium** | 2 | N | FAC+ |
| **Total Cover:** | 58 | | |

Woody Vine Stratum

| | | | |
|------------------|-----------------|-----------------|
| 1. | | |
| 2. | | |
| **Total Cover:** | | |

% Bare Ground in Herb Stratum: 3%
% Cover of Biotic Crust:

Dominance Test worksheet:

- **Number of Dominant Species That Are OBL, FACW, or FAC:** 6 (A)
- **Total Number of Dominant Species Across All Strata:** 7 (B)
- **Percent of Dominant Species That Are OBL, FACW, or FAC:** 86% (A/B)

Prevalence Index worksheet:

- **Total % Cover of:**
 - OBL species 42
 - FACW species 52
 - FAC species 9
 - FACU species 20
 - UPL species 0
- **Multiply by:**
 - 1
 - 2
 - 3
 - 4
- **Column Totals:** 123 (A) 250 (B)
- **Prevalence Index = B/A =** 2.03

Hydrophytic Vegetation Indicators:

- 🔥 **Dominance Test** is >50%
- 🔥 **Prevalence Index** is ≤3.0
- ☐ **Morphological Adaptations**
- ☐ **Problematic Hydrophytic Vegetation**

Remarks:

The vegetation of SP PC-13 most closely corresponds to Cowardin’s (1979) riparian scrub. Height of vegetation ranged from 10'-15'.

- Wetland indicator status was assumed FAC for all Tamarix species that were not identified to species. Tamarix species found in California have indicators of at least FAC.
- Wetland indicator status was assumed OBL for all Typha species that were not identified to species. Typha species found in California have indicators of at least OBL.
Profile Description:
(Describe the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color (moist)</td>
<td>%</td>
</tr>
<tr>
<td>16</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Depth Matrix Redox Features

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Color (moist)</th>
<th>%</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR C)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Depressions (F8)
- Vernal Pools (F9)
- Redox Dark Surface (F10)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Presence of Reduced Iron (C7)
- Oxidized Rhizospheres along Living Roots (C3)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

- Type:
- Depth (inches):
- Hydric Soil Present? Yes ☐ No ☐

Remarks:
Small organic layer indicates young hydric soils layer (1/8") thick.

Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

Secondary Indicators (2 or more required):

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☐ Depth (inches):
- Water Table Present? Yes ☐ No ☐ Depth (inches): 2-3
- Saturation Present? (includes capillary fringe) Yes ☐ No ☐ Depth (inches): 0-2

Wetland Hydrology Present? Yes ☐ No ☐

Remarks:
Surface water present adjacent to soil pit.
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/25/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-14

Investigator(s): J. Love, L. Rizzo, J. Davis, J. Kisner
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): River Channel Bank
Local relief (concave, convex, none): none
Slope (%): 0

Subregion (LRR): Mediterranean California (LRR-C)
Lat: 33.58332.404220
Long: 1970531.6653300
Datum: NAD83

Soil Map Unit Name: Sandy Alluvial Land
NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes No
(If no, explain in Remarks.)

Are Vegetation No, Soil No, or Hydrology No significantly disturbed? Are “Normal Circumstances” present? Yes No
(If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ☒ No ☐</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes ☒ No ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes ☒ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes ☒ No ☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

SP PC-14 characterizes a man-created depression within the Santa Clara River floodplain. Vegetation appears to be 2-3 years old. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cover: _______

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cover: _______

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mellilotus alba</td>
<td>60 Y FACU+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Typha sp.</td>
<td>15 N OBL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Epilobium ciliatum</td>
<td>5 N FACW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Leptochloa uninervia</td>
<td>5 N FACW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Cyperus erythrorhizos</td>
<td>3 N OBL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Polygonum lapathifolium</td>
<td>3 N OBL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Baccharis salicifolia</td>
<td>1 N FACW+a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Cyperus involucratus</td>
<td>1 N OBL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Xanthium strumarium</td>
<td>1 N FAC+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cover: 94

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Cover: _______

% Bare Ground in Herb Stratum 6
% Cover of Biotic Crust _______

Dominance Test worksheet:

Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)

Total Number of Dominant Species Across All Strata 1 (B)

Percent of Dominant Species That Are OBL, FACW, or FAC: 0% (A/B)

Prevalence Index worksheet:

Total % Cover of: Multiply by

OBL species 22 x 1 = 22

FACW species 11 x 2 = 22

FAC species 1 x 3 = 3

FACU species 60 x 4 = 240

UPL species 0 x 5 = 0

Column Totals: 287 (B)

Prevalence Index = B/A = 3.05

Hydrophytic Vegetation Indicators:

- Dominance Test is >50%
- Prevalence Index is ≤3.0
- Morphological Adaptations 1 (Provide supporting data in Remarks or on a separate sheet)
- Problematic Hydrophytic Vegetation 2 (Explain)

1Indicators of hydric soil and wetland hydrology must be present.

Remarks:

Although the dominance test equals 0% and the Prevalence Test was greater than 3.0, the invasive nature and annual/biannual life cycle of Mellilotus alba has skewed the results. Most plants are hydrophytic.

The vegetation of SP PC-14 most closely corresponds to Cowardin’s (1979) riparian scrub.

1 Wetland indicator status was assumed OBL for all Typha species that were not identified to species. Typha species found in California have indicators of at least OBL.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color (moist) %</td>
<td>Color (moist) %</td>
</tr>
<tr>
<td>0-10</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

1Type: C=Concentration, D=Depletion, R.M=Reduced Matrix.
2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (T2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

- Type: __________________________
- Depth (inches): __________________

Hydric Soil Present? Yes ☐ No ☐

Remarks:

Soil consisted of primarily 80% small gravel, 5% small gravel, balance 15% sand.

Due to the “neutral” characteristic of sandy soils they are problematic in observing hydric characteristics. Although no sandy redox was at this location, sandy alluvial land is often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☐ Depth (inches): 0
- Water Table Present? Yes ☐ No ☐ Depth (inches): 0
- Saturation Present? Yes ☐ No ☐ Depth (inches): 0-1

Wetland Hydrology Present? Yes ☐ No ☐

Remarks:

Recent rains may have contributed to surface water and moist conditions. Water table is high because the SP is within the Santa Clara River floodplain.
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/25/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-15

Investigator(s): J. Kisner, L. Rizzo
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Channel Bank
Local relief (concave, convex, none): none
Slope (%): 1
Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6358361.4192300
Long: 1970442.1226700
Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land
NWI classification: PSS6
Are climatic / hydrologic conditions on the site typical for this time of year? Yes [] No [X] (If no, explain in Remarks.)
Are Vegetation [] Soil [X], or Hydrology [] significantly disturbed? Are “Normal Circumstances” present? Yes [X] No []
Are Vegetation [] Soil [X], or Hydrology [] naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes [X] No []
Hydric Soil Present? Yes [X] No []
Wetland Hydrology Present? Yes [X] No []

Remarks:
SP PC-15 characterizes the center portion of a side channel, located to the South of the Santa Clara River. Recently received rainfall. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sapling/Shrub Stratum			
1. Baccharis salicifolia	30	Y	FACW⁺
2. Populus fremontii	10	N	FACW
3. Salix exigua	5	N	OBL
4. Salix laevigata	5	N	FACW⁺
5. Tamarix sp.	5	N	FACb
Total Cover:	55		

Herb Stratum			
1. Melilotus alba	20	Y	FACU+
2. Ambrosia acanthicarpa	4	N	NI
3. Conyza canadensis	3	N	FAC
4. Brassica sp.	2	N	NI
5. Artemisia douglasiana	1	N	FACW
6. Aster subulatus var. ligulatus	1	N	FACW
7. Heterotheca grandiflora	1	N	NI
8. Onoclea elata	1	N	FACW
Total Cover:	33		

Woody Vine Stratum			
1.			
2.			
Total Cover:			

% Bare Ground in Herb Stratum 67
% Cover of Biotic Crust

Remarks: Although the dominance test equals 50% and the Prevalence Test was greater than 3.0, the invasive nature and annual/biannual life cycle of Melilotus alba has skewed the results. Most plants are hydrophytic.

Willow height between 10'-15'. The vegetation of SP PC-15 most closely corresponds to Cowardin's (1979) riparian scrub.

Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Indicators:
- Dominance Test is >50%
- Prevalence Index is ≤3.0
- Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
- Problematic Hydrophytic Vegetation (Explain)

Hydrophytic Vegetation Present? Yes [X] No []
SOIL

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist)</th>
<th>%</th>
<th>Redox Features</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type(^1)</th>
<th>Loc(^2)</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-18</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Type: C=Concentration, D=Depletion, RM=Reduced Matrix. \(^2\)Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)
- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) \((LRR\ C)\)
- 1 cm Muck (A9) \((LRR\ D)\)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils\(^3\):
- 1 cm Muck (A9) \((LRR\ C)\)
- 2 cm Muck (A10) \((LRR\ B)\)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):
- Type:
- Depth (inches):
- Hydric Soil Present? Yes ☒ No ☐

Remarks:
Thin layer of silty crust on top which is dark in color.
Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) \((Nonriverine)\)
- Sediment Deposits (B2) \((Nonriverine)\)
- Drift Deposits (B3) \((Nonriverine)\)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)
- Water Marks (B1) \((Riverine)\)
- Sediment Deposits (B2) \((Riverine)\)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:
- Surface Water Present? Yes ☒ No ☐ Depth (inches): __________
- Water Table Present? Yes ☒ No ☐ Depth (inches): 18
- Saturation Present? (includes capillary fringe) Yes ☒ No ☐ Depth (inches): 0

Wetland Hydrology Present? Yes ☒ No ☐

Remarks:
A high water table and saturated soils provided evidence of hydrology.

US Army Corps of Engineers
Arid West – Version 11-1-2006
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/25/07

Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-16

Investigator(s): J. Kisner, L. Rizzo
Section, Township, Range: San Francis Land Grant

Landform (hillslope, terrace, etc.): Channel Bank
Local relief (concave, convex, none): none
Slope (%): 0

Subregion (LRR): Mediterranean California (LRR-C)
Lab: 6358381.07217000
Long: 1970400.97105000
Datum: NAD83

Soil Map Unit Name: Sandy Alluvial Land
NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? **Yes**

Are Vegetation **No** , Soil **No** , or Hydrology **No** significantly disturbed? Are “Normal Circumstances” present? **Yes**

Are Vegetation **No** , Soil **Yes** , or Hydrology **No** naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ☒</th>
<th>No ☐</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes ☒</th>
<th>No ☐</th>
</tr>
</thead>
</table>

Remarks:

SP PC-16 characterizes previous channel of the Santa Clara River according to aerial field maps (Psomas, 2003). The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

Dominance Test worksheet:

<table>
<thead>
<tr>
<th>Number of Dominant Species That Are OBL, FACW, or FAC:</th>
<th>4 (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Dominant Species Across All Strata</td>
<td>6 (B)</td>
</tr>
<tr>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC:</td>
<td>67 (A/B)</td>
</tr>
</tbody>
</table>

Prevalence Index worksheet:

<table>
<thead>
<tr>
<th>Total % Cover of:</th>
<th>Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBL species</td>
<td>25</td>
</tr>
<tr>
<td>FACW species</td>
<td>65</td>
</tr>
<tr>
<td>FAC species</td>
<td>5</td>
</tr>
<tr>
<td>FACU species</td>
<td>3</td>
</tr>
<tr>
<td>UPL species</td>
<td>2</td>
</tr>
<tr>
<td>Column Totals: 100 (A)</td>
<td>192 (B)</td>
</tr>
<tr>
<td>Prevalence Index = B/A = 1.92</td>
<td></td>
</tr>
</tbody>
</table>

Hydrophytic Vegetation Indicators:

- ☒ Dominance Test is >50%
- ☐ Prevalence Index is ≤ 3.0
- ☐ Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet)
- ☐ Problematic Hydrophytic Vegetation1 (Explain)

1Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? **Yes ☒ No ☐**

The vegetation of SP PC-16 most closely corresponds to Cowardin’s (1979) riparian scrub.

Note:

2Wetland indicator status was assumed FAC for all Tamarix species that were not identified to species. Tamarix species found in California have indicators of at least FAC.
SOIL

Sampling Point: PC-16

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist)</th>
<th>%</th>
<th>Redox Features</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-13</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>coarse sandy w/ cobbles.</td>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix. 2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Restrictive Layer (if present):

- Type:
- Depth (inches):

Hydric Soil Present? Yes ☒ No ☐

Remarks:

- Very thin silty surface layer crust; dark in color.
- Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

- Primary Indicators (any one indicator is sufficient)
 - Surface Water (A1)
 - High Water Table (A2)
 - Saturation (A3)
 - Water Marks (B1) (Nonriverine)
 - Sediment Deposits (B2) (Nonriverine)
 - Drift Deposits (B3) (Nonriverine)
 - Surface Soil Cracks (B6)
 - Inundation Visible on Aerial Imagery (B7)
 - Water-Stained Leaves (B9)
 - Salt Crust (B11)
 - Biotic Crust (B12)
 - Aquatic Invertebrates (B13)
 - Hydrogen Sulfide Odor (C1)
 - Oxidized Rhizospheres along Living Roots (C3)
 - Presence of Reduced Iron (C4)
 - Recent Iron Reduction in Plowed Soils (C6)
 - Other (Explain in Remarks)

- Secondary Indicators (2 or more required)
 - Water Marks (B1) (Riverine)
 - Sediment Deposits (B2) (Riverine)
 - Drainage Patterns (B10)
 - Dry-Season Water Table (C2)
 - Thin Muck Surface (C7)
 - Crayfish Burrows (C8)
 - Shallow Aquitard (D3)
 - FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☒ No ☐ Depth (inches):
- Water Table Present? Yes ☒ No ☐ Depth (inches): 13
- Saturation Present? (includes capillary fringe) Yes ☒ No ☐ Depth (inches): 0-13

Wetland Hydrology Present? Yes ☒ No ☐

Remarks:

- Slight bank on south side, approximately 6 inches in height.

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon City/County: Los Angeles County Sampling Date: 9/25/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: PC-17

Investigator(s): J. Kisner, L. Rizzo Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Flat Upland Local relief (concave, convex, none): none Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C) Lat: 6358407.4331100 Long: 1970270.4295400 Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)
Are Vegetation ☐ Soil ☐, or Hydrology ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☐ No ☒
Are Vegetation ☐ Soil ☐, or Hydrology ☐ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☐ No ☒

Is the Sampled Area within a Wetland? Yes ☐ No ☒
Remarks:
SP PC-17 characterizes a flat upland area south of the Santa Clara River channel.
The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

| Tree Stratum (Use scientific names.) | Absolute % Cover | Dominant Species? | Indicator Status | Dominance Test worksheet:
Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A) |
Total Number of Dominant Species Across All Strata: 3 (B) |
Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B) |
Prevalence Index worksheet:
Total % Cover of: Multiply by
OBL species x 1 =
FACW species x 2 =
FAC species x 3 =
FACU species x 4 =
UPL species x 5 =
Column Totals: (A) (B) |
Prevalence Index = B/A = |
Hydrophytic Vegetation Indicators:
☒ Dominance Test is >50%
☐ Prevalence Index is ≤3.01 |
☐ Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation1 (Explain)

1Indicators of hydric soil and wetland hydrology must be present.

| Hydrophytic Vegetation Present? | Yes ☒ No ☐ |

Remarks:
The vegetation of SP PC-17 most closely corresponds to Cowardin’s (1979) riparian scrub.

Profile Description:
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type 1</th>
<th>Loc 2</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td>10YR4/2</td>
<td>85</td>
<td>5YR4/6</td>
<td>15</td>
<td>RM</td>
<td>M</td>
<td>Loam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Type: C=Concentration, D=Depletion, RM=Reduced Matrix.
2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators:
(Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Hist (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Restrictive Layer (if present):

<table>
<thead>
<tr>
<th>Type:</th>
<th>Depth (inches):</th>
<th>Hydric Soil Present?</th>
<th>Yes ☐ No □</th>
</tr>
</thead>
</table>

Remarks:
Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)
- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☒ Depth (inches): __________
- Water Table Present? Yes ☐ No ☒ Depth (inches): __________
- Saturation Present? (includes capillary fringe) Yes ☐ No ☒ Depth (inches): __________

Wetland Hydrology Present? Yes ☐ No ☒

Remarks:
Recent rains may have caused soil to be moist down through the bottom of pit, but no hydrology indicators were present.
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-18

Investigator(s): J. Kisner, L. Rizzo
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Flat Upland
Local relief (concave, convex, none): none
Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C)

Landform (hillslope, terrace, etc.): Flat Upland
Local relief (concave, convex, none): none
Slope (%): 0
Subregion (LRR): Mediterranean California (LRR-C)

Lat: 6358324.0847400
Long: 1970234.5389700
Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land
NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☐ No ☐
(If no, explain in Remarks.)

Are Vegetation ☐, Soil ☐, or Hydrology ☐ significantly disturbed?
Are “Normal Circumstances” present? Yes ☐ No ☐
(If needed, explain any answers in Remarks.)

Are Vegetation ☐, Soil ☐, or Hydrology ☐ naturally problematic?

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☐ No ☐
Hydric Soil Present? Yes ☐ No ☐
Wetland Hydrology Present? Yes ☐ No ☐

Is the Sampled Area within a Wetland? Yes ☐ No ☐

Remarks:
SP PC-18 characterizes the boundary between vegetation types; riparian scrub and riparian forest. This SP focuses on the scrub habitat to the East. The Western area includes riparian forest with few small shrubs.
The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

Tree Stratum (Use scientific names.)
1. Absolute % Cover Dominant Species? Indicator Status
2.
Total Cover:

Salix lasiolepis 30 Y FACW
Salix exigua 20 Y OBL
Baccharis sp. 5 N
Baccharis salicifolia 2 N FACW+a
Populus fremontii 2 N FACW
Salix laevigata 2 N FACW+a
Baccharis pilularis 1 N NI

Total Cover: 62

Herb Stratum
1. Absolute % Cover Dominant Species? Indicator Status
2.

Ambrosia psilostachya var. californica 15 Y FAC
Leymus triticoides 5 N FAC+
Ambrosia psilostachya var. californica 15 Y FAC
Leymus triticoides 5 N FAC+

Total Cover: 20

Woody Vine Stratum
1. Absolute % Cover Dominant Species? Indicator Status
2.

Total Cover:

% Bare Ground in Herb Stratum 20 % Cover of Biotic Crust

Dominance Test worksheet:
Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
Total Number of Dominant Species Across All Strata 3 (B)
Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)

Prevalence Index worksheet:
Total % Cover of:
OBL species x 1 =
FACW species x 2 =
FAC species x 3 =
FACU species x 4 =
UPL species x 5 =
Column Totals: (A) (B)
Prevalence Index = B/A =

Hydrophytic Vegetation Indicators:
☒ Dominance Test is >50%
☐ Prevalence Index is ≤3.0
☐ Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation (Explain)

Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes ☐ No ☐

Remarks:
The vegetation of SP PC-18 most closely corresponds to Cowardin's (1979) riparian scrub and Cowardin's (1979) riparian forest.

SOIL

Profile Description:
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color (moist)</td>
<td>Color (moist)</td>
</tr>
<tr>
<td>0-16</td>
<td>n/a</td>
<td>SYR 4/6</td>
</tr>
</tbody>
</table>

Texture: fine sand, moist for first 6"

Hydric Soil Indicators:
(Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR C)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Indicators for Problematic Hydric Soils: (Any one indicator is sufficient)

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

- Type:
- Depth (inches):

Hydric Soil Present? Yes ☐ No ☐

Remarks:
Small chunks of clay deposits present in soil sample.

Due to the "neutral" characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Depots (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

<table>
<thead>
<tr>
<th>Surface Water Present?</th>
<th>Yes ☐ No ☒</th>
<th>Depth (inches):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Table Present?</td>
<td>Yes ☐ No ☒</td>
<td>Depth (inches):</td>
</tr>
<tr>
<td>Saturation Present?</td>
<td>Yes ☐ No ☒</td>
<td>Depth (inches):</td>
</tr>
</tbody>
</table>

Wetland Hydrology Present? Yes ☐ No ☒

Remarks:
No evidence of hydrology was observed.
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Potrero Canyon
City/County: Los Angeles County
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Date: 9/28/07
Sampling Point: PC-19

Investigator(s): J. Love, J. Kisner, W. Vogler, E. Larsen
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain
Local relief (concave, convex, none): none
Subregion (LRR): Mediterranean California (LRR-C)
Lab: 6358368.3670400
Long: 1970042.3134900
Datum: NAD83

Soil Map Unit Name: Sandy Alluvial Land
NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐
Are Vegetation ☒ Soil ☐, or Hydrology ☒ significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation ☒ Soil ☒, or Hydrology ☐ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☐ No ☒

Remarks:
SP PC-19 characterizes flat floodplain area to the south of the Santa Clara River.
The 2006-2007 rainy season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>% Cover</th>
<th>Absolute</th>
<th>Dominant</th>
<th>Indicator</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Pluchea sericea</td>
<td>75</td>
<td>Y</td>
<td>FACW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Bare Ground in Herb Stratum: 25 % Cover of Biotic Crust

Remarks:
The vegetation of SP PC-19 most closely corresponds to Cowardin’s (1979) riparian scrub.
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth</th>
<th>Matrix</th>
<th>Redox Features</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(inches)</td>
<td>Color (moist)</td>
<td>%</td>
<td>Color (moist)</td>
<td>%</td>
</tr>
<tr>
<td>0-18</td>
<td>10 YR 3/2</td>
<td>99</td>
<td>SYR 4/6</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix. Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histie Epedon (A2)
- Black Histie (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Depressions (F8)
- Vernal Pools (F9)

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histie Epedon (A2)
- Black Histie (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Depressions (F8)
- Vernal Pools (F9)

Restrictive Layer (if present):

- Type: __________________________
- Depth (inches): __________________________

Hydric Soil Present? Yes ☒ No ☐

Remarks:

Evidence that this SP is within floodplain due to large sediment deposits.

Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

Field Observations:

- Surface Water Present? Yes ☐ No ☒ Depth (inches): ________
- Water Table Present? Yes ☐ No ☒ Depth (inches): ________
- Saturation Present? (includes capillary fringe) Yes ☐ No ☒ Depth (inches): ________

Wetland Hydrology Present? Yes ☒ No ☐

Remarks:

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

No evidence of hydrology was observed.
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Potro Canyon
City/County: Los Angeles County
Sampling Date: 9/26/07

Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: PC-20

Investigator(s): J. Love, J. Kisner, W. Vogler, E. Larsen
Section, Township, Range: San Francis Land Grant

Landform (hillslope, terrace, etc.): Floodplain
Local relief (concave, convex, none): none
Slope (%): 0

Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6358485.2757400
Long: 1969870.9522100
Datum: NAD83

Soil Map Unit Name: Riverwash
NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐
If no, explain in Remarks.

Are Vegetation No ☐, Soil No ☐, or Hydrology No ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐

Are Vegetation No ☐, Soil Yes ☒, or Hydrology No ☐ naturally problematic?
If needed, explain any answers in Remarks.

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ☒ No ☐</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes ☒ No ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes ☒ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes ☒ No ☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
SP PC-20 is located in a small side drainage adjacent to a small berm along a ranch road. This SP is at the southernmost part of the entire PC site. The 2006-2007 rainy season had an abnormally low amount of precipitation.

VEGETATION

Tree Stratum
(Use scientific names.)
1.
2.
3.
4.
5.

Total Cover:

Sapling/Shrub Stratum

1. Pluchea sericea
2.
3.
4.
5.

Total Cover: 95

Herb Stratum

1. Arundo donax
2.
3.
4.
5.
6.
7.
8.

Total Cover: 5

Woody Vine Stratum

1.
2.

Total Cover:

<table>
<thead>
<tr>
<th>% Bare Ground in Herb Stratum</th>
<th>5</th>
</tr>
</thead>
</table>

Remarks:

The vegetation of SP PC-20 most closely corresponds to Cowardin’s (1979) riparian scrub.
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-18</td>
<td>10YR3/2</td>
<td>98</td>
<td>SYR4/6</td>
<td>2</td>
<td>C</td>
<td>M</td>
<td>silty clay mixed with fine sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix. Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR C)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

- Type: ____________________________
- Depth (inches): ____________________

Hydric Soil Present? Yes ☒ No ☐

Remarks:

Due to the “neutral” characteristics of sandy soils, riverwash is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Clayfish Burrows (C8)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☒ No ☒ Depth (inches): ______
- Water Table Present? Yes ☒ No ☒ Depth (inches): ______
- Saturation Present? Yes ☒ No ☒ Depth (inches): ______

Wetland Hydrology Present? Yes ☒ No ☐

Remarks:

Anthropogenic created berms visible. Possibly created from soil being pushed up along the sides of the nearby road during soil removal activities after high flood events.
Onion Field Bank Stabilization
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Onion Field Bank Stabilization City/County: Los Angeles County Sampling Date: 9/28/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: BS-1
Investigator(s): J. Davis, J. Love, W. Vogler, L. Rizzo Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): River Bank Slope Local relief (concave, convex, none): none Slope (%): 5
Subregion (LRR): Mediterranean California (LRR-C) Lat: 6361064.5315100 Long: 1971370.3761600 Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land NWI classification: PFO6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐
Are Vegetation no, Soil no, or Hydrology no significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation no, Soil yes, or Hydrology no naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☒ No ☐

Remarks:
SP BS-1 characterizes the northern portion of the bank stabilization site. This SP is located approximately 60 feet to the south of the Santa Clara River and is representative of the riparian forest on the south bank.
The 2006-2007 rainy season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree Stratum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Salix laevigata</td>
<td>60</td>
<td>Y</td>
<td>FACW+a</td>
</tr>
<tr>
<td>2. Populus fremontii</td>
<td>30</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>3. Tamarix Sp.</td>
<td>10</td>
<td>N</td>
<td>FAC</td>
</tr>
<tr>
<td>Total Cover:</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapling/Shrub Stratum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Rosa californica</td>
<td>40</td>
<td>Y</td>
<td>FAC+</td>
</tr>
<tr>
<td>2. Urtica dioica</td>
<td>25</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>3. Arundo donax</td>
<td>10</td>
<td>N</td>
<td>FAC</td>
</tr>
<tr>
<td>Total Cover:</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb Stratum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Artemisia douglasiana</td>
<td>5</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2. Conium maculatum</td>
<td>1</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woody Vine Stratum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Bare Ground in Herb Stratum</td>
<td>94</td>
<td></td>
<td>% Cover of Biotic Crust</td>
</tr>
</tbody>
</table>

Remarks:
Vegetation is representative of a riparian forest habitat (Cowardin 1979) with red willow and Freemont cottonwood comprising the dominant canopy layer. Vegetation is open to dense with a high leaf/branch litter content.

Wetland indicator status was assumed FAC for all Tamarix species that were not identified to species. Tamarix species found in California have indicators of at least FAC.
SOIL

Sampling Point: BS-1

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist) %</th>
<th>Redox Features</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td>10YR 3/2</td>
<td>100</td>
<td>None OBS</td>
<td>Sandy loam</td>
<td>Soil texture & color consistent throughout</td>
</tr>
</tbody>
</table>

1. **Type:** C=Concentration, D=Depletion, R.M=Reduced Matrix.
2. **Location:** PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5)
- 1 cm Muck (A9)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Redox Matrix (F3)
- Redox Depressions (F8)
- Vernal Pools (F9)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

<table>
<thead>
<tr>
<th>Type:</th>
<th>Depth (inches):</th>
</tr>
</thead>
</table>

Hydric Soil?
- Yes []
- No [x]

Remarks:
No hydric soil indicators were present.

HYDROLOGY

Wetland Hydrology Indicators:

<table>
<thead>
<tr>
<th>Primary Indicators (any one indicator is sufficient)</th>
<th>Secondary Indicators (2 or more required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water (A1)</td>
<td>Water Marks (B1) (Riverine)</td>
</tr>
<tr>
<td>High Water Table (A2)</td>
<td>Sediment Deposits (B2) (Riverine)</td>
</tr>
<tr>
<td>Saturation (A3)</td>
<td>Drainage Patterns (B10)</td>
</tr>
<tr>
<td>Water Marks (B1) (Nonriverine)</td>
<td>Dry-Season Water Table (C2)</td>
</tr>
<tr>
<td>Sediment Deposits (B2) (Nonriverine)</td>
<td>Thin Muck Surface (C7)</td>
</tr>
<tr>
<td>Drift Deposits (B3) (Nonriverine)</td>
<td>Crayfish Burrows (C8)</td>
</tr>
<tr>
<td>Surface Soil Cracks (B6)</td>
<td>Saturation Visible on Aerial Imagery (C9)</td>
</tr>
<tr>
<td>Inundation Visible on Aerial Imagery (B7)</td>
<td>Shallow Aquitard (D3)</td>
</tr>
<tr>
<td>Water-Stained Leaves (B9)</td>
<td>FAC-Neutral Test (D5)</td>
</tr>
</tbody>
</table>

Field Observations:

- **Surface Water Present?**
 - Yes []
 - No [x]
 - Depth (inches): __________

- **Water Table Present?**
 - Yes []
 - No [x]
 - Depth (inches): __________

- **Saturation Present?**
 - Yes []
 - No [x]
 - Depth (inches): __________

Wetland Hydrology Present?
- Yes []
- No [x]

Remarks:
No evidence of hydrology was observed.
Long Canyon Bridge
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Long Canyon Bridge
City/County: Los Angeles County
Sampling Date: 9/28/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: LC-1

Investigator(s): W. Vogler, J. Love
Subregion (LRR): Mediterranean California (LRR-C)
Landform (hillslope, terrace, etc.): Upland/Agriculture
Local relief (concave, convex, none): none
Slope (%): 5
Soil Map Unit Name: Sandy Alluvial Land
NWI classification: N/A
Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)

Are Vegetation no, Soil no, or Hydrology no significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐

Are Vegetation no, Soil yes, or Hydrology no naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ☒ No ☐</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes ☒ No ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes ☒ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes ☒ No ☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
SP LC-1 characterizes the upland/agricultural area north of the Santa Clara River. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

- **Tree Stratum** (Use scientific names.)
 - 1.
 - 2.
 - 3.
 - 4.
 - 5.
 - **Total Cover:**

- **Sapling/Shrub Stratum**
 - 1.
 - 2.
 - 3.
 - 4.
 - 5.
 - **Total Cover:**

- **Herb Stratum**
 - 1. annual grasses 70 Y
 - 2. Conyza canadensis 8 N FAC
 - 3. Zea mays 7 N NI
 - 4. Spergularia sp. 5 N
 - 5. Ambrosia acanthicarpa 2 N NI
 - 6. Polygonum arenastrum 1 N FAC
 - 7.
 - 8.
 - **Total Cover:** 93

- **Woody Vine Stratum**
 - 1.
 - 2.
 - **Total Cover:**

- **% Bare Ground in Herb Stratum** 20
% Cover of Biotic Crust

Remarks:
SP LC-1 does not have any natural vegetation communities; the site is characterized by ruderal vegetation and graded conditions.
SOIL

Sampling Point: LC-1

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-12</td>
<td>10YR4/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>loamy sand</td>
<td></td>
</tr>
<tr>
<td>12-16</td>
<td>10YR5/3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Type: C=Concentration, D=Depletion, RM=Reduced Matrix. 2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

3Indicators of hydrophytic vegetation and wetland hydrology must be present.

Restrictive Layer (if present):

- Type:
- Depth (inches):

Hydric Soil Present? Yes ☐ No ☒

Remarks:
Hydric soil indicators are absent due to sandy soils.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☒ Depth (inches):
- Water Table Present? Yes ☐ No ☒ Depth (inches):
- Saturation Present? Yes ☐ No ☒ Depth (inches):

Wetland Hydrology Present? Yes ☐ No ☒

Remarks:
No evidence of hydrology was observed.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Long Canyon Bridge City/County: Los Angeles County Sampling Date: 9/28/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: LC-2
Investigator(s): J. Davis, L. Rizzo

Landform (hillslope, terrace, etc.): Floodplain Local relief (concave, convex, none): none Slope (%): 5
Subregion (LRR): Mediterranean California (LRR-C)

Soil Map Unit Name: Riverwash NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)
Are Vegetation no, Soil no, or Hydrology no significantly disturbed? Are “Normal Circumstances” present? Yes No (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Are Vegetation no, Soil yes, or Hydrology no naturally problematic?

Hydrophytic Vegetation Present? Yes No
Hydric Soil Present? Yes No
Wetland Hydrology Present? Yes No

Remarks:

The vegetation of SP LC-2 most closely corresponds to Cowardin’s (1979) riparian scrub.

b Wetland indicator status was assumed FAC for all Tamarix species that were not identified to species. Tamarix species found in California have indicators of at least FAC.
SOIL

Sampling Point: LC-2

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-12</td>
<td>n/a</td>
<td>100</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td>coarse sand</td>
<td>with small gravel in matrix; oxidation on roots</td>
</tr>
<tr>
<td>12-16</td>
<td>10YR3/3</td>
<td>80</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td>coarse sand/sandy loam</td>
<td></td>
</tr>
</tbody>
</table>

Depth Matrix Redox Features

- **Type:** C=Concentration, D=Depletion, R=M=Reduced Matrix
- **Location:** PL=Pore Lining, RC=Root Channel, M=Matrix

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR C)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Restrictive Layer (if present):

- Type: ____________________________
- Depth (inches): ____________________

Hydric Soil Present? Yes ☐ No ☒

Remarks:

Soil primarily consisted of riverwash or recently deposited sediment (coarse sand/small gravel). Soil became apparent in low stratum where sandy loam was present. No hydric soil indicators were present.

HYDROLOGY

Wetland Hydrology Indicators:

- **Primary Indicators (any one indicator is sufficient):**
 - Surface Water (A1)
 - High Water Table (A2)
 - Saturation (A3)
 - Water Marks (B1) (Nonriverine)
 - Sediment Deposits (B2) (Nonriverine)
 - Drift Deposits (B3) (Nonriverine)
 - Surface Soil Cracks (B6)
 - Inundation Visible on Aerial Imagery (B7)
 - Water-Stained Leaves (B9)

- **Secondary Indicators (2 or more required):**
 - Salt Crust (B11)
 - Biotic Crust (B12)
 - Aquatic Invertebrates (B13)
 - Hydrogen Sulfide Odor (C1)
 - Oxidized Rhizospheres along Living Roots (C3)
 - Presence of Reduced Iron (C4)
 - Recent Iron Reduction in Plowed Soils (C6)
 - Other (Explain in Remarks)
 - FAC-Neutral Test (D5)

Field Observations:

- **Surface Water Present?** Yes ☒ No ☐ Depth (inches): ______________
- **Water Table Present?** Yes ☒ No ☐ Depth (inches): ______________
- **Saturation Present?** Yes ☒ No ☐ Depth (inches): ______________
 (includes capillary fringe)

Wetland Hydrology Present? Yes ☒ No ☐

Remarks:

Primary indicators, secondary indicators, and water table presence provided evidence of hydrology. Inundation visible on aerial from 2003 (Psomas, 2003). Site is within OHWM, therefore site is considered Waters of the U.S.
Project/Site: Newhall Ranch/Long Canyon Bridge
City/County: Los Angeles County
Sampling Date: 9/28/07

Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: LC-3

Investigator(s): W. Vogler, J. Love
Subregion (LRR): Mediterranean California (LRR-C)

Landform (hillslope, terrace, etc.): Riverbed
Local relief (concave, convex, none): none
Slope (%): 5

Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6364716.8658200
Long: 1974603.2893700
Datum: NAD83

Soil Map Unit Name: Riverwash
NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes [] No [] (If no, explain in Remarks.)

Are Vegetation [] Soil [] Hydrology [] significantly disturbed? Are “Normal Circumstances” present? Yes [] No []

Are Vegetation [] Soil [] Hydrology [] naturally problematic? (If needed, explain any answers in Remarks.)

SP LC-3 characterized the floodplain on the northern side of the Santa Clara River. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tamarix sp.</td>
<td>35</td>
<td>Y</td>
<td>FACb</td>
</tr>
<tr>
<td>2. Baccharis salicifolia</td>
<td>10</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>3. Melilotus alba</td>
<td>2</td>
<td>N</td>
<td>FACU+</td>
</tr>
<tr>
<td>4. Salix exigua</td>
<td>2</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>5. Salix laevigata</td>
<td>1</td>
<td>N</td>
<td>FACW+a</td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Arundo donax</td>
<td>2</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2. Conyza bonariensis</td>
<td>1</td>
<td>Y</td>
<td>NI</td>
</tr>
<tr>
<td>3. Populus fremontii</td>
<td><1</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Bare Ground in Herb Stratum: 50
% Cover of Biotic Crust: 0

Remarks:

The vegetation of SP LC-3 most closely corresponds to Cowardin’s (1979) riparian scrub.

1Indicators of hydric soil and wetland hydrology must be present.

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>Redox Features Color (moist)</th>
<th>% Type1</th>
<th>Loc2</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td>10YR5/2</td>
<td></td>
<td></td>
<td></td>
<td>coarse sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Type: C=Concentration, D=Depletion, RM=Reduced Matrix. 2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

- Type:
- Depth (inches): ________________
- **Hydric Soil Present?** Yes ☑ No ☐

Remarks:
Riverwash depositional fill in one of the primary channels. Due to the "neutral" characteristics of sandy soils, riverwash is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)
- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)
- Other (Explain in Remarks)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drift Deposits (B3) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☑ No ☐ Depth (inches): ________________
- Water Table Present? Yes ☑ No ☐ Depth (inches): ________________
- Saturation Present? Yes ☑ No ☐ Depth (inches): ________________

Wetland Hydrology Present? Yes ☑ No ☐

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:
Primary indicators, secondary indicators, and water table and saturation presence provided evidence of hydrology. Inundation visible on aerial from 2003 (Psomas, 2003).
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Long Canyon Bridge City/County: Los Angeles County Sampling Date: 9/18/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: LC-4
Investigator(s): J. Davis, L. Rizzo Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Riverbed Local relief (concave, convex, none): none Slope (%): 5
Subregion (LRR): Mediterranean California (LRR-C) Lat: 6364715.6990700 Long: 1974536.6755100 Datum: NAD83
Soil Map Unit Name: Riverwash NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☑ No ☐ (If no, explain in Remarks.)

Are Vegetation ☐ , Soil ☐ , or Hydrology ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☐ No ☑

Are Vegetation ☐ , Soil ☐ , or Hydrology ☐ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ☑</th>
<th>No ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes ☑</td>
<td>No ☐</td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes ☑</td>
<td>No ☐</td>
</tr>
</tbody>
</table>

Remarks:
SP LC-4 characterized a stable sandbar in the Santa Clara River. The SP was located on the southern bank of a main channel of the river. Elevation is approximately 18” above the channel. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Number of Dominant Species That Are OBL, FACW, or FAC: ___ (A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total Number of Dominant Species Across All Strata ____ (B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Percent of Dominant Species That Are OBL, FACW, or FAC: ___% (A/B)</td>
</tr>
</tbody>
</table>

Prevalence Index worksheet:

<table>
<thead>
<tr>
<th>Total % Cover of:</th>
<th>Multiply by</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBL species</td>
<td>x 1 = ______</td>
</tr>
<tr>
<td>FACW species</td>
<td>x 2 = ______</td>
</tr>
<tr>
<td>FAC species</td>
<td>x 3 = ______</td>
</tr>
<tr>
<td>FACU species</td>
<td>x 4 = ______</td>
</tr>
<tr>
<td>UPL species</td>
<td>x 5 = ______</td>
</tr>
<tr>
<td>Column Totals: (A)</td>
<td>(B)</td>
</tr>
</tbody>
</table>

Prevalence Index = B/A = ______

Hydrophytic Vegetation Indicators:

- ☑ Dominance Test is >50%
- ☐ Prevalence Index is ≤3.01
- ☐ Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet)
- ☐ Problematic Hydrophytic Vegetation² (Explain)

¹Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes ☑ No ☐

Remarks:
The vegetation of SP LC-4 most closely corresponds to Cowardin’s (1979) riparian scrub. Vegetation was observed primarily on the bank’s edge above channel. To the north was an existing sparsely vegetated wash. Dense vegetation is approximately 12 ft wide at this location.

²Wetland indicator status was assumed FAC for all Tamarix species that were not identified to species. Tamarix species found in California have indicators of at least FAC.

US Army Corps of Engineers Arid West – Version 11-1-2006
Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist) %</th>
<th>Redox Features Color (moist) %</th>
<th>Type 1</th>
<th>Loc 2</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td>coarse sand</td>
<td>small to large gravel, no saturation</td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR C)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Restrictive Layer (if present):

- Depth (inches): _______________

Hydric Soil Present? Yes ☐ No ☒

Remarks:

Substrate mainly consists of river sediment deposit with small cobbles, no saturation present. No hydric soil indicators were present.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)
- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)
- Other (Explain in Remarks)
- FAC-Neutral Test (D5)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☐ Depth (inches): _______________
- Water Table Present? Yes ☐ No ☐ Depth (inches): _______________
- Saturation Present? Yes ☐ No ☐ Depth (inches): _______________

Wetland Hydrology Present? Yes ☐ No ☒

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

Sandbar area of the greater Santa Clara River. Sediment deposits are evident on the sandbar; however no other indicators of hydrology were observed. Waters of the U.S. – OHWM.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Long Canyon Bridge City/County: Los Angeles County Sampling Date: 9/28/07

Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: LC-5

Investigator(s): J. Davis, L. Rizzo Section, Township, Range: San Francis Land Grant

Landform (hillslope, terrace, etc.): Riverbed Local relief (concave, convex, none): none Slope (%): 5

Subregion (LRR): Mediterranean California (LRR-C) Lat: 6364920.5617900 Long: 1974303.83132 Datum: NAD83

Soil Map Unit Name: Riverwash NLWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐

Are Vegetation no ☐, Soil no ☐, or Hydrology no ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐

Are Vegetation no ☐, Soil yes ☒, or Hydrology no ☐ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐

Hydric Soil Present? Yes ☒ No ☐

Wetland Hydrology Present? Yes ☒ No ☐

Is the Sampled Area within a Wetland? Yes ☒ No ☐

Remarks:

SP LC-5 characterizes the main summer channel of the Santa Clara River that was present during the 2007 site visit. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

Tree Stratum (Use scientific names.) Absolute % Cover Dominant Species? Indicator Status
1.
2.
3.
4.
Total Cover:

 Sapling/Shrub Stratum
1. Salix exigua 35 Y OBL
2. Salix laevigata 30 Y FACW+
3. Arundo donax 15 N FACW
4. Typha latifolia 10 N OBL
5. Populus fremontii 5 N FACW
Total Cover: 95

 Herb Stratum
1. Polygonum lapathifolium 55 Y OBL
2. unknown grass 15 N
3. Urtica dioica 5 N FACW
4. Xanthium strumarium 5 N FAC+
Total Cover: 80

Woody Vine Stratum
1.
2.
Total Cover:

% Bare Ground in Herb Stratum % Cover of Biotic Crust

Remarks:

The vegetation of SP LC-5 most closely corresponds to Cowardin’s (1979) riparian scrub.

Hydrophytic Vegetation Indicators:
☒ Dominance Test is >50%
☒ Prevalence Index is ≤3.0
☐ Morphological Adaptations1 (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation1 (Explain)

1Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes ☒ No ☐
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color (moist)</td>
<td>%</td>
</tr>
<tr>
<td>No soil pit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Type: C=Concentration, D=Depletion, RM=Reduced Matrix. 2Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)
- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) *(LRR C)*
- 1 cm Muck (A9) *(LRR C)*
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils:
- 1 cm Muck (A9) *(LRR C)*
- 2 cm Muck (A10) *(LRR B)*
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):
- Type: ____________________________
- Depth (inches): __________________

Hydric Soil Present? Yes [] No []

Remarks:
Site was inaccessible. Soil was assumed hydric due to its vegetation and position in the main channel. Due to the "neutral" characteristics of sandy soils, riverwash is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient):
- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) *(Nonriverine)*
- Sediment Deposits (B2) *(Nonriverine)*
- Drift Deposits (B3) *(Nonriverine)*
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required):
- Water Marks (B1) *(Riverine)*
- Sediment Deposits (B2) *(Riverine)*
- Drift Deposits (B3) *(Riverine)*
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:
- Surface Water Present? Yes [] No [] Depth (inches): __________
- Water Table Present? Yes [] No [] Depth (inches): __________
- Saturation Present? Yes [] No [] Depth (inches): __________

Wetland Hydrology Present? Yes [] No []

Remarks:
Primary indicators, secondary indicators, and saturation presence provided evidence of hydrology.
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Long Canyon Bridge City/County: Los Angeles County Sampling Date: 9/28/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: LC-6

Investigator(s): J. Davis, L. Rizzo Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Upland terrace/Bank slope Local relief (concave, convex, none): none Slope (%): 5
Subregion (LRR): Mediterranean California (LRR-C) Lat: 6364920.419500 Long: 1974289.0605600 Datum: NAD83
Soil Map Unit Name: Riverwash NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)
Are Vegetation no, Soil no, or Hydrology no significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation no, Soil yes, or Hydrology no naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ☒ No ☐</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes ☐ No ☒</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes ☐ No ☒</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes ☐ No ☒</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
SP LC-6 characterizes the southern bank edge of the Santa Clara River. The river is approximately 12 ft below the edge of the terrace. This SP is within riparian scrub habitat directly south of the OHWM. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Baccharis salicifolia</td>
<td>75 Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. unknown grass (dry)</td>
<td>85 Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Brassica spp.</td>
<td>10 N</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Bare Ground in Herb Stratum | 5 % | % Cover of Biotic Crust |

Remarks:
Riparian vegetation primarily consists of mule fat with grass understory. The vegetation of SP LC-6 most closely corresponds to Cowardin’s (1979) riparian scrub.

SOIL

Profile Description:
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist) %</th>
<th>Redox Features Color (moist) %</th>
<th>Type¹</th>
<th>Loc²</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td>coarse sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

²Type: C=Concentration, D=Depletion, RM=Reduced Matrix
²Location: PL=Pore Lining, RC=Root Channel, M=Matrix

Hydric Soil Indicators:
(Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratifed Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Hydric Soil Present?
Yes ☐ No ☑

Remarks:
The soil consists of old riverwash and alluvial material. Hydric soil indicators are likely absent due to sandy soils.

HYDROLOGY

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)
- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☑ Depth (inches): ___________
- Water Table Present? Yes ☐ No ☑ Depth (inches): ___________
- Saturation Present? Yes ☐ No ☑ Depth (inches): ___________
 (includes capillary fringe)

Wetland Hydrology Present?
Yes ☐ No ☑

Remarks:
No evidence of hydrology was observed.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Long Canyon Bridge City/County: Los Angeles County Sampling Date: 9/28/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: LC-7

Investigator(s): W. Vogler, J. Love Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Upland terrace Local relief (concave, convex, none): none Slope (%): 5

Soil Map Unit Name: Riverwash NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)
Are Vegetation no, Soil no, or Hydrology no significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation no, Soil yes, or Hydrology no naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? ☒ No ☐ Wetland Hydrology Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐ Is the Sampled Area within a Wetland? Yes ☒ No ☐

Remarks:
SP LC-7 characterizes the upland terrace south of the Santa Clara River. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Sheub Stratum</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Baccharis salicifolia</td>
<td>60</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2. Salix exigua</td>
<td>10</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th>% Cover</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromus diandrus (dead)</td>
<td>80</td>
<td>Y</td>
</tr>
<tr>
<td>Bromus diandrus (live)</td>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>Leymus triticoides (?)</td>
<td>1</td>
<td>N</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Bare Ground in Herb Stratum 3 % Cover of Biotic Crust

Remarks:
The vegetation of SP LC-7 most closely corresponds to Cowardin’s (1979) riparian scrub.

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td>10YR4/3</td>
<td>100</td>
<td>clay loam</td>
<td></td>
</tr>
</tbody>
</table>

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) **(LRR C)**
- 1 cm Muck (A9) **(LRR C)**
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Grayed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Redox Depressions (F8)
- Vernal Pools (F9)

HYDROLOGY

Wetland Hydrology Indicators:

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) **(Nonriverine)**
- Sediment Deposits (B2) **(Nonriverine)**
- Drift Deposits (B3) **(Nonriverine)**
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

Field Observations:

- Surface Water Present? Yes [] No [X] Depth (inches): __________
- Water Table Present? Yes [] No [X] Depth (inches): __________
- Saturation Present? Yes [] No [X] Depth (inches): __________

Wetland Hydrology Present? Yes [] No [X] Depth (inches): __________

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Remarks:

- No evidence of hydrology was observed.

US Army Corps of Engineers Arid West – Version 11-1-2006
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Long Canyon Bridge City/County: Los Angeles County Sampling Date: 9/28/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: LC-8
Investigator(s): J. Davis, J. Love, W. Vogler, L. Rizzo Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Upland terrace/Agriculture Local relief (concave, convex, none): none Slope (%): 5
Subregion (LRR): Mediterranean California (LRR-C) Lat: 6364920.4195000 Long: 1974289.0605600 Datum: NAD83
Soil Map Unit Name: Sorrento loam NWI classification: N/A
Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)
Are Vegetation no ☐, Soil no ☐, or Hydrology no ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation no ☐, Soil no ☐, or Hydrology no ☐ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☒ No ☐

Is the Sampled Area within a Wetland? Yes ☒ No ☐

Remarks:
SP LC-8 characterizes upland habitat consisting of a recently tilled agricultural field. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

Tree Stratum (Use scientific names.) Absolute % Cover Dominant Species? Indicator Status
1.
2.
3.
4.

Total Cover:

Sapling/Shrub Stratum

1.
2.
3.
4.
5.

Total Cover:

Herb Stratum

1.
2.
3.
4.
5.
6.

Total Cover:

Woody Vine Stratum

1.
2.

Total Cover:

% Bare Ground in Herb Stratum % Cover of Biotic Crust

Remarks:
SP LC-8 does not have any natural vegetation communities; the site is characterized by ruderal vegetation and graded conditions.
SOIL

Sampling Point: LC-8

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Color (moist)</td>
<td>%</td>
</tr>
<tr>
<td>No Soil Pit</td>
<td>0 cm Muck (A9)</td>
<td>(LRR C)</td>
</tr>
<tr>
<td></td>
<td>Stripped Matrix (S6)</td>
<td>(LRR A)</td>
</tr>
<tr>
<td></td>
<td>Loamy Mucky Mineral (F1)</td>
<td>(LRR A)</td>
</tr>
<tr>
<td></td>
<td>Loamy Gleyed Matrix (F2)</td>
<td>(LRR A)</td>
</tr>
<tr>
<td></td>
<td>Depleted Matrix (F3)</td>
<td>(LRR A)</td>
</tr>
<tr>
<td></td>
<td>Redox Dark Surface (F6)</td>
<td>(LRR A)</td>
</tr>
<tr>
<td></td>
<td>Depleted Dark Surface (F7)</td>
<td>(LRR A)</td>
</tr>
<tr>
<td></td>
<td>Redox Depressions (F8)</td>
<td>(LRR A)</td>
</tr>
<tr>
<td></td>
<td>Vernal Pools (F9)</td>
<td>(LRR A)</td>
</tr>
</tbody>
</table>

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

1. Histosol (A1)
2. Histic Epipedon (A2)
3. Black Histic (A3)
4. Scheuchzeri (A4)
5. Stratified Layers (A5) (LRR C)
6. 1 cm Muck (A9) (LRR D)
7. Depleted Below Dark Surface (A11)
8. Thick Dark Surface (A12)
9. Sandy Mucky Mineral (S1)
10. Sandy Gleyed Matrix (S4)

Hydric Soil Present? Yes ☐ No ☒

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

1. Salt Crust (B11)
2. Biotic Crust (B12)
3. Aquatic Invertebrates (B13)
4. Oxidized Rhizospheres along Living Roots (C3)
5. Presence of Reduced Iron (C4)
6. Recent Iron Reduction in Plowed Soils (C6)
7. Thin Muck Surface (C7)
8. Crayfish Burrows (C8)
9. Other (Explain in Remarks)
10. FAC-Neutral Test (D5)

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

1. Water Marks (B1) (Riverine)
2. Sediment Deposits (B2) (Riverine)
3. Drainage Patterns (B10)
4. Dry-Season Water Table (C2)
5. Thin Muck Surface (C7)
6. Shallow Aquitard (D3)
7. FAC-Neutral Test (D5)
8. Other (Explain in Remarks)

Restrictive Layer (if present):

- Type:
- Depth (inches):
- Hydric Soil Present? Yes ☐ No ☒
- Remarks:

No soil pit was excavated due to lack of vegetation and observable hydrology.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☒ Depth (inches):
- Water Table Present? Yes ☐ No ☒ Depth (inches):
- Saturation Present? Yes ☐ No ☒ Depth (inches):

Wetland Hydrology Present? Yes ☐ No ☒

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

- Remarks:

No evidence of hydrology was observed.
Commerce Center Bridge
WETLAND DETERMINATION DATA FORM - Arid West Region

Project/Site: Newhall Ranch/Commerce Center Bridge City/County: Los Angeles County Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: CC-1
Investigator(s): J. Kisner, W. Vogler, J. Love, E. Larsen
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Riverbed Local relief (concave, convex, none): none Slope (%): 5
Subregion (LRR): Mediterranean California (LRR-C) Lat: 6375973.9068700 Long: 1980360.7805500 Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land NWI classification: PSS6
Are climatic / hydrologic conditions on the site typical for this time of year? Yes No (If no, explain in Remarks.)
Are Vegetation no, Soil no, or Hydrology no significantly disturbed? Are “Normal Circumstances” present? Yes No
Are Vegetation no, Soil yes, or Hydrology no naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes No
Hydric Soil Present? Yes No
Wetland Hydrology Present? Yes No
Is the Sampled Area within a Wetland? Yes No

SP CC-1 characterizes the floodplain on the southern side of the Santa Clara River. This SP is immediately adjacent to the water’s edge and incorporates a portion of a sandbar, a portion of a side channel, and a portion of the adjacent floodplain. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Baccharis salicifolia</td>
<td>20</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2. Salix exigua</td>
<td>20</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>3. Salix laevigata</td>
<td>10</td>
<td>N</td>
<td>FACW+a</td>
</tr>
<tr>
<td>4. Tamarix sp.</td>
<td>8</td>
<td>N</td>
<td>FACw</td>
</tr>
<tr>
<td>5. Populus fremontii</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>Total Cover: 63</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Melilotus alba</td>
<td>40</td>
<td>Y</td>
<td>FACU+</td>
</tr>
<tr>
<td>2. Polygonum lapathifolium</td>
<td>10</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>3. Veronica anagallis-aquatica</td>
<td>10</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>4. Leptochloa uninervia</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>5. Typha angustifolia</td>
<td>5</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>6. Aster subulus var. liquatus</td>
<td>3</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>7. Cyperus eurythrizos</td>
<td>2</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>8. Agrostis viridis</td>
<td>1</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>9. Ambrosia acanthicarpa</td>
<td>1</td>
<td>N</td>
<td>NI</td>
</tr>
<tr>
<td>10. Aplium graveolens</td>
<td>1</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>11. Epilobium ciliatum</td>
<td>1</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>12. Heterotheca grandiflora</td>
<td>1</td>
<td>N</td>
<td>NI</td>
</tr>
<tr>
<td>13. Ludwigia peploides</td>
<td>1</td>
<td>N</td>
<td>OBL</td>
</tr>
<tr>
<td>14. Rumex sp.</td>
<td>1</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>15. Urtica dioica</td>
<td>1</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>16. Xanthium strumarium</td>
<td>1</td>
<td>N</td>
<td>FACW</td>
</tr>
<tr>
<td>Total Cover: 84</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Bare Ground in Herb Stratum</th>
<th>% Cover of Biotic Crust</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Remarks:
Reed 1988 was used to determine the wetland indicator status of plants unless otherwise noted.
The vegetation of SP CC-1 most closely corresponds to Cowardin’s (1979) riparian scrub.

Dominance Test worksheet: Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)
Total Number of Dominant Species Across All Strata: 5 (B)
Percent of Dominant Species That Are OBL, FACW, or FAC: 60% (A/B)
Prevalence Index worksheet: Total % Cover of:
OBL species 40 x 1 = 40
FACW species 20 x 2 = 40
FAC species 0 x 3 = 0
FACU species 40 x 4 = 160
UPL species 0 x 5 = 0
Column Totals: 100 (A) 240 (B)
Prevalence Index = B/A = 2.4

Hydrophytic Vegetation Indicators:
☐ Dominance Test is >50%
☐ Prevalence Index is ≤30%
☐ Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation (Explain)
1Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes No

US Army Corps of Engineers
Arid West – Version 11-1-2006
Profile Description
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist) %</th>
<th>Redox Features Color (moist) %</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120-140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140-160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160-180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180-200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220-240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240-260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260-280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280-300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix
Location: PL=Pore Lining, RC=Root Channel, M=Matrix

Hydric Soil Indicators
(Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TP2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

- Type:
- Depth (inches):

Hydric Soil Present? Yes ☐ No ☐

Remarks:
Small organic layer on top. With the exception of organic material, there were no additional hydric soil indicators. Due to the "neutral" characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

Field Observations:

- Surface Water Present? Yes ☐ No ☐ Depth (inches): 9
- Water Table Present? Yes ☒ No ☐ Depth (inches): 6
- Saturation Present? (includes capillary fringe) Yes ☒ No ☐ Depth (inches): 6

Wetland Hydrology Present? Yes ☒ No ☐

Remarks:
Water table and saturation provided evidence of hydrology. No primary or secondary indicators were present.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Commerce Center Bridge
City/County: Los Angeles County
Sampling Date: 9/26/07

Applicant/Owner: Newhall Land and Farming Company
State: CA

Investigator(s): E. Larsen, W. Vogler
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain
Local relief (concave, convex, none): none
Slope (%): 5

Subregion (LRR): Mediterranean California (LRR-C)
Lat: 63760.081
Long: 198032.980
Datum: NAD83

Soil Map Unit Name: Sandy Alluvial Land
NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)

Are Vegetation no, Soil no, or Hydrology no significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation no, Soil yes, or Hydrology no naturally problematic? (If needed, explain any answers in Remarks.)

Hydrophytic Vegetation Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☒ No ☐

Is the Sampled Area within a Wetland? Yes ☒ No ☐

Remarks:
The vegetation of SP CC-2 most closely corresponds to Cowardin’s (1979) riparian scrub.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>Absolute % Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Baccharis salicifolia</td>
<td>30</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2. Salix exigua</td>
<td>30</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>3. Populus fremontii</td>
<td>20</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>4. Tamarix aphylla</td>
<td>20</td>
<td>Y</td>
<td>FAC</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Arundo donax</td>
<td>5</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2. Cyperus involucratus</td>
<td>5</td>
<td>Y</td>
<td>OBL</td>
</tr>
<tr>
<td>3. Ambrosia acanthicarpa</td>
<td>1</td>
<td>N</td>
<td>NI</td>
</tr>
<tr>
<td>4. Washingtonia robusta</td>
<td>1</td>
<td>N</td>
<td>NI</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Bare Ground in Herb Stratum 50 % Cover of Biotic Crust 0

Dominance Test worksheet:
Number of Dominant Species That Are OBL, FACW, or FAC: 6 (A)
Total Number of Dominant Species Across All Strata 6 (B)
Percent of Dominant Species That Are OBL, FACW, or FAC: 100% (A/B)

Prevalence Index worksheet:
Total % Cover of: Multiply by
OBL species 35 x 1 = 35
FACW species 55 x 2 = 110
FAC species 20 x 3 = 60
FACU species 0 x 4 = 0
UPL species 0 x 5 = 0
Column Totals: 110 (A) 205 (B)
Prevalence Index = B/A = 1.86

Hydrophytic Vegetation Indicators:
☒ Dominance Test is >50%
☒ Prevalence Index is ≤3.0
☐ Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation (Explain)

Hydrophytic Vegetation Present? Yes ☒ No ☐

Remarks:
The vegetation of SP CC-2 most closely corresponds to Cowardin’s (1979) riparian scrub.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix</th>
<th>Color (moist)</th>
<th>%</th>
<th>Redox Features</th>
<th>Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sand</td>
<td>moist; dark layers 1 cm intervals</td>
</tr>
<tr>
<td>6-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sand</td>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR C)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Restrictive Layer (if present):

<table>
<thead>
<tr>
<th>Type:</th>
<th>Depth (inches):</th>
<th>Hydric Soil Present?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
</table>

Remarks:
Sand has black, organic layering (1cm). Soil is characterized as riverwash. Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators (2 or more required)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Recent Iron Reduction in Plowed Soils (C6)
- Presence of Reduced Iron (C4)
- Other (Explain in Remarks)

Field Observations:

- Surface Water Present? Yes | No | Depth (inches): |
- Water Table Present? Yes | No | Depth (inches): |
- Saturation Present? Yes | No | Depth (inches): |

Remarks:
Secondary indicators provided evidence of hydrology.
SP CC-3 characterizes the floodplain on the southern side of the Santa Clara River. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Species</th>
<th>% Cover</th>
<th>Status</th>
<th>Indicator Stress</th>
<th>Dominance Test worksheet:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree Stratum</td>
<td>Populus fremontii</td>
<td>20</td>
<td>Y</td>
<td>FACW</td>
<td>5 (A)</td>
</tr>
<tr>
<td></td>
<td>Salix lasiolepis</td>
<td>15</td>
<td>Y</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salix laevigata</td>
<td>5</td>
<td>N</td>
<td>FACW+a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Cover:</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sapling/Shrub Stratum</td>
<td>Populus fremontii</td>
<td>20</td>
<td>Y</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salix lasiolepis</td>
<td>10</td>
<td>Y</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baccharis salicifolia</td>
<td>5</td>
<td>N</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salix exigua</td>
<td>5</td>
<td>N</td>
<td>OBL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Artemisia tridentata</td>
<td>1</td>
<td>N</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salvia mellifera</td>
<td>1</td>
<td>N</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Cover:</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herb Stratum</td>
<td>Arundo donax</td>
<td>50</td>
<td>Y</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ambrosia acanthicarpa</td>
<td>1</td>
<td>N</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distichlis spicata</td>
<td>1</td>
<td>N</td>
<td>FACW</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Cover:</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woody Vine Stratum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Bare Ground in Herb Stratum</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Cover of Biotic Crust</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

SP is located in small depression/drainage. The vegetation of SP CC-3 most closely corresponds to Cowardin’s (1979) riparian scrub.
Soil Sampling Point: CC-3

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>10YR3/2</td>
<td>80</td>
<td>SYR4/6</td>
<td>20</td>
<td>C</td>
<td>M</td>
<td>silt loam</td>
<td></td>
</tr>
<tr>
<td>6-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fine sand</td>
<td></td>
</tr>
</tbody>
</table>

Depth Matrix Redox Features

1. **Type:** C=Concentration, D=Depletion, RM=Reduced Matrix
2. **Location:** PL=Pore Lining, RC=Root Channel, M=Matrix

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR C)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Indicators for Problematic Hydric Soils:

- 1 cm Muck (A9) (LRR C)
- 2 cm Muck (A10) (LRR B)
- Reduced Vertic (F18)
- Red Parent Material (TF2)
- Other (Explain in Remarks)

Restrictive Layer (if present):

- Type:
- Depth (inches):

Hydric Soil Present? Yes ☐ No ☐

Remarks:

Hydric soils are present due to presence of redox concentrations or iron mottles. Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

Hydrology

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient):

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators [2 or more required]:

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Crayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☐ Depth (inches):
- Water Table Present? Yes ☐ No ☐ Depth (inches):
- Saturation Present? Yes ☐ No ☐ Depth (inches):

Wetland Hydrology Present? Yes ☐ No ☐

Remarks:

Secondary indicators provided evidence of hydrology.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Commerce Center Bridge City/County: Los Angeles County Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: CC-4
Investigator(s): E. Larsen, W. Vogler Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain Local relief (concave, convex, none): none Slope (%): 5
Subregion (LRR): Mediterranean California (LRR-C) Lat: 6376115.9530100 Long: 1980069.5899200 Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)
Are Vegetation ☐, Soil ☐, or Hydrology ☐ significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation ☐, Soil ☐, or Hydrology ☐ naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☒ No ☐
Hydric Soil Present? Yes ☒ No ☐
Wetland Hydrology Present? Yes ☒ No ☐

Is the Sampled Area within a Wetland? Yes ☒ No ☐

Remarks:
SP CC-4 characterizes the floodplain on the southern side of the Santa Clara River. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

Tree Stratum (Use scientific names.) Absolute % Cover Dominant Species? Y Indicator Status FACW
1. Populus fremontii 10 Y FACW
2.
3.
4.
Total Cover: 10

Sapling/Shrub Stratum
1. Arundo donax 60 Y FACW
2. Salix exigua 40 Y OBL
3.
4.
5.
Total Cover: 100

Herb Stratum
1.
2.
3.
4.
5.
6.
7.
8.
Total Cover:

Woody Vine Stratum
1.
2.
Total Cover:

% Bare Ground in Herb Stratum % Cover of Biotic Crust

Hydrophytic Vegetation Present? Yes ☒ No ☐

Remarks:
The vegetation of SP CC-4 most closely corresponds to Cowardin’s (1979) riparian scrub. The ground was 100 percent covered, consisting of mostly leaf litter with some woody debris.
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>10YR 4/3</td>
<td>95+</td>
<td>SYR 5/4</td>
<td><5</td>
<td>C</td>
<td>M</td>
<td>silt/loam</td>
<td>organic flakes 25%</td>
</tr>
<tr>
<td>6-20</td>
<td>10YR 5/4</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>sand/loam</td>
<td></td>
</tr>
</tbody>
</table>

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR C)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

Restrictive Layer (if present):

- Type: ___________________________
- Depth (inches): ___________________________

Hydric Soil Present? Yes ☒ No □

Remarks:

Hydric soils are present due to the presence of redox concentrations or iron mottles. Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

- Primary Indicators (any one indicator is sufficient)
- Secondary Indicators (2 or more required)

Primary Indicators

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

Secondary Indicators

- Salt Crust (B11)
- Aquatic Invertebrates (B13)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☒ No □ Depth (inches): __________
- Water Table Present? Yes ☒ No □ Depth (inches): __________
- Saturation Present? Yes ☒ No □ Depth (inches): __________

Wetland Hydrology Present? Yes ☒ No □

Remarks:

Secondary indicators provided evidence of hydrology.
Project/Site: Newhall Ranch/Commerce Center Bridge City/County: Los Angeles County Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company State: CA Sampling Point: CC-5
Investigator(s): J. Love, J. Kisner Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain Local relief (concave, convex, none): none Slope (%): 5
Subregion (LRR): Mediterranean California (LRR-C) Lat: 6376253.1696300 Long: 1979866.4310200 Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land NWI classification: PSS6
Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☒ No ☐ (If no, explain in Remarks.)
Are Vegetation no, Soil no, or Hydrology no significantly disturbed? Are “Normal Circumstances” present? Yes ☒ No ☐
Are Vegetation no, Soil yes, or Hydrology no naturally problematic? (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

<table>
<thead>
<tr>
<th>Hydrophytic Vegetation Present?</th>
<th>Yes ☒ No ☐</th>
<th>Is the Sampled Area within a Wetland?</th>
<th>Yes ☒ No ☐</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soil Present?</td>
<td>Yes ☒ No ☐</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetland Hydrology Present?</td>
<td>Yes ☒ No ☐</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:
The vegetation of SP CC-4 most closely corresponds to Cowardin’s (1979) riparian scrub.
SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth</th>
<th>Matrix</th>
<th>Redox Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>(inches)</td>
<td>Color (moist)</td>
<td>%</td>
</tr>
<tr>
<td>0-16</td>
<td>10YR3/2</td>
<td>98</td>
</tr>
<tr>
<td>0-4</td>
<td>5YR4/6</td>
<td>2</td>
</tr>
</tbody>
</table>

¹Type: C=Concentration, D=Depletion, RM=Reduced Matrix. ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

<table>
<thead>
<tr>
<th>Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histosol (A1)</td>
</tr>
<tr>
<td>Histic Epipedon (A2)</td>
</tr>
<tr>
<td>Black Histic (A3)</td>
</tr>
<tr>
<td>Hydrogen Sulfide (A4)</td>
</tr>
<tr>
<td>Stratified Layers (A5) (LRR C)</td>
</tr>
<tr>
<td>1 cm Muck (A9) (LRR D)</td>
</tr>
<tr>
<td>Depleted Below Dark Surface (A11)</td>
</tr>
<tr>
<td>Thick Dark Surface (A12)</td>
</tr>
<tr>
<td>Sandy Mucky Mineral (S1)</td>
</tr>
<tr>
<td>Sandy Gleyed Matrix (S4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indicators for Problematic Hydric Soils¹:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 cm Muck (A9) (LRR C)</td>
</tr>
<tr>
<td>2 cm Muck (A10) (LRR B)</td>
</tr>
<tr>
<td>Reduced Vertic (F18)</td>
</tr>
<tr>
<td>Red Parent Material (TF2)</td>
</tr>
<tr>
<td>Other (Explain in Remarks)</td>
</tr>
</tbody>
</table>

Restrictive Layer (if present):

- Type:
- Depth (inches):

Hydric Soil Present? Yes [] No []

Remarks:

Hydric soils are present due to the presence of redox concentrations or iron mottles. Due to the "neutral" characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

<table>
<thead>
<tr>
<th>Primary Indicators (any one indicator is sufficient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Water (A1)</td>
</tr>
<tr>
<td>High Water Table (A2)</td>
</tr>
<tr>
<td>Saturation (A3)</td>
</tr>
<tr>
<td>Water Marks (B1) (Nonriverine)</td>
</tr>
<tr>
<td>Sediment Deposits (B2) (Nonriverine)</td>
</tr>
<tr>
<td>Drift Deposits (B3) (Nonriverine)</td>
</tr>
<tr>
<td>Surface Soil Cracks (B6)</td>
</tr>
<tr>
<td>Inundation Visible on Aerial Imagery (B7)</td>
</tr>
<tr>
<td>Water-Stained Leaves (B9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Indicators [2 or more required]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Marks (B1) (Riverine)</td>
</tr>
<tr>
<td>Sediment Deposits (B2) (Riverine)</td>
</tr>
<tr>
<td>Drainage Patterns (B10)</td>
</tr>
<tr>
<td>Dry-Season Water Table (C2)</td>
</tr>
<tr>
<td>Thin Muck Surface (C7)</td>
</tr>
<tr>
<td>Crayfish Burrows (C8)</td>
</tr>
<tr>
<td>Saturation Visible on Aerial Imagery (C9)</td>
</tr>
<tr>
<td>Shallow Aquitard (D3)</td>
</tr>
<tr>
<td>FAC-Neutral Test (D5)</td>
</tr>
</tbody>
</table>

Field Observations:

- Surface Water Present? Yes [] No [] Depth (inches):
- Water Table Present? Yes [] No [] Depth (inches):
- Saturation Present? Yes [] No [] Depth (inches):

Wetland Hydrology Present? Yes [] No []

Remarks:

Secondary indicators provided evidence of hydrology.

US Army Corps of Engineers Arid West – Version 11-1-2006
Project/Site: Newhall Ranch/Commerce Center Bridge
City/County: Los Angeles County
Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: CC-6

Investigator(s): E. Larsen, W. Vogler
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Floodplain
Local relief (concave, convex, none): none
Slope (%): 5
Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6376322.4256200
Long: 1979977.4281500
Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land
NWI classification: PSS6

Are climatic / hydrologic conditions on the site typical for this time of year? Yes []
No []
(If no, explain in Remarks.)

Are Vegetation []
Soil []
Hydrology [] significantly disturbed? Are “Normal Circumstances” present? Yes []
No []
(If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes []
No []

Hydric Soil Present? Yes []
No []

Wetland Hydrology Present? Yes []
No []

Is the Sampled Area within a Wetland? Yes []
No []

Remarks:
SP CC-6 characterizes the floodplain on the southern side of the Santa Clara River. Similar to sampling point CC-7 in vegetation and CC-5 in soils. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

Tree Stratum (Use scientific names.)
1. Populus fremontii
Absolute % Cover 20
Dominant Species? Y
Indicator Status FACW

2.

3.

4.

Total Cover: 20

Sapling/Shrub Stratum
1. Baccharis salicifolia
Absolute % Cover 20
Dominant Species? Y
Indicator Status FACWa

2. Artemisia californica
Absolute % Cover 10
Dominant Species? N
Indicator Status N

3. Nicotiana glauca
Absolute % Cover 5
Dominant Species? N
Indicator Status FAC

4. Eriodictyon crassifolium
Absolute % Cover 5
Dominant Species? N
Indicator Status NI

5.
Total Cover: 40

Herb Stratum
1. Arundo donax
Absolute % Cover 20
Dominant Species? Y
Indicator Status FACW

2.

3.

4.

5.

6.

7.

8.

Total Cover: 20

Woody Vine Stratum
1.

2.

Total Cover:

% Bare Ground in Herb Stratum
% Cover of Biotic Crust

Remarks:
The vegetation of SP CC-6 most closely corresponds to Cowardin’s (1979) riparian scrub.

Hydrophytic Vegetation Indicators:
[] Dominance Test is >50%
[] Prevalence Index is ≤3.0

[] Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)

[] Problematic Hydrophytic Vegetation (Explain)

Indicators of hydric soil and wetland hydrology must be present.

Hydrophytic Vegetation Present? Yes []
No []

Prevalence Index = B/A = 2.6

Notes:

SOIL

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type</th>
<th>Loc</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>10YR3/2</td>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>silt loam</td>
<td></td>
</tr>
<tr>
<td>6-20</td>
<td>5YR4/6</td>
<td>2</td>
<td>C</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type: C=Concentration, D=Depletion, RM=Reduced Matrix. Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators: (Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)
- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Hydric Soil Present? Yes ☒ No □

Remarks:

Hydric soils are present due to the presence of redox concentrations or iron mottles. Due to the “neutral” characteristics of sandy soils, sandy alluvial land is problematic and often considered to be hydric under flooded conditions.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)
- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Oxygen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Presence of Reduced Iron (C4)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drainage Patterns (B10)
- Thin Muck Surface (C7)
- Clayish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

- Surface Water Present? Yes ☐ No ☒ Depth (inches):
- Water Table Present? Yes ☐ No ☒ Depth (inches):
- Saturation Present? Yes ☐ No ☒ Depth (inches):

Wetland Hydrology Present? Yes ☒ No □

Remarks:

Secondary indicators provided evidence of hydrology.
WETLAND DETERMINATION DATA FORM – Arid West Region

Project/Site: Newhall Ranch/Commerce Center Bridge
City/County: Los Angeles County
Sampling Date: 9/26/07
Applicant/Owner: Newhall Land and Farming Company
State: CA
Sampling Point: CC-7

Investigator(s): E. Larsen, W. Vogler
Section, Township, Range: San Francis Land Grant
Landform (hillslope, terrace, etc.): Hillslope
Local relief (concave, convex, none): convex
Slope (%): 45
Subregion (LRR): Mediterranean California (LRR-C)
Lat: 6364920.4195000
Long: 1974289.06056
Datum: NAD83
Soil Map Unit Name: Sandy Alluvial Land
NWI classification: N/A

Are climatic / hydrologic conditions on the site typical for this time of year? Yes ☐ No ☐ (If no, explain in Remarks.)
Are Vegetation no, Soil no, or Hydrology no significantly disturbed? Are “Normal Circumstances” present? Yes ☐ No ☐ (If needed, explain any answers in Remarks.)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Yes ☐ No ☐
Hydric Soil Present? Yes ☐ No ☐
Wetland Hydrology Present? Yes ☐ No ☐
Is the Sampled Area within a Wetland? Yes ☐ No ☐

Remarks:
SP CC-7 characterizes the beginning of the upland area on the southern side of the Santa Clara River. Similar in vegetation to SP CC-6. The 2006-2007 rain season had an abnormally low amount of precipitation.

VEGETATION

<table>
<thead>
<tr>
<th>Tree Stratum (Use scientific names.)</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Populus fremontii</td>
<td>20</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sapling/Shrub Stratum</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Baccharis salicifolia</td>
<td>20</td>
<td>Y</td>
<td>FACWa</td>
</tr>
<tr>
<td>2. Artemisia californica</td>
<td>10</td>
<td>Y</td>
<td>NI</td>
</tr>
<tr>
<td>3. Nicotiana glauca</td>
<td>5</td>
<td>N</td>
<td>FAC</td>
</tr>
<tr>
<td>4. Eriodictyon crassifolium</td>
<td>5</td>
<td>N</td>
<td>NI</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herb Stratum</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Arundo donax</td>
<td>20</td>
<td>Y</td>
<td>FACW</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover: 20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Woody Vine Stratum</th>
<th>% Cover</th>
<th>Dominant Species?</th>
<th>Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cover:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% Bare Ground in Herb Stratum</th>
<th>% Cover of Biotic Crust</th>
</tr>
</thead>
</table>

Hydrophytic Vegetation Indicators:
☐ Dominance Test is >50%
☐ Prevalence Index is ≤3.0
☐ Morphological Adaptations (Provide supporting data in Remarks or on a separate sheet)
☐ Problematic Hydrophytic Vegetation (Explain)

1Indicators of hydric soil and wetland hydrology must be present.

Remarks:
The vegetation of SP CC-7 most closely corresponds to Cowardin’s (1979) riparian scrub; however this SP was at the bottom edge of a hill dominated by coastal sage scrub.

SOIL

Profile Description:
(Describe to the depth needed to document the indicator or confirm the absence of indicators.)

<table>
<thead>
<tr>
<th>Depth (inches)</th>
<th>Matrix Color (moist)</th>
<th>%</th>
<th>Redox Features Color (moist)</th>
<th>%</th>
<th>Type¹</th>
<th>Loc²</th>
<th>Texture</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>10YR 5/4</td>
<td>97</td>
<td>SYR 5/6</td>
<td>3</td>
<td></td>
<td></td>
<td>silt loam</td>
<td></td>
</tr>
<tr>
<td>6-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>silt loam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Type: C=Concentration, D=Depletion, R.M=Reduced Matrix. ²Location: PL=Pore Lining, RC=Root Channel, M=Matrix.

Hydric Soil Indicators:
(Applicable to all LRRs, unless otherwise noted.)

- Histosol (A1)
- Histic Epipedon (A2)
- Black Histic (A3)
- Hydrogen Sulfide (A4)
- Stratified Layers (A5) (LRR C)
- 1 cm Muck (A9) (LRR D)
- Depleted Below Dark Surface (A11)
- Thick Dark Surface (A12)
- Sandy Mucky Mineral (S1)
- Sandy Gleyed Matrix (S4)

- Sandy Redox (S5)
- Stripped Matrix (S6)
- Loamy Mucky Mineral (F1)
- Loamy Gleyed Matrix (F2)
- Depleted Matrix (F3)
- Redox Dark Surface (F6)
- Depleted Dark Surface (F7)
- Redox Depressions (F8)
- Vernal Pools (F9)

Restrictive Layer (if present):

Type: ______________________
Depth (inches): ______________________

Hydric Soil Present? Yes [] No []

Remarks:
No hydric soil indicators were present.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

- Surface Water (A1)
- High Water Table (A2)
- Saturation (A3)
- Water Marks (B1) (Nonriverine)
- Sediment Deposits (B2) (Nonriverine)
- Drift Deposits (B3) (Nonriverine)
- Surface Soil Cracks (B6)
- Inundation Visible on Aerial Imagery (B7)
- Water-Stained Leaves (B9)

- Salt Crust (B11)
- Biotic Crust (B12)
- Aquatic Invertebrates (B13)
- Hydrogen Sulfide Odor (C1)
- Oxidized Rhizospheres along Living Roots (C3)
- Recent Iron Reduction in Plowed Soils (C6)
- Other (Explain in Remarks)

Secondary Indicators (2 or more required)

- Water Marks (B1) (Riverine)
- Sediment Deposits (B2) (Riverine)
- Drift Deposits (B3) (Riverine)
- Drainage Patterns (B10)
- Dry-Season Water Table (C2)
- Thin Muck Surface (C7)
- Clayfish Burrows (C8)
- Saturation Visible on Aerial Imagery (C9)
- Shallow Aquitard (D3)
- FAC-Neutral Test (D5)

Field Observations:

Surface Water Present? Yes [] No [] Depth (inches): __________
Water Table Present? Yes [] No [] Depth (inches): __________
Saturation Present? Yes [] No [] Depth (inches): __________

Wetland Hydrology Present? Yes [] No []

Remarks:
No evidence of hydrology was observed.
APPENDIX B
LIST OF ON-SITE PLANT SPECIES AND THEIR WETLAND INDICATOR STATUS
LIST OF PLANT SPECIES THAT WERE OBSERVED WITHIN THE STUDY AREAS AND THEIR WETLAND INDICATOR STATUS

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Wetland Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrostis viridis</td>
<td>Water Bent Grass</td>
<td>OBL</td>
</tr>
<tr>
<td>Ambrosia acanthicarpa</td>
<td>Annual Burweed</td>
<td>NI</td>
</tr>
<tr>
<td>Ambrosia psilostachya var. californica</td>
<td>Western Ragweed</td>
<td>FAC</td>
</tr>
<tr>
<td>Apium graveolens</td>
<td>Wild Celery</td>
<td>FACW*</td>
</tr>
<tr>
<td>Artemisia californica</td>
<td>California Sagebrush</td>
<td>NI</td>
</tr>
<tr>
<td>Artemisia douglasiana</td>
<td>Mugwort</td>
<td>FACW</td>
</tr>
<tr>
<td>Artemisia tridentata</td>
<td>Big Sagebrush</td>
<td>NI</td>
</tr>
<tr>
<td>Arundo donax</td>
<td>Giant Reed</td>
<td>FACW*</td>
</tr>
<tr>
<td>Aster subulatus var. ligulatus</td>
<td>Slender Aster</td>
<td>FACW</td>
</tr>
<tr>
<td>Baccharis pilularis</td>
<td>Coyote Brush</td>
<td>NI</td>
</tr>
<tr>
<td>Baccharis salicifolia</td>
<td>Mulefat</td>
<td>FACW*</td>
</tr>
<tr>
<td>Bassia hyssopifolia</td>
<td>Five-hook Bassia</td>
<td>FAC</td>
</tr>
<tr>
<td>Brassica nigra</td>
<td>Black Mustard</td>
<td>NI</td>
</tr>
<tr>
<td>Brassica spp.</td>
<td>Mustard</td>
<td>NI</td>
</tr>
<tr>
<td>Bromus diandrus</td>
<td>Ripgut Brome</td>
<td>NI</td>
</tr>
<tr>
<td>Chenopodium album</td>
<td>White Goosefoot</td>
<td>FAC</td>
</tr>
<tr>
<td>Conium maculatum</td>
<td>Poison Hemlock</td>
<td>FACW</td>
</tr>
<tr>
<td>Conyza bonariensis</td>
<td>South American Horseweed</td>
<td>NI</td>
</tr>
<tr>
<td>Conyza canadensis</td>
<td>Horseweed</td>
<td>FAC</td>
</tr>
<tr>
<td>Cynodon dactylon</td>
<td>Bermuda Grass</td>
<td>FAC</td>
</tr>
<tr>
<td>Cyperus eragrostis</td>
<td>Flatsedge</td>
<td>FACW</td>
</tr>
<tr>
<td>Cyperus erythrorhizos</td>
<td>Redroot Flatsedge</td>
<td>OBL</td>
</tr>
<tr>
<td>Cyperus involucratus</td>
<td>Umbrella Plant</td>
<td>OBL</td>
</tr>
<tr>
<td>Dactyloctenium aegyptium</td>
<td>Crowfoot Grass</td>
<td>NI</td>
</tr>
<tr>
<td>Distichlis spicata</td>
<td>Saltgrass</td>
<td>FACW</td>
</tr>
<tr>
<td>Echinocloa crus-galli</td>
<td>Barnyard Grass</td>
<td>FACW</td>
</tr>
<tr>
<td>Eleocharis macrostachya</td>
<td>Common Spikerush</td>
<td>OBL</td>
</tr>
<tr>
<td>Eleusine indica</td>
<td>Goose Grass</td>
<td>FACU</td>
</tr>
<tr>
<td>Epilobium ciliatum</td>
<td>Willow Herb</td>
<td>FACW</td>
</tr>
<tr>
<td>Eriodictyon crassfolium</td>
<td>Yerba Santa</td>
<td>NI</td>
</tr>
<tr>
<td>Euthamia occidentalis</td>
<td>Western Goldenrod</td>
<td>OBL</td>
</tr>
<tr>
<td>Heliotropium curassavicum</td>
<td>Alkali Heliotrope</td>
<td>OBL</td>
</tr>
<tr>
<td>Heterotheca grandiflora</td>
<td>Telegraph Weed</td>
<td>NI</td>
</tr>
<tr>
<td>Juncus torreyi</td>
<td>Torrey's Rush</td>
<td>FACW*</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Wetland Indicator Status</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Juncus xiphioides</td>
<td>Iris-leaved Rush</td>
<td>OBL</td>
</tr>
<tr>
<td>Leptochloa uninervia</td>
<td>Mexican Sprangletop</td>
<td>FACW</td>
</tr>
<tr>
<td>Leymus triticoides</td>
<td>Alkali Ryegrass</td>
<td>FAC+</td>
</tr>
<tr>
<td>Ludwigia peploides</td>
<td>Floating Water Primrose</td>
<td>OBL</td>
</tr>
<tr>
<td>Malvella leprosa</td>
<td>Alkali Mallow</td>
<td>FAC*</td>
</tr>
<tr>
<td>Melilotus alba</td>
<td>White Sweetclover</td>
<td>FACU+</td>
</tr>
<tr>
<td>Nicotiana glauca</td>
<td>Tree Tobacco</td>
<td>FAC</td>
</tr>
<tr>
<td>Oenothera elata</td>
<td>Hooker's Evening Primrose</td>
<td>FACW</td>
</tr>
<tr>
<td>Phalaris aquatica</td>
<td>Harding Grass</td>
<td>FAC+</td>
</tr>
<tr>
<td>Pluchea sericea</td>
<td>Arrowweed</td>
<td>FACW</td>
</tr>
<tr>
<td>Poa annua</td>
<td>Annual Bluegrass</td>
<td>FACW-</td>
</tr>
<tr>
<td>Poa spp.</td>
<td>Bluegrass</td>
<td></td>
</tr>
<tr>
<td>Polygonum arenastrum</td>
<td>Common Knotweed</td>
<td>FAC</td>
</tr>
<tr>
<td>Polygonum lapathifolium</td>
<td>Willow Weed</td>
<td>OBL</td>
</tr>
<tr>
<td>Polypogon monspelliens</td>
<td>Rabbitsfoot Grass</td>
<td>FACW+</td>
</tr>
<tr>
<td>Populus fremontii</td>
<td>Fremont Cottonwood</td>
<td>FACW</td>
</tr>
<tr>
<td>Rosa californica</td>
<td>California Rose</td>
<td>FAC+</td>
</tr>
<tr>
<td>Rumex spp.</td>
<td>Dock</td>
<td></td>
</tr>
<tr>
<td>Salix exigua</td>
<td>Narrowleaf Willow</td>
<td>OBL</td>
</tr>
<tr>
<td>Salix laevigata</td>
<td>Red Willow</td>
<td>FACW+4</td>
</tr>
<tr>
<td>Salix lasiolepis</td>
<td>Arroyo Willow</td>
<td>FACW</td>
</tr>
<tr>
<td>Salvia mellifera</td>
<td>Black Sage</td>
<td>NI</td>
</tr>
<tr>
<td>Sambucus mexicana</td>
<td>Blue Elderberry</td>
<td>FAC</td>
</tr>
<tr>
<td>Sonchus asper</td>
<td>Prickly Sow-thistle</td>
<td>FAC</td>
</tr>
<tr>
<td>Sonchus spp.</td>
<td>Sow-thistle</td>
<td></td>
</tr>
<tr>
<td>Spergularia spp.</td>
<td>Sandspurry</td>
<td></td>
</tr>
<tr>
<td>Tamarix aphylla</td>
<td>Athel Tamarisk</td>
<td>FACW-</td>
</tr>
<tr>
<td>Tamarix spp.</td>
<td>Tamarisk</td>
<td>FAC5</td>
</tr>
<tr>
<td>Trifolium spp.</td>
<td>Clover</td>
<td></td>
</tr>
<tr>
<td>Typha angustifolia</td>
<td>Narrowleaf Cattail</td>
<td>OBL</td>
</tr>
<tr>
<td>Typha domingensis</td>
<td>Southern Cattail</td>
<td>OBL</td>
</tr>
<tr>
<td>Typha latifolia</td>
<td>Cattail</td>
<td>OBL</td>
</tr>
<tr>
<td>Typha spp.</td>
<td>Cattail</td>
<td>OBL6</td>
</tr>
</tbody>
</table>
LIST OF PLANT SPECIES THAT WERE OBSERVED WITHIN THE STUDY AREAS AND THEIR WETLAND INDICATOR STATUS (CONTINUED)

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Wetland Indicator Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urtica dioica</td>
<td>Stinging Nettle</td>
<td>FACW</td>
</tr>
<tr>
<td>Veronica anagallis-aquatica</td>
<td>Water Speedwell</td>
<td>OBL</td>
</tr>
<tr>
<td>Washingtonia robusta</td>
<td>Fan Palm</td>
<td>NI</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>Cocklebur</td>
<td>FAC+</td>
</tr>
<tr>
<td>Zea mays</td>
<td>Corn</td>
<td>NI</td>
</tr>
</tbody>
</table>

Notes:
- # Non-native (Hickman 1993)
- 1 Invasive (California Invasive Plant Council 2007)
- 2 Non-native (Calflora 2007)
- 3 As described in Reed, 1988 unless otherwise noted
- 4 Kartesz 1996
- 5 Wetland indicator status was assumed FAC for all *Tamarix* species that were not identified to species. *Tamarix* species found in California have indicators of at least FAC.
- 6 Wetland indicator status was assumed OBL for all *Typha* species that were not identified to species. *Typha* species found in California have indicators of at least OBL.

Wetland Indicator Status Key

- OBL = Obligate wetland species, occur almost always in wetlands (>99% probability).
- FACW = Facultative Wetland species, usually occur in wetlands (67 to 99% probability), but occasionally found in non-wetlands.
- FAC = Facultative species, equally likely to occur in wetlands or non-wetlands (34 to 66% probability).
- FACU = Facultative Upland, usually occur in non-wetlands (67% to 99%), but occasionally found in wetlands.
- UPL = Obligate Upland species, occur almost always in non-wetlands (>99% probability).
- NI = Non Indicator, not present on list.
- + = Modifier that indicates a frequency toward the higher end of the category (more frequently found in wetlands).
- - = Modifier that indicates a frequency toward the lower end of the category (less frequently found in wetlands).
- * = A tentative assignment to that indicator status by Reed, 1988.
APPENDIX C
PHOTO DOCUMENTATION
Photo 1. Viewing west along the Santa Clara River, featuring the main channel and riparian scrub vegetation. Wetlands occur adjacent to the river and riparian scrub vegetation is visible in the background. This photo was taken on September 26, 2007 (CC-1).

Photo 2. A mix of hydrophytic vegetation is displayed consisting of narrowleaf willow, red willow, western goldenrod, and cattail. This vegetation arrangement is representative of the on-site riparian scrub wetlands. This photo was taken on September 25, 2007 (PC-1).
Photo 3. A view of a representative on-site mature riparian forest. This photo was taken on September 26, 2007 (PC-2).

Photo 4. A view of redox features that occurred in sandy soils in a riverwash land form adjacent to the Santa Clara River. This photo was taken on September 26, 2007 (CC-3).
Photo 5. A view of a depleted matrix that occurred in a sandy alluvial land form within a mature riparian forest wetland. This photo was taken on September 26, 2007 (PC-2).

Photo 6. A view of a high water table present within sandy soils. This photo was taken on September 26, 2007 (PC-6).
Photo 7. A view of a soil pit in a typical upland habitat. Hydric soils and hydrology indicators were absent. This photo was taken on September 28, 2007 (LC-7).

Photo 8. A view of wetland hydrology indicators including soil cracking, crust, and sediment deposits. This photo was taken on September 25, 2007 (PC-15).
APPENDIX D

URS CORPORATION (2004) JURISDICTION DELINEATION FOR THE RMDP SITE

Under separate cover.
APPENDIX E
LUKOS AND ASSOCIATES (2008) JURISDICTION DELINEATION
FOR THE ENTRADA PLANNING AREA

Under separate cover.