California Department of Transportation, District 7 Office of Advance
Planning, System Planning Unit, "Transportation Concept Report"

Transportation Concept

Report

California Department of Transportation District 7 Office of Advance Planning

System Planning Unit

To:
RAJA M. MITWASI
Chief, Division of Planning and Public Transportation

TONY HARRIS

District Director

From: DEPARTMENT OF TRANSPORTATION - District 7
System Planning Unit
Office of Advance Planning

Subject: Approval of Interstate 5 Transportation Concept Report

Submitted for your review and approval is the Transportation Concept Report for Interstates 5 (I-5).

This approved Transportation Concept Report will serve as the Department's basic guide to the development of this route.

Approved by:

RAJA M. MITWASI

Division of Planning and Public Transportation

TONY HARRIS

District Director

TRANSPORTATION CONCEPT REPORT
 InTERSTATE 5

Summary of Contents

I. DOCUMENT SUMMARY I-1
II. DOCUMENT PURPOSE II-1
III. SEGMENT SUMMARIES III-1
IV. ROUTE DESCRIPTION. IV-1
V. CONGESTION V-1
VI. IMPROVEMENTS VI-1
VII. SOCIO-ECONOMICS VII-1
VIII. ACCIDENT RATES AND SAFETY VIII-1
IX. REGIONAL POLICIES, GOALS AND STRATEGIES IX-1
X. POLICY CONFLICTS IN THE REGIONAL PLANNING PROCESS X-1
XI. TRANSPORTATION CONCEPT AND CONCLUSION XI-1
XII. APPENDICES XII-1

TRANSPORTATION CONCEPT REPORT InTERSTATE 5

Table of Contents

I. DOCUMENT SUMMARY I-1
II. DOCUMENT PURPOSE II-1
III. SEGMENT SUMMARIES III
A. INTRODUCTION III-1
B. TCR SEGMENTATION MAP III-2A
C. CONCEPT SUMMARY - LEVEL OF SERVICE III-2B
D. CONCEPT SUMMARY - SEGMENT CONFIGURATION III-2C
E. SEGMENT SUMMARIES III-3
IV. ROUTE DESCRIPTION IV-1
A. PURPOSE OF ROUTE IV-2
B. FUNCTIONAL CLASSIFICATION IV-3
C. PARK AND RIDE/BICYCLE FACILITIES IV-4
V. CONGESTION V
A. CONGESTION MEASURES V-1
B. CONGESTION MAPS V-2
C. DURATION AND SPEED V-34
D. DEMAND/CAPACITY V-35
E. LEVEL OF SERVICE (LOS) V-36
F. HOURS OF DELAY V-37
VI. IMPROVEMENTS VI-1
A. SUMMARY VI-2
B. PROGRAMMED IMPROVEMENTS VI-4
C. PROGRAMMED PROJECTS VI-6
D. ILLUSTRATED IMPROVEMENT SCENARIOS VI-7
VII. SOCIO-ECONOMICS VII-1
A. SANTA CLARITA VALLEY RSA \& LANCASTER RSA VII-2
B. BURBANK RSA \& NORTHEAST SAN FERNANDO VALLEY RSA VII-3
C. EAST CENTRAL (LA) RSA \& NORWALK-WHITTIER RSA VII-4
D. LOS ANGELES CBD RSA \& GLENDALE RSA VII-5
VIII. ACCIDENT RATES AND SAFETY VIII
A. INTRODUCTION VIII-1
B. FATAL \& INJURY VIII-2
C. TOTAL ACCIDENTS VIII-3
D. HIGHER THAN AVERAGE VIII-4
IX. REGIONAL THRESHOLD CRITERIA AND POLICIES IX-1
X. POLICY CONFLICTS IN THE REGIONAL PLANNING PROCESS X-1
XI. TRANSPORTATION CONCEPT AND CONCLUSIONS XI-1
XII. APPENDICES XII
A. BIBLIOGRAPHY XII-1
B. GLOSSARY XII-4
C. HOV MAP XII-21
D. LEGISLATIVE MANDATE XII-22
E. LEVEL OF SERVICE XII-23
F. SEGMENT SUMMARY INFORMATION SERVICES XII-24
G. APPENDIX XII-27
H. SYSTEM PLANNING OVERVIEW XII-39

I. Document Summary

DOCUMENT SUMMARY

$\mathbf{W}_{\text {wit }}$hile this Transportation Concept Report is divided into twelve major sections, three of the sections - III, VI and XI - are the heart of the document. They include detailed Segment Summaries (Section III), lists of suggested Improvements (Section VI) and the Transportation Concept and Conclusions (Section XI). All of the other sections provide a context for analyzing the Interstate 5 (I-5) corridor and document the data resources studied.

The basic aim of this document is to suggest a configuration for I-5 that will meet projected demands within a framework of common sense and regional policy. The concept selected -Alternative \#2- generally conforms to regional plans and provides substantial congestion relief over the 20-year planning period.

Alternative \#2 includes the following: An additional mixed flow lane between the Orange County Line and the I-605 Freeway; Truck Lanes between the Orange County Line and Kern County Line; and 2 HOV lane between the Orange County Line and SR-126 North; and 3 HOV lanes in the four most congested segments, from I-10 to SR-2 and from I-405 to SR-14.
II. Document Purpose

Document Purpose

This Transportation Concept Report (TCR) ${ }^{1}$ is an internal Caltrans planning tool
intended to provide an initial look at developments within the I-5 corridor over the next twenty years. Its primary focus is on identifying "need"-defined as the difference between forecast demand and capacity. It analyzes this need in three primary ways:

1. It documents current conditions.
2. It contrasts projected future demand with planned facilities (capacity).
3. It proposes future development alternatives to address the shortfalls between demand and capacity.

As an initial step in the planning process, its observations and conclusions serve as the jumping off point for more complex and specific reports such as:

1. Feasibility Studies
2. Major Investment Studies
3. Project Studies.

In preparing this report, District 7 System Planning Staff has researched Federal, State, Regional and Departmental plans and documents. Staff has attempted to provide thorough documentation of all sources of important information and policies. This documentation is provided in footnotes and in the Appendix, Section XII.

The heart of this TCR is a series of proposed alternatives for development of I-5. The alternatives are included in the Segment Summaries, Section III. The alternatives cover a wide range: Alternative \#1 is based on existing plans-primarily the SCAG RTP, the LACMTA Long Range and HOV Plans, and the Caltrans District System Management Plan.

[^0]The Attain LOS "D" alternative is based on the number of "lane equivalents" necessary to reach LOS "D"-by definition, the lowest adequate level of service rating (see Appendix, XII-23)f.The Ultimate Transportation Corridor (UTC) alternative is considered the maximum reasonable development of a highway facility within the corridor. The UTC is intended to identify potential right of way problems.

[^1]III. Segment Summaries

SEGMENT SUMMARIES

This TCR analyzes I-5 conditions using the "segment" as the study unit. Segments
are generally defined as "freeway interchange to freeway interchange", "county line to freeway interchange" or "freeway interchange to end of freeway". The map on the previous page illustrates these segments.

Each of the summaries that follows describes the segment's current and projected operating characteristics, existing configuration, projected traffic demand and proposed alternative improvements.

Documentation of sources for information in these summaries is in Section XII, beginning on XII-22.

Interstate 5

Concept Summary - Level of Service

Segment \#	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
Existing																
Demand / Capacity	1.19	2.06	1.21	1.79	1.49	1.51	1.30	1.75	1.39	1.17	2.01	1.42	1.12	1.17	1.59	1.46
Avg. Daily Traffic (x1,000)	50	54	81	125	242	221	113	225	161	227	271	222	286	266	224	173
Number of Lanes	4	4	4	4	6	5	3	5	4	5	4	4	5	5	4	3
Pk.hour Level Of Service	F0	F3	F0	F3	F3	F3	F1	F3	F2	F0	F3	F2	F0	F0	F3	F3
2020 Null With Route 710 (Main Line)																
Demand / Capacity	1.12	2.16	2.26	3.36	3.60	2.62	2.09	2.07	1.86	1.86	2.78	2.31	1.94	1.96	2.03	2.05
Avg. Daily Traffic (x1,000)	103	143	236	277	567	428	243	405	268	314	385	322	349	421	364	273
Number of Lanes	4	4	4	4	6	5	3	5	4	5	4	4	5	5	4	3
Pk.hour Level Of Service	F0	F3														
2020 Concept (Alternate \#2)																
Demand / Capacity	0.91	1.76	1.86	2.67	2.36	2.20	1.45	1.88	1.68	1.73	2.49	2.18	1.77	1.80	1.82	1.59
Avg. Daily Traffic (x1,000)	103	141	227	260	519	409	238	482	279	326	403	336	343	422	369	313
Number of Lanes	5	5	5	5	8	6	5	7	5	6	5	5	6	6	5	5
Pk.hour Level Of Service	D	F3	F3	F3	F3	F3	F2	F3	F3	F3	F0	F3	F3	F3	F3	F3

Interstate 5

Concept Summary - Segment Configuration

INTERSTATE 5 - SEGMENT 1 SUMMARY - P. 1

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Characteristics	Flat
Terrain:	$128^{\prime}-225^{\prime}$
Mainline R/W	$12^{\prime}-60^{\prime} / 10^{\prime}$
Median / Outside Shoulder:	70
Design Speed (MPH)	22
Bridge Structures:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Accident Rates			
per Million Vehicle Miles (MVM)			
(1/94 to 12/96)			

Corridor Characteristics	
Trucks (\% of ADT):	11%
Express Transit (lines):	$3(460,466,721)$
Hours of Operation:	MTA 460: commute + nightowl
	MTA 466: commute
	OCTA 721: commute
Rail Service:	
Park \& Ride Lots (Spaces):	\#L48 (100), \#L123 (260)

INTERSTATE 5 - SEGMENT 1 SUMMARY - P. 2

EXING									2020 NULL (w/o Route 710)	2020 NULL (with Route 710)
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)				
Average Daily Traffic (ADT)	173,400	0	270,400	20,100	273,000	18,200				
Lanes Configuration (ea. direction)	3	0	3	1	3	1				

Volume								
	AM Peak Hour	N	6,250		7,950	750	7,900	
AM Peak Hour	S	7,400		9,750	1,700	9,850	1,400	
PM Peak Hour	\mathbf{N}	6,150		10,150	1,250	10,400	1,100	
PM Peak Hour	S	7,100		9,250	750	9,350	700	

Speed		
AM Average	\mathbf{N}	46
AM Average	\mathbf{S}	33
PM Average	\mathbf{N}	47
PM Average	\mathbf{S}	36

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 1 SUMMARY - P. 3

TRAFFC DATA						
	2020 CONCEPT (Alt1)		2020 CONCEPT (Alt2)		ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Average Daily Traffic (ADT)	321,000	23,800	313,000	25,800		
Lanes Configuration (ea. direction)	$4+1$ truck	1	4 + 1 truck	2	$5+1$ truck	2

Volume								
	AM Peak Hour	\mathbf{N}	9,450	800	8,300	750		
AM Peak Hour	\mathbf{S}	12,750	1,850	10,850	2,150			
PM Peak Hour	\mathbf{N}	13,900	1,640	13,450	1,800			
PM Peak Hour	\mathbf{S}	11,750	850	11,750	850			

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	30
PM Average	\mathbf{N}	23
PM Average	\mathbf{S}	37

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with l-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 2 SUMMARY - P. 1

	DESCRIPTION
Limits:	$I-605$ to I-710
Post Mile:	$6.85-13.78$

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Characteristics	Flat
Terrain:	$124^{\prime}-255^{\prime}$
Mainline R/W	$3^{\prime}-12^{\prime} / 2^{\prime}-11^{\prime}$
Median / Outside Shoulder:	70
Design Speed (MPH)	29
Bridge Structures:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Accident Rates			
per Million Vehicle Miles (MVM)			
$(1 / 94$ to 12/96)			

Corridor Characteristics	
Trucks (\% of ADT):	9%
Express Transit (lines):	4 (460, 462, 466, 721)
Hours of Operation:	MTA 460: commute + nightowl
	MTA 462: commute + extended hours
	MTA 466: commute
	OCTA 721: commute
Rail Service:	Metrolink, Amtrak
Park \& Ride Lots (Spaces):	\#L16 (50), \#L25 (83), \#L26 (29)

INTERSTATE 5 - SEGMENT 2 SUMMARY - P. 2

EXISTING									2020 NULL (w/o Route 710)	2020 NULL (with Route 710)
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)				
Average Daily Traffic (ADT)	224,000		357,200		363,900					
Lanes Configuration (ea. direction)	4	0	4	0	4	0				

Speed		
	\mathbf{N}	
AM Average	\mathbf{N}	26
AM Average	\mathbf{S}	>50
PM Average	\mathbf{N}	50
PM Average	\mathbf{S}	26

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 2 SUMMARY - P. 3

$\mathbf{2 0 2 0}$ CONCEPT (Alt1)										$\mathbf{2 0 2 0}$ CONCEPT (Alt2)		ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)							
Average Daily Traffic (ADT)	375,400	27,100	368,900	31,400									
Lanes Configuration (ea. direction)	$4+1$ truck	1	$4+1$ truck	2	$5+1$ truck	2							

Volume								
AM Peak Hour	N	11,400	850	10,400	800			
AM Peak Hour	S	14,200	2,100	13,050	2,550			
PM Peak Hour	\mathbf{N}	15,750	1,850	15,600	2,300			
PM Peak Hour	S	14,000	1,000	14,050	1,000			

Speed		
AM Average	\mathbf{N}	40
AM Average	\mathbf{S}	22
PM Average	\mathbf{N}	16
PM Average	\mathbf{S}	24

Service Characteristics						
Level Of Service, AM	N	F1	B	F0	A	
Level Of Service, AM	S	F3	F0	F3	C	
Level Of Service, PM	N	F3	F0	F3	C	
Level Of Service, PM	S	F3	C	F3	A	
Directional Split (\%) AM	N, S	. 445 (N)	. 302 (N)	. 444 (N)	. 241 (N)	
Directional Split (\%) PM	N, S	. 529 (N)	. 661 (N)	. 526 (N)	. 694 (N)	

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between I-10 and I-210
Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 3 SUMMARY - P. 1

DESCRPTION	
Limits:	I -710 to East L. A. I/C
Post Mile:	13.78-16.47

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Characteristics	Flat
Terrain:	$136^{\prime}-300^{\prime}$
Mainline R/W	$12^{\prime}-99^{\prime}$ (I/C split)/ 10' - 11'
Median / Outside Shoulder:	70
Design Speed (MPH)	21
Bridge Structures:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Corridor Characteristics		
Trucks (\% of ADT):	9%	
Express Transit (lines):	$7(460,462,466,470,471,701,721)$	
Hours of Operation:	MTA 460: commute + nightowl	OCTA 701: commute
	MTA 462: commute + extended hours	OCTA 721: commute
	MTA 466: commute	
	MTA 470: commute + nightowl	
	MTA 471: commute + nightowl	
Rail Service:	Metrolink, Amtrak	
Park \& Ride Lots (Spaces):	$\#$ L17 (50)	

INTERSTATE 5 - SEGMENT 3 SUMMARY - P. 2

EXING	2020 NULL (w/o Route 710)		2020 NULL (with Route 710)			
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
	265,500		438,100		421,200	
	5	0	5	0	5	0

Volume					
AM Peak Hour	N	10,000	12,950	12,600	
AM Peak Hour	S	8,350	16,550	16,400	
PM Peak Hour	N	9,100	17,000	16,750	
PM Peak Hour	S	9,000	14,800	14,300	

Speed		
AM Average	\mathbf{N}	49
AM Average	\mathbf{S}	>50
PM Average	\mathbf{N}	>50
PM Average	\mathbf{S}	>50

30
13
12
20

32
13
12
22

Service Characteristics					
Level Of Service, AM	N	F0	F3	F3	
Level Of Service, AM	S	E	F3	F3	
Level Of Service, PM	N	F0	F3	F3	
Level Of Service, PM	S	F0	F3	F3	
Directional Split (\%) AM	N, S	. 545 (N)	. 438 (N)	. 435 (N)	
Directional Split (\%) PM	N, S	. 503 (N)	. 534 (N)	. 539 (N)	

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 3 SUMMARY - P. 3

2020 CONCEPT (Alt1)									$\mathbf{2 0 2 0}$ CONCEPT (Alt2)	ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)					
Average Daily Traffic (ADT)	435,500	26,300	422,200	32,200							
Lanes Configuration (ea. direction)	$5+1$ truck	1	$5+1$ truck	2	$6+1$ truck	2					

Volume									
	AM Peak Hour	N	13,300	450	12,300	450			
AM Peak Hour	S	17,800	2,300	16,300	2,900				
PM Peak Hour	N	19,100	2,100	18,450	2,750				
PM Peak Hour	S	15,950	750	16,000	750				

Speed							
AM Average	\mathbf{N}	42					
AM Average	\mathbf{S}	19					
PM Average	\mathbf{N}	15					
PM Average	\mathbf{S}	28					

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with l-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 4 SUMMARY - P. 1

DESCRIPTION	
Limits:	East L.A. I/C to I-10
Post Mile:	$16.47-18.45$

Classification	NHS,Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Characteristics	Flat
Terrain:	$185^{\prime}-300^{\prime}$
Mainline R/W	$6^{\prime}-99^{\prime}(\mathrm{I} / \mathrm{C}$ split) / 8'-12'
Median / Outside Shoulder:	70
Design Speed (MPH)	21
Bridge Structures:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Accident Rates			
per Million Vehicle Miles (MVM)			
$(1 / 94$ to 12/96)			

Corridor Characteristics	
Trucks (\% of ADT):	8%
Express Transit (lines):	$5(460,462,466,701,721)$
Hours of Operation:	MTA 460: commute + nightowl
	MTA 462: commute + extended hours
	MTA 466: commute
	OCTA 701: commute
	OCTA 721: commute
Rail Service:	Metrolink, Amtrak
Park \& Ride Lots (Spaces):	none

INTERSTATE 5 - SEGMENT 4 SUMMARY - P. 2

TRAFFC DATA						
	EXISTING		2020 NULL (w/o Route 710)		2020 NULL (with Route 710)	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Average Daily Traffic (ADT)	286,000		357,500		348,600	
Lanes Configuration (ea. direction)	5	0	5	0	5	0

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	>50
PM Average	\mathbf{N}	>50
PM Average	\mathbf{S}	>50

NOTES: 2020 Null Alternates are modeled, respectively, without and with l-710 gap closure built between I-10 and l-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 4 SUMMARY - P. 3

$\mathbf{2 0 2 0}$ CONCEPT (Alt1)										$\mathbf{2 0 2 0}$ CONCEPT (Alt2)	ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)						
Average Daily Traffic (ADT)	355,900	26,000	343,400	32,800								
Lanes Configuration (ea. direction)	$5+1$ truck	1	$5+1$ truck	2	$6+1$ truck	2						

Volume								
AM Peak Hour	N	10,250	300	9,050	300			
AM Peak Hour	S	17,500	2,400	16,650	3,150			
PM Peak Hour	\mathbf{N}	18,900	2,250	18,350	2,950			
PM Peak Hour	S	15,150	600	15,200	600			

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	21
PM Average	\mathbf{N}	16
PM Average	\mathbf{S}	33

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between I-10 and I-210
Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 5 SUMMARY - P. 1

DESCRIPTION	
Limits:	$I-10$ to -110
Post Mile:	$18.45-20.44$

Classification	NHS Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Characteristics	
Terrain:	Flat
Mainline R/W	$175^{\prime}-300^{\prime}$
Median / Outside Shoulder:	$6^{\prime}-22^{\prime} / 10^{\prime}$
Design Speed (MPH)	70
Bridge Structures:	18

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Accident Rates			
per Million Vehicle Miles (MVM)			
$(1 / 94$ to 12/96)			

Corridor Characteristics	
Trucks (\% of ADT):	8%
Express Transit (lines):	$2(785,794)$
Hours of Operation:	AV 785: commute
	SC 794: commute
Rail Service:	Metrolink, Amtrak
Park \& Ride Lots (Spaces):	none

INTERSTATE 5 - SEGMENT 5 SUMMARY - P. 2

TRAFFC DATA						
	EXISTING		2020 NULL (w/o Route 710)		2020 NULL (with Route 710)	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Average Daily Traffic (ADT)	222,000		355,100	36,500	321,900	31,100
Lanes Configuration (ea. direction)	4	0	4	1	4	1

Volume			8,850	900	7,800	700
AM Peak Hour	N					
AM Peak Hour	S	8,900	16,700	2,800	15,450	2,550
PM Peak Hour	N	9,850	17,150	3,000	16,000	2,550
PM Peak Hour	S	7,100	12,900	1,050	11,800	800

Speed		
		50
AM Average	\mathbf{N}	43
AM Average	\mathbf{S}	35
PM Average	\mathbf{N}	>50
PM Average	\mathbf{S}	

43
5
4
15

>50
7
6
21

Service Characteristics						
Level Of Service, AM	N	F0	F1	B	F0	B
Level Of Service, AM	S	F1	F3	F3	F3	F3
Level Of Service, PM	N	F2	F3	F3	F3	F3
Level Of Service, PM	S	F0	F3	C	F3	B
Directional Split (\%) AM	N, S	. 473 (N)	. 347 (N)	. 240 (N)	. 336 (N)	. 221 (N)
Directional Split (\%) PM	N, S	. 581 (N)	. 571 (N)	. 745 (N)	. 576 (N)	. 759 (N)

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 5 SUMMARY - P. 3

TRAFFC DATA						
	2020 CONCEPT (Alt1)		2020 CONCEPT (Alt2)		ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Average Daily Traffic (ADT)	351,000	32,700	336,100	42,200		
Lanes Configuration (ea. direction)	$4+1$ truck	1	$4+1$ truck	2 [3]	$5+1$ truck	3

Volume		$8,650$	400		150	
AM Peak Hour	N			8,500		
AM Peak Hour	S	17,400	3,050	15,200	3,950	
PM Peak Hour	N	19,700	2,750	18,850	3,900	
PM Peak Hour	S	13,400	800	13,450	850	

Speed		
AM Average	N	>50
AM Average	S	11
PM Average	N	6
PM Average	S	28

>50
18
8
27

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only
[] Concept selected

INTERSTATE 5 - SEGMENT 6 SUMMARY - P. 1

	DESCRIPTION
Limits:	110 to SR -2
Post Mile:	$20.44-22.55$

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Characteristics	Flat
Terrain:	$150^{\prime}-300^{\prime}$
Mainline R/W	$18^{\prime}-22^{\prime} / 8^{\prime}-10^{\prime}$
Median / Outside Shoulder:	70
Design Speed (MPH)	4
Bridge Structures:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Corridor Characteristics		
Trucks (\% of ADT):	12%	
Express Transit (lines):	$7(410,413,418,419,785,794,799)$	SC 794: commute
Hours of Operation:	MTA 410: commute	SC 799: commute
	LX 413: commute	
	MTA 418: commute	
	LX 419: commute	
	AV 785: commute	
Rail Service:	Metrolink, Amtrak	
Park \& Ride Lots (Spaces):	none	

INTERSTATE 5 - SEGMENT 6 SUMMARY - P. 2

EXISTING								2020 NULL (w/o Route 710)	2020 NULL (with Route 710)
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)			
Average Daily Traffic (ADT)	271,000		403,900	42,800	385,200	36,800			
Lanes Configuration (ea. direction)	4	0	4	1	4	1			

Speed		
AM Average	\mathbf{N}	30
AM Average	\mathbf{S}	11
PM Average	\mathbf{N}	15
PM Average	\mathbf{S}	21

Service Characteristics							
	Level Of Service, AM	\mathbf{N}	F3		F3	C	F2
Level Of Service, AM	\mathbf{S}	F3		F3	F3	F3	F3
Level Of Service, PM	\mathbf{N}	F3		F3	F3	F3	F3
Level Of Service, PM	\mathbf{S}	F3		F3	D	F3	C
Directional Split (\%) AM	\mathbf{N}, \mathbf{S}	$.430(N)$		$.349(N)$	$.265(N)$	$.351(N)$	$.263(N)$
Directional Split (\%) PM	\mathbf{N}, \mathbf{S}	$.524(N)$		$.589(N)$	$.685(N)$	$.593(N)$	$.675(N)$

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 6 SUMMARY - P. 3

		IRAFFlC	TA			
	2020 CO	EPT (Alt1)	2020 CON	EPT (Alt2)	ULT	AATE
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Average Daily Traffic (ADT)	423,200	34,000	403,200	41,800		
Lanes Configuration (ea. direction)	4+1 truck	1	$4+1$ truck	2 [3]	$5+1$ truck	3

Volume								
AM Peak Hour	N	10,750	400	10,400	150			
AM Peak Hour	S	20,250	3,050	16,200	4,100			
PM Peak Hour	N	22,500	2,600	21,100	3,400			
PM Peak Hour	S	15,000	1,150	14,900	1,250			

Speed		
AM Average	\mathbf{N}	43
AM Average	\mathbf{S}	5
PM Average	\mathbf{N}	3
PM Average	\mathbf{S}	18

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only
[] Concept selected

INTERSTATE 5 - SEGMENT 7 SUMMARY - P. 1

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Physical Characteristics	Flat
Terrain:	$180^{\prime}-370^{\prime}$
Mainline R/W	$22^{\prime} / 8^{\prime}-10^{\prime}$
Median / Outside Shoulder:	70
Design Speed (MPH)	19
Bridge Structures:	

Accident Rates			
per Million Vehicle Miles (MVM)			
$(1 / 94$ to 12/96)			

Corfidor Characteristics Trucks (\% of ADT):	
Express Transit (lines):	12%
Hours of Operation:	$710,413,418,419,785,794,799)$
	MTA 410: commute
	LX 413: commute
	MTA 418: commute
	LX 419: commute
	AV 785: commute
	SC 794: commute
Rail Service:	Metrolink, Amtrak
Park \& Ride Lots (Spaces):	$\#$ L36 (313)

INTERSTATE 5 - SEGMENT 7 SUMMARY - P. 2

EXING	2020 NULL (w/o Route 710)	2020 NULL (with Route 710)				
	EXISTING		Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
	HOV Lane(s)					
	226,800		308,000	2,400	313,700	19,100
	5	0	5	1	5	1

Speed		
AM Average	N	49
AM Average	S	49
PM Average	N	49
PM Average	S	49

>50
21
16
32

>50
18
15
32

Service Characteristics						
Level Of Service, AM	N	F0	F0	A	F0	A
Level Of Service, AM	S	F0	F3	F0	F3	E
Level Of Service, PM	N	F0	F3	F0	F3	D
Level Of Service, PM	S	F0	F3	B	F3	B
Directional Split (\%) AM	N, S	. 500 (N)	. 384 (N)	. 117 (N)	. 373 (N)	. 124 (N)
Directional Split (\%) PM	N, S	. 501 (N)	. 556 (N)	. 675 (N)	. 559 (N)	. 650 (N)

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 7 SUMMARY - P. 3

2020 CONCEPT (Alt1)									$\mathbf{2 0 2 0}$ CONCEPT (Alt2)	ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)					
Average Daily Traffic (ADT)	339,200	18,300	325,600	21,600							
Lanes Configuration (ea. direction)	$5+1$ truck	1	$5+1$ truck	2	$5+1$ truck	2					

Volume							
	AM Peak Hour	N	9,550	0	8,850	0	
AM Peak Hour	S	16,150	1,900	13,950	2,100		
PM Peak Hour	N	18,950	1,500	17,750	1,900		
PM Peak Hour	S	14,000	500	14,000	550		

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	27
PM Average	\mathbf{N}	15
PM Average	\mathbf{S}	38

Service Characteristics							
	Level Of Service, AM	\mathbf{N}	D	A	D	A	
Level Of Service, AM	S	F3	F0	F1	C		
Level Of Service, PM	\mathbf{N}	F3	D	F3	C		
Level Of Service, PM	S	F2	A	F2	A		
Directional Split (\%) AM	\mathbf{N}, \mathbf{S}	$.372(\mathrm{~N})$	$.002(\mathrm{~N})$	$.388(\mathrm{~N})$	$.000(\mathrm{~N})$		
Directional Split (\%) PM	\mathbf{N}, \mathbf{S}	$.575(\mathrm{~N})$	$.744(\mathrm{~N})$	$.559(\mathrm{~N})$	$.779(\mathrm{~N})$		

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with l-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 8 SUMMARY - P. 1

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Physical Characteristics	Flat
Terrain:	$170^{\prime}-360^{\prime}$
Mainline R/W	$12^{\prime}-99^{\prime}$ (I/C split) /10'
Median / Outside Shoulder:	70
Design Speed (MPH)	41
Bridge Structures:	

Accident Rates			
per Million Vehicle Miles (MVM)			
$(1 / 94$ to 12/96)			

Corfidor Characteristics	
Trucks (\% of ADT):	11%
Express Transit (lines):	$6(413,418,419,785,794,799)$
Hours of Operation:	LX 413: commute
	MTA 418: commute
	LX 419: commute
	AV 785:commute
	SC 794: commute
	SC 799: commute
Rail Service:	Metrolink, Amtrak
Park \& Ride Lots (Spaces):	\#L7 (303)

INTERSTATE 5 - SEGMENT 8 SUMMARY - P. 2

EXISTING								2020 NULL (w/o Route 710)	2020 NULL (with Route 710)
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)			
	Average Daily Traffic (ADT)	161,000		263,900	23,500	268,400			
Lanes Configuration (ea. direction)	4	0	4	1	4	1			

Speed		> 50	>50	> 50
AM Average	N			
AM Average	S	46	22	18
PM Average	N	37	17	15
PM Average	S	>50	39	41

Service Characteristics						
Level Of Service, AM	N	E	E	A	E	A
Level Of Service, AM	S	F0	F3	F0	F3	F0
Level Of Service, PM	N	F2	F3	F0	F3	D
Level Of Service, PM	S	E	F1	A	F1	A
Directional Split (\%) AM	N, S	. 435 (N)	. 369 (N)	. 079 (N)	. 353 (N)	. 091 (N)
Directional Split (\%) PM	N, S	. 595 (N)	. 572 (N)	. 770 (N)	. 586 (N)	. 734 (N)

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 8 SUMMARY - P. 3

2020 CONCEPT (Alt1)										2020 CONCEPT (Alt2)	ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane						
Average Daily Traffic (ADT)	289,000	19,900	278,900	24,300								
Lanes Configuration (ea. direction)	$4+1$ truck	1	$4+1$ truck	2	$5+1$ truck	2						

Volume							
	AM Peak Hour	\mathbf{N}	6,950	50	7,000	50	
AM Peak Hour	\mathbf{S}	13,350	2,000	11,600	2,600		
PM Peak Hour	\mathbf{N}	14,900	1,750	14,250	2,050		
PM Peak Hour	\mathbf{S}	10,350	450	10,350	500		

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	27
PM Average	\mathbf{N}	19
PM Average	\mathbf{S}	46

Service Characteristics						
Level Of Service, AM	N	D	A	D	A	
Level Of Service, AM	S	F3	F0	F2	C	
Level Of Service, PM	N	F3	F0	F3	C	
Level Of Service, PM	S	F0	A	F0	A	
Directional Split (\%) AM	N, S	. 343 (N)	. 025 (N)	. 376 (N)	. 018 (N)	
Directional Split (\%) PM	N, S	. 590 (N)	. 796 (N)	. 579 (N)	. 808 (N)	

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 9 SUMMARY - P. 1

	DESTR
Limits:	SR -170 to SR -118
Post Mile:	$36.36-39.37$

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Characteristics	Flat
Terrain:	$270^{\prime}-320^{\prime}$
Mainline R/W	$15^{\prime}-99^{\prime}$ (I/C split) / 9' -13^{\prime}
Median / Outside Shoulder:	70
Design Speed (MPH)	21
Bridge Structures:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Corridor Cheracteristics	
Trucks (\% of ADT):	12%
Express Transit (lines):	$4(419,785,794,799)$
Hours of Operation:	LX 419: commute
	AV 785: commute
	SC 794: commute
	SC 799: commute
Rail Service:	Metrolink
Park \& Ride Lots (Spaces):	none

INTERSTATE 5 - SEGMENT 9 SUMMARY - P. 2

EXING	2020 NULL (w/o Route 710)		2020 NULL (with Route 710)			
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
	225,000		398,200	30,600	404,800	25,400
	5	0	5	1	5	1

Volume						
AM Peak Hour	N	7,650	9,600	250	9,450	200
AM Peak Hour	S	14,850	17,150	2,400	16,850	2,200
PM Peak Hour	N	10,850	17,050	2,650	17,500	1,900
PM Peak Hour	S	9,000	13,000	1,000	12,800	1,000

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	19
PM Average	\mathbf{N}	43
PM Average	\mathbf{S}	>50

>50
11
11
28

>50
11
10
30

Service Characteristics						
Level Of Service, AM	N	D	F0	A	F0	A
Level Of Service, AM	S	F3	F3	F2	F3	F1
Level Of Service, PM	N	F1	F3	F3	F3	F0
Level Of Service, PM	S	F0	F3	C	F3	C
Directional Split (\%) AM	N, S	. 340 (N)	. 359 (N)	. 095 (N)	. 359 (N)	. 082 (N)
Directional Split (\%) PM	N, S	. 547 (N)	. 567 (N)	. 728 (N)	. 578 (N)	. 659 (N)

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 9 SUMMARY - P. 3

$\mathbf{2 0 2 0}$ CONCEPT (Alt1)									$\mathbf{2 0 2 0}$ CONCEPT (Alt2)		ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)						
Average Daily Traffic (ADT)	497,500	28,700	481,900	38,600								
Lanes Configuration (ea. direction)	$6+1$ truck	1	$6+1$ truck	2	$6+1$ truck	2						

Volume								
AM Peak Hour	N	11,500	0	11,700	0			
AM Peak Hour	S	22,900	2,450	20,350	4,150			
PM Peak Hour	N	23,050	2,600	22,250	3,200			
PM Peak Hour	S	16,600	850	16,600	950			

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	13
PM Average	\mathbf{N}	13
PM Average	S	36

>50
20
14
36

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between I-10 and I-210
Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 10 SUMMARY - P. 1

DESCRIPTION	
Limits:	SR -118 to I -405
Post Mile:	$39.37-41.60$

Classification

Functional Classification:	NHS, Urban Interstate
MPAH Designation:	State Freeway
Other Systems:	STAA, STRAHNET, IRRS, ICES, Lifeline

Physical Characteristics	Flat
Terrain:	$225^{\prime}-360^{\prime}$
Mainline R/W	$22^{\prime} / 9^{\prime}-10^{\prime}$
Median / Outside Shoulder:	70
Design Speed (MPH)	11
Bridge Structures:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Accident Rates			
per Million Vehicle Miles (MVM)			
(1/94 to 12/96)			

Corfidor Characteristics

Trucks (\% of ADT):	13%
Express Transit (lines):	$5(573,785,786,794,799)$
Hours of Operation:	LX 573: commute + extended hours
	AV 785: commute
	AV 786: commute
	SC 794: commute
	SC 799: commute
Rail Service:	Metrolink
Park \& Ride Lots (Spaces):	$\# L 103(400)$

INTERSTATE 5 - SEGMENT 10 SUMMARY - P. 2

TRAFFC DATA						
	EXISTING		2020 NULL (w/o Route 710)		2020 NULL (with Route 710)	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Average Daily Traffic (ADT)	113,000		231,200	17,700	242,600	8,200
Lanes Configuration (ea. direction)	3	0	3	1	3	1

Volume								
	AM Peak Hour	\mathbf{N}	3,700		4,200	0	4,100	
AM Peak Hour	\mathbf{S}	6,600		10,050	2,150	10,500	1,050	
PM Peak Hour	\mathbf{N}	5,650		9,850	1,450	10,600	600	
PM Peak Hour	\mathbf{S}	3,600		6,850	300	6,500	200	

Speed		
	$\mathbf{N M}$ Average	
	\mathbf{N}	$\mathbf{5} 0$
AM Average	\mathbf{S}	$\mathbf{~}$
PM Average	\mathbf{N}	>50
PM Average	\mathbf{S}	

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 10 SUMMARY - P. 3

$\mathbf{2 0 2 0}$ CONCEPT (Alt1)										2020 CONCEPT (Alt2)	ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)						
Average Daily Traffic (ADT)	252,500	18,700	237,500	26,300								
Lanes Configuration (ea. direction)	$4+1$ truck	1	$4+1$ truck	2	$5+1$ truck	2						

Volume									
	AM Peak Hour	N	4,300	0	4,300	0			
AM Peak Hour	S	13,200	2,050	9,750	3,350				
PM Peak Hour	N	12,950	1,600	12,250	2,100				
PM Peak Hour	S	7,500	350	7,500	400				

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	27
PM Average	\mathbf{N}	29
PM Average	\mathbf{S}	>50

Service Characteristics							
	Level Of Service, AM	\mathbf{N}	B	A	B	A	
Level Of Service, AM	\mathbf{S}	F3	F0	F0	E		
Level Of Service, PM	\mathbf{N}	F3	E	F2	C		
Level Of Service, PM	\mathbf{S}	D	A	D	A		
Directional Split (\%) AM	\mathbf{N}, \mathbf{S}	$.245(\mathrm{~N})$	$.000(\mathrm{~N})$	$.306(\mathrm{~N})$	$.000(\mathrm{~N})$		
Directional Split (\%) PM	\mathbf{N}, \mathbf{S}	$.633(\mathrm{~N})$	$.824(\mathrm{~N})$	$.620(\mathrm{~N})$	$.845(\mathrm{~N})$		

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between l-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 11 SUMMARY - P. 1

DESCRIPTION	
Limits:	I-405 to I-210
Post Mile:	$41.60-$ R44.01

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Characteristics	Flat
Terrain:	$260^{\prime}-360^{\prime}$
Mainline R/W	$22^{\prime}-30^{\prime} / 8^{\prime}-10^{\prime}$
Median / Outside Shoulder:	70
Design Speed (MPH)	5
Bridge Structures:	

Accident Rates				
per Million Vehicle Miles (MVM)				
$(1 / 94$ to 12/96)				
ACTUAL			AVERAGE	
Fatal + Injury	Total	Fatal + Injury	Total	
0.25	0.74	0.29	0.87	

Corridor Characteristics		
	13%	
Express Transit (lines):	$9(573,785,786,787,791,793,794,798,799)$	
Hours of Operation:	LX 573: commute + extended hours	SC 794: commute
	AV 785: commute	SC 798: commute + extended hours
	AV 786: commute	SC 799: commute
	AV 787: commute	
	SC 791: commute	
	SC 793: commute	
Rail Service:	Metrolink	
Park \& Ride Lots (Spaces):	$\#$ L103 (400)	

INTERSTATE 5 - SEGMENT 11 SUMMARY - P. 2

EXISTING	2020 NULL (w/o Route 710)	2020 NULL (with Route 710)				
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
	221,000		403,400	34,400	427,500	16,700
	5	0	5	1	5	1

Volume				0	6,800	0
AM Peak Hour	N					
AM Peak Hour	S	12,350	21,150	3,800	22,200	1,900
PM Peak Hour	N	12,800	19,650	3,050	20,700	1,350
PM Peak Hour	S	7,000	11,750	550	11,550	400

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	33
PM Average	\mathbf{N}	30
PM Average	\mathbf{S}	>50

Service Characteristics						
Level Of Service, AM N	C			A	D	A
Level Of Service, AM S	F3		F3	F3	F3	F0
Level Of Service, PM N	F3		F3	F3	F3	D
Level Of Service, PM S	D		F2	A	F2	A
Directional Split (\%) AM N, S	. 334 (N)	,	. 244 (N)	. 000 (N)	. 235 (N)	. 000 (N)
Directional Split (\%) PM N, S	. 646 (N)	D	. 626 (N)	. 843 (N)	. 642 (N)	. 781 (N)

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 11 SUMMARY - P. 3

TRAFFC DATA						
	2020 CONCEPT (Alt1)		2020 CONCEPT (Alt2)		ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Average Daily Traffic (ADT)	438,100	33,200	408,700	44,300		
Lanes Configuration (ea. direction)	$5+1$ truck	1	$5+1$ truck	2 [3]	6 + 1 truck	3

Volume								
AM Peak Hour	N	6,850	0	6,850	0			
AM Peak Hour	S	25,550	3,350	20,600	5,300			
PM Peak Hour	N	23,950	3,050	22,350	3,750			
PM Peak Hour	S	12,500	600	12,500	650			

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	4
PM Average	\mathbf{N}	5
PM Average	\mathbf{S}	46

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between I-10 and I-210
Speeds are estimated and are for comparative purposes only
[] Concept selected

INTERSTATE 5 - SEGMENT 12 SUMMARY - P. 1

DESERTION	
Limits:	$I-210$ to SR -14
Post Mile:	R44.01 - R45.58

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Characteristics	Flat
Terrain:	Variable
Mainline R/W	$30^{\prime}-36^{\prime} / 10^{\prime}$
Median / Outside Shoulder:	70
Design Speed (MPH)	7
Bridge Structures:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Accident Rates			
per Million Vehicle Miles (MVM)			
$(1 / 94$ to 12/96)			

Corridor Characteristics		
Trucks (\% of ADT):	13%	
Express Transit (lines):	11 (573, 785, 786, 787, 791, 793, 794, 795, 796, 798, 799)	
Hours of Operation:	LX 573: commute + extended hours	SC 794: commute
	AV 785: commute	SC 795: commute
	AV 786: commute	SC 796: commute
	AV 787: commute	SC 798: commute + extended hours
	SC 791: commute	SC 799: commute
	SC 793: commute	
Rail Service:	Metrolink	
Park \& Ride Lots (Spaces):	none	

INTERSTATE 5 - SEGMENT 12 SUMMARY - P. 2

EXISTING	2020 NULL (w/o Route 710)		2020 NULL (with Route 710)			
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
	241,500		528,700	29,800	566,600	12,900
	6	0	6	1	6	1

Volume								
	AM Peak Hour	N	5,500		7,950	150	7,950	
AM Peak Hour	S	15,150		33,300	3,350	36,550	1,400	
PM Peak Hour	N	13,100		31,150	2,700	34,050	1,100	
PM Peak Hour	S	10,600		16,650	300	16,950	150	

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	31
PM Average	\mathbf{N}	42
PM Average	\mathbf{S}	>50

>50
1
2
23

>50
1
1
22

Service Characteristics						
Level Of Service, AM	N	B	D	A	D	A
Level Of Service, AM	S	F3	F3	F3	F3	D
Level Of Service, PM	N	F1	F3	F3	F3	C
Level Of Service, PM	S	F0	F3	A	F3	A
Directional Split (\%) AM	N, S	. 266 (N)	. 193 (N)	. 046 (N)	. 179 (N)	. 085 (N)
Directional Split (\%) PM	N, S	. 553 (N)	. 652 (N)	. 904 (N)	. 667 (N)	. 868 (N)

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 12 SUMMARY - P. 3

2020 CONCEPT (Alt1)										2020 CONCEPT (Alt2)	ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)						
Average Daily Traffic (ADT)	546,400	25,700	518,600	29,200								
Lanes Configuration (ea. direction)	$6+2$ truck	1	$6+2$ truck	2	$[3]$	$6+2$ truck	3					

Volume									
AM Peak Hour	N	8,000	0	7,150	0				
AM Peak Hour	S	34,650	4,200	27,950	4,850				
PM Peak Hour	N	33,500	1,450	31,900	1,550				
PM Peak Hour	S	16,750	400	16,650	450				

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	4
PM Average	\mathbf{N}	4
PM Average	\mathbf{S}	45

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with l-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only
[] Concept selected

INTERSTATE 5 - SEGMENT 13 SUMMARY - P. 1

DESSRIPION	
Limits:	SR - 14 to SR - 126 (S)
Post Mile:	R45.58 - R53.57

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Characteristics	
Terrain:	Mountainous
Mainline R/W	Variable
Median / Outside Shoulder:	$36^{\prime}-60^{\prime} / 10 '$
Design Speed (MPH)	70
Bridge Structures:	11

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Accident Rates				
per Million Vehicle Miles (MVM)				
(1/94 to 12/96)				
ACTUAL			AVERAGE	
Fatal + Injury	Total	Fatal + Injury	Total	
0.23	0.62	0.27	0.78	

Corridor Characteristics	
Trucks (\% of ADT):	14%
Express Transit (lines):	4 (573, 791, 794, 796)
Hours of Operation:	LX 573: commute + extended hours
	SC 791: commute
	SC 794: commute
	SC 796: commute
Rail Service:	Metrolink
Park \& Ride Lots (Spaces):	$\#$ L107 (250)

INTERSTATE 5 - SEGMENT 13 SUMMARY - P. 2

TRAF=C DATA						
	EXISTING		2020 NULL (w/o Route 710)		2020 NULL (with Route 710)	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Average Daily Traffic (ADT)	125,400		265,300		277,100	
Lanes Configuration (ea. direction)	4	0	4	0	4	0

Volume								
AM Peak Hour	N	6,800		4,350		4,300		
AM Peak Hour	S	5,450		16,700		18,050		
PM Peak Hour	N	9,600		15,750		17,500		
PM Peak Hour	S	3,050		8,500		8,500		

Speed		
AM Average	\mathbf{N}	44
AM Average	\mathbf{S}	>50
PM Average	\mathbf{N}	17
PM Average	\mathbf{S}	>50

Service Characteristics					
Level Of Service, AM	N	F1	D	D	
Level Of Service, AM	S	F0	F3	F3	
Level Of Service, PM	N	F3	F3	F3	
Level Of Service, PM	S	C	F3	F3	
Directional Split (\%) AM	N, S	. 555 (N)	. 206 (N)	. 192 (N)	
Directional Split (\%) PM	N, S	. 759 (N)	. 650 (N)	. 674 (N)	

[^2]
INTERSTATE 5 - SEGMENT 13 SUMMARY - P. 3

		IRAFFlC	TA			
	2020 CO	EPT (Alt1)	2020 CON	EPT (Alt2)	ULT	AATE
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Average Daily Traffic (ADT)	266,600	15,600	259,500	8,500		
Lanes Configuration (ea. direction)	$4+1$ truck	1	$4+1$ truck	1 [2]	$5+1$ truck	2

Volume								
AM Peak Hour	\mathbf{N}	4,450	0	4,550	0			
AM Peak Hour	\mathbf{S}	18,400	1,800	15,150	1,000			
PM Peak Hour	\mathbf{N}	17,900	1,450	17,900	800			
PM Peak Hour	\mathbf{S}	8,750	150	8,750	50			

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	3
PM Average	\mathbf{N}	3
PM Average	\mathbf{S}	42

>50
7
3
42

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only
[] Concept selected

INTERSTATE 5 - SEGMENT 14 SUMMARY - P. 1

Classification	
Functional Classification:	NHS, Urban Interstate
MPAH Designation:	State Freeway
Other Systems:	STAA, STRAHNET, IRRS, ICES, Lifeline

Physical Characteristics	
Terrain:	Mountainous
Mainline R/W	Variable
Median / Outside Shoulder:	$36^{\prime} / 10^{\prime}$
Design Speed (MPH)	70
Bridge Structures:	6

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Accident Rates			
per Million Vehicle Miles (MVM)			
(1/94 to 12/96)			

Corridor Characteristics	
Trucks (\% of ADT):	14%
Express Transit (lines):	none
Hours of Operation:	n/a
Rail Service:	none
Park \& Ride Lots (Spaces):	none

INTERSTATE 5 - SEGMENT 14 SUMMARY - P. 2

EXISTING	2020 NULL (w/o Route 710)		2020 NULL (with Route 710)			
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
	81,000		232,500		236,200	
	4	0	4	0	4	0

Volume								
AM Peak Hour	N	4,800		6,550		6,700		
AM Peak Hour	S	6,500		10,750		10,600		
PM Peak Hour	N	4,900		11,450		12,150		
PM Peak Hour	S	5,800		9,500		9,300		

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	47
PM Average	\mathbf{N}	>50
PM Average	\mathbf{S}	>50

Service Characteristics					
Level Of Service, AM	N	D	F0	F0	
Level Of Service, AM	S	F0	F3	F3	
Level Of Service, PM	N	D	F3	F3	
Level Of Service, PM	S	F0	F3	F3	
Directional Split (\%) AM	N, S	. 425 (N)	. 378 (N)	. 388 (N)	
Directional Split (\%) PM	N, S	. 458 (N)	. 546 (N)	. 566 (N)	

[^3]
INTERSTATE 5 - SEGMENT 14 SUMMARY - P. 3

		IRAFFlC	TA			
	2020 CO	EPT (Alt1)	2020 CON	EPT (Alt2)	ULT	AATE
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Average Daily Traffic (ADT)	233,400	7,800	226,700	4,200		
Lanes Configuration (ea. direction)	4+1 truck	1	$4+1$ truck	1 [2]	$5+1$ truck	2

Volume								
AM Peak Hour	\mathbf{N}	6,050	0	5,900	0			
AM Peak Hour	\mathbf{S}	12,100	850	9,600	550			
PM Peak Hour	\mathbf{N}	12,850	750	12,450	350			
PM Peak Hour	S	9,200	50	9,000	50			

Speed		
AM Average	N	>50
AM Average	\mathbf{S}	17
PM Average	\mathbf{N}	13
PM Average	S	38

>50
34
15
39

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only
[] Concept selected

INTERSTATE 5 - SEGMENT 15 SUMMARY - P. 1

DESERTION	
Limits:	SR $-126(N)$ to SR $-138(\mathrm{~S})$
Post Mile:	R55.48 - R81.49

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Physical Characteristics	Mountainous
Terrain:	Variable
Mainline R/W	$36^{\prime}-69^{\prime}$ (crossover) / 8' - 10'
Median / Outside Shoulder:	70
Design Speed (MPH)	18
Bridge Structures:	

Accident Rates			
per Million Vehicle Miles (MVM)			
(1/94 to 12/96)			

Corfidor Characteristics	
Trucks (\% of ADT):	29%
Express Transit (lines):	none
Hours of Operation:	n/a
Rail Service:	none
Park \& Ride Lots (Spaces):	none

INTERSTATE 5 - SEGMENT 15 SUMMARY - P. 2

EXIRA	2020 NULL (w/o Route 710)	2020 NULL (with Route 710)				
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
	54,100		140,400		143,300	
	4	0	4	0	4	0

Speed		
AM Average	\mathbf{N}	10
AM Average	\mathbf{S}	46
PM Average	\mathbf{N}	37
PM Average	\mathbf{S}	11

NOTES: 2020 Null Alternates are modeled, respectively, without and with l-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 15 SUMMARY - P. 3

2020 CONCEPT (Alt1)										$\mathbf{2 0 2 0}$ CONCEPT (Alt2)		ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)							
Average Daily Traffic (ADT)	143,000		141,100										
Lanes Configuration (ea. direction)	$4+1$ truck	0	$4+1$ truck	0	$5+1$ truck	0							

Volume								
	AM Peak Hour	N	3,850		3,850			
AM Peak Hour	S	6,250		5,450				
PM Peak Hour	N	7,700		7,600				
PM Peak Hour	S	5,100		5,100				

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	33
PM Average	\mathbf{N}	18
PM Average	\mathbf{S}	48

Service Characteristics					
Level Of Service, AM	N	D	D		
Level Of Service, AM	S	F2	F1		
Level Of Service, PM	N	F3	F3		
Level Of Service, PM	S	F0	F0		
Directional Split (\%) AM	N, S	. 381 (N)	. 414 (N)		
Directional Split (\%) PM	N, S	. 601 (N)	. 599 (N)		

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with l-710 gap closure built between I-10 and I-210
Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 16 SUMMARY - P. 1

DESCRIPTION	
Limits:	SR - 138 (S) to Kern Co. Line
Post Mile:	R81.49 - R88.61

Classification	NHS, Urban Interstate
Functional Classification:	State Freeway
MPAH Designation:	STAA, STRAHNET, IRRS, ICES, Lifeline
Other Systems:	

Physical Charactieristics	
Terrain:	Mountainous
Mainline R/W	Variable
Median / Outside Shoulder:	$22^{\prime}-69^{\prime} / 10^{\prime}$
Design Speed (MPH)	70
Bridge Structures:	7

Purpose

International, Interstate, Interregional, Intraregional Travel (commute and non-commute) and Goods Movements

Corridor Characteristics	
Trucks (\% of ADT):	33%
Express Transit (lines):	none
Hours of Operation:	n/a
	none
Rail Service:	none
Park \& Ride Lots (Spaces):	

INTERSTATE 5 - SEGMENT 16 SUMMARY - P. 2

TRAFFIC								DATA
	EXISTING			2020 NULL (w/o Route 710)	2020 NULL (with Route 710)			
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)		
Average Daily Traffic (ADT)	50,400		103,400		103,300			
Lanes Configuration (ea. direction)	4	0	4	0	4	0		

Volume								
AM Peak Hour	N	3,200		3,150		3,150		
AM Peak Hour	S	4,400		2,900		2,900		
PM Peak Hour	N	3,600		4,150		4,150		
PM Peak Hour	S	4,400		3,850		3,850		

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	48
PM Average	\mathbf{N}	>50
PM Average	\mathbf{S}	48

Service Characteristics					
Level Of Service, AM	N	D	D	D	
Level Of Service, AM	S	F0	D	D	
Level Of Service, PM	N	E	F0	F0	
Level Of Service, PM	S	F0	F0	F0	
Directional Split (\%) AM	N, S	. 421 (N)	. 520 (N)	. 520 (N)	
Directional Split (\%) PM	N, S	.450 (N)	. 519 (N)	. 519 (N)	

NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

INTERSTATE 5 - SEGMENT 16 SUMMARY - P. 3

2020 CONCEPT (Alt1)									2020 CONCEPT (Alt2)	ULTIMATE	
	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)					
Average Daily Traffic (ADT)	103,300		103,400								
Lanes Configuration (ea. direction)	$4+1$ truck	0	$4+1$ truck	0	$5+1$ truck	0					

Volume							
	AM Peak Hour	N	3,100		3,150		
AM Peak Hour	S	2,900		2,900			
PM Peak Hour	N	4,150		4,200			
PM Peak Hour	S	3,850		3,850			

Speed		
AM Average	\mathbf{N}	>50
AM Average	\mathbf{S}	>50
PM Average	\mathbf{N}	>50
PM Average	\mathbf{S}	>50

Service Characteristics					
Level Of Service, AM	N	C	C		
Level Of Service, AM	S	C	C		
Level Of Service, PM	N	D	D		
Level Of Service, PM	S	D	D		
Directional Split (\%) AM	N, S	. 518 (N)	. 519 (N)		
Directional Split (\%) PM	N, S	. 519 (N)	. 520 (N)		

NOTES: 2020 Concept Alternates $1 \& 2$ are both modeled with I-710 gap closure built between I-10 and I-210
Speeds are estimated and are for comparative purposes only
IV. Route Description

ROUTE DESCRIPTION

Pursuant to Statutes relating to the California Department of Transportation, Route 5 runs from the international boundary near Tijuana, Mexico to the Oregon state line via National City, San Diego, Los Angeles, the westerly side of the San Joaquin Valley, Sacramento and Yreka; also passing near Santa Ana, Glendale, Woodland, and Red Bluff.

This transportation Concept report (TCR) addresses the portion of Route 5 located in Los Angeles County. In District 7, Route 5, spans a distance of 88.6 miles from the Orange County Line in the south to the Kern County Line in the north. It is known as the Santa Ana Freeway from the Orange County Line to the downtown Los Angeles Central Business District (CBD) and the Golden State Freeway from the CBD north to the Kern County Line. For the purposes of analysis in this report, Route5 is divided into these tow freeway names.

The route traverses 10 incorporated cities in District 7: La Mirada, Santa Fe Springs, Norwalk, Downey, Commerce, Los Angeles, Burbank, Glendale, and Santa Clarita. Route 5 also traverses the communities of East Los Angeles, Castaic, and Gorman.

PURPOSE OF ROUTE

Route 5 is a major north south Interstate route that is used for international, interstate, intraregional and travel and shipping. In addition, it is used as a commuter route.

The purpose of Route 5 is shown in the following table:

Santa Ana Freeway

Seg.	P.M.	Description	Rte. Purpose	Facility Type
$1-3$	$0.00-16.47$	Orange Co. Line to East LA Interchange	Interstate/Interregional/ Interregional and commute travel	Freeway

Golden State Freeway

Seg.	$\underline{\text { P.M. }}$	$\underline{\text { Description }}$	$\underline{\text { Rte. Purpose }}$	$\underline{\text { Facility Type }}$
$4-14$	$16.47-R 55.48$ East LA Interchange To Route 126	Interstate/Interregional/ Interregional and commute travel	Freeway	
$15-16$	R55.48-R88.61 Route 126 to Kern Co. Line	Interstate/Interregional	Freeway	

FUNCTIONAL CLASSIFICATION

Route 5 is part of the Federal Aid Interstate (FAI) system, which is a subset of the National Highway System. For the purpose if this analysis, the route has been divided into 16 segments based on traffic volume, connections to local streets of State Highways, freeway interchanges, and the county boundary. The criteria for segmentation and functional class for each segment is shown in the following table:

Santa Ana Freeway

$\frac{\text { Seg. }}{1-3} \quad \frac{\text { P.M. }}{0.00-16.47}$

Criteria

County Line to Freeway Interchange

Criteria

Freeway Interchange to Freeway Interchange Freeway Interchange to Freeway Interchange Freeway Interchange to Freeway Interchange Freeway Interchange to County Line

Functional Class

P1P - Urban Principal Arterial

Functional Class

P1P - Urban Principal Arterial P3 - Urban Principal Arterial
PA - Rural Principal
Arterial
PA - Rural Principal
Arterial

INTERSTATE 5 PARK AND RIDE/BICYCLE FACILITIES

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { Lot Name } & \text { \# } & \text { Seg } & \text { PM } & \text { City } & \text { Operator } & \begin{array}{c}\text { Bike } \\ \text { Lockers }\end{array} & \begin{array}{c}\text { \# } \\ \text { Stalls }\end{array} & \text { Transit Service } \\ \hline \text { La Mirada } & 48 & 1 & 1.7 & \text { La Mirada } & \text { LACMTA } & 0 & 100 & \text { MTA } \\ \hline \begin{array}{c}\text { Norwalk - Santa Fe } \\ \text { Springs Transportation } \\ \text { Center }\end{array} & 123 & 1 & 4.9 & \text { Norwalk } & \text { Metrolink } & 0 & 260 & \text { Metrolink } \\ \hline \text { Lakewood - West } & 25 & 2 & 8.3 & \text { Downey } & \text { State } & 0 & 83 & \text { MTA } \\ \hline \text { Lakewood - East } & 26 & 2 & 8.3 & \text { Downey } & \text { State } & 0 & 29 & \text { MTA } \\ \hline \text { Citadel } & 16 & 2 & 12.6 & \text { Commerce } & \text { Crow-Staley } & 0 & 50 & \text { MTA } \\ \hline \text { Commerce Amtrak } & 17 & 3 & 14.2 & \text { Commerce } & \text { Amtrak } & 0 & 50 & \begin{array}{c}\text { Amtrak, Metrolink, MTA, } \\ \text { Commerce Minicipal }\end{array} \\ \hline \text { Glendale Amtrak } & 36 & 7 & 24.5 & \text { Glendale } & \text { Amtrak } & 0 & 313 & \begin{array}{c}\text { Glendale Express Shuttle, } \\ \text { Glendale Beeline, MTA, } \\ \text { Amtrak, Metrolink }\end{array} \\ \hline \text { Burbank Metrolink } & 7 & 8 & 29.3 & \text { Burbank } & \text { Metrolink } & 0 & 303 & \begin{array}{c}\text { Commuter Express, MTA, } \\ \text { Burbank Metrolink }\end{array} \\ \text { Shuttle, Media District } \\ \text { Shutle, Unified Shuttle, } \\ \text { Pasadena TMA Shuttle, } \\ \text { Metrolink }\end{array}\right]$
V. Congestion

Congestion Measures

This section is divided into five (5) sub-sections:

Segment Congestion Maps	These illustrate segment operating conditions
Page V-2 to V-33	during peak hours on incident-free days. On the maps, speed is indicated by color and length of delay is indicated by width.
Speed and Duration Chart Page V-34	This chart segment speeds and duration of speed conditions during peak hours.
Demand/Capacity Ratios Page V-35	This chart illustrates the "demand to capacity ratio" for each segment during peak hours.
Level of Service (LOS)	This chart illustrates the level of service
Page V-36	operating characteristics for each segment.
Hours of Delay	This chart measures commuters' hours of
Page V-37	

[^4]
INTERSTATE 5

AM PEAK CONGESTION

SEGMENT 1

Los Angeles County Line to l-605

INTERSTATE 5
PM PEAK CONGESTION
SEGMENT 1
Los Angeles County Line to l-605

P\&R Park and Ride

INTERSTATE 5

AM PEAK CONGESTION

SEGMENT 2

l-605 to l-710

INTERSTATE 5

PM PEAK CONGESTION

SEGMENT 2
I-605 to l-710

INTERSTATE 5 AM PEAK CONGESTION SEGMENT 3
I-710 to East Los Angeles I/C

INTERSTATE 5
PM PEAK CONGESTION
SEGMENT 3
I-710 to East Los Angeles I/C

INTERSTATE 5
AM PEAK CONGESTION
SEGMENT 4
East Los Angeles I/C to I-10

INTERSTATE 5

PM PEAK CONGESTION

SEGMENT 4

East Los Angeles I/C to I-10

\square	20 to 35 MPH
\square	Less than 20 MPH
	Freeway center line
P\&R	Park and Ride

$\begin{array}{cl}\square & 15 \mathrm{~min} \text {. to } 1 \text { hour } \\ \square & 1 \text { hour to } 2 \text { hours }\end{array}$

more than 3 hours

INTERSTATE 5

AM PEAK CONGESTION

SEGMENT 5
I-10/U.S.-101 I/C to I-110

$\square 15 \mathrm{~min}$. to 1 hour
1 hour to 2 hours \square 2-3 hours \square

INTERSTATE 5
PM PEAK CONGESTION
SEGMENT 5
I-10/U.S.-101 I/C to I-110

15 min . to 1 hour
1 hour to 2 hours \square 2-3 hours \square more than 3 hours

INTERSTATE 5
PM PEAK CONGESTION SEGMENT 6
I-110 to SR-2

INTERSTATE 5 AM PEAK CONGESTION SEGMENT 7*
 SR-2 to SR-134

* Segment traffic does not meet threshold congestion criteria. However, significant congestion does exist at a higher average speed.

INTERSTATE 5

PM PEAK CONGESTION

SEGMENT 7

SR-2 to SR-134

INTERSTATE 5

AM PEAK CONGESTION

SEGMENT 8

SR-134 to SR-170

INTERSTATE 5
PM PEAK CONGESTION

SEGMENT 8*

SR-134 to SR-170

P\&R
Park and Ride

* Segment traffic does not meet threshold congestion criteria. However, significant congestion does exist at a higher average speed.

INTERSTATE 5
 AM PEAK CONGESTION SEGMENT 9
 SR-170 to SR-118

INTERSTATE 5
PM PEAK CONGESTION

SEGMENT 9*

SR-170 to SR-118

$P \& R$
Park and Ride

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5

AM PEAK CONGESTION

SEGMENT 10*
SR-118 to l-405

P\&R
Park and Ride

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5

PM PEAK CONGESTION

SEGMENT 10*

SR-118 to I-405

P\&R Park and Ride

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5
 AM PEAK CONGESTION

SEGMENT 11*

I-405 to l-210

P\&R Park and Ride

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5
PM PEAK CONGESTION
SEGMENT 11*
l-405 to l-210

$\begin{array}{ll}\square & 20 \text { to } 35 \mathrm{MPH} \\ \square & \text { Less than } 20 \mathrm{MPH} \\ \square & \text { Freeway center line }\end{array}$

more than 3 hours

P\&R
Park and Ride

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5
 AM PEAK CONGESTION

SEGMENT 12*

I-210 to SR-14

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5
PM PEAK CONGESTION
SEGMENT 12*
I-210 to SR-14
\square 15 min . to 1 hour
1 hour to 2 hours

more than 3 hours

P\&R
Park and Ride

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5
AM PEAK CONGESTION SEGMENT 13*
SR-14 to SR-126 S

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5 PM PEAK CONGESTION SEGMENT 13*
 SR-14 to SR-126 S

P\&R Park and Ride
*Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5
AM PEAK CONGESTION
SEGMENT 14*
SR-126 S to SR-126 N

P\&R
Park and Ride

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5 PM PEAK CONGESTION

SEGMENT 14*
SR-126 S to SR-126 N

INTERSTATE 5 AM PEAK CONGESTION
 SEGMENT 15*
 SR-126 N to SR-138

INTERSTATE 5
PM PEAK CONGESTION
SEGMENT 15*
SR-126 N to SR-138

P\&R Park and Ride

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5
 AM PEAK CONGESTION
 SEGMENT 16*
 SR-138 to Kern County Line

P\&R
Park and Ride

* Segment traffic does not meet threshold congestion criteria. However, significant congestion may exist at a higher average speed.

INTERSTATE 5
PM PEAK CONGESTION
SEGMENT 16*
SR-138 to Kern County Line

INTERSTATE 5 - CONGESTION MEASURES

Spened AND DURATION								
	DURATION (hours)		AVERAGE SPEEDS (mph)					
	$\begin{gathered} \hline 1995^{*} \\ \text { EXISTING } \end{gathered}$		$\begin{aligned} & \hline 2020 \text { NULL* } \\ & \text { (with I-710) } \end{aligned}$		$\begin{aligned} & 2020 \text { CONCEPT* } \\ & \text { Alternate } 1 \end{aligned}$		$\begin{gathered} 2020 \text { CONCEPT* } \\ \text { Alternate } 2 \end{gathered}$	
	<20mph	< 35 mph	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Segment 1	1-2	2-3	10	>50	23	49	26	>50
Segment 2	1-2	>3	11	N/A	16	42	16	>50
Segment 3	2-3	>3	12	N/A	15	36	17	>50
Segment 4	1-2	>3	13	N/A	16	34	18	>50
Segment 5	.25-1	2-3	6	29	6	17	8	46
Segment 6	2-3	>3	2	18	3	16	4	43
Segment 7	0	1-2	15	>50	15	48	20	>50
Segment 8	0	.25-1	15	50	19	45	22	>50
Segment 9	0	.25-1	10	39	13	26	14	42
Segment 10	0	0	9	>50	27	43	33	>50
Segment 11	0	0	3	47	4	11	7	25
Segment 12	0	0	1	>50	4	4	5	31
Segment 13	0	0	1	N/A	3	36	3	>50
Segment 14	0	0	7	N/A	13	>50	15	>50
Segment 15	0	0	8	N/A	18	N/A	18	N/
Segment 16	0	0	>50	N/A	>50	N/A	>50	N/A

These values are estimates and are to be used for comparative purposes only

* : Worst condition during peak hours

INTERSTATE 5 - CONGESTION MEASURES

	DEMAND / CAPACTYY RATIOS						
	$\begin{gathered} \text { 1995* } \\ \text { EXISTING } \end{gathered}$	$\begin{gathered} 2020 \text { NULL** } \\ \text { (with I-710) } \\ \hline \end{gathered}$		2020 CONCEPT* Alternate 1		2020 CONCEPT* Alternate 2	
	Main Line	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Segment 1	1.46	2.05	0.83	1.64	1.09	1.59	0.64
Segment 2	1.59	2.03	N/A	1.84	1.23	1.82	0.75
Segment 3	1.17	1.96	N/A	1.86	1.34	1.80	0.85
Segment 4	1.12	1.94	N/A	1.82	1.39	1.77	0.91
Segment 5	1.42	2.31	1.47	2.28	1.76	2.18	1.14
Segment 6	2.01	2.78	1.74	2.66	1.80	2.49	1.21
Segment 7	1.17	1.86	0.96	1.85	1.11	1.73	0.61
Segment 8	1.39	1.86	1.06	1.76	1.18	1.68	0.77
Segment 9	1.75	2.07	1.30	1.95	1.54	1.88	1.23
Segment 10	1.30	2.09	0.62	1.56	1.21	1.45	0.99
Segment 11	1.51	2.62	1.12	2.52	1.98	2.20	1.57
Segment 12	1.49	3.60	0.83	2.56	2.48	2.36	1.43
Segment 13	1.79	3.36	N/A	2.74	1.34	2.67	0.74
Segment 14	1.21	2.26	N/A	1.91	0.63	1.86	0.41
Segment 15	2.06	2.16	N/A	1.78	N/A	1.76	N/A
Segment 16	1.19	1.12	N/A	0.90	N/A	0.91	N/A

* : Worst condition during peak hours

INTERSTATE 5 - CONGESTION MEASURES

LEVEL OF SERVICE							
	$\begin{gathered} 1995^{*} \\ \text { EXISTING } \end{gathered}$	$\begin{aligned} & 2020 \text { NULL* } \\ & \text { (with I-710) } \\ & \hline \end{aligned}$		$\begin{gathered} 2020 \text { CONCEPT* } \\ \text { Alternate } 1 \\ \hline \end{gathered}$		2020 CONCEPT* Alternate 2	
	Main Line	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Segment 1	F3	F3	D	F3	F0	F3	C
Segment 2	F3	F3	N/A	F3	F0	F3	C
Segment 3	F0	F3	N/A	F3	F1	F3	D
Segment 4	F0	F3	N/A	F3	F2	F3	D
Segment 5	F2	F3	F3	F3	F3	F3	F0
Segment 6	F3	F3	F3	F3	F3	F3	F0
Segment 7	F0	F3	E	F3	F0	F3	C
Segment 8	F2	F3	F0	F3	F0	F3	C
Segment 9	F3	F3	F1	F3	F3	F3	F0
Segment 10	F1	F3	C	F3	F0	F3	E
Segment 11	F3	F3	F0	F3	F3	F3	F3
Segment 12	F3	F3	D	F3	F3	F3	F2
Segment 13	F3	F3	N/A	F3	F1	F3	C
Segment 14	F0	F3	N/A	F3	C	F3	B
Segment 15	F3	F3	N/A	F3	N/A	F3	N/A
Segment 16	F0	F0	N/A	D	N/A	D	N/A

* : Worst condition during peak hours

INTERSTATE 5 - CONGESTION MEASURES

HOURS OF DELAY							
	$\begin{gathered} 1995^{*} \\ \text { EXISTING } \end{gathered}$	2020 NULL* (with I-710)		2020 CONCEPT* Alternate 1		$\begin{gathered} 2020 \text { CONCEPT* } \\ \text { Alternate } 2 \\ \hline \end{gathered}$	
	Main Line	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)	Main Line	HOV Lane(s)
Segment 1	750	6,050	0	2,650	50	2,150	0
Segment 2	1,750	7,300	N/A	5,150	100	5,100	0
Segment 3	150	3,050	N/A	2,650	50	2,150	0
Segment 4	100	2,050	N/A	1,750	50	1,450	0
Segment 5	250	4,800	100	5,950	250	4,100	50
Segment 6	2,150	19,250	250	15,100	300	10,450	50
Segment 7	250	3,700	0	4,400	50	2,800	0
Segment 8	1,000	6,000	50	5,150	100	4,000	0
Segment 9	1,650	4,450	50	4,250	150	3,750	100
Segment 10	100	2,250	0	650	50	400	0
Segment 11	550	17,000	0	14,450	600	6,850	300
Segment 12	400	56,500	0	12,750	1,550	9,250	100
Segment 13	3,350	142,000	N/A	46,750	150	45,450	0
Segment 14	50	2,950	N/A	1,500	0	1,200	0
Segment 15	15,650	21,250	N/A	8,050	N/A	7,950	N/A
Segment 16	150	100	N/A	50	N/A	50	N/A

These values are estimates and are to be used for comparative purposes only

* : Worst condition during peak hours
VI. Improvements

IMPROVEMENTS

This section contains three "improvement" listings:

- Summary of Concept Improvements: (Pages VI-2 \& 3) This summarizes improvements from the Segment Summaries and from the final "Illustrated Improvement Section".
- Programmed Improvements: (Pages IV-4 \& 5) This section lists improvements that are currently programmed on I-5.
- Illustrated Improvement Section: Beginning at page VI-7, this section is intended to illustrate the scale of the congestion problem on I-5. The "Concept" illustrates the preferred Transportation Concept for the target segment. The next two illustrations describe the lane equivalents necessary to either maintain the current level of congestion or to attain LOS "D". Neither of the latter illustrations is intended to suggest projects for programming. They are intended to provide a visual image of the needs in the I-5 corridor.

Summary of Concept Improvements

Segment	Limits	Existing Facility	Alternative Concept \#1	Alternative Concept \#2	Maintain Current D/C	LOS "D" Attainment
1	Orange County Line to I-605	3MF	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 4 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+2 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 7 \mathrm{MF}+1 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 8 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 9 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$
2	I-605 to I-710	4MF	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 4 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 7 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 8 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 9 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 10 \mathrm{MF}+2 \mathrm{HOV} \\ \hline \end{gathered}$
3	I-710 to E. Los Angeles I/C	5MF	$\begin{gathered} 5 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 6 \mathrm{MF}+1 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 5 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 6 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$	$10 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL}$ or $11 \mathrm{MF}+1 \mathrm{HOV}$	$\begin{gathered} \hline 11 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 12 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$
4	E. Los Angeles I/C to I-10	5MF	$\begin{gathered} 5 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 6 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 5 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 6 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 9 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 10 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 11 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 12 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$
5	$\mathrm{l}-10$ to l-110	4MF	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 4 \mathrm{MF}+3 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+3 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 7 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 8 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 12 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 13 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$
6	$\mathrm{I}-110$ to SR-2	4MF	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 4 \mathrm{MF}+3 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+3 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 7 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 8 \mathrm{MF}+1 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} \hline 14 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 15 \mathrm{MF}+2 \mathrm{HOV} \\ \hline \end{gathered}$
7	SR-2 to SR-134	5MF	$\begin{gathered} 5 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 6 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 5 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 6 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 9 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 10 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} \hline 11 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 12 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$
8	SR-134 to SR-170	4MF	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 4 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 6 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 7 \mathrm{MF}+1 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 9 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 10 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$
9	SR-170 to SR-118	5MF	$\begin{gathered} 6 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 7 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} \hline 6 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 7 \mathrm{MF}+2 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 11 \mathrm{MF}+1 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} \hline 14 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 15 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$
10	SR-118 to I-405	3MF	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+1 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+2 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 6 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 7 \mathrm{MF}+1 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 8 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 9 \mathrm{MF}+2 \mathrm{HOV} \\ \hline \end{gathered}$

Summary of Concept Improvements (cont.)

Segment	Limits	Existing Facility	Alternative Concept \#1	Alternative Concept \#2	Maintain Current D/C	$\begin{gathered} \text { LOS "D" } \\ \text { Attainment } \end{gathered}$
11	I-405 to I-210	5MF	$\begin{gathered} 5 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 6 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 5 \mathrm{MF}+3 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 6 \mathrm{MF}+3 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 10 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 11 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 16 \mathrm{MF}+3 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 17 \mathrm{MF}+3 \mathrm{HOV} \end{gathered}$
12	I-210 to SR-14	6MF	$\begin{gathered} 6 \mathrm{MF}+1 \mathrm{HOV}+2 \mathrm{TL} \\ \text { or } \\ 8 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 6 \mathrm{MF}+3 \mathrm{HOV}+2 \mathrm{TL} \\ \text { or } \\ 8 \mathrm{MF}+3 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 14 \mathrm{MF}+1 \mathrm{HOV}+2 \mathrm{TL} \\ \text { or } \\ 16 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 20 \mathrm{MF}+3 \mathrm{HOV}+2 \mathrm{TL} \\ \text { or } \\ 22 \mathrm{MF}+3 \mathrm{HOV} \end{gathered}$
13	SR-14 to SR-126 (S)	4MF	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 4 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+2 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 12 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 13 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$	$\begin{gathered} 14 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 15 \mathrm{MF}+2 \mathrm{HOV} \\ \hline \end{gathered}$
14	SR-126 (S) to SR-126 (N)	4MF	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+1 \mathrm{HOV} \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{MF}+2 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF}+2 \mathrm{HOV} \end{gathered}$	$10 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL}$ or $11 \mathrm{MF}+1 \mathrm{HOV}$	$\begin{gathered} 10 \mathrm{MF}+1 \mathrm{HOV}+1 \mathrm{TL} \\ \text { or } \\ 11 \mathrm{MF}+1 \mathrm{HOV} \end{gathered}$
15	SR-126 (N) to SR-138	4MF	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF} \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \mathrm{MF}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF} \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \mathrm{MF}+1 \mathrm{TL} \\ \text { or } \\ 7 \mathrm{MF} \\ \hline \end{gathered}$	$\begin{gathered} \hline 9 \mathrm{MF}+1 \mathrm{TL} \\ \text { or } \\ 10 \mathrm{MF} \end{gathered}$
16	SR-138 to Kern County Line	4MF	$\begin{gathered} \hline 4 \mathrm{MF}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF} \\ \hline \end{gathered}$	$\begin{gathered} \hline 4 \mathrm{MF}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF} \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF} \\ \hline \end{gathered}$	$\begin{gathered} 4 \mathrm{MF}+1 \mathrm{TL} \\ \text { or } \\ 5 \mathrm{MF} \\ \hline \end{gathered}$

TL: Truck Lanes
D/C: Demand / Capacity

PROGRAMMED IMPROVEMENTS

The following table lists major Interstate 5 capacity enhancement and operational improvement projects programmed for construction beginning in Fiscal Year 96/97 and later. These seven programming documents 1 provide a mechanism for project funding within the region. The following is a brief description of each.

Regional Transportation Improvement Program (RTIP) - A four-year list of proposed transportation projects. The Regional Transportation Planning Agency (RTPA) submits the RTIP to the California Transportation Commission (CTC) as a request for State Funding. If RTIP projects have federal funding components, they will also appear in the FTIP once selected for the STIP (see below).

Interregional Improvement Program (IIP) - A four-year program developed by Caltrans, that includes project developed through the Interregional Road System Plan, Intercity Rail, Soundwall, Toll Bridge, and Aeronautics programs.

State transportation Improvement Program (STIP) - A four-year list of transportation projects proposed in RTIP's and PSTIP's that the CTC adopts. Those projects that have federal funding components will also appear in the FTIP and FSTIP.

State Highway Operation and Protection Program (SHOPP) - A four-year program limited to projects related to State highway safety and rehabilitation.

[^5]Federal Transportation Improvement Program (FTIP) - A three-year list of all transportation projects proposed for federal funding under ISTEA, within the planning area of an MPO. An MPO develops the FTIP and the Director of Caltrans approves it. In air quality non-attainment areas, the plan must conform to a State Implementation Plan.

Federal State Transportation Improvement Program (FSTIP) - A three-year list of transportation projects proposed for funding under ISTEA developed by the State in cooperation with MPO's and in consultation with local non-urbanized governments. The FSTIP includes all FTIP projects as well as other federally funded rural projects.

PROGRAMMED PROJECTS

Interstate 5

Segment	$E A^{2}$	PPNO ${ }^{3}$	CO	ROUTE	$\begin{aligned} & \text { POST } \\ & \text { MILE } \end{aligned}$	Description	Estimate \$	Start	Complete ${ }^{4}$
1	168811	2008	LA	005	0.1/3.4	Interim High Occupancy Vehicle (HOV) lanes	\$60.3M		1/05
1	016882	2008A	LA	005	3.4/6.8	Construct HOV	\$67.0M	2004	
2	016830	2008B	LA	005	6.8/8.3	Construct HOV	\$31.4M	2004	
4-5	061231	0128M	LA	005	17.0/19.7	Replacement Planting and Upgrade Irrigation	\$1.1M		6/02
6-8	174501	2064	LA	005	20.5/28.5	Upgrade 2 changeable message signs and install 2 turnouts for maintenance access	\$0.45M		6/99
7-8	121800	0142F	LA	005	26.7/36.4	Construct HOV	\$28.9M		9/05
8	017860	2120	LA	005	27.4/28.1	Modify Western Ave. U.C.	\$29.7M	2003	
8-13	176241	2093	LA	005	28.7/48.0	Rehabilitate Roadway	\$2.6M		8/00
9	121900	0158K	LA	005	36.4/39.4	Construct HOV	\$21.4M		12/05
10-12	122001	0162P	LA	005	39.4/45.6	Construct HOV	\$13.4M		4/03
11-12	101670	0978T	LA	005	42.1/44.4	Widen Freeway from 6 to 10 lanes with HOV	\$24.1M		5/07
15	142901	0176P	LA	005	61.7/62.6	Reconstruct Northbound lanes and fill embankment	\$9.7M		9/01
15-16	175301	2079	LA	005	73.6/88.6	Rehabilitate Roadway	\$3.7M		8/99
16	174201	2060	LA	005	81.5/88.6	Rehabilitate Bridge Deck	\$4.5M		5/01

$E A^{2}$: Expenditure Authorization
PPNO ${ }^{3}$: Planning and Program Number
Complete ${ }^{4}$: Target Completion Date

Improvements
 Legend

Concept.
Maintain Current Level Of Congestion:

LOS "D" Attainment:

Proposed concept facility based on demand and policy.
Freeway lane equivalents necessary to maintain the current Demand/Capacity Ratio.

Freeway lane equivalents necessary to attain Level Of Service "D".

Single Occupancy Vehicle Lane	2,000 vehicles per lane per hour	Heavy Rail
High Occupancy		
passenger per day		

[^6]Interstate 5
SEGMENT 1
Orange County Line to I-605
In Each Direction

MAINTAIN CURRENT LEVEL OF CONGESTION
LOS = FO D/C Ratio = 1.17

LOS = FO
D/C
D/C Ratio = 1.15

Interstate 5
SEGMENT 5
I-10 to SR-110
In Each Direction

Interstate 5

SEGMENT 6
SR-110 to SR-2
In Each Direction

SEGMENT 8

SR-134 to SR-170
In Each Direction

Interstate 5

SEGMENT 9
SR-170 to SR-118
In Each Direction

LOS = FO
D/C Ratio
MAINTAIN CURRENT LEVEL OF CONGESTION D/C Ratio = 1.24

Interstate 5
SEGMENT 10
SR-118 to I-405
In Each Direction

Interstate 5
SEGMENT 11
I-405 to l-210
In Each Direction

Interstate 5 SEGMENT 12
I-210 to SR-14
In Each Direction

Interstate 5
SEGMENT 13
SR-14 to SR-126S
In Each Direction

Interstate 5
SEGMENT 14
SR-126S to SR-126N
In Each Direction

Interstate 5
SEGMENT 16
SR-138S to Kern county line
In Each Direction

VII. Socio-Economics

SOCIO-ECONOMICS

Interstate 5 traverses eight of the Southern California Association of Government's (SCAG) Regional Statistical Areas (RSA). Following are graphs illustrating projected growth in these areas between 1990 and 2020. Included are data on housing, population and employment.

Please note that the growth rate for Housing ranges from an increase of 16% in the NorwalkWhittier RSA to an increase of 205% in the Santa Clarita Valley RSA. Population growth estimates range from an increase of 23% in the Norwalk-Whittier RSA to a high of 236% in the Santa Clarita Valley RSA. Employment changes range from a decrease of 3\% in the Los Angeles Central Business District RSA to an increase of 182% in the Santa Clarita Valley RSA.

The effects of the very large increases in jobs, population and housing in the Santa Clarita Valley are reflected in the corresponding increases in projected traffic in Segments 11, 12 and 13. These three segments funnel traffic between the Santa Clarita and San Fernando valleys.

Two of the RSA's have significant differences in the rate of growth between at least two of the socio-economic factors:

- The Northeast San Fernando Valley RSA has a projected population growth rate (47\%) that is nearly twice its rate of housing increase (26%) and more than four times its employment increase (11\%).
- The Los Angeles Central Business District RSA has sizeable housing (59\%) and population (43\%) increases together with a significant job loss (-3\%).

These graphs are provided to give perspective to socio-economic conditions in the I-5 corridor.

INTERSTATE 5 SOCIO-ECONOMIC DATA

Santa Clarita Valley Regional Statistical Area (RSA) Demographics

	1990	1994	2015	2020	\% Change
Housing	48,879	51,852	162,530	149,215	205%
Population	151,053	162,435	552,504	506,901	236%
Employment	51,596	53,333	120,275	145,644	182%

Lancaster Regional Statistical Area (RSA) Demographics

INTERSTATE 5 SOCIO-ECONOMIC DATA

Burbank Regional Statistical Area (RSA) Demographics

	1990	1994	2015	2020	$\%$ Change
Housing	124,910	128,797	155,581	165,657	33%
Population	317,289	331,003	405,181	429,386	35%
Employment	196,899	162,103	268,175	265,537	35%

Northeast San Fernando Valley Regional Statistical Area (RSA) Demographics

INTERSTATE 5 SOCIO-ECONOMIC DATA

East Central (LA) Regional Statistical Area (RSA) Demographics

	1990	1994	2015	2020	$\%$ Change
Housing	265,560	271,307	320,652	335,931	26%
Population	$1,084,539$	$1,120,854$	$1,316,545$	$1,388,562$	28%
Employment	512,332	475,425	616,206	648,787	27%

Norwalk-Whittier Regional Statistical Area (RSA) Demographics

VII-4

INTERSTATE 5 SOCIO-ECONOMIC DATA

Los Angeles Central Business District Regional Statistical Area (RSA) Demographics

Glendale Regional Statistical Area (RSA) Demographics

VIII. Accident Rates and Safety

ACCIDENT RATES AND SAFETY INTRODUCTION

Accident Data

District traffic safety and accident data are based on the Traffic Accident Surveillance and Analysis System (TASAS). This data base provides accident rates using a three-year average along selected routes. The TASAS data, that is displayed graphically on the following pages, covers the period of January 1, 1994 through December 31, 1996.

First Graph: Fatal Plus Injury Per Million Vehicle Miles

The first graph, "Fatal Plus Injury Per Million Vehicle Miles" (F+I/MVM), shows the rate of fatal and non-fatal injuries on I-5 during the coverage period. This graph has two graph lines, "Average" and "Actual". The "Actual" is based on specific data for accidents on I-5. The "Average" line represents a Statewide Average Accident Rate (SWA) for highway segments of the same type with similar characteristics in the state.

Second Graph: Total Accidents Per Million Vehicles Miles

The second graph, "Total Accidents Per Million Vehicle Miles" (Total/MVM) includes all accidents (fatal, non-fatal injury and accidents without injuries) within the coverage period. As in the first graph, the "Actual" is based on specific I-5 data and "Average" represents a statewide average for comparable road segments.

Safety

The accident data provided in this TCR is intended to support informed and responsible decision-making by transportation planners and programmers. Research into the connection between congestion and safety is being performed by Caltrans and within the national and international transportation communities. Future TCR's will document the state of that research.

INIERSTATE 5 ACCIDENT RATES

Fatal + Injury (Per Million Vehicle Miles)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Actual	0.31	0.31	0.43	0.50	0.28	0.26	0.26	0.27	0.22	0.26	0.25	0.34	0.23	0.17	0.15	0.27
Average	0.47	0.40	0.53	0.50	0.38	0.41	0.32	0.32	0.27	0.29	0.29	0.26	0.27	0.23	0.15	0.17

Total Accidents (Per Million Vehicle Miles)

INTERSTATE 5

ACCIDENT LOCATIONS HIGHER THAN AVERAGE

Fatal plus Injury per Million Vehicle Miles (F+I/MVM) Chart VIII-2

SEGMENT 11 ROUTE 405-ROUTE 210
SEGMENT 12 ROUTE 210-ROUTE 14
SEGMENT 13 ROUTE 14 - ROUTE 126 SOUTH
SEGMENT 15 ROUTE 126 NORTH - ROUTE 138 SOUTH
SEGMENT 16 ROUTE 138 SOUTH - KERN COUNTY LINE

ACCIDENT LOCATIONS HIGHER THAN AVERAGE

Total Accidents per Million Vehicle Miles (Total/MVM) Chart VIII-3

SEGMENT 1
SEGMENT 2
SEGMENT 3
SEGMENT 4
SEGMENT 5
SEGMENT 11
SEGMENT 12
SEGMENT 13
SEGMENT 14
SEGMENT 15
SEGMENT 16 ROUTE 138 SOUTH - KERN COUNTY LINE

IX. Regional Threshold Criteria and Policies

Interstate 5
 Regional Threshold Criteria and Policies

I. CALTRANS: California Transportation Plan:

1) Provide safety and security
2) Maintain system/investment
3) Manage network as a seamless intermodal system
4) Develop airport ground access

II. CALTRANS: District System Management Plan:

1) District 7 has established LOS F0 with freeway speeds of approximately 25 mph lasting from 15 minutes to 1 hour as the minimum acceptable LOS for the Freeway System. \downarrow
2) HOV Criteria for implementing HOV lanes: 2
a. High Demand Congested Corridors not served by urban or commuter rail
b. System connectivity
c. Cost effectiveness
d. Safety
e. Public agency input
3) Route 5 Gap Closure: Orange County Line to I-605
4) Goods Movement: 4^{4}
a. Primary Goods Movement Corridor: I-710 to Kern county Line.
b. Secondary Goods Movement Corridor: Orange County Line to I-710

[^7]5) Truck Lanes: Trucks-Only: Under investigation on I-170, Ports to Commerce and in the I-5 and SR-60 corridors 5

III. SCAG: Regional Transportation Plan:

1) Truck Lanes on I-5, SR-60 to 126 (1 lane in each direction, if free access; 2 lanes in each direction if tolled)
2) HOV Connectors on I-5 at: SR-170, SR-14 (to possible toll lanes) and SR1347
3) Add mixed flow lanes to increase capacity (with restrictions), close gaps and for connectivity 8
4) High Speed Rail: On I-5 from Union Station to SR-14 and on SR-14 to Lancaster/Palmdale 2
5) Operations and maintenance: Pay now or pay later 10
6) RTP 20-Year Budget 11 in $\$$ Billion):
[^8]| Category | Budget
 (\$Billion) | Percentage |
| :--- | :---: | :---: |
| Smart Shuttle | $\$ 3.9$ | 17% |
| Freeways (Mixed Flow and HOV) | $\$ 3.4$ | 15% |
| Transitways | $\$ 3.1$ | 14% |
| Maintenance | $\$ 3.0$ | 13% |
| Local Roadways (Including Airport Access) | $\$ 2.5$ | 11% |
| Red Line MOS-4 | $\$ 1.8$ | 8% |
| Truck Facilities | $\$ 1.8$ | 8% |
| Commuter Rail | $\$ 1.4$ | 6% |
| Grade Separations | $\$ 0.6$ | 3% |
| Signal Synchronization | $\$ 0.3$ | 2% |
| Transit Centers / Park and Ride | $\$ 0.2$ | 1% |
| Rideshare | $\$ 22.4$ | 1% |
| TOTAL | $\mathbf{1 0 0 \%}$ | |

7.) 76% Freight increase through the ports and 200% freight increase at the airports.

IV. LA Metropolitan Transportation Authority: MTA HOV Plan
 Primary Corridor Criteria 12

1) Travel time Savings: Only build where building a lane would provide a travel time savings of 0.3 minutes per mile on the proposed facility compared to adjacent general purposed lanes.
2) Lane Volume:
a. $\quad 600 \mathrm{vpm}$ minimum
b. $\quad 1500$ vehicles (at $2+$) to take an existing freeway lane
3) Person Movement:
a. Minimum person movement of 2000 persons per hour is needed to satisfy criteria for add-a-lane projects.
b. Minimum of 3000 people in $2+\mathrm{HOV}$ are necessary to consider projects what would take a lane from existing facilities
4) Transit System Integration: Goal of: operation time reductions between HOV and adjacent general purpose lane.

Secondary Corridor Criteria 13

1) 20 mph for bus round trips: Minimum LOS E
2) Implementation of an HOV facility should not adversely impact general purpose lane operations or capacity. Criteria is met as long as mainline general purpose capacity is not reduced.
3) HOV enforcement is necessary requiring dedicated enforcement areas or wide enough shoulders to monitor and apprehend violators; this criteria will not be satisfied with reduced standard shoulders and no facilities for enforcement areas.
4) Transit Station/Park and Ride Lot integration with HOV facility: primary objective is to maximize the number of HOV's that can use a facility. This criteria will be satisfied with direct access or bypass HOV lane on general purpose ramps entering the freeway.

System Criteria/Goals 14

1) Primary means of linking HOV facility is by gap closure and freeway to freeway HOV connectors
2) Inter-county connectivity at county lines
3) System-wide time savings
4) Regional mobility
5) VMT--should reduce VMT for the entire freeway system
6) Mode shift impact
7) Transit system integration

HOV I/C Criteria/Goal 15

1) Travel time savings
2) Threshold ramp volume
3) Threshold person movement
4) Recommend: I-5 to and from Burbank Airport with arterial HOV connection
5) Recommend: Ramp metering on all of I-5 north to Castaic

System Development: I-5 HOV--First Tier

1) Long Range recommendation: OCL to I-605
2) I-10 north to SR-126 or SR-14
3) Between SR-2 and SR-134 this will serve as a link in the greater I-5 system, particularly as it approaches downtown Los Angeles

System Development: I-5 HOV--Second Tier

1) From I-605 to I-710
[^9]
System Development: I-5 HOV-Arterial Projects 16

1) Between I-5 and I-105 in Norwalk
2) Glendale Boulevard Corridor: Glendale Freeway and CBD and I-5 to the CBD
3) I-5 and Burbank Airport

HOV Lane Projects: Projects Recommended for Development 2001 to 2005 17

1) SR-134 to SR-170
2) SR-170 to SR-118
3) SR-118 to SR-14
4) Orange County Line to I-605

Implementation Approach:

1) Re-stripe and widen for addition of one lane (§6.7.2, page 91)
V. 1997 Final Proposed Congestion Management Plan
2) LOS "E" unless base year is lower
VI. TEA 21--Generally:
3) Maintain TDM
4) Provide for intelligent transportation systems (ITS)
5) Expands funding to include intermodal terminals at seaports

16 Op. Cit., page 64
17 Op. Cit., page 69

INTERSTATE 5 POLICY / PROCEDURES

Caltrans Status of HOV Projects		SCAG Regional Transportation Plan (RTP)						
	HOV	HOV I/C	HOV	HOV I/C	MIXED FLOW	GOODS MOVEMENT	HIGH SPEED RAIL	
Segment 1	HOV INTERIM		HOV		Mixed Flow		HIGH SPEED RAIL	
Segment 2						Truck Lane	HIGH SPEED RAIL	
Segment 3						Truck Lane	HIGH SPEED RAIL	
Segment 4						Truck Lane	HIGH SPEED RAIL	
Segment 5	HOV					Truck Lane	HGG SPEED RAIL	HIGH SPEED RAIL
Segment 6	HOV					Truck Lane	HIGH SPEED RAIL	
Segment 7	HOV					Truck Lane	HIGH SPEED RAIL	
Segment 8	HOV			I/C @ SR-170		Truck Lane	HIGH SPEED RAIL	
Segment 9	HOV					Truck Lane	HIGH SPEED RAIL	HGG SPEED RAIL
Segment 10	HOV					Truck Lane	HIGH SPEED RAIL	
Segment 11	HOV					Truck Lane		
Segment 12	HOV	I/C @ SR-14		I/C @ SR-14				
Segment 13								
Segment 14								
Segment 15								
Segment 16								

* Secondary Corridor

INTERSTATE 5 POLICY / PROCEDURES

District System Management Plan (DSMP)						
	HOV	HOV I/C	GOODS MOVEMENT	EXISTING Commuter Rail	EXISTING Intercity Rail	HIGH SPEED RAIL
Segment 1	HOV		Truck Lane *	Metrolink	AMTRAK	HIGH SPEED RAIL
Segment 2	HOV		Truck Lane	Metrolink	AMTRAK	HIGH SPEED RAIL
Segment 3	HOV		Truck Lane	Metrolink	AMTRAK	HIGH SPEED RAIL
Segment 4	HOV		Truck Lane	Metrolink	AMTRAK	HIGH SPEED RAIL
Segment 5	HOV		Truck Lane	Metrolink	AMTTAK	HIGH SPEED RAIL
Segment 6	HOV		Truck Lane	Metrolink	AMTRAK	HIGH SPEED RAIL
Segment 7	HOV		Truck Lane	Metrolink	AMTRAK	HIGH SPEED RAIL
Segment 8	HOV	I/C @ SR-170	Truck Lane	Metrolink	AMTRAK	HIGH SPEED RAIL
Segment 9	HOV	I/C @ SR-118	Truck Lane	Metrolink		HIGH SPEED RAIL
Segment 10	HOV	I/C @ I-405	Truck Lane	Metrolink		HIGH SPEED RAIL
Segment 11	HOV		Truck Lane	Metrolink		HIGH SPEED RAIL
Segment 12	HOV	I/C @ SR-14	Truck Lane	Metrolink		HIGH SPEED RAIL
Segment 13	HOV		Truck Lane	Metrolink		
Segment 14			Truck Lane			
Segment 15			Truck Lane			
Segment 16				Truck Lane		

INTERSTATE 5 POLICY / PROCEDURES

MTA Long Range Transportation Plan (LRTP)				State Transportation Improvement Plan (STIP)	
	HOV	HOV I/C	EXISTING Commuter Rail	HOV	HOV I/C
Segment 1	HOV Interim		Metrolink	HOV Interim	
Segment 2			Metrolink	HOV Interim	
Segment 3			Metrolink		
Segment 4			Metrolink		
Segment 5	HOV		Metrolink	HOV	
Segment 6	HOV		Metrolink	HOV	
Segment 7	HOV		Metrolink	HOV	
Segment 8	HOV		Metrolink	HOV	
Segment 9	HOV	I/C @ SR-118	Metrolink	HOV	
Segment 10	HOV	I/C @ I-405	Metrolink	HOV	
Segment 11	HOV		Metrolink	HOV	
Segment 12	HOV	I/C @ SR-14	Metrolink	HOV	I/C @ SR-14
Segment 13			Metrolink		
Segment 14					
Segment 15					
Segment 16					

INTERSTATE 5 POLICY / PROCEDURES

MTA HOV PLAN						
	SCENARIO A			SCENARIO B1		
	HOV	HOV I/C	EXISTING Commuter Rail	HOV	HOV I/C	EXISTING Commuter Rail
Segment 1	HOV		Metrolink			Metrolink
Segment 2			Metrolink			Metrolink
Segment 3			Metrolink			Metrolink
Segment 4			Metrolink			Metrolink
Segment 5	HOV		Metrolink	POTENTIAL HOV		Metrolink
Segment 6	HOV		Metrolink	POTENTIAL HOV		Metrolink
Segment 7	HOV		Metrolink	POTENTIAL HOV		Metrolink
Segment 8	HOV	I/C @ SR-170	Metrolink	POTENTIAL HOV	I/C @ SR-170	Metrolink
Segment 9	HOV	I/C @ SR-118	Metrolink	HOV	POTENTIAL I/C @ SR-118	Metrolink
Segment 10	HOV	I/C @ I-405	Metrolink	HOV	POTENTIAL I/C @ I-405	Metrolink
Segment 11	HOV		Metrolink	HOV		Metrolink
Segment 12	HOV	I/C @ SR-14	Metrolink	HOV	POTENTIAL I/C @ SR-14	Metrolink
Segment 13			Metrolink	ADD HOV		Metrolink
Segment 14				ADD HOV		
Segment 15						
Segment 16						

* Secondary Corridor

INTERSTATE 5
POLICY / PROCEDURES

MTA HOV PLAN			
	SCENARIO B2		
	HOV	HOV I/C	EXISTING Commuter Rail
			Metrolink
Segment 1	HOV		Metrolink
Segment 2	ADD HOV		Metrolink
Segment 3	ADD HOV		Meroink
Segment 4	ADD HOV		Metrolink
Segment 5	HOV		Metrolink
Segment 6	HOV		Metrolink
Segment 7	HOV	Metrolink	
Segment 8	HOV	I/C @ SR-170	Metrolink
Segment 9	HOV	POTENTIAL /C @ SR-118	Metrolink
Segment 10	HOV	POTENTIAL I/C @ I-405	Metrolink
Segment 11	HOV	I/C @ SR-14	
Segment 12	HOV		
Segment 13	ADD HOV		
Segment 14	ADD HOV		
Segment 15			

* Secondary Corridor

INTERSTATE 5 POLICY / PROCEDURES

MTA HOV PLAN			
	SCENARIO B3		
	HOV		
			EXISTING Commuter Rail
Segment 1	HOV	Metrolink	
Segment 2	ADD HOV		Metrolink
Segment 3			Metrolink
Segment 4	HOV		Metrolink
Segment 5	HOV		Merorolink
Segment 6	HOV		Metrolink
Segment 7	HOV	I/C @ SR-170	Metrolink
Segment 8	HOV	POTENTIAL I/C @ SR-118	Metrolink
Segment 9	HOV	POTENTIAL I/C @ I-405	Metrolink
Segment 10	HOV		Metrolink
Segment 11	HOV	POTENTIAL I/C @ SR-14	Metrolink
Segment 12	ADD HOV		Metrolink
Segment 13	ADD HOV		
Segment 14			
Segment 15			
Segment 16			

* Secondary Corridor

INTERSTATE 5 POLICY / PROCEDURES

MTA HOV PLAN			
	SCENARIOC1		
	HOV	HOV I/C	EXISTING Commuter Rail
Segment 1	POTENTIAL HOV		Metrolink
Segment 2			Metrolink
Segment 3			Metrolink
Segment 4			Metrolink
Segment 5	POTENTIAL HOV		Metrolink
Segment 6	POTENTIAL HOV	I/C @ SR-2	Metrolink
Segment 7	HOV	I/C@SR-134	Metrolink
Segment 8	POTENTIAL HOV	I/C@SR-170	Metrolink
Segment 9	HOV	I/C@ SR-118	Metrolink
Segment 10	HOV	I/C @ I-405	Metrolink
Segment 11	HOV		Metrolink
Segment 12	HOV	I/C@ SR-14	Metrolink
Segment 13			Metrolink
Segment 14			
Segment 15			
Segment 16			

[^10]
INTERSTATE 5 POLICY / PROCEDURES

MTA HOV PLAN			
	SCENARIO C2		
	HOV	HOV I/C	EXISTING Commuter Rail
			Metrolink
Segment 1	POTENTIAL HOV		Metroink
Segment 2			Merolink
Segment 3			Merolink
Segment 4			Metrolink
Segment 5	POTENTIAL HOV		Metrolink
Segment 6	POTENTIAL HOV	ADD I/C @ SR-2	Metrolink
Segment 7	HOV	ADD I/C @ SR-134	Metrolink
Segment 8	POTENTIAL HOV	I/C @ SR-170	Metrolink
Segment 9	HOV	I/C @ SR-118	Metrolink
Segment 10	HOV	I/C @ I-405	Metrolink
Segment 11	HOV	I/C @ SR-14	Merrolink
Segment 12	HOV		
Segment 13			
Segment 14			
Segment 15			
Segment 16			

* Secondary Corridor

INTERSTATE 5 POLICY / PROCEDURES

MTA HOV PLAN			
	SCENARIO D1		
	HOV		
		HOV I/C	
			EXISTING Commuter Rail
Segment 1	HOV	ADD 105 ARTERIAL HOV I/C	Metrolink
Segment 2	ADD HOV	HOV/RAIL INTERFACE NEAR I-710	Metrolink
Segment 3		HOV/RAIL INTERFACE NEAR I-10	Metrolink
Segment 4	POTENTIAL HOV		Meroink
Segment 5	POTENTIAL HOV		Metrolink
Segment 6	POTENTIAL HOV		Metrolink
Segment 7	POTENTIAL HOV	I/C @ SR-170	Metrolink
Segment 8	HOV	POTENTIAL I/C @ SR-118	Metrolink
Segment 9	HOV	I/C @ I-405	Metrolink
Segment 10	HOV	I/C @ SR-14	Merolink
Segment 11	HOV		Metrolink
Segment 13			
Segment 14			
Segment 15			
Segment 16			

INTERSTATE 5 POLICY / PROCEDURES

$\left.$| MTA HOV PLAN | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | OPTION 1 | | | OPTION 2 | | HOV I/C | | | | EXISTING |
| :---: |
| Commuter Rail | \right\rvert\,

* Secondary Corridor

X. Policy Conflicts in the Regional Planning Process

Conflicts in Regional Planning

'Los Angeles already has an effective mass transportation System. It's called the freeways."

Franklin White, Former LACMTA Executive Director

Before considering the various planning and programming policies in Los Angeles County, it is instructive to consider some statistics relating to the existing system:

- Ridership on the Red, Green and Blue Lines exceeded 25,000,000 in 1996.
- Trips on the Freeway system exceeded $\mathbf{3 5 , 0 0 0 , 0 0 0}$ yesterday. (And the day before, and the day before that...)
- Percentage of trips carried by all forms of transit in Los Angeles: < $\mathbf{6 \%}$
- Percentage of transportation funds programmed in Los Angeles County for use on Transit: 89-90\%
- Percentage of trips in cars and trucks: $>\mathbf{9 4 \%}$
- Percentage of transportation funds programmed in Los Angeles County for use on the Freeway System: 10-11\%
- Percentage of Regional funds Planned for all Road Related Modes under the 1998 SCAG RTP: 70\%
- Percentage of Regional funds Planned for Rail Modes: 30\%

[^11]There has been a quiet revolution in transportation policy in Los Angeles since the 1994 STIP cycle. Old assumptions, such as: "you can't build out of congestion", "rail is the answer" and "NO transit facilities on freeways", have been challenged head-on. As the last set of funding percentages indicate, the Region's transportation planning community has shown a willingness to re-think old "givens" and to re-prioritize transportation spending.

In fact, spending has begun to track usage and productivity and there appears to be a willingness to experiment with innovative "compromises" that benefit from the advantages and efficiencies of the various road and transit modes.

The 1998 RTP recommends using the most diverse approaches to ground transportation ever proposed in Los Angeles, including:

Buses	Smart Shuttles	Added Mixed Flow Lanes
Intelligent Transportation Systems	Busways	High Speed Rail
High Occupancy Toll Lanes	Toll Roads	Light Rail
Heavy Rail	IVHS	Commuter Rail
HOV Lanes	Truck Lanes	Arterial Transitways

The RTP shows that the old stock arguments for making small improvements in the largest system have been superseded by recommendations to make large-scale improvements in the largest system.

What these changes--and the current controversies over subway construction-- demonstrate is that the transformations in spending authority mandated by ISTEA and the state's Transportation Blueprint for the twenty-first Century also mandated changes in responsibility and, more importantly, accountability.

Los Angeles's transportation community--SCAG, LACMTA, Caltrans, AAA, county cities, transit riders and transit providers-have agreed, through the RTP process, to an openminded search for transportation solutions. In the I-5 context, this will mean finding ways to address congestion and demand problems that are not restricted to "transit-only" or "TDMonly" schemes.

While the conflict over transportation goals and values has diminished in the region, several critical questions remain to be addressed:

- What is the region's position on the Federal restrictions on mixed-flow-lane development? Should the position be amended? The restrictions?
- Who should be responsible for programming decisions affecting state highways? Transit systems? What input should various interests have?
- Should tolls be used to reduce demand on over-crowded highway facilities?
- If transportation demand cannot/will not be controlled, then what are the priorities for increasing system capacity?
- How can the transportation community demonstrate that it is responsive and accountable to the residents of the region? Is the transportation community responsive and accountable to the residents of the region?
- How can the transportation community measure its success in addressing transportation problems?
XI. Transportation Concept and Conclusion

Transportation Concept and Conclusions

Transportation Concept

Abstract

Alternative \#2 (see pages VI-2 and VI-3) is recommended as the Transportation Concept for I-5 for the following reasons:

1) It closes the mixed-flow lane gap between the Orange County Line and the I605 Freeway in Los Angeles County;
2) It provides substantial congestion relief over the 20-year planning period
3) By using 2 HOV lanes, this alternative provides the substantial operational benefits that a single HOV lane would lack. The double HOV lane will allow passing-essential when cars and buses are mixed in traffic; and it would be sufficiently wide to allow possible eventual conversion to an automated system; and
4) It provides additional HOV capacity in segments where I-5 intersects with those state routes which will also be carrying high HOV volumes.
[^12]
Conclusions

Taken together, the Segment Summaries and the Illustrated Improvements, highlight the dilemma posed by I-5. The route is currently operating at LOS "F3"Zon nearly all of its segments and traffic demand on it is projected to increase by approximately 40% over the next 20 years. To simply maintain the current level of congestion would require a near doubling of I-5's capacity. That is not a realistic possibility.

Providing truck and continuous HOV lanes appears to provide the best chance for some relief from projected congestion. A continuous HOV facility and/or a separate truck lane would increase the roadway's capacity in the short run--and relieve congestion. In the long run, such improvements could be adapted to new and innovative uses (e.g., as an automated vehicle facility, a busway, or a rail facility) without compromising the existing mixed flow lanes. Depending on how it is operated, a new continuous HOV lane could provide relief equal to four (4) new mixed flow lanes.

However, as noted in Section X, regional and national policy differences will have to be settled--or at least responsibly and constructively addressed--before anything like a long range solution to I-5 congestion problems will be successful.

[^13]XII. Appendices

BIBLIOGRAPHY

Advanced Transportation Systems Program Plan, 1996 Update: Framework for a
 California Partnership, California Department of Transportation, New Technology and Research Program, December 1996

1997 Air Quality Management Plan, South Coast Air Quality Management District,
November 1996

California Trade and Goods Movement Study, California Department of Transportation and San Diego Association of Governments (prepared by Barton-Aschman Associates, Inc.), August 15, 1996

Congestion Management Program for Los Angeles County, Los Angeles County Metropolitan Transportation Authority, November 1995

District System Management Plan, California Department of Transportation, District 7, August 16, 1996

Double Decking, A Caltrans Planning Study, California Department of Transportation, May 1998

Goods Movement in Southern California, (Draft), California Department of Transportation District 7, May 1994

Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) (P.L. 102-240)
December 1991

I-110 Transitway, Northern Terminus to Adams Boulevard, Initial
 Study/Environmental Assessment, California Department of Transportation and U.S.
 Department of Transportation, Federal Highway Administration, May 2, 1991

 1997 Long-Range Transportation Plan, Los Angeles County Metropolitan

 1997 Long-Range Transportation Plan, Los Angeles County Metropolitan
 Transportation Authority, January 22, 1997
 Los Angeles Regional Transportation Study (LARTS)
 Manual for Applying the California Transportation Commission's Policy Guidelines for Funding Interchanges and Crossings, California Department of transportation, April 1984

NEXTEA (Re-Authorization of the Intermodal Surface Transportation Efficiency Act of 1991) (ISTEA) (P.L. 102-240), December 1991)

On the Optimal Ramp Control Problem: When Does Ramp Metering Work?
Discussion Paper on 950940, Gerald W. Bare, Senior Transpiration Engineer, California
Department of Transportation, District 7

Project Development Procedures Manual, Chapter 4—Programming, California
Department of Transportation, July 1997

A Recommended HOV System for Los Angeles County, Los Angeles Metropolitan Transportation Authority (prepared by The Parsons Brinckerhoff Study Team), October 23, 1996

Regional Market-Based Transportation Pricing, Final Report and Recommendations, REACH Task Force (Reduce Emissions and Congestion on Highways), January 22, 1997

1998 Regional Transportation Plan, (Adopted), Southern California Association of Governments, April 16, 1998

Route 5 Route Concept Report, Santa Ana and Golden State Freeways, California
Department of Transportation, District 7 June 20, 1991

Route 5 Route Concept Report, California Department of Transportation, District 12 June 20, 1991

Statutes Related to Programming and Funding Transportation Projects, California
Department of Transportation, Transportation Programming Program, July 1996

GLOSSARY

AADT: (Average Annual Daily Traffic) Denotes that the daily traffic is averaged over one calendar year.

ADT: (Average Daily Traffic) The average number of vehicles passing a specified point during a 24 -hour period.

Air Quality Management District (AQMD): A regional agency, which adopts and enforces regulations to achieve and maintain state and federal air quality standards.

Air Quality Management Plan (AQMP): The plan for attaining state air quality as required by the California Clean Air Act of 1988. The plan is adopted by air quality districts and is subject to approval by the California Air Resources Board.

ATIS: Advanced Traveler Information Systems

ATMS: Advanced Traffic Management Systems

AV: Antelope Valley Transit

AVCS: Automated Vehicle Control Systems

Average Vehicle Occupancy (AVO): The average number of persons occupying a passenger vehicle along a roadway segment intersection, or area, as typically monitored during a specified time period. For the purpose of the California Clean Air Act, passenger vehicles include autos, light duty trucks, passenger vans, buses, passenger rail vehicles and motorcycles.

Average Vehicle Ridership (AVR): The number of employees who report to a worksite divided by the number of vehicles driven by those employees, typically averaged over an established time period. This calculation includes crediting vehicle trip reductions from telecommuting, compressed workweeks and non-motorized transportation.

California Department of Transportation (Caltrans): As the owner/operator of the state highway system, state agency responsible for its safe operation and maintenance. Proposes projects for intercity rail, interregional roads, and sound walls. Also responsible for the SHOPP, Toll Bridge, and Aeronautics programs. Caltrans is the implementing agency for most state highway projects, regardless of program, and for the Intercity Rail program.

CBD: (Central Business District) The downtown core area of a city, generally an area of high land valuation, traffic flow, and concentration of retail business offices, theaters, hotels, and service businesses.

CCTV: Closed Circuit Television.

California Environmental Quality Act (CEQA): A statute that requires all jurisdictions in the State of California to evaluate the extent of environmental degradation posed by proposed development or project.

CHP: California Highway Patrol.

Capital Improvement Program (CIP): A seven-year program of projects to maintain or improve the traffic level of service and transit performance standards developed and to mitigate regional transportation impacts identified by the CMP Land Use Analysis Program, which conforms to transportation-related vehicle emissions air quality mitigation measures.

California Transportation Commission (CTC): A body established by Assembly Bill 402 (AB 402) and appointed by the Governor to advise and assist the Secretary of the Business, Transportation and Housing Agency and the Legislature in formulating and evaluating state policies and plans for transportation.

Commute Hours: AM and PM peak commute travel times. Generally, between the hours of 5:00 a.m. and 9:00 a.m. to 4:00 p.m. to 7:00 p.m., Monday through Friday.

COG: (Council of Governments) A voluntary consortium of local government representatives, from contiguous communities, meeting on a regular basis, and formed to cooperate on common planning and solve common development problems of their area. COGs can function as the RTPAs and MPOs in urbanized area.

Concept: A strategy for future improvements that will reduce congestion or maintain the existing level of service on a specific route.

Congestion: Defined by Caltrans as, reduced speeds of less than 35 mile per hour for longer than 15 minutes.

Congestion Management Agency (CMA): The agency responsible for developing the Congestion Management Program and coordinating and monitoring its implementation.

Congestion Management Program (CMP): A legislatively required countywide program, which addresses congestion problems.

CMS: Changeable Message Sign.

Congestion Management System (CMS): Required by ISTEA to be implemented by states to improve transportation planning.

Congestion Mitigation Air Quality program (CMAQ): Part of ISTEA, this is a funding program designed for projects that contribute to the attainment of air quality goals.

Demand-to-Capacity (D/C) Ratio: The relationship between the number of vehicle trips operating on a facility, versus the number of vehicle trips that can be accommodated on that facility.

District System Management Plan (DSMP): A part of the system planning process. A district's long-range plan for management of transportation systems in its jurisdiction.

Environmental Impact Report (EIR): A report prepared pursuant to CEQA that analyzes the level of environmental degradation expected to be caused by a proposed development or project.

Extended Commute: Service hours beyond the normal commute hours. Generally, in the evening, this refers to transit service until 10:00 p.m.

F+I Actual (Fatal Plus Injury Actual): Contains specific data for accidents that are State highway related. Each accident record contains a ramp, intersection or highway postmile address that ties it to the Highway database.

F+I Average (Fatal Plus Injury Average): The Statewide Average Accident Rate (SWA) is based on a rated segment. The accident-rating factor (ARF) indicates how the existing segment compares to other segments on the State Highway System. The ARF is a comparison of the segment's accident rate to the statewide average accident rate for roads of the same type and having similar characteristics. Accident severity as well as accident frequency is considered in calculating the ARF. If the total number of accidents is less than three, there will not be a calculation the ARF. If there are more than two, but less than twenty-five total accidents, an accident-rating factor will be generated, but there will not be an accident severity flag listed. If there are more than twenty-five accidents, an accident rating factor and severity flag will be generated.

F+I/MVM (Fatal Plus Injury Per Million Vehicle Miles): The fatality rate of those killed in vehicles plus the injury rate of those injured in vehicles.

FAI (Federal Aid Interstate): Highway program established in 1956 for national defense purposes, these roadways interconnect the major nationwide population and economic centers. A federal funding category for these routes.

FHWA: Federal Highway Administration.

Free-flow Speed: Speed that occurs when density and flow are "zero".

Freeway Capacity: The maximum sustained 15 minute rate of flow that can be accommodated by a uniform freeway segment under prevailing traffic and roadway conditions in a specified direction.

FSP: (Freeway Service Patrol) A special team of tow truck drivers who continously patrol freeways during commuter hours to help clear disabled automobiles.

FT: Foothill Transit.

GM: Gardena Municipal Bus Lines.

GRT: (Guaranteed Return Trip) A ridesharing strategy which provides a "Guaranteed Return Trip" to those who rideshare, in the case of an emergency or when overtime work hours are required.

High Occupancy Vehicle Lane (HOV): A lane of freeway reserved for the use of vehicles with more than a preset number of occupants; such vehicles often include buses, taxis and carpools.

HAR: Highway Advisory Radio.

Highway Capacity Manual (HCM): Revised in 1994 by the Transportation Research Board of the National Research Council, the HCM presents various methodologies for analyzing the operation (see Level of Service) of transportation systems as freeways, arterial, transit, and pedestrian facilities.

HOT Lanes: (High Occupancy Toll Lane) New HOV lanes that allow single occupant vehicles access for a fee.

HSR: (High Speed Rail) A regional system that will connect major regional activity centers and significant inter-/multi-modal transportation facilities.

I/C: (Interchange) A system of interconnecting roadways in conjunction with one or more grade separations providing for the interchange of traffic between two or more roadways on different levels.

ICES: (Intermodal Corridors of Economic Significance) Significant National Highway System Corridors that link intermodal facilities most directly, conveniently and efficiently to intrastate, interstate and international markets.

Intermodal Surface Transportation Efficiency Act (ISTEA): Federal legislation and funding Program adopted in 1991. It provides increased funding and program flexibility for multi-modal transportation programs. (Update: ISTEA expired on September 30, 1997. In December 1997, Congress passed and the President signed a six-month extension of the law, holding funding to current levels and keeping program structure and formulas intact. This extension expires on March 31, 1998, with an obligation deadline of May 1, 1998. Congress will then again face a situation of how to address the issue of keeping transportation funds flowing while debating multi-year reauthorization legislation).

Interregional Transportation Improvement Program (ITIP): An improvement program that makes up 25% of the STIP. 60% of this program is for improvements on Interregional Routes in non-urbanized areas and intercity rail. 40% is to fund projects of interregional significance (for the interregional movement of people and goods).

Intersection Capacity Utilization (ICU): A method for calculating the level of traffic congestion (see Level of Service) at an intersection.

IRRS (Interregional Road System): A series of interregional state highway routes, outside the urbanized areas, that provide access to, and links between, the state's economic centers, major recreational areas, and urban and rural regions.

ITMS: Intermodal Transportation Management System

ITS: (Intelligent Transportation Systems) The application of electronics and computer information systems to transportation.

ITSP: (Interregional Transportation Strategic Plan) Caltrans guiding framework for implementing the Interregional Improvement Program under Senate Bill 45.

IVHS (Intelligent Vehicle Highway Systems): The development of application of electronics, communications or information processing (including advanced traffic management systems, public transportation systems, satellite vehicle tracking systems, and advanced vehicle communications systems) used alone or in combination to improve the efficiency and safety of surface transportation systems.

LACMTA: Los Angeles County Metropolitan Transportation Authority.

LADOT: Los Angeles Department of Transportation.

Level of Service (LOS): A qualitative measure describing operational conditions within a traffic stream; generally described in terms of such factors as speed and travel time, freedom to maneuver, traffic interruptions, comfort and convenience, and safety.

Local Implementation Report (LIR): A report that jurisdictions must submit to LACMTA to remain in conformance with Los Angeles County Congestion Management Program (CMP) requirements. This report is submitted on an annual basis, and contains a resolution of conformance, new development activity reporting, selected mitigation strategies and credit claims and future transportation improvements.

Los Angeles Regional Transportation Study (LARTS): An organization of transportation planners and data analysts who have developed and are charged with monitoring and forecasting travel in the Los Angeles area. It has primary responsibility for predicting future travel behavior within six counties (Los Angeles, Orange, Ventura, Riverside, San Bernardino and Imperial) which comprises the Southern California Association of Governments (SCAG) region. It operates under the aegis of CALTRANS, District 7, and functions with the support of SCAG, U.S. Department of Transportation, and transit districts, cities and counties of the SCAG region.

LROP: Long Range Operations Plan

LX: Los Angeles Department of Transportation Commuter Express

Metropolitan Planning Organization (MPO): According to U.S. Code, the organization designated by the governor and local elected officials as responsible, together with the state, for transportation planning in an urbanized area. It serves as the forum for cooperative decision making by principal elected officials of general local government.

MF: (Mixed Flow) Traffice Movement having automobiles, trucks, buses, and motorcycles sharing traffic lanes.

Model, Land Use: A model used to predict the future spatial allocation of urban activities (land use), given total regional growth, the future transportation system, and other factors.

Model, Mode Choice: A model used to forecast the proportion of total person trips on each of the available transportation modes.

Model, Traffic: A mathematical equation or graphic technique used to simulate traffic movements, particularly those in urban areas or on a freeway.

Model: (1) A mathematical or conceptual presentation of relationships and actions within a system. It is used for analysis of the system or its evaluation under various conditions. (2) A mathematical description of a real-life situation, that uses data on past and present conditions to make a projection about the future.

MPO: (Metropolitan Planning Organization) According to U.S. Code, the organization designated by the governor and local elected officials as responsible, together with the state, for the transportation planning in an urbanized area. It serves as the forum for cooperative decision making by principal elected officials of general local government.

MPAH: Master Plan of Arterial Highways

MTA: Metropolitan Transportation Authority (Metro Bus Lines)

Multi-Modal: Pertaining to more than one mode of travel.

NHS: (National Highway System) Will consist of 155,000 miles (plus or minus 15 percent) of the major road in the U.S. Included will be all Interstate routes, a large percentage of urban and rural principal arterials, the defense strategic highway network, and strategic highway connectors.

Night Owl: Evening transit service hours that extend beyond the normal commute service hours, but is less than 24 hour per day service.

Notice of Preparation (NOP): A notice informing potentially affected agencies that an Environmental Impact Report (EIR) is being prepared for a proposed development or project.

Null: A concept that includes only existing projects and those projects which may or may not be constructed but are programmed in the 1996 STIP.

OHC: Other Highway Construction

Passenger Miles Traveled (PMT): The number of miles traveled by all passengers on a transportation mode such as transit.

Peak (Peak Period, Rush Hours): (1) the period during which the maximum amount of travel occurs. It may be specified as the morning (a.m.) or afternoon or evening (p.m.) peak. (2) The period during which the demand for transportation service is the heaviest. (AM Peak period represents 6:30 a.m. to 8:30 a.m. and PM Peak period represents 3:00 p.m. to 6:00 p.m.)

Performance Indicator: Quantitative measures of how well an activity, task, or function is being performed. In transportation systems, it is usually computed by relating a measure of service output or use to a measure of service input or cost.

PM: (Post Mile) is the mileage measured from a county line or the beginning of a route to another county line or the ending of the route. Each post mile along a route in a county is unique location on the State Highway System.

PMT: (Passenger Miles Traveled) The number of miles traveled by all passengers on a transportation mode such as transit.

PPN: Planning and Program Number used in the State Transportation Improvement Program (STIP) to identify projects.

PSR: (Project Study Report) The pre-programming document required before a project may be included in the STIP.

Public Transportation: Transportation service to the public on a regular basis using vehicles that transport more dm one person for compensation, usually but not exclusively over a set route or routes from one fixed point to another. Routes and schedules may be determined through a cooperative arrangement. Subcategories include public transit service, and paratransit services that are available to the general public.

RAS: Rehabilitation and Safety

Regional Statistical Area (RSA): An aggregation of census tracts for the purpose of subregional demographic and transportation analysis within the Southern California Association of Governments (SCAG) area.

Regional Transportation Improvement Program (RTIP): A list of proposed

 transportation projects submitted to the CTC by the regional transportation planning agency, as a request for state funding through the FCR and Urban and Commuter Rail Programs. The individual projects are first proposed by local jurisdictions (CMAs in urbanized counties), then evaluated and prioritized by the RTPA for submission to the CTC. The RTIP has a seven-year planning horizon, and is updated every two years.Regional Transportation Plan (RTP): A comprehensive 20-year plan for the region, updated every two years by the regional transportation-planning agency. The RTP includes goals, objectives, and policies, and recommends specific transportation improvements.

Regional Transportation Planning Agency (RTPA): The agency responsible for the preparation of RTPs and RTIPs and designated by the State Business Transportation and Housing Agency to allocate transit funds. RTPAs can be local transportation commissions, COGs MPOS, or statutorily created agencies. In the Los Angeles area, SCAG is the RTPA.

Ridesharing: Two or more persons traveling by any mode, including but not limited to, automobile, vanpool, bus, taxi, jitney, and public transit.

RME: (Regional Mobility Element) SCAGs major policy and planning statement on the region's tranportation issues and goals. It is comprised of a set of long-range policies, plans and programs that outline a vision of a regional transportation system compatible with federal and state mobility objectives. Formerly called the Regional Mobility Plan (RMP).

RMP: (Regional Mobility Plan) The equivalent to the federal and state required Regional Transportation Plan (RTP) for the SCAG region.

Roadway Characteristics: The geometric characteristics of the freeway segment under study, including the number and width of lanes, lateral clearances at the roadside and median, free-flow speeds, grades, and lane configurations.

SC: Santa Clarita Transit

SCRRA: Southern California Regional Rail Authority

SHELL: Subsystem of Highways for the movement of Extra Legal Loads

SHOPP: (State Highway Operation and Protection Program) A four-year program limited to projects related to State highway safety and rehabilitation.

SM: Santa Monica Transit.

Short Range Transit Program (SRTP): A five-year comprehensive plan required by the Federal Transit Administration for all transit operators receiving federal funds. The plans establish the operator's goals, policies, and objectives, analyze current and past performance, and describe short-term operational and capital improvement plans.

SJHTC: San Joaquin Hills Transportation Corridor

Smart Shuttle: A multiple occupant passenger vehicle equipped with advanced technology for more effective vehicle and fleet planning, scheduling and operation, as well as offering passengers more information and fare payment options.

South Coast Air Basin (SCAB): A geographic area defined by the San Jacinto Mountains to the east, the San Bernardino Mountains to the north, and the Pacific Ocean to the west and south. The entire SCAB is under the jurisdiction of the South Coast Air Quality Management District (SCAQMD).

South Coast Air Quality Management District (SCAQMD): The agency responsible for preparing the Air Quality Management Plan (AQMP) for the South Coast Air Basin.

Southern California Association of Governments (SCAG): The Metropolitan Planning Organization (MPO) for Ventura, Los Angeles, Orange, San Bernardino, Riverside and Imperial counties that is responsible for preparing the RTIP and the RTP. SCAG also prepared land use and transportation control measures in the 1994 Air Quality Management Plan (AQMP).

SR: State Route

STAA: Surface Transportation Assistance Act

STRAHNET: Strategic Highway Corridor Network

State Transportation Improvement Program (STIP): A list of transportation projects, proposed in RTIPs and the PSTIP, which are approved for funding by the CTC.

Surface Transportation Program (STP): Part of ISTEA, this is a funding program intended for use by the states and cities for congestion relief in urban areas.

Traffic Accident Surveillance and Analysis System (TASAS): A system that provides a detailed list and/or summary of accidents that have occurred on highways, ramps, or intersections in the State Highway System. Accidents can be selected by location, highway characteristics, accident data codes or any combination of these.

TCR: (Transportation Concept Report) Formerly Route Concept Report (RCR) this report analyzes a transportation corridor service area, establishes a twenty-year transportation planning concept and identifies modal transportation options and applications needed to achieve the twenty-year concepts.

TEA-21: (Transportation Equity Act for the $21^{\text {st }}$ Century) Signed by President Clinton on June 9, 1998. TEA-21 builds on the initiatives established in the ISTEA Act of 1991. This new Act combines the continuation and improvement of current programs with new initiatives to meet the challenges of improving safety as traffic continues to increase at record levels, protecting and enhancing communities and the natural environment as we provide transportation, and advancing America's economic growth and competitiveness domestically and internationally through efficient and flexible and transportation.

TMC: (Transportation Management Center) A focal point that can monitor traffic and road conditions, as well as train and transit schedules, and airport and shipping advisories. From here, information about accidents, road closures and emergency notifications is relayed to travelers.

TOS: (Traffic Operation System) Computer based signal operation.

TOT/MVM: Total Accidents Per Million Vehicle Miles.

Traffic Conditions: Any characteristics of the traffic stream that may affect capacity or operations, including the percentage composition of the traffic stream by vehicle type and driver characteristics (such as the differences between weekday commuters and recreational drivers).

Transit Performance Measurement Program (TPMP): A state mandated program to evaluate transit operator system performance on the basis of operating statistics. The program monitors transit system performance of Los Angeles County operators that receive state and federal funds and analyzes the institutional relationships among operators to ensure coordination.

Transportation Control Measure (TCM): A measure intended to reduce pollutant emissions from motor vehicles. Examples of TCMs include programs to encourage ridesharing or public transit usage, city or county trip reduction ordinances, and the use of cleaner burning fuels in motor vehicles.

Transportation Demand Management (TDM): Demand based techniques for reducing traffic congestion, such as ridesharing programs and flexible work schedules enabling employees to commute to and from work outside of peak hours.

Transportation Impact Analysis (TIA): An analysis procedure to assist local jurisdictions in assessing the impact of land use decisions on the Congestion Management Program (CMP) system for Los Angeles County.

Transportation Management Association (TMA)/Organization (TMO): A private/nonprofit association that has a financial dues structure joined together in a legal agreement for the purpose of achieving mobility and air quality goals and objectives within a designated area. There are fourteen operating TMA/TMO's in Los Angeles County.

Transportation System Management (TSM): That part of the urban transportation process undertaken to improve the efficiency of the existing transportation system. The intent is to make better use of the existing transportation system by using short-term, low capital transportation improvements that generally cost less and can be implemented more quickly than system development actions.

TL: Truck Lane.

TRO: Trip Reduction Ordinances

TT: Torrance Transit

TW: Transitway

Urban Transportation Planning System (UTPS): A tool for multi-modal transportation planning developed by the Urban Mass Transportation Administration (now the Federal Transit Administration) and the Federal Highway Administration. It is used for both long and short-range Planning, particularly system analysis and covers both computerized and manual planning methods. UTPS consists of computer programs, attendant documentation, user guides, and manuals that cover one or more of five analytical categories: highway network analysis, transit network analysis, demand estimation, data capture and manipulation, and sketch planning.

V/C: Volume Capacity

VCTC: Ventura County Transportation Commission

Vehicle Miles Traveled (VMT): (1) on highways, a measurement of the total miles traveled in all vehicles in the area for a specified time period. It is calculated by the number of vehicles multiplied by the miles traveled in a given area or on a given highway during the time period. (2) In transit, the number of vehicle miles operated on a given route or line or network during a specified time period.

Vehicle Occupancy: The number of people aboard a vehicle at a given time; also known as auto or automobile occupancy when the reference is to automobile travel only.

Vehicle Service Miles (VSM): The total miles traveled by transit service vehicles while in revenue service.

Vehicle Trip: A one-way movement of a vehicle between two points.

Inisie

System Planning:

The Legislative Mandate

Long-Term System Planning

Added: Statutes of 1987, Chapter 878

65086 (a) The Department of Transportation shall carry out long-term state highway system planning to identify future highway improvements and new transportation corridor through route concept reports.
(b) The department, in conjunction with transportation planning agencies, shall develop specific project listing for the initiation of project studies reports resulting in project candidates for inclusion in regional transportation plans and the state transportation improvement program as required by Section 14529 .

Level of Service

Flow	Operating Speed	Delay	Service Rating
Conditions	Sp		

Highest quality of Service.
Free traffic flow, low volumes and densities. Little or no restriction on maneuve rability or speed.

Stable traffic flow, speed becoming slightly restricted. Low restriction on maneuve rability.

Stable traffic flow, but less

freed om to select speed, change lanes, or pass. Density increasing

App roach ing unstable flow.
Speeds tole rable but subject to sudden and con side rable variation. Less man euve rability and driver comfort

Unstable traffic flow with
rap idlly fluctuating speeds and flow rates. Short headways, low mane uverability and lower driver comfort.

Forced traffic flow. Speed and
flow may drop to zero with high densities.

Minimal
Adequate

Minimal Adequate 35

Signific ant
Poor
and lower drivercomfo

55+
None
Good

50
None
Good

SUMMARY SHEET SOURCES SEGMENT 1 SUMMARY-P. 1

DESCRIPTION	
Limits:	$\# 1$
Post Mile:	$\# 2$

Classification	\#3
Functional Classification:	$\# 4$
MPAH Designation:	$\# 5$
Other Systems:	

Physical Characteristics	\#6
Terrain:	$\# 7$
Mainline R/W	$\# 8$
Median / Outside Shoulder:	$\# 9$
Design Speed (MPH)	$\# 10$
Bridge Structures:	

Accident Retes per Million Vehicle Miles (MVM) (1/94 to 12/96)				
ACTUAL			AVERAGE	
Fatal + Injury	Total	Fatal + Injury	Total	
\#17	\#18	\#19	\#20	

Corridor Characteristics	
Trucks (\% of ADT):	$\# 11$
Express Transit (lines):	$\# 12$
Hours of Operation:	$\# 13$
Rail Service:	
Park \& Ride Lots (Spaces):	

SUMMARY SHEET SOURCES

SEGMENT 1 SUMMARY-P. 2

TRAFFIC DATA							
	EXISTING		2020 NULL (w/o 710)		2020 NULL (with 710)		
	MAIN	HOV	MAIN	HOV	MAIN	HOV	
Average Daily Traffic (ADT)	$\# 21$	$\# 23$	$\# 25$	\#27	\#29	\#31	
Lanes Configuration (ea. direction)	$\# 22$	$\# 24$	$\# 26$	$\# 28$	$\# 30$	\#32	

Volume							
AM Peak Hour	N	\#33	\#37	\#41	\#45	\#49	\#53
AM Peak Hour	S	\#34	\#38	\#42	\#46	\#50	\#54
PM Peak Hour	N	\#35	\#39	\#43	\#47	\#51	\#55
PM Peak Hour	S	\#36	\#40	\#44	\#48	\#52	\#56

Speed		
		$\# 57$
AM Average	\mathbf{N}	$\# 58$
AM Average	\mathbf{S}	$\# 59$
PM Average	\mathbf{N}	$\# 60$
PM Average	\mathbf{S}	

$\# 61$
$\# 62$
$\# 63$
$\# 64$

$\# 65$
$\# 66$
$\# 67$
$\# 68$

Service Characteristics							
Level Of Service, AM	N	\#69	\#75	\#81	\#87	\#93	\#99
Level Of Service, AM	S	\#70	\#76	\#82	\#88	\#94	\#100
Level Of Service, PM	N	\#71	\#77	\#83	\#89	\#95	\#101
Level Of Service, PM	S	\#72	\#78	\#84	\#90	\#96	\#102
Directional Split (\%) AM	N, S	\#73	\#79	\#85	\#91	\#97	\#103
Directional Split (\%) PM	N, S	\#74	\#80	\#86	\#92	\#98	\#104

SUMMARY SHEET SOURCES

SEGMENT 1 SUMMARY-P. 3

TRAFFIC DATA							
	2020 CONCEPT (Alt1)	$\mathbf{2 0 2 0}$ CONCEPT (Alt2)		ULTIMATE			
	MAIN	HOV	MAIN	HOV	MAIN	HOV	
Average Daily Traffic (ADT)	$\# 105$	$\# 107$	$\# 109$	$\# 111$	$\# 113$	$\# 115$	
Lanes Configuration (ea. direction)	$\# 106$	$\# 108$	$\# 110$	$\# 112$	$\# 114$	$\# 116$	

Volume							
	AM Peak Hour	N	$\# 117$	$\# 121$	$\# 125$	$\# 129$	$\# 133$
AM Peak Hour	S	$\# 118$	$\# 122$	$\# 126$	$\# 130$	$\# 134$	$\# 138$
PM Peak Hour	N	$\# 119$	$\# 123$	$\# 127$	$\# 131$	$\# 135$	$\# 139$
PM Peak Hour	S	$\# 120$	$\# 124$	$\# 128$	$\# 132$	$\# 136$	$\# 140$

Speed		
		$\# 141$
AM Average	\mathbf{N}	$\# 142$
AM Average	\mathbf{S}	$\# 143$
PM Average	\mathbf{N}	$\# 144$
PM Average	\mathbf{S}	

$\# 145$
$\# 146$
$\# 147$
$\# 148$

$\# 149$
$\# 150$
$\# 151$
$\# 152$

Service Characteristics							
Level Of Service, AM	N	\#153	\#159	\#165	\#171	\#177	\#183
Level Of Service, AM	S	\#154	\#160	\#166	\#172	\#178	\#184
Level Of Service, PM	N	\#155	\#161	\#167	\#173	\#179	\#185
Level Of Service, PM	S	\#156	\#162	\#168	\#174	\#180	\#186
Directional Split (\%) AM	N, S	\#157	\#163	\#169	\#175	\#181	\#187
Directional Split (\%) PM	N, S	\#158	\#164	\#170	\#176	\#182	\#188

APPENDIX SUMMARY SHEET SOURCES

Summary sheet data entries and their sources are as indicated below:

1. Segment limits - System Planning
2. Post Miles - 1995 Traffic Volume book, 1995 State Highway Log, 1995 Route Segment Report, 1996 Highway Inventory
3. Functional Classification - 1992 Functional Classification System Map, NHS Map
4. MPAH Designation - County Master Plan of Arterial Highways Map
5. Other Systems - STAA Map, STRAHNET Map, IRRS Map, ICES List, Lifeline Map
6. Terrain - 1995 Route Segment Report, 1996 Highway Inventory
7. Mainline R/W - 1995 State Highway Log, 1996 Highway Inventory, R/W Maps
8. Median/Shoulder - 1995 State Highway Log, 1996 Highway Inventory
9. Design Speed - 1995 Route Segment Report, 1996 Highway Inventory
10. Bridge Structures - Office of Structure, Maintenance and Investigations
11. Trucks (\% of ADT) - 1995 Daily Truck Traffic on State Highway System, 1996 Highway Inventory
12. Express Transit (lines) - 1996 MTA Route Maps, Individual Route Schedules (Various Operators)
13. Hours of Operation - Individual Route Schedules (Various Operators)
14. Rail Service - 1996 MTA Route Maps, 1996 Metrolink Schedules, 1996 AMTRAK Schedules
15. Park \& Ride Lots (Spaces) - 1996 Park \& Ride Map
16. Purpose - System Planning
17. Actual Fatal \& Injury Accidents - 1997 TASAS Traffic Data
18. Actual Total Accidents - 1997 TASAS Traffic Data
19. Average Fatal \& Injury Accidents - 1997 TASAS Traffic Data
20. Average Total Accidents - 1997 TASAS Traffic Data
21. Existing Mainline ADT - 1995 Traffic Volume book, 1995 Traffic Count Data
22. Existing Mainline Lanes - 1995 State Highway Log, 1996 Highway Inventory, 1995 Route Segment Report, 1996 Video Log
23. Existing HOV ADT - 1995 Traffic Volume book, 1995 Traffic Count Data
24. Existing HOV Lanes - 1995 State Highway Log, 1996 Highway Inventory, 1995 Route Segment Report, 1996 Video Log
25. 2020 Null without I-710 Mainline ADT - 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
26. 2020 Null without I-710 Mainline Lanes -1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
27. 2020 Null without I-710 HOV ADT - 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
28. 2020 Null without I-710 HOV Lanes - 1997 Status of HOV Projects List, 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
29. 2020 Null with I-710 Mainline ADT - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
30. 2020 Null with I-710 Mainline Lanes - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
31. 2020 Null with I-710 HOV ADT - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
32. 2020 Null with I-710 HOV Lanes - 1997 Status of HOV Projects List, 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
33. Existing Mainline AM Peak Hour Volume (North) - 1995 Traffic Volume book, 1995 Traffic Count Data
34. Existing Mainline AM Peak Hour Volume (South) - 1995 Traffic Volume book, 1995 Traffic Count Data
35. Existing Mainline PM Peak Hour Volume (North) - 1995 Traffic Volume book, 1995 Traffic Count Data
36. Existing Mainline PM Peak Hour Volume (South) - 1995 Traffic Volume book, 1995 Traffic Count Data
37. Existing HOV AM Peak Hour Volume (North) - 1995 Traffic Volume book, 1995 Traffic Count Data
38. Existing HOV AM Peak Hour Volume (South) - 1995 Traffic Volume book, 1995 Traffic Count Data
39. Existing HOV PM Peak Hour Volume (North) - 1995 Traffic Volume book, 1995 Traffic Count Data
40. Existing HOV PM Peak Hour Volume (South) - 1995 Traffic Volume book, 1995 Traffic Count Data
41. 2020 Null without I-710 Mainline AM Peak Hour Volume (North) - 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
42. 2020 Null without I-710 Mainline AM Peak Hour Volume (South) - 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
43. 2020 Null without I-710 Mainline PM Peak Hour Volume (North) - 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
44. 2020 Null without I-710 Mainline PM Peak Hour Volume (South) - 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
45. 2020 Null without I-710 HOV AM Peak Hour Volume (North) - 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
46. 2020 Null without I-710 HOV AM Peak Hour Volume (South) - 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
47. 2020 Null without I-710 HOV PM Peak Hour Volume (North) - 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
48. 2020 Null without I-710 HOV PM Peak Hour Volume (South) - 1990 LARTS Base/2020 Null without I-710 Model, Spreadsheet Segment Calculations
49. 2020 Null with I-710 Mainline AM Peak Hour Volume (North) - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
50. 2020 Null with I-710 Mainline AM Peak Hour Volume (South) - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
51. 2020 Null with I-710 Mainline PM Peak Hour Volume (North) - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
52. 2020 Null with I-710 Mainline PM Peak Hour Volume (South) - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
53. 2020 Null with I-710 HOV AM Peak Hour Volume (North) - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
54. 2020 Null with I-710 HOV AM Peak Hour Volume (South) - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
55. 2020 Null with I-710 HOV PM Peak Hour Volume (North) - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
56. 2020 Null with I-710 HOV PM Peak Hour Volume (South) - 1990 LARTS Base/2020 Null with I-710 Model, Spreadsheet Segment Calculations
57. Existing Mainline AM Average Speed (North) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
58. Existing Mainline AM Average Speed (South) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
59. Existing Mainline PM Average Speed (North) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
60. Existing Mainline PM Average Speed (South) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
61. 2020 Null without I-710 Mainline AM Average Speed (North) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
62. 2020 Null without I-710 Mainline AM Average Speed (South) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
63. 2020 Null without I-710 Mainline PM Average Speed (North) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
64. 2020 Null without I-710 Mainline PM Average Speed (South) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
65. 2020 Null with I-710 Mainline AM Average Speed (North) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
66. 2020 Null with I-710 Mainline AM Average Speed (South) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
67. 2020 Null with I-710 Mainline PM Average Speed (North) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
68. 2020 Null with I-710 Mainline PM Average Speed (South) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
69. Existing Mainline AM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
70. Existing Mainline AM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
71. Existing Mainline PM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
72. Existing Mainline PM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
73. Existing Mainline AM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
74. Existing Mainline PM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
75. Existing HOV AM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
76. Existing HOV AM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
77. Existing HOV PM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
78. Existing HOV PM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
79. Existing HOV AM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
80. Existing HOV PM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
81. 2020 Null without I-710 Mainline AM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
82. 2020 Null without I-710 Mainline AM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
83. 2020 Null without I-710 Mainline PM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
84. 2020 Null without I-710 Mainline PM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
85. 2020 Null without I-710 Mainline AM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
86. 2020 Null without I-710 Mainline PM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
87. 2020 Null without I-710 HOV AM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
88. 2020 Null without I-710 HOV AM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
89. 2020 Null without I-710 HOV PM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
90. 2020 Null without I-710 HOV PM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
91. 2020 Null without I-710 HOV AM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
92. 2020 Null without I-710 HOV PM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
93. 2020 Null with I-710 Mainline AM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
94. 2020 Null with I-710 Mainline AM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
95. 2020 Null with I-710 Mainline PM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
96. 2020 Null with I-710 Mainline PM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
97. 2020 Null with I-710 Mainline AM Directional Split (North) - 1994 Highway Capacity

Manual, Spreadsheet Segment Calculations
98. 2020 Null with I-710 Mainline PM Directional Split (North) - 1994 Highway Capacity

Manual, Spreadsheet Segment Calculations
99. 2020 Null with I-710 HOV AM LOS (North) - 1994 Highway Capacity Manual,

Spreadsheet Segment Calculations
100. 2020 Null with I-710 HOV AM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
101. 2020 Null with I-710 HOV PM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
102. 2020 Null with I-710 HOV PM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
103. 2020 Null with I-710 HOV AM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
104. 2020 Null with I-710 HOV PM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
105. 2020 Concept Alternate 1 Mainline ADT - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
106. 2020 Concept Alternate 1 Mainline Lanes - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
107. 2020 Concept Alternate 1 HOV ADT - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
108. 2020 Concept Alternate 1 HOV Lanes - 1997 Status of HOV Projects List, 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
109. 2020 Concept Alternate 2 Mainline ADT - 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
110. 2020 Concept Alternate 2 Mainline Lanes - 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
111. 2020 Concept Alternate 2 HOV ADT - 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
112. 2020 Concept Alternate 2 HOV Lanes - 1997 Status of HOV Projects List, 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
113. Ultimate Mainline ADT - Not applicable
114. Ultimate Mainline Lanes - System Planning, 1991 Route Concept Report
115. Ultimate HOV ADT - Not applicable
116. Ultimate HOV Lanes - System Planning, 1991 Route Concept Report
117. 2020 Concept Alternate 1 Mainline AM Peak Hour Volume (North) - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
118. 2020 Concept Alternate 1 Mainline AM Peak Hour Volume (South) - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
119. 2020 Concept Alternate 1 Mainline PM Peak Hour Volume (North) - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
120. 2020 Concept Alternate 1 Mainline PM Peak Hour Volume (South) - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
121. 2020 Concept Alternate 1 HOV AM Peak Hour Volume (North) - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
122. 2020 Concept Alternate 1 HOV AM Peak Hour Volume (South) - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
123. 2020 Concept Alternate 1 HOV PM Peak Hour Volume (North) - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
124. 2020 Concept Alternate 1 HOV PM Peak Hour Volume (South) - 1990 LARTS Base/2020 Concept Alternate 1 Model, Spreadsheet Segment Calculations
125. 2020 Concept Alternate 2 Mainline AM Peak Hour Volume (North) - 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
126. 2020 Concept Alternate 2 Mainline AM Peak Hour Volume (South) - 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
127. 2020 Concept Alternate 2 Mainline PM Peak Hour Volume (North) - 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
128. 2020 Concept Alternate 2 Mainline PM Peak Hour Volume (South)-1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
129. 2020 Concept Alternate 2 HOV AM Peak Hour Volume (North) - 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
130. 2020 Concept Alternate 2 HOV AM Peak Hour Volume (South) - 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
131. 2020 Concept Alternate 2 HOV PM Peak Hour Volume (North) - 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
132. 2020 Concept Alternate 2 HOV PM Peak Hour Volume (South) - 1990 LARTS Base/2020 Concept Alternate 2 Model, Spreadsheet Segment Calculations
133. Ultimate Mainline AM Peak Hour Volume (North) - Not applicable
134. Ultimate Mainline AM Peak Hour Volume (South) - Not applicable
135. Ultimate Mainline PM Peak Hour Volume (North) - Not applicable
136. Ultimate Mainline PM Peak Hour Volume (South) - Not applicable
137. Ultimate HOV AM Peak Hour Volume (North) - Not applicable
138. Ultimate HOV AM Peak Hour Volume (South) - Not applicable
139. Ultimate HOV PM Peak Hour Volume (North) - Not applicable
140. Ultimate HOV PM Peak Hour Volume (South) - Not applicable
141. 2020 Concept Alternate 1 Mainline AM Average Speed (North) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
142. 2020 Concept Alternate 1 Mainline AM Average Speed (South) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
143. 2020 Concept Alternate 1 Mainline PM Average Speed (North) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
144. 2020 Concept Alternate 1 Mainline PM Average Speed (South) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
145. 2020 Concept Alternate 2 Mainline AM Average Speed (North) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
146. 2020 Concept Alternate 2 Mainline AM Average Speed (South) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
147. 2020 Concept Alternate 2 Mainline PM Average Speed (North) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
148. 2020 Concept Alternate 2 Mainline PM Average Speed (South) - 1994 Highway Capacity Manual, 1995 Traffic Operations Speed Map, 1990/2020 LARTS Model Runs, Spreadsheet Segment Calculations
149. Ultimate Mainline AM Average Speed (North) - Not applicable
150. Ultimate Mainline AM Average Speed (South) - Not applicable
151. Ultimate Mainline PM Average Speed (North) - Not applicable
152. Ultimate Mainline PM Average Speed (South) - Not applicable
153. 2020 Concept Alternate 1 Mainline AM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
154. 2020 Concept Alternate 1 Mainline AM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
155. 2020 Concept Alternate 1 Mainline PM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
156. 2020 Concept Alternate 1 Mainline PM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
157. 2020 Concept Alternate 1 Mainline AM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
158. 2020 Concept Alternate 1 Mainline PM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
159. 2020 Concept Alternate 1 HOV AM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
160. 2020 Concept Alternate 1 HOV AM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
161. 2020 Concept Alternate 1 HOV PM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
162. 2020 Concept Alternate 1 HOV PM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
163. 2020 Concept Alternate 1 HOV AM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
164. 2020 Concept Alternate 1 HOV PM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
165. 2020 Concept Alternate 2 Mainline AM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
166. 2020 Concept Alternate 2 Mainline AM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
167. 2020 Concept Alternate 2 Mainline PM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
168. 2020 Concept Alternate 2 Mainline PM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
169. 2020 Concept Alternate 2 Mainline AM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
170. 2020 Concept Alternate 2 Mainline PM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
171. 2020 Concept Alternate 2 HOV AM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
172. 2020 Concept Alternate 2 HOV AM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
173. 2020 Concept Alternate 2 HOV PM LOS (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
174. 2020 Concept Alternate 2 HOV PM LOS (South) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
175. 2020 Concept Alternate 2 HOV AM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
176. 2020 Concept Alternate 2 HOV PM Directional Split (North) - 1994 Highway Capacity Manual, Spreadsheet Segment Calculations
177. Ultimate Mainline AM LOS (North) - Not applicable
178. Ultimate Mainline AM LOS (South) - Not applicable
179. Ultimate Mainline PM LOS (North) - Not applicable
180. Ultimate Mainline PM LOS (South) - Not applicable
181. Ultimate Mainline AM Directional Split (North) - Not applicable
182. Ultimate Mainline PM Directional Split (North) - Not applicable
183. Ultimate HOV AM LOS (North) - Not applicable
184. Ultimate HOV AM LOS (South) - Not applicable
185. Ultimate HOV PM LOS (North) - Not applicable
186. Ultimate HOV PM LOS (South) - Not applicable
187. Ultimate HOV AM Directional Split (North) - Not applicable
188. Ultimate HOV PM Directional Split (North) - Not applicable

SYSTEM PLANNING:
 An Overview

PURPOSE:

System Planning provides the basis for an effective transportation decisionmaking process, which is responsive to the public demand for mobility o people and goods.

OBJECTIVE:

- Identify, analyze and display transportation problems on a consistent statewide basis to enable fully informed decisions on the programming of system improvements and on system operations and maintenance.
- Allow department management to make short-term decisions that are consistent with long-term objectives.
- Communicate with the public on the levels of transportation service, which the state can or cannot provide.

PRODUCTS:

1) District System Management Plan (DSMP)

The DSMP is a strategic and policy planning document that presents how the district envisions the transportation system will be maintained, managed and developed over the next twenty years and beyond. It is developed in partnership with regional and local transportation planning agencies, congestion management agencies, transit districts and air quality planning agencies. It considers the entire transportation infrastructure, regardless of jurisdiction, and addresses all modes and services which move people, services, and goods. As a management tool, it informs
federal, state, regional and local agencies, the public and the private sector of the district's plan for developing, managing and maintaining the transportation system.

2) Route Concept Report (RCR), Transportation Concept Report (TCR) or Corridor Study

RCR's, TCR's and Corridor Studies analyze a route or corridor and establish a twenty-year transportation planning concept. They identify modal options and various needs to accomplish the twenty-year concept. The concept analysis considers operating level of service (LOS), modal facility type, vehicle occupancy of all modes and capacity needs. The studies identify "unconstrained" needs.

3) Transportation System Development Plan (TSDP)

The TSDP identifies transportation system improvements for the various options analyzed in the DSMP and TCR's. It covers the four-years immediately following the seven-year STIP period and uses high and low funding scenarios. It provides a priority list for use in programming onand off-system improvements.

Document Schedule:

DSMP Same as the SCAG Regional Transportation Plan.

TCR's Ongoing; updated as conditions change.

TSDP Precedes STIP priority list; due from the district by March $15^{\text {th }}$ of odd numbered years.

[^0]: 1 This TCR is an update of the "Route 5 Concept Report", June 20, 1991.

[^1]: 2 Please Note: The Attain LOS "D" alternative is provided as a way to illustrate future congestion and capacity needs and not as a suggestion for programming.

[^2]: NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

[^3]: NOTES: 2020 Null Alternates are modeled, respectively, without and with I-710 gap closure built between I-10 and I-210 Speeds are estimated and are for comparative purposes only

[^4]: 1 Footnote 1995 Congestion AM + PM

[^5]: 1 The Governor approved Senate Bill 45 on October 2, 1997. The Bill significantly changes transportation funding in California. The California Department of Transportation, in cooperation with the California Transportation Commission (CTC), transportation planning agencies and county transportation commissions and local governments shall develop guidelines for the development of the State Transportation Improvement Program (STIP) and the incorporation of projects into the STIP. The CTC shall adopt the guidelines by December 31, 1998.

[^6]: * This represents the approximate range between actual ridership on the LACMTA Blue Line $(47,000)$ and the 100,000 passengers per day estimated by SCAG in this corridor. Current ridership on the Metrolink - Santa Clarita line is approximately 3,800 daily.

[^7]: 1 District System Management Plan, California Department of Transportation, District 7, August 5, 1996, page 4.
 2 Op. Cit., page 16
 3 Op. Cit., page 17
 4 Op. Cit., page 36

[^8]: 5 Op. Cit., page 37
 6 Community Link 21, Draft 1998 Regional Transportation Plan, Southern California Association of Governments, November 6, 1997, page I-24.
 7 Op. Cit., page I-19
 8 Op. Cit., page I-20
 9 Op. Cit., page I-26
 10 Op. Cit., page 4-7
 11 Op. Cit., page I-34

[^9]: 14 Op. Cit., page 18
 15 Op. Cit., page 20

[^10]: * Secondary Corridor

[^11]: 1 Up through the 1994 STIP cycle.
 2 Up through the 1994 STIP cycle.

[^12]: 1 Please note that truck lanes were modeled by adding one mixed flow lane. Therefore, one-mixed-flow-lane can be substituted for one-truck-lane when considering the benefits of the alternative.

[^13]: 2 LOS "F3" is equal to 3+ hours of forced flow traffic moving at less than 20 mph .
 3 Status of the HOV System, Division of Operations, Office of Traffic Management, Caltrans District 7, February 26, 1998, page 6 (Describing the current operation of the LA-10, San Bernardino Busway).

