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Forensic genomics as a novel tool for identifying
the causes of mass mortality events
Pierre De Wit1,2, Laura Rogers-Bennett3, Raphael M. Kudela4 & Stephen R. Palumbi1

Toxic spills, hypoxia, disease outbreaks and toxin-producing algal blooms are all possible

causes of mass mortality events, but in many cases it can be difficult to pinpoint the cause of

death. Here we present a new approach that we name ‘forensic genomics’, combining field

surveys, toxin testing and genomic scans. Forensic genomics queries allele frequencies of

surviving animals for signatures of agents causing mass mortality and, where genetic diversity

is high, is uniquely suited to identify natural selection in action. As a proof of concept, we use

this approach to investigate the causes of an invertebrate mass mortality event, and its

genetic effects on an abalone population. Our results support that a harmful algal bloom

producing a yessotoxin was a major causative agent to the event.
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M
ass mortality events have been reported throughout the
animal kingdom1–5, and in many cases it is difficult to
pinpoint the agent responsible. One major cause of

recent marine mortality events are harmful algal blooms
(HABs)3,6–8 that kill either by toxin production or by hypoxia
caused by decomposing algae8. Toxin-induced mortality is often
difficult to identify since putatively causal toxins must be
individually tested for levels and toxic effects in most cases9,10,
as simultaneous screening of multiple toxins requires a significant
infrastructure11. If the toxin is novel, toxicity data or presence/
absence tests may be non-existent, making it difficult to infer
mortality causation. However, it is possible that the surviving
population may harbour a distinct genomic signature of toxin-
induced natural selection, which would manifest as genetic
variants (single nucleotide polymorphisms; SNPs) with
abnormally high FST values in before–after comparisons12. In
addition, gene functions related to the cause of mortality might be
enriched in high FST SNPs. In many cases, there is some
knowledge of the cellular targets of classes of potential toxins13,14,
so by matching genomic data with what is known about putative
causal toxins, it would in theory be possible to test hypotheses
about the potential causes of a mortality event.

As a demonstration of this novel method, we examined a 2011
algal bloom-associated mass mortality event of a marine
gastropod, the red abalone, Haliotis rufescens, in California15.
This was a unique event, being the largest invertebrate die-off
ever recorded in the region. Crabs, sea urchins and abalone were
all affected simultaneously and showed high mortalities, whereas
other taxa such as bat stars were not, suggesting an external
mortality agent rather than a wholesale collapse of environmental
quality such as hypoxia. Toxin testing was inconclusive, but
suggested that a member of the yessotoxin (YTX) family could
potentially be involved. YTX has a well-characterized mode of action
affecting cytoskeleton organization (especially cadherin)14,16,17, the
apoptosis pathway18–20, electron transport chain proteins19,21 and
the immune system22. We hypothesized that YTX effects on abalone
would manifest in SNP frequency changes at some of these
pathways, whereas metabolic pathways of other classes of toxins
would remain unchanged. For example, unlike common HAB
toxins, such as microcystins or okadaic acid and its derivatives,
YTXs do not inhibit protein phosphatases23, so if any of the above
toxins were the cause of the mortality event, we would expect to see
changes in protein phosphatases in before–after comparisons23,24. If
hypoxia contributed to the mortality, we would also see changes in
genes known to confer hypoxia tolerance (such as HIF-1a and
arginine kinase)25,26 as well as enrichment for high FST SNPs in the
gene ontogeny (GO) functional category ‘response to hypoxia’. In
addition, as YTX is an organic cyclic compound24,27, we would
expect the GO functional category ‘response to organic cyclic
compound’ to be enriched for high FST SNPs if YTX was the cause.
These hypotheses depend on the existence of standing genetic
variation for response to YTX in abalone. However, the high levels of
genetic polymorphism in abalone25 together with the potentially
adaptive role of genetic diversity in loci involved in toxin tolerance in
the natural environment suggest that this type of variation may exist.
In addition, recent work showing that high-diversity invertebrates
have genetic responses to other environmental stressors such as
heat28 and acidification29 suggest that this might also be the case for
toxin tolerance.

Although multiple causes cannot be ruled out, the genomic data
support YTX being involved in the mass mortality event, through
the effect of YTX on mitochondrial function and cadherin binding.
Our data also implicate a well-known detoxification gene30,
glutathione-S-transferase, in abalone toxin tolerance. Our results
suggest that red abalones have genetic variation for response to
YTX effects particularly in alleles at cadherin loci.

Results
Field surveys indicate high mortality. Field surveys at four dif-
ferent sites (Fig. 1) were conducted before and after the HAB
event, which occurred at the end of August 2011. Mortalities
ranged from 20 to 44.5% when averaged across three-depth zones
(mean 25%), with the highest mortalities in shallow depth (o5 m,
mean 48%, s.e. 13.5) (Fig. 2). Abalone densities dropped markedly
at all four sites during the event and have remained low until
present, prompting the California Fish and Game Commission to
reduce the yearly take limit state-wide and to close the Fort Ross
site completely in June 2013. Abalones in flow-through, oxyge-
nated aquaria at a nearby marine laboratory were also killed,
suggesting that hypoxia was not the cause of the event15. Known
abalone diseases such as ‘Withering-foot syndrome31 were ruled
out because dead animals lacked characteristic withering
symptoms of the disease.

Toxin testing inconclusive. Reports of an algal bloom in coastal
waters during this time suggested that an algal-produced toxin
might be responsible15. To test this, mussels, abalone and sea
stars were tested for a wide range of known HAB toxins,
including anatoxin-a, azaspiracids 1–5, domoic acid,
lyngbyatoxin, microcystins, okadaic acid, saxitoxins, YTX and
homo-YTX, with all but one showing no detectable levels
(Supplementary Data 1). The exception was one class of algal
toxins, YTX (maximum concentration 999 ng g� 1), which was
detected in the digestive glands of sickly abalone from Fort Ross.
Additional testing found lower levels of YTX (15–559 ng g� 1;
n¼ 15) in mussels and abalone digestive glands collected at
Bodega Head, North Timber Cove, Potato Patch and Fort Ross.
YTXs comprise a large family of toxins: at least 90 varieties of
YTX have been isolated from a variety of phytoplankton and
shellfish taxa32. Four variants are regulated in shellfish for
human consumption by the European Union with a limit of
1,000 ng g� 1 YTX27. However, nothing is known of YTX
critical concentrations in invertebrates, and previous testing has
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Figure 1 | Map of Sonoma County, California. The geographical extent of

the mortality event (marked with yellow lines) from Anchor Bay in the

north to Bodega Bay in the south, as well as field survey locations indicated

by red circles.
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shown YTX to be present up to 60 ng g� 1 in non-bloom,
non-mortality conditions33.

Forensic genomics implies Yessotoxin as cause of mortality.
Previous to the die-off, we had surveyed the transcriptome of this
abalone population for SNP markers25. The population has high
genetic diversity and shows strong patterns of evolutionary
response to local environmental conditions such as upwelling and
acidification25. After the die-off, we were able to resample the
population and compare transcriptomic-wide SNP frequencies
pre- and post-mortality for signatures of natural selection at
15,016 loci. Using an FST outlier approach, we found 222 SNPs
that were more divergent than expected under neutrality. Of
these, 42 SNPs are within 34 annotated genes, which were more
divergent than expected under neutrality (Fig. 3, Table 1,

Supplementary Data 2), including genes related to cytoskeleton
organization, electron transport chain, protein folding and
response to organic cyclic compounds (Fig. 4, Supplementary
Data 3) (high FST gene ontology over-representation analysis,
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Figure 2 | Red abalone mortality by depth. Mean transect percent mortality of red abalone along 30� 2 m2 transects at the four survey sites in Sonoma

County with s.d. error bars (abalone tissue samples for genomic work were taken from 0–5 m depth at Fort Ross).
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Figure 3 | Outlier FST plotted against minor allele frequency. Plot of

outlier SNP minor variant frequency versus FST, comparing mean outlier FST

between randomly permuted populations from the original dataset

(dotted line, nREPLICATES¼ 100, error bars are 95% confidence intervals) and

SNP outliers in the actual before–after comparison (dots and crosses; the

crosses represent well-annotated SNPs, the remainder are marked as dots).

Table 1 | Outlier genes.

Gene Functional role

Calmodulin Calcium transport
Catalase* Antioxidant
Cathepsin L-like cysteine proteinase Protein degradation
Cathepsin L2 cysteine protease (2)* Protein degradation
Coronin Cytoskeleton structure
CREB-like transcription factor Transcription factor
Endoplasmin* Heat shock protein
Fructose-bisphosphate aldolase (3) Mitochondrial function
Galectin 4 Detoxification/immune

response
Glucose-6-phosphate 1-dehydrogenase (g6PD gene) Mitochondrial function
Glutathione-S-transferase (3) Detoxification/immune

response
Hedgling Development
Kuzbanian Development
Lachesin* Neuronal cell surface

protein
Lysin precursor (2) Reproduction
Lysine-ketoglutarate reductase Mitochondrial function
Non-muscle myosin II (2) Cytoskeleton structure
Notch 1 Membrane receptor
Paramyosin* Cytoskeleton structure
Peptidyl prolyl cis-trans isomerase B* Protein modification
Prohormone convertase* Protein modification
Protocadherin-21* Cytoskeleton structure
Relish Detoxification/immune

response
Se-cadherin Cytoskeleton structure
Serine/threonine protein kinase* Apoptosis
Signal sequence receptor beta-like protein Signal receptor
Sodium/glucose cotransporter Membrane transport
Spectrin alpha chain* Cytoskeleton structure
SRY-related HMG box B protein (soxB gene)* Detoxification/immune

response
Synaptotagmin Membrane transport
Taurine transporter Calcium transport
Tribbles-like protein 2 (TRIB2) Cell signalling
Troponin T (2) Cytoskeleton structure
Vertebrate core 1 synthase, glycoprotein-N-
acetylgalactosamine 3-beta-galactosyltransferase 1
(C1GALT1)

Detoxification/immune
response

All genes containing outlier SNPs, with number of outliers in parentheses (when more than one).
Genes for which allele frequencies were estimated to 0 before the event are denoted with
asterisks.
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Benjamini–Hochberg adjusted P-value oo0.001, nSNPs¼ 27,610).
Out of these, Se-cadherin (FST¼ 0.215) shows a particularly
strong series of changes. YTX is known to target cadherin14,17,
causing a cascading effect of cytoskeleton disruption. In the
Cadherin gene, the outlier SNP is located in the cytoplasmic
region of the protein (pfam01049), responsible for catenin
binding14. The outlier does not code for an amino-acid change.
However, it is linked to a series of SNPs of unknown function in
the 30UTR, as well as to a series of silent SNPs up to 2,000 bp
upstream that increased in frequency by 65% during the die-off
(Fig. 5). The functional role of these changes is not known.

Our data also show a multitude of cytoskeletal genes and
functional categories related to cytoskeletal organization with
outlier SNPs. In addition, cellular homeostasis and divalent
metal-ion transport (P¼ 0.03), as well as regulation of pro-
grammed cell death and apoptosis (P¼ 0.03) are enriched for
high FST SNPs. Another target seems to be mitochondrial
function19,21, for which alleles at fructose-biphosphate aldolase
(3 outliers with FST 40.1) seem to be especially related to toxin
survivability. It is known that changes in intracellular calcium
homeostasis disrupt mitochondrial membrane potential,
inhibiting the electron transport chain24. Furthermore,
glutathione-S-transferase, known in insects30 to be involved in
detoxification of a wide range of exogenous compounds, contains
three high FST SNPs, and may thus be a potential player in toxin
detoxification in abalone.

We also examined alternative hypotheses regarding the
metabolic pathways that may have been related to the die-off.
The GO functional category ‘response to hypoxia’ was not
enriched for high FST SNPs. Genes known to be involved in
hypoxia tolerance (for example, HIF-1a (contig88699: nSNPs¼ 27,

Max FST¼ 0.030), arginine kinase (contig90217: nSNPs¼ 15, Max
FST¼ 0.033)) were not affected by the event as indicated by the
FST outlier analysis. SNPs in protein phosphatase-coding
sequences (N¼ 67 across 17 sequences) were not affected by
the mass mortality. Because there were no detectable levels of
other toxins, such as azaspiracids, saxitoxin, domoic acid, okadaic
acid, microcystins, lyngbyatoxin and anatoxin-a, these were
effectively ruled out as the drivers of the mortality event.

Discussion
The methods used in this study, combining field studies, toxin
testing and genetic forensics, can be used not only to determine
the cause of death but also to enhance our understanding of the
mechanisms of action at the organismal level. In this case, we can
show that the population genomic effects of the mass mortality
event are consistent with YTX being a major causative agent,
while the combination of toxin testing and genetic sampling
could rule out most other HAB toxins as well as hypoxia as main
causes (although other factors could have certainly contributed to
the event). This method currently depends on the existence of
transcriptome-ready samples before a mortality event, a require-
ment which may not be met in most cases. However, as DNA-
based methods of whole-genome analysis at the population level
become more affordable, it may be possible to base before–after
comparisons on DNA samples from museums or from popula-
tion genetic monitoring programs.

Out of 222 detected FST outliers, only 42 could be reliably
annotated, leaving 180 SNPs with unknown function being
affected by the event. These might be contaminants or artifacts of
an imperfect assembly, but they might also be of biological
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importance. As a consequence, we cannot completely rule out
additional stressors as contributing to the event. However, as
almost all annotated outliers are consistent with YTX as a cause,
we can still conclude that the major causative agent was the toxin.

It is still unclear why mortalities were greater in shallow waters.
It could potentially be due to higher toxin concentrations near the
coast34, or from wave action increasing the solubility of the toxin.
The reduction in mortality at depth is consistent with YTX as a
causative agent, as the toxin may have been more concentrated
(that is, at toxic concentrations) in shallow depths due to lower
water volume and reduced mixing. However, it is important to
note that very little is known about the mechanism of action of
YTXs, making it difficult to draw specific conclusions about this.
Another group of toxins that have similar effects to YTXs is
azaspiracids. However, none of the organisms known to produce
these toxins (Azadinium spp.) were present in the water at the

time, and analysis of tissue samples for azaspiracids 1–5 was
negative. The presence of two varieties of YTX, confirmed
through testing, makes this the prime candidate of the mortality
event.

In theory35–37, a reduction in genetic diversity and an increase
in linkage disequilibrium can be seen around selected regions.
Unfortunately, we do not know enough about linked regions in
the abalone transcriptome. Within single contigs, it is possible to
study linkage effects; within the Se-cadherin contig, for example,
there are distinct blocks of linked loci visible (Fig. 5). However,
without prior knowledge of linkage in the red abalone population,
it is hard to draw general conclusions about the selective effects
on linkage properties. The outlier analysis suggests a few loci with
relatively high FST values increasing during the event from very
low allele frequencies, estimated at 0 (denoted with asterisks in
Table 1). Although it might be possible that these were present in
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Figure 5 | Cadherin SNP map. Map of SNPs, genotypes and FST along the Cadherin contig (contig14782) in red abalone in Sonoma pre- and post-mortality,

not including singletons and SNPs located in the UTR (amino-acid replacements are highlighted in blue).
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low frequencies before the event and were selected for,
uncertainty in the allele frequency estimation might also
account for this pattern. Our sample size of 21–23 per
population, while suggested to be adequate for decent allele
frequency estimation38, might still be too low for low-frequency
alleles. Therefore, we have chosen not to focus on these outliers.

By gaining insight into the ultimate targets of toxins, and the
allelic basis of resistance to them, it may be possible to better
identify more resistant natural populations. Such resilience
mapping has recently been initiated for coral heat resistance28

and sea urchin acidification resistance29. One management
strategy is to protect resilient populations from other sources of
mortality, such as habitat destruction or fishing mortality for
which they have no resistance. These protected populations may
then be able to provide sustained population growth under future
climate change scenarios, or contribute to a more productive
aquaculture brood stock. Finally, we would urge any future
comprehensive ecosystem monitoring programme to include
routine acquisition of genetic libraries. The enhanced genetic
knowledge gained before a mortality event occurs provides
the genetic baseline, which can be compared with the genetics
of the population post mortality thereby aiding in identification
of the causative agent, as has been done in this example.
We suggest that obtaining genetic baseline data is an important
part of baseline monitoring of healthy wild populations.

Methods
Mortality field surveys. In September and October 2011 after the mass mortality of
marine invertebrates was observed in Sonoma County, a series of three subtidal
SCUBA surveys were conducted. Surveys were based at important red abalone
fishing grounds within Sonoma County from south to north at Fort Ross (38� 30.10

N, 123� 13.80 W), Timber Cove (38� 31.80 N, 123� 16.40 W), Ocean Cove (38� 33.10N,
123� 18.40 W) and Salt Point (38� 33.70 N, 123� 19.50 W) (Fig. 1). Surveys were
conducted by experienced subtidal research teams that counted live and dead marine
invertebrates along 30� 2 m2 transects at three-depth strata (0–5, 5.1–10 and 10.1–
20 m) per site. Dead invertebrates were clearly differentiated from live as abalone
being unattached to the substrate, upside down with an opaque white foot muscle
tissue. Dead sea urchins were not attached to the substrate with spines fallen off the
test and dead sea stars had curled-up arms with a white dead colouration to the flesh.
The percent of dead invertebrates at each depth and site were recorded.

Toxin testing. A total of 40 tissue samples were collected between 27 August and
14 September 2011 from the Fort Ross area, Salt Point, Bodega Head, Bodega
Harbor, North Timber Cove and Potato Patch (Supplementary Data 1). Samples
were shipped frozen to UC Santa Cruz and were kept at � 80 �C until processing.
Approximately 1 g for each of 32 tissue samples was homogenized with 100%
methanol (MeOH), which was subsequently diluted to 50% before cleanup. Sam-
ples were then split for toxin analysis of domoic acid, microcystins LR, RR, YR and
LA, okadaic acid, saxitoxins, lyngbyatoxin, YTX and homo-YTX. Methanol extracts
stored (� 20 �C) were also subsequently tested for azaspiracids and re-tested for
YTXs. Methodological details for toxins other than YTXs are not reported in detail
since samples were negative for all other toxins; these analyses followed standard
protocols39,40 using LC–MS for all but saxitoxins, which were screened using
commercial enzyme-linked immunosorbent assay kits.

Samples for YTX and homo-YTX were initially screened by following the
method of Paz et al. 41 with the following modifications. Homogenate (5 ml, 0.5 g
tissue) was loaded onto BakerBond C18 cartridges and eluted in 90% MeOH.
Samples were analysed on an Agilent 6130 liquid chromatography–mass
spectrometry (LC–MS) system with an Agilent Poroshell 120 SB-C18 2.7-mm
(2.1� 50 mm2) column with electro-spray ionization in negative mode41. Selected
ion monitoring of parent and daughter ions for YTX and homo-YTX was
quantified with concentrations determined by comparison with standard curves for
YTX and homo-YTX using certified standards (NRC, Canada).

From the initial screening, 12 samples were selected for further analysis
representing potentially positive and negative samples from mussels, abalone (gill,
digestive gland/gonad, foot) and sea star (gonad tissue from the arm). The LC–MS
method was adapted to the protocol by These et al.42 and the tissue samples were
hydrolysed42. This provided better separation and a lower limit of detection than
the initial screening, with a limit of detection for total toxins of 20 ng g� 1 tissue
(calculated as 3.3� s.d./S, where s.d. is the standard deviation and S is the slope of
the calibration curve). Archived extracts were subsequently analysed using the
same method, but without the hydrolyzation step, for all samples. The method
detection limit for these samples was slightly lower than for the hydrolysed
samples, at 15 ng g� 1 tissue. Hydrolysed samples (n¼ 4) were of 8–83% higher

concentration than non-hydrolysed samples. For reporting purposes, homo-YTX
and YTX were summed as total YTX. We did not screen for 45-hydroxy-YTX or
45-hydroxy-homo-YTX (the other two compounds regulated by the European
Union). These have toxic equivalence factors of 1.0 and 0.5, so our results are
potentially conservative estimates of total toxicity.

DNA sequencing and bioinformatics. Mantle tissue samples were collected from
24 live red abalone before the bloom (22 April 2011) and 24 abalone after the
bloom (17 October 2011) at shallow depths in Fort Ross State Park, Sonoma
County, California (38� 30.10 N, 123� 13.80 W) (Fig. 1). Total RNA was extracted
and cDNA libraries were created from poly-A-selected mRNA. All samples were
tagged with barcoded adaptor sequences and sequenced, six individuals per lane in
an Illumina HiSeq 2000, for a total of eight lanes. One sample from before the event
and one from after the event produced low-read counts, leaving 23 from before and
23 from after for further analysis. Using the protocol of De Wit et al.43, reads were
filtered from low-quality base calls and residual adaptor sequences, and were then
aligned using Burrows-Wheeler Aligner (BWA)44 to a recently published red
abalone mantle transcriptome25. SNP detection using GATK45 resulted in
1,434,378 high-quality (P40.99) SNP calls, out of which 46,063 had high-quality
genotypes (P40.99) for all individuals. A principal components analysis (Fig. 6a)
showed that two individuals from before the event were significantly (10� 65)
different from all others in Principal Component (PC) one. Further investigation
found that these individuals (FR 39, FR49) were heterozygous at all of the top 500
scoring loci in the PCA, raising the possibility of them being hybrids between red
abalone and another co-occurring abalone species. These individuals were removed
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Figure 6 | Principal components analysis of pre- and post-mortality

genetic data. (a) Principal components analysis (PCA) of red abalone

individuals before and after the die-off, indicating that individuals FR39 and

FR49 were genetically distinct from remaining individuals; they were thus

omitted from further analyses. (b) PCA of the same data, after removing

individuals FR39 and FR49.
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from the dataset and the SNP detection was rerun, resulting in 1,405,746
high-quality SNPs, out of which 45,966 had high-quality genotypes at all loci.
A principal components analysis (Fig. 6b) indicated that there was no overall
divergence between the before and after populations.

An FST outlier analysis was conducted using Lositan Selection Workbench46

after removing SNP loci obviously out of Hardy–Weinberg equilibrium and loci
with low minor allele frequencies (o5%) (n¼ 15,016). SNPs located above the 95%
confidence interval of the overall FST distribution were considered as outliers, after
which a false discovery rate correction of 0.05 was applied (Supplementary Data 2).
To examine the outlier FST distribution compared with what would be expected
from stochastic processes, we permuted the original dataset into 100 random
replicates of two populations with 21 individuals each and plotted the outlier FST

distribution (means and 95% confidence intervals) against heterozygosity for all
permuted population pairs. The outliers are in all but one case (FST¼ 0.05) highly
significantly above the random outlier FST distribution.

All of the 34 annotated genes could be assigned open-reading frames using the
OrfPredictor online software47 (available at http://proteomics.ysu.edu/tools/
OrfPredictor.html), using the output of a BLASTx to NCBI’s nr database as
supporting data. Based on these, all outlier SNPs were identified as synonymous,
non-synonymous or untranslated (Supplementary Data 2).

An over-representation analysis was performed using ErmineJ48 based on the
gene ontology annotation of the transcriptome, using an FST of 0.08 as a cut-off
(based on the FST outlier permutation data). Functional categories significantly
enriched in high FST SNPs were graphed using the online GO visualization software
ReVIGO49.
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