Potential Distribution of Zebra Mussels (*Dreissena polymorpha*) and Quagga Mussels (*Dreissena bugensis*) in California Phase 1 Report # A Report for the California Department of Fish and Game Andrew N. Cohen San Francisco Estuary Institute, Oakland, CA and Center for Research on Aquatic Bioinvasions, Richmond, CA August 2007 Revised June 2008 # Contents | Scope of Ph | ase 1 Report1 | |-----------------------------|--| | Background | 1 | | Methods | 2 | | Tempera Calcium pH Dissolve | rature Review and Limiting Values 3 ature 5 6 6 rd Oxygen 7 and/or Desiccation 7 | | Results: Qua | agga Mussel vs. Zebra Mussel8 | | Results: Effe | ect of Varying Calcium Threshold8 | | Results: By I | Region8 | | Priorities for | Management Actions12 | | References | | | Appendix 1. | Maps | | Map 1. | Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 28 mg/L) | | Map 2. | Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 25 mg/L) | | Map 3. | Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 20 mg/L) | | Map 4. | Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 15 mg/L) | | Map 5. | Zebra Mussel and Quagga Mussel Potential Distribution | | | (based on calcium threshold of 12 mg/L) | Appendix 3. Priority Table ### **Scope of Phase 1 Report** A previous study (Cohen and Weinstein 1998) assessed 160 water bodies in California in terms of their suitability for supporting populations of zebra mussels (*Dreissena polymorpha*) based on water quality. A subsequent study (Cohen and Weinstein 2001) found that calcium concentration is the most critical water quality parameter controlling the potential distribution of zebra mussels in North America, and presented evidence suggesting that zebra mussels' calcium tolerance had been misinterpreted and often overestimated. In January 2007, the quagga mussel (*Dreissena bugensis*) was discovered in the lower Colorado River system and the Colorado River Aqueduct, near and within California waters. This Phase 1 report assess the potential distribution of zebra and quagga mussels in California using the water quality data assembled for the 1998 study, based on an initial review of our current understanding of the environmental requirements of these mussels. To address the uncertainty in our understanding of the mussels' calcium tolerance, the assessment is repeated using five values for the calcium threshold (the minimum calcium concentration needed to establish a population). ### **Background** Zebra and quagga mussels are native to European waters in the Black and Caspian Sea basins. Juveniles and adults of both species attach to hard surfaces using a net of tough fibers called byssal threads, and also have the ability (significantly greater in quagga mussels) to build up populations over time on soft substrates (Mills et al. 1996; Berkman et al. 1998). Both species spawn in the spring to fall period and produce large numbers of planktonic larvae (veligers) that typically spend one to several weeks drifting in the water column before settling and attaching to the bottom (Sprung 1993; Ackerman et al. 1994; Cohen and Weinstein 2001). Developmental times and planktonic periods are longer at lower temperatures, and in some cases veligers may remain in the plankton over the winter (Nichols 1996; McMahon 1996). Juveniles and adults can detach, crawl short distances, and then reattach with new byssal threads, and juveniles can detach and drift in the plankton, sometimes "kiting" on byssal threads or crawling on the underside of the air-water surface (Oldham 1930; Martel 1993; Carlton 1993; Ackerman et al. 1994). Juveniles or adults that attach to aquatic plants can also travel significant distances when parts of the plants break off and float away. Natural dispersal upstream or overland between water bodies may possibly occur on birds (e.g. as veligers or small mussels in mud stuck to legs or feathers) or attached to other organisms (e.g. crayfish, turtles) (Carlton 1993; Mackie and Schloesser 1996; Johnson and Carlton 1996). Details of the mussels' life history are reviewed in several papers (e.g. Mackie et al. 1989; Claudi and Mackie 1994; Mackie and Schloesser 1996; McMahon 1996; Mills et al. 1996; Cohen and Weinstein 2001) Zebra mussels began spreading out of their native range in the Caspian Sea basin to other watersheds in Europe as canal systems linked rivers in the 17th and 18th centuries. Quagga mussels are native to the lower Bug River, which drains into the northern Black Sea. They spread to the nearby Dneiper and Dneister rivers starting in the 1940s (Mills *et al.* 1996) and to the Danube, Don and Volga Rivers since the 1980s (Popa and Popa 2006; Zhulidov *et al.* 2006). Zebra mussels were first discovered in the North America in the Great Lakes in 1988, and the first quagga mussel was collected there in 1989 (Griffiths *et al.* 1991; Mills *et al.* 1996). The zebra mussel spread quickly and broadly in Eastern North America, from southern Canada to Louisiana and from New York to Oklahoma. The quagga mussel's spread was less extensive. It is found in Lake Erie, Lake Ontario and the St. Lawrence River, and in a few other lakes in the Great lakes Basin (including Lakes Cayuga and Seneca), was reported recently in Duluth Harbor at the western end of Lake Superior, and has been reported at a site in the Mississippi River, though it's not clear if it is established there (Mills *et al.* 1996). Wherever the two mussels co-occur, the quagga has tended to dominate, and it is the quagga that has now become established across the continental divide. #### Methods The scientific literature was reviewed for analyses of laboratory and field data on zebra and quagga mussel's environmental requirements in terms of temperature, calcium, pH, dissolved oxygen and salinity, and studies were reviewed that used limiting values of these factors to estimate zebra or quagga mussels' potential distribution. Limits were determined for use in this study, and applied to water quality data assembled in 1998 on 160 water bodies in California, augmented in a few cases by additional data, to assess the suitability of these waters to support reproducing populations of zebra mussels or quagga mussels. The scientific uncertainty in the calcium threshold (the lower limiting value for calcium) is large relative to the range of calcium values in California waters, so overall suitability was assessed using five values for the calcium threshold that span the range of uncertainty. In general the approach to determining and applying limits was conservative in the sense of tending toward classifying some sites that are unsuitable as suitable (false positives) rather than classifying some sites that are vulnerable to colonization as safe (false negatives). At sites where data were not available for one or more parameters, this analysis in essence treated those parameters as if they were suitable values—another conservative measure. The results, indicating waters where zebra or quagga mussels may become established, are compiled in tables and maps, and are discussed relative to the two mussel species; in terms of the effect of varying the calcium threshold; and by region. The results for different values of calcium threshold were used to determine four levels of management priority (high, medium and low priority for management action, and not vulnerable to colonization). #### **Results: Literature Review and Limiting Values** The results from the literature review of zebra and quagga mussels' environmental requirements are summarized below, and the limiting values used in this study are explained. Three general points are worth noting. - While reproductive, embryonic or larval life stages may be more vulnerable to certain environmental stresses that are adults, most of the laboratory studies on zebra or quagga mussels' environmental tolerances have been conducted on adults, typically using survival or sometimes growth as endpoints. - For zebra or quagga mussels to become established, the water quality parameters must be suitable for all of their life stages and processes, including juvenile and adult survival and growth, gonad development, gametogenesis, spawning, fertilization, embryonic and larval development, and settlement. However, in some cases sizeable, non-reproducing "sink" populations may develop downstream of established, reproducing populations. For these sink populations, water quality parameters need only be suitable for late larval stages, settlement, and juvenile to adult survival and growth. - Deep lakes and reservoirs often stratify in the summer, maintaining significant temperature differences between the warmer, upper water level (epilimnion) and the cooler, lower water level (hypolimnion). Since most of the water quality data assembled for this study is based on near-surface samples, a deep water body ranked by this study as unsuitable on the basis of high water temperatures may nonetheless be able to support a large mussel population at lower depths. High water temperature is only likely to serve as a limiting factor in waters that are both warm and shallow. #### Temperature Zebra mussels: Zebra mussels have become abundant in waters with average winter temperatures as low as 6°C (Stanczykowska and Lewandowski 1993), though freezing kills them (McMahon 1996). Summer water temperatures above 6-12°C are needed to support adult growth (Morton 1969; Stanczykowska 1977; Baker *et al.* 1993). Most studies have reported that temperatures above 12°C are needed for spawning, though limited spawning has been reported down to 10°C (Borcherding 1991; Neumann *et al.* 1993; Sprung 1993; Nichols 1996; McMahon 1996). Various studies have used
mean summer temperatures in the range of 9-15°C as the lower limiting values for potential distribution (Sorba and Williamson 1997; Doll 1997). Water temperatures of 26-33°C have been reported as zebra mussels' upper limit for short-term survival based on various laboratory experiments or field data (Stanczykowska 1977; Strayer 1991; Baker *et al.* 1993; Armistead 1996; Mills *et al.* 1996; Cohen 2005). Other studies have reported indefinite survival at 30°C, but 100% mortality with 1 wk exposure to 31°C, 100 hr exposure to 32°C, or 24 hr exposure to 35°C (Spidle *et al.* 1995; McMahon 1996; Elderkin and Klerks 2005). Various studies have used mean summer temperatures in the range of 30-32°C and maximum temperatures of 31°C as the upper limiting values for potential distribution (Sorba and Williamson 1997; Doll 1997; Cohen & Weinstein 1998). Quagga mussels: I found no information on minimum temperatures needed for quagga mussel survival or growth. Quagga mussels at a depth of 23 m in Lake Erie spawned at a temperature of 9°C in the summer of 1994 and at 9-11°C in the summer of 1995, based on histologic examination (Claxton and Mackie 1998). Quagga mussels collected from the lake in the summer of 1996 at a depth of 55 m where the temperature was 4.8°C at the time of collection also showed evidence of spawning: 80% of the females had at least some mature eggs and 20% had spent gonads (Roe and MacIsaac 1997). Quagga mussels are also reported to spawn at depth in Lake Michigan when water temperatures there reach 6°C. Observations of quagga mussels being more abundant than zebra mussels at greater depths (Mills *et al.* 1993, 1996; Roe and MacIsaac 1997; Ricciardi and Whoriskey 2004) also suggest that quagga mussels are a more cold tolerant form, although other factors may be at work (*i.e.* different substrates, oxygen concentrations or food availability at depths). Most of the information on quagga mussels' upper temperature limits comes from studies that compared quagga and zebra mussels, which generally suggest that quagga mussels are less tolerant of high temperatures. A study exposing mussels to various combinations of temperature and turbidity concluded that zebra mussels survived high temperatures better than quagga mussels (Thorp et al. 1998), but that result is clouded by the use of mussels collected at different latitudes. Quagga mussels acclimated to 20°C and subjected to temperatures rising at the rate of 0.3°C/min gaped open and did not respond to prodding at 36.4°C while zebra mussels only did so at 37.0°C (Domm et al. 1993). When moved directly from 20°C to 32°C water, guagga mussels lasted an average of 75 minutes before gaping and not responding, while zebra mussels lasted 275 minutes (Domm et al. 1993). Quagga mussels acclimated to 5°, 15° and 20°C and transferred to 30°C water suffered high mortality rates within 11-14 days, while all zebra mussels subjected to the same conditions survived these exposures (Spidle et al. 1995). Most guagga mussels died and all zebra mussels survived in two attempts to acclimate them to 25°C (Spidle et al. 1995). These data have led some researchers to conclude that the upper temperature is lower for guagga than for zebra mussels (e.g. Mills et al. 1996), perhaps as low as 25°C for quagga mussels compared to over 30°C for zebra mussels (Spidle et al. 1995). Table 1. Effects of high temperatures on Dreissenid populations in the Dneiper River, Ukraine (from Mills et al. 1996, citing Antonov and Skorbatov 1990) | | Zebra mussels | Quagga mussels | |-------------------------|---------------|----------------| | Onset of mortality | 27-27.3°C | 28.1°C | | 50% mortality | 28.2-28.4°C | 29.3°C | | First fully open shells | 28.6°C | 29.7°C | However, there are some confounding data. In the Dneiper River, guagga mussels tolerate about one degree higher temperatures than do zebra mussels (Table 1). In 2007, guagga mussels large enough to have settled before the summer of 2006 were found in Lake Mead, in shallow waters where summer temperatures routinely reach 30°C (James LaBounty, Southern Nevada Water Authority, and Tom Burke, U.S. Bureau of Reclamation, pers. comm.). And in 12 trials of exposures to temperatures that rose from 3 acclimation temperatures (5°, 15° and 20°C) at 4 rates (1°C per 5, 15, 30 and 60 min), the temperature which caused 50% mortality (LT₅₀) for guagga mussels was estimated in a logit model to be significantly lower than the LT₅₀ for zebra mussels in all but one trial, while the LT₁₀₀ (the temperature producing 100% mortality) was significantly lower only in one trial (Spidle et al. 1995). These latter results suggest that while zebra mussel populations may have a greater overall tolerance to high temperatures than guagga mussel populations, the tolerance of the most hightemperature tolerant individuals within populations may not differ between the species. If so, then a quagga mussel population introduced to waters that experience periodic high temperatures could suffer initially high mortalities of the less high-temperature tolerant individuals, producing a population that is as tolerant of high temperatures as are zebra mussels. Limiting values: The available temperature data for most of the 160 water bodies are for the mean and maximum summer water temperature over 15 years, with most of the measurements made at or near the surface. Lower limits for mean and maximum summer temperatures of 10° and 12°C for zebra mussels and 5° and 6°C for quagga mussels were selected to represent minimum temperatures needed for spawning. An upper limit of 31°C in flowing waters for both zebra and guagga mussels was selected to represent the long-term (acclimated) lethal temperature. Because many lakes and reservoirs stratify during the warmer months, with cooler temperatures in deeper waters where mussels could survive even when surface waters exceed lethal temperatures, the upper temperature limit was not applied to the maximum surface water temperatures for lakes and reservoirs. Instead, these data were omitted from the data table. Although some of the laboratory data suggests a lower lethal temperature for guagga mussels than for zebra mussels, the discovery of guagga mussels in the warm, shallow waters of Lake Mead and the possibility that the most tolerant guagga mussels are as tolerant of high temperatures as the most tolerant zebra mussels argues against using a lower limit for quagga mussels. #### Calcium Zebra mussels: The minimum calcium concentration for zebra mussels reported by different researchers varies widely—from just over 28 mg/L from a study of longestablished populations in European lakes, to concentrations of 12-15 mg/L or lower from studies of North American distributions (reviewed in Cohen and Weinstein 2001). For example, in a review of 70 European lakes, zebra mussels were mainly reported in lakes with calcium levels above 20-40 mg/L and were absent from lakes with less than 20 mg/L (Strayer 1991); and a study of 76 European lakes found zebra mussels on in lakes with at least 28.3 mg/L of calcium (Ramcharan et al. 1992). In contrast, in North America zebra mussels have been reported at various sites with calcium concentrations of 12-19 mg/L (e.g. Mellina and Rasmussen 1993; Cusson and Lafontaine 1997; Jones and Ricciardi 2005) and in a few cases at calcium concentrations as low as 4-6 mg/L (Cohen and Weinstein 2001). Based on these data, researchers have generally used or recommended the use of minimum concentrations of 12-15 mg/L of calcium, or sometimes lower concentrations, to assess zebra mussels' potential distribution (e.g. Neary and Leach 1991; Baker et al. 1993; Claudi and Mackie 1994; McMahon 1996). However, the records at the lower calcium levels probably represent either misidentifications, limited or inaccurate calcium data, or non-reproducing sink populations recruited from populations established upstream in higher calcium waters (Cohen and Weinstein 2001). Quagga mussels: I found only two studies that addressed quagga mussels' calcium limit. In the St. Lawrence River near Montreal, zebra mussels were found at sites where calcium concentrations were measured at 8 mg/L or more, while guagga mussels were only found at sites where calcium measured 12.4 mg/L (Jones and Ricciardi 2005). These sites occur at and just below the confluence of the Ottawa River (with low calcium concentrations and few or no zebra mussels present) and the mainstem of the St. Lawrence River draining out of the Great Lakes (with high calcium concentrations and high zebra mussel density). The zebra and quagga mussels at the sites near Montreal are almost certainly recruited from upstream sites and not the result of local reproduction, and the calcium concentrations at these sites must vary with changes in the relative flows from the two tributaries, so correlations between calcium levels and the presence or absence of mussels at these sites cannot be used to determine the calcium levels needed for establishment. In a contrasting study, in the Don River system in Russia quagga mussels dominated at sites with higher calcium concentrations (apparently over 100 mg/L), while zebra mussels dominated at sites with lower calcium concentrations (45-78 mg/L) (Zhulidov et al. 2004). Limiting values: Because of the uncertainty in zebra and quagga mussel's calcium requirements, and the apparent importance of this factor in controlling the mussels' distribution, potential distributions were analyzed for five different calcium thresholds for both species—28, 25, 20, 15 and 12 mg/L—with the lower thresholds indicating a capacity to invade a larger number of water bodies. Water bodies that were determined to be vulnerable to colonization based on the higher thresholds were ranked as a higher priority. #### <u>pH</u> Zebra mussels: A study of 76 European lakes found that zebra mussels were absent from those with pH below 7.3 (Ramcharan *et al.* 1992), and in laboratory
experiments veligers developed properly only at a pH between 7.4 and 9.4 (Sprung 1993). Researchers have generally used or recommended the use of pH limits between 6.5-7.5 and 9.0-9.5 to assess zebra mussels' potential distribution (summarized in Cohen 2005). Quagga mussels: I found no information in the literature on quagga mussels' pH limits in the literature, and no distributional data suggesting any difference from zebra mussels. *Limiting values*: Based on the above information, limiting pH values of 7.3 and 9.4 were selected for both zebra and quagga mussels. ### Dissolved Oxygen Zebra mussels: Zebra mussel larvae can survive short periods at 18°C with oxygen at 20% of saturation (about 2 ppm) (Baker et al. 1993). Adults are reported to need 25% saturation (between about 3 and 2 ppm at 10°-25°C) (Karatayev et al. 1998). Oxygen concentrations levels as low as 3.2 ppm have been found in parts of the Illinois River where zebra mussels are abundant (Kraft 1994). Studies have used limits of 4-6 ppm to assess zebra mussels' potential distribution (Doll 1997; Sorba and Williamson 1997; Cohen and Weinstein 1998). Quagga mussels: I found no information in the literature on quagga mussels' oxygen limit in the literature, and no distributional data suggesting any difference from zebra mussels. McMahon (1996), however, speculated that quagga mussels may be more tolerant of hypoxic conditions than zebra mussels, based on their more effective colonization of hypolimnetic waters. *Limiting values*: Based on the above information, a limiting value of 4 ppm of oxygen was selected for both zebra and quagga mussels. #### Salinity and/or Desiccation Zebra mussels: The salinity limits reported for zebra mussels vary widely, and may depend both on the rate at which salinity changes as well as on water chemistry (with higher tolerance to salinity that changes only gradually, or if the ratio of divalent to monovalent ions is high); it is possible that chloride content rather than salinity is actually the critical factor (Strayer and Smith 1993). Temperature also affects salinity tolerance (with higher tolerance in colder water), and tolerance may vary among populations (Baker et al. 1993). Zebra mussels occur up to a mean salinity of 0.6 ppt in Netherlands estuaries, up to nearly 1 ppt in the eastern Gulf of Riga, and up to nearly 2 ppt in the extreme eastern Gulf of Finland and in estuaries bordering the Black Sea. They occur in stunted populations in the Vistula estuary at up to 4.8 ppt, and in the Kiel Canal at 3.8 and 6.2 ppt. Zebra mussels are abundant in the northern Caspian Sea at salinities of 6-9 ppt, but not at 13 ppt, and have been found in the Dnieper-Bug estuary at up to 7.6 ppt. They were abundant throughout the Aral Sea at salinities of 10 ppt; as water diversions raised the salinity of the sea, populations began to decline at around 12 ppt and had nearly disappeared at 14 ppt (Strayer and Smith 1993; Mills et al. 1996). In North America zebra mussels have been collected in the Hudson River estuary at sites with maximum salinities up to 6 ppt (Baker et al. 1993). Laboratory studies conducted at different temperatures and using different acclimation procedures have reported a variety of lethal limits ranging from 1.6 ppt to 10-12 ppt (Mills et al. 1996; Cohen 2005). Studies have used or recommended limiting values ranging from 2 to 10 ppt to assess zebra mussels' potential distribution (Strayer and Smith 1993; Baker et al. 1993; Doll 1997; Cohen and Weinstein 1998). Quagga mussels: Quagga mussels in the Dnieper-Bug estuary occur at a maximum salinity of 4.0 ppt compared to 7.6 ppt for zebra mussels; in laboratory trials, these quagga and zebra mussels had high survival from 40 d exposure to 5 ppt and 8 ppt, respectively, at 7-15°C, and 4 and 6 ppt, respectively, at 18-21°C (Mills *et al.* 1996). While adult quagga and zebra mussels from the Great Lakes showed no differences in responses to salinity in the laboratory, with no survival or either species from 18 d exposure to 5 ppt (Spidle *et al.* 1995), the embryos and larvae of quagga mussels were less tolerant of salinity than those of zebra mussels (Wright *et al.* 1996). Limiting values: Based on the above information, maximum salinities of 6 ppt and 4 ppt were selected for zebra and quagga mussels respectively. For waters with rapidly fluctuating salinities (estuaries), these numbers are probably a few ppt too high. Information was also sought on whether inland, terminal lakes dried out during droughts, as salinities in these lakes rises as water volumes shrink; lakes reported to dry out completely during droughts were also considered unsuitable habitats for quagga or zebra mussels, regardless of their reported salinity levels. ### Results: Quagga Mussel vs. Zebra Mussel While the analysis used the same limits for both species for most parameters, it used lower temperature limits and upper salinity limits that were lower for quagga mussels than for zebra mussels. Despite these differences, the determinations of potential distribution worked out to be the same for both species. While the higher temperature thresholds used for zebra mussels did result in a few more sites being classified as unsuitable in terms of temperature, all of these were also unsuitable in terms of calcium, so the overall number of suitable and unsuitable sites did not change. #### **Results: Effect of Varying Calcium Threshold** Changing the calcium threshold had a marked effect on the number of suitable and unsuitable sites. At the highest calcium threshold (28 mg/L), 43 sites were found to be suitable for calcium (27% of the total 160 sites), while at the lowest threshold (12 mg/L), 94 sites were suitable for calcium (59% of the total). Overall suitability, taking all the parameters into account, went from 33 suitable sites (21% of the total) at the highest calcium threshold to 84 suitable sites (53% of the total) at the lowest calcium threshold. # **Results: By Region** The sites are numbered and organized by regions that are defined by hydrologic contiguity or interconnection, and that include the water delivery systems that draw from them. The North Coast region, which includes 20 sites (numbers 1-18, 21 and 28), consists of watersheds that drain to the coast north of San Francisco Bay. The temperature, pH, dissolved oxygen and salinity at these sites are suitable for both zebra and quagga mussels. Calcium concentrations range from levels that are clearly too low (e.g. 4-9 mg/L on the Trinity River) to levels that are clearly adequate (e.g. 31 mg/L). Thus, calcium concentrations alone determine the vulnerability of sites in this region. At the highest calcium threshold analyzed (28 mg/L) only one site, the Eel River at Scotia, is vulnerable to colonization (5% of the region's sites), while at the lowest threshold (12 mg/L) 15 sites are vulnerable (75% of the region's sites). The next seven regions are all part of a "super-region" that consists of the entire watershed of the San Francisco Bay and Delta and covers roughly 40% of California. The West Sacramento Valley region, with 8 sites (numbers 19-20 and 22-27), includes watersheds that drain to the Sacramento River from the west. The average temperature, pH, dissolved oxygen and salinity at these sites are suitable for both mussel species. Maximum temperature is high at Thomes Creek, but fine at the other sites. Calcium concentrations at these sites range from 16 to 31 mg/L, that is, from within the uncertain range to clearly suitable. At the highest calcium threshold only one site, Black Butte Reservoir, is vulnerable to colonization (12.5% of the region's sites), with 6 being found unsuitable because of low calcium. At the lowest calcium threshold only Thomes Creek is environmentally unsuitable (87.5% of the region's sites are vulnerable). The Upper Sacramento River region consists of the watershed above Shasta Dam plus the Whiskeytown Reservoir site, with a total of 10 sites (numbers 29-38). Dissolved oxygen and salinity at all of these sites are suitable for both mussel species. One site, McCloud Reservoir, has average and maximum temperatures that are too low for zebra but not quagga mussels; and Siskiyou Lake has a pH of 7.1, too low for both species. Calcium levels range from 5 to 19 mg/L, from too low up into the range of uncertainty. At the highest calcium threshold, no sites are suitable for either species; at the lowest calcium threshold, two sites are suitable for either species. The Sierra Nevada region includes 44 sites (numbers 39-82). Dissolved oxygen and salinity at all of these sites are suitable for both species; average temperature is too low for zebra mussels at 1 site; maximum temperature is too low for zebra mussels at 2 sites and too high for either mussel at 1 site; and pH is too low for either mussel at 16 sites. Calcium levels range from 2 to 25 mg/L, from too low up into the range of uncertainty. All of the sites with unsuitable pH or temperature have calcium concentrations of 10 mg/L or less, and thus all of these are unsuitable in terms of calcium even using the lowest calcium threshold of 12 mg/L. Overall, at the highest calcium threshold there are no sites vulnerable to colonization by either mussel, and only 6 vulnerable sites (14% of the region's sites) at the lowest calcium threshold. The Sacramento River mainstem region consists of 5 sites on the river or on appurtenant canals (numbers 83-87). Temperature, pH, oxygen and salinity are suitable for both mussels at all sites. Calcium ranges from 9-11 mg/L, and is unsuitable for either mussel at all sites at all calcium thresholds. The San Joaquin River mainstem region includes 3 sites on the river (numbers 88-90). At the most upstream site, just below Friant Dam, both pH and calcium are unsuitable for either species at all calcium thresholds. At the 2 downstream sites all parameters are suitable for both species at all calcium thresholds. Calcium
concentrations rise from 3 mg/L at the upstream site to 31-59 mg/L at the downstream sites and pH rises from 7.1 to 7.8, suggesting a major influx of calcium somewhere along this reach. This is consistent with sites on the Fresno and Chowchilla Rivers and Mariposa Creek (sites 69-71), which flow into the San Joaquin along this reach, having anomalously high calcium levels and somewhat high pH levels for Sierra Nevada sites. The Delta region includes 6 sites (numbers 91-96). Temperature, pH and oxygen are suitable for both mussels at all sites. Salinity is estimated to normally be below 1 ppt at all of these sites, and thus suitable for either species. Calcium concentrations range from 6-33 mg/L, and thus from clearly too low to clearly high enough. At the highest calcium threshold, 2 sites (33% of the region's sites) are vulnerable to either mussel and at the lowest threshold 3 sites (50% of the region's sites) are vulnerable, the remainder being unsuitable because of low calcium. Notably, Clifton Court Forebay was found to be unsuitable for mussels at the higher calcium thresholds but suitable at the lower thresholds. In terms of calcium, the Delta is a mix of three types of source water: low calcium water brought in by the Sacramento, Cosumnes and Mokelumne rivers, high calcium water brought in by the San Joaquin River, and high calcium ocean-derived water brought in by tidal mixing and gravitational circulation from Suisun Bay. Thus the vulnerability of different parts of the Delta to zebra and guagga mussel colonization depends in large part on the volumes and patterns of mixing of these three water types. As one proceeds further down the Delta and into the upper part of Suisun Bay, more ocean-derived water is mixed with Delta outflow, which has the effect of both increasing the salinity and thus decreasing the suitability of the water to support zebra or guagga mussels, and increasing the calcium concentration and thus increasing the suitability of the water for mussels. Which effect wins out over this reach, and precisely where the salinity gets too high to support dreissenid mussels is unclear. The same considerations and uncertainties apply to Delta management scenarios that involve greater variation in Delta salinity. The San Francisco Bay Local Watershed region includes 16 sites (numbers 97-112). Temperature, pH, oxygen and salinity are suitable for both mussels at all of these sites. Calcium concentrations range from 13 to 36 mg/L, thus ranging from within the uncertain range to clearly suitable. Seven sites are vulnerable to colonization by either mussel at the highest calcium threshold (44% of the region's sites), while all 16 sites are vulnerable at the lowest threshold. The Central Coast region consists of watersheds that drain to the coast between San Francisco Bay and Ventura, and includes 10 sites (numbers 113-122). All sites are vulnerable to colonization by either mussel at all calcium thresholds except for the San Benito River (with a calcium concentration of 27 mg/L) at the highest calcium threshold. The California Aqueduct/Delta-Mendota Canal includes 11 sites (numbers 123-133) in those water delivery systems. Temperature, pH, oxygen and salinity are suitable for both mussels at all of these sites. Calcium concentrations range from 18 to 32 mg/L. Three sites are vulnerable to colonization by either mussel at the highest calcium threshold (27% of the region's sites), while all are vulnerable at the two lowest calcium thresholds. The South Coast region consists of watersheds that drain to the coast south of Ventura, and includes 7 sites (numbers 134-140). Average temperature, oxygen and salinity are suitable for both mussels at all of these sites. Three sites have maximum temperatures that are too high. One site (the Los Angeles River at Long Beach) also has high pH; possibly this indicates an admixture of ocean water (salinity data are not available for this site). One site (San Diego River) is low in calcium relative to the highest calcium threshold but not relative to the lowest. Overall, 3 sites are vulnerable to colonization by either mussel at the highest calcium threshold (43% of the region's sites), and 4 sites at the lowest threshold (57% of the region's sites). The Northeastern California Region consists of the northeastern corner of the state, which is characterized by interior, terminal drainages (*i.e.* not draining to the sea). It includes 5 lake sites (numbers 141-145). There is only limited water quality data for these sites, but all appear to be unsuitable for either mussel species. Three dry out periodically in drought years; 3 have calcium levels that are too low at any of the thresholds (calcium data are not available for the other 2 lakes). One has a reported salinity that is too high for either mussel, though salinities in the others presumably vary with lake level and may also be too high at times. The East Side of the Sierra/Mojave region consists of desert and interior drainages. It includes 7 sites (numbers 146-152). Average temperature and dissolved oxygen are suitable for both mussels at all of these sites. One site, Mono Lake, is unsuitable because of high salinity, high pH and low calcium. The Mojave River site is unsuitable due to high maximum temperature. Calcium concentrations range from 4 mg/L (Mono Lake) to 34 mg/L (Mojave River), thus ranging from clearly too low to clearly high enough; they are too low at 6 sites at the highest calcium threshold and too low at 3 sites at the lowest threshold. Overall there are no suitable sites for either mussel at the highest calcium threshold and 3 suitable sites (43% of the region's sites) at the lowest calcium threshold. The Colorado River Basin includes 8 sites (numbers 153-160). Average temperature, pH, dissolved oxygen and calcium concentrations (which are above 75 mg/L at all sites) are suitable for either mussels at all sites at all calcium thresholds. Maximum temperatures are too high for both mussels at 2 river sites (the Alamo and New rivers), and salinity is too high at one site (the Salton Sea). While maximum water temperatures near the surface are too high in 2 still water bodies (Lake Havasu and the Salton Sea), deeper waters may have suitable temperatures. Overall, 5 sites are vulnerable to colonization by either mussel (63% of the region's sites). # **Priorities for Management Actions** The assessments based on different calcium thresholds were used to group sites into four priority classes for management actions such as site-based education and outreach efforts, boat inspection and cleaning programs, detection monitoring programs, the development of site-specific rapid-response plans, and facility modifications. Sites that were found to be vulnerable to colonization using a calcium threshold of 25 mg/L were classified as high priority sites, and accounted for 25% of the analyzed sites. Sites that didn't qualify as high priority but are vulnerable to colonization at a calcium threshold of 15 mg/L were classified as medium priority (22% of sites). Sites that didn't qualify as medium priority but are vulnerable at a threshold of 12 mg/L were classified as low priority (6% of sites). The remaining sites were classified as not vulnerable, and are not recommended for management actions. As described above, the vulnerability of different regions varied widely, ranging from 100% of Central Coast sites classified as high priority, to 100% of Northeastern California sites classified as not vulnerable (Table 2). Table 2. Priority classification of California sites for actions to prevent or minimize the impacts of zebra mussel or quagga mussel establishment | | Number (F | Percentage) of si | tes in region wit | = | |---------------------------|-----------|-------------------|-------------------|-------------------| | Region | High | Medium | Low | Not
Vulnerable | | North Coast | 3 (15%) | 8 (40%) | 4 (20%) | 5 (25%) | | West Sacramento Valley | 1 (13%) | 6 (75%) | 0 (0%) | 1 (13%) | | Upper Sacramento River | 0 (0%) | 1 (10%) | 1 (10%) | 8 (80%) | | Sierra Nevada | 1 (2%) | 3 (7%) | 2 (5%) | 38 (86%) | | Sacramento R. (mainstem) | 0 (0%) | 0 (0%) | 0 (0%) | 5 (100%) | | San Joaquin R. (mainstem) | 2 (67%) | 0 (0%) | 0 (0%) | 1 (33%) | | Delta | 2 (33%) | 1 (17%) | 0 (0%) | 3 (50%) | | SF Bay Local Watersheds | 9 (56%) | 5 (31%) | 2 (13%) | 0 (0%) | | Central Coast | 10 (100%) | 0 (0%) | 0 (0%) | 0 (0%) | | SWP & CVP Aqueducts | 4 (36%) | 7 (64%) | 0 (0%) | 0 (0%) | | South Coast | 3 (43%) | 1 (14%) | 0 (0%) | 3 (43%) | | Northeastern California | 0 (0%) | 0 (0%) | 0 (0%) | 5 (100%) | | East of Sierra/Mojave | 0 (0%) | 3 (43%) | 0 (0%) | 4 (57%) | | Colorado River Basin | 5 (63%) | 0 (0%) | 0 (0%) | 3 (38%) | | All regions | 40 (25%) | 35 (22%) | 9 (6%) | 76 (48%) | #### References Ackerman, J.D., B. Sim, S.J. Nichols, and R. Claudi. 1994. A review of the early life history of zebra mussels (*Dreissena polymorpha*): Comparisons with marine bivalves. *Canadian Journal of Zoology* 72: 1169-1179. Armistead, D.C. 1995. *Tolerances of Zebra Mussels to Various Temperatures in the Mississippi and Ohio Rivers, 1988-1992*. Zebra Mussel Research Technical Note ZMR-1-32, US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS. Baker, P., S. Baker and R. Mann. 1993. *Criteria for Predicting Zebra Mussel Invasions in the Mid-Atlantic Region*. School of Marine Science, College of William and Mary, Gloucester Point, VA. Berkman, P.A., M.A. Haltuch, E. Tichich, D.W. Garton, *et al.* 1998. Zebra mussels invade Lake Erie muds. *Nature* 393: 27-28. Borcherding, J. 1991. The annual reproductive cycle of the freshwater mussel *Dreissena polymorpha* Pallas in lakes. *Oecologia* 87: 208-218. Carlton, J.T. 1993. Dispersal mechanisms of the zebra mussel *Dreissena*. Pages 677-698 in: *Zebra Mussels: Biology, Impacts, and Control*, Nalepa, T.F. and D.W. Schloesser (eds.), Lewis Publishers, Boca Raton, FL. Claudi, R.
and G. Mackie 1994. Zebra Mussel Monitoring and Control. Lewis Publishers, Inc. Boca Raton, FI Claxton, W.T. and G.L. Mackie. 1998. Seasonal and depth variations in gametogenesis and spawning of Dreissena polymorpha and *Dreissena bugensis* in eastern Lake Erie. *Canadian Journal of Zoology* 76: 2010-2019. Cohen, A.N. and A. Weinstein. 1998. *The Potential Distribution and Abundance of Zebra Mussels in California*. A report for CALFED and the California Urban Water Agencies. San Francisco Estuary Institute, Oakland, CA. Cohen, A.N. and A. Weinstein. 2001. *Zebra Mussel's Calcium Threshold and Implications for its Potential Distribution in North America*. A report for the California Sea Grant College Program, La Jolla CA, and the Department of Energy, National Energy Technology Center, Morgantown WV. San Francisco Estuary Institute, Oakland, CA. Cohen, A.N. 2005. *A Review of Zebra Mussels' Environmental Requirements*. A report for the California Department of Water Resources, Sacramento CA. San Francisco Estuary Institute, Oakland, CA. Cusson, B. and Y. de Lafontaine. 1997. Presence et abundance des larves de moules zebrees dans la riviere Richelieu et le Saint Laurent en 1996. Rapport Scientifique et Technique ST-143, Environment Canada. Doll, B. 1997. Zebra Mussel Colonization: North Carolina's Risks. Sea Grant North Carolina, University of North Carolina, Raleigh, NC (UNC SG-97-01). Domm, S., R.W. McCauley, E. Kott and J.D. Ackerman. 1993. Physiological and taxonomic separation of two Dreissenid mussels in the Laurentian Great Lakes. *Canadian Journal of Fisheries and Aquatic Sciences* 50: 2294-2297. Elderkin, C.L. and P.L. Klerks. 2005. Variation in thermal tolerance among three Mississippi River populations of the zebra mussel *Dreissena polymorpha*. *Journal of Shellfish Research* 24(1): 221-226. Griffiths, R.W., D.W. Schloesser, J.H. Leach and W.P. Kovolak. 1991. Distribution and dispersal of the zebra mussel (*Dreissena polymorpha*) in the Great Lakes region. *Canadian Journal of Fisheries and Aquatic Sciences* 48: 1381-1388. Johnson, L. E. and J. T. Carlton. 1996. Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel *Dreissena polymorpha*. *Ecology* 77(6): 1686-1690. Jones, L.A. and A. Ricciardi. 2005. Influence of physicochemical factors on the distribution and biomass of invasive mussels (*Dreissena polymorpha* and *Dreissena bugensis*) in the St. Lawrence River. *Canadian Journal of Fisheries and Aquatic Sciences* 62: 1953-1962. Kraft, C. 1994. Zebra Mussel Update #21. University of Wisconsin-Madison, Wisconsin Sea Grant Institute. Mackie, G.L. and D.W. Schloesser. 1996. Comparative biology of zebra mussels in Europe and North America: An overview. *American Zoologist* 36: 244-258. Mackie, G.L., W.N. Gibbons, B.W. Muncaster and I.M. Gray. 1989. *The Zebra Mussel* Dreissena polymorpha: *A Synthesis of European Experiences and a Preview for North America*. A report for the Ontario Ministry of the Environment, Water Resources Branch, Great Lakes Section, Queen's Printer, Toronto. Martel, A. 1993. Dispersal and recruitment of zebra mussel (*Dreissena polymorpha*) in a nearshore area in west-central Lake Erie: the significance of postmetamorphic drifting. *Canadian Journal of Fisheries and Aquatic Sciences* 50:3-12. McMahon, R. 1996. The physiological ecology of the zebra mussel, *Dreissena polymorpha*, in North America and Europe. *American Zoologist* 36: 339-363. Mellina, E. and J. B. Rasmussen. 1994. Patterns in the distribution and abundance of zebra mussel (*Dreissena polymorpha*) in rivers and lakes in relation to substrate and other physiochemical factors. *Canadian Journal of Fisheries and Aquatic Sciences* 51: 1024-1036. Mills, E.L., R.M. Dermott, E.F. Roseman, D. Dustin, E. Mellina. D.B. Conn and A.P. Spidle. 1993. Colonization, ecology, and population structure of the "Quagga" mussel (Bivalvia: Dreissenidae) in the lower Great Lakes. *Canadian Journal of Fisheries and Aquatic Sciences* 50: 2305-2314. Mills, E.L., G. Rosenberg, A.P. Spidle, M. Ludyanskiy, Y. Pligin and B. May. 1996. A review of the biology and ecology of the quagga mussel *(Dreissena bugensis)*, a second species of freshwater Dreissenid introduced to North America. *American Zoologist* 36: 271-286. Morton, B.S. 1969. Studies on the biology of *Dreissena polymorpha* Pall. III. Population dynamics. *Proceedings of the Malacological Society of London* 38: 471-482. Neary, B. P. and J. H. Leach. 1991. Mapping the potential spread of the zebra mussel (*Dreissena polymorpha*) in Ontario. *Canadian Journal of Fisheries and Aquatic Sciences* 49: 407-415. Neumann, D., J. Borcherding and B. Jantz. 1993. Growth and seasonal reproduction of *Dreissena polymorpha* in the Rhine River and adjacent waters. Pages 95-109 in: *Zebra Mussels: Biology, Impacts, and Control*, Nalepa, T.F. and D.W. Schloesser (eds.), Lewis Publishers, Boca Raton, FL. Nichols, S. 1996. Variations in the reproductive cycle of *Dreissena polymorpha* in Europe, Russia, and North America. *American Zoologist* 36:311-325. Oldham, C. 1930. Locomotive habit of *Dreissena polymorpha*. Journal of Conchology 19(1): 25-26. Popa, O.P and L.O. Popa. 2006. The most westward European occurrence point for *Dreissena bugensis* (Andrusov 1897). *Malacologica Bohemoslovaca* 5: 3-5. Ramcharan, C.W., D. K. Padilla and S. I. Dodson. 1992. Models to predict potential occurrence and density of the zebra mussel, *Dreissena polymorpha*. *Canadian Journal of Fisheries and Aquatic Sciences* 49(12):2611-2620. Ricciardi, A. and F. G. Whoriskey. 2004. Exotic species replacement: shifting dominance of dreissenid mussels in the Soulanges Canal, upper St. Lawrence River, Canada. *Journal of the North American Benthological Society* 23(3): 507-514. Roe, S.L. and H.J. MacIsaac 1997. Deepwater population structure and reproductive state of quagga mussels (*Dreissena bugensis*) in Lake Erie. *Canadian Journal of Fisheries and Aquatic Sciences* 54: 2428-2433. Sorba, E.A. and D.A. Williamson. 1997. *Zebra Mussel Colonization Potential in Manitoba, Canada*. Water Quality Management Section, Manitoba Environment, Report No. 97-07. Spidle, A.P., E.L. Mills, and B. May. 1995. Limits to tolerance of temperature and salinity in the quagga mussel (*Dreissena bugensis*) and the zebra mussel (*Dreissena polymorpha*). Canadian Journal of Fisheries and Aquatic Science 52: 2108-2119. Sprung, M. 1993. The other life: an account of present knowledge of the larval phase of *Dreissena polymorpha*. In: *Zebra Mussels: Biology, Impacts, and Control*, Nalepa, T.F. and D.W. Schloesser (eds.), Lewis Publishers, Boca Raton, FL. Stanczykowska, A. 1977. Ecology of *Dreissena polymorpha* (Pall.) (Bivalvia) in lakes. *Pol. Arch. Hydrobiol.* 24: 461-530. Stanczykowska, A. and K. Lewandowski. 1993. Thirty years of studies of *Dreissena polymorpha* ecology in Mazurian lakes of northeastern Poland. In: *Zebra Mussels: Biology, Impacts, and Control*, Nalepa, T.F. and D.W. Schloesser (eds.), Lewis Publishers, Boca Raton, FL. Strayer, D.L. 1991. Projected distribution of the zebra mussel, *Dreissena polymorpha*, in North America. *Canadian Journal of Fisheries and Aquatic Sciences* 48: 1389-1395. Strayer, D.L. and L. Smith. 1993. Distribution of the zebra mussel in estuaries and brackish waters. In: *Zebra Mussels: Biology, Impacts, and Control*, Nalepa, T.F. and D.W. Schloesser (eds.), Lewis Publishers, Boca Raton, FL. Wright, D.A., E.M. Setzler-Hamilton, J.A. Magee, V.S. Kennedy and S.P. McIninch. 1996. Effect of salinity and temperature on survival and development of young zebra (*Dreissena polymorpha*) and quagga (*Dreissena bugensis*) mussels. *Estuaries* 19(3):619-628. Zhulidov, A.V., D.F. Pavlov, T.F. Nalepa, G.H. Scherbina, D.A. Zhulidov and T.Y. Gurtovaya. 2004. Relative Distributions of *Dreissena bugensis* and *Dreissena polymorpha* in the Lower Don River System, Russia. *Internat. Rev. Hydrobiol.* 89(3): 326-333. Zhulidov, A.V., D.A. Zhulidov, D.F. Pavlov, T.F. Nalepa and T.Y. Gurtovaya. 2006. Expansion of the invasive bivalve mollusk *Dreissena bugensis* (quagga mussel) in the Don and Volga River Basins: Revisions based on archived specimens. *Ecohydrology and Hydrobiology* 5(2): 127-133. # **Appendices** # 1. Maps - Map 1. Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 28 mg/L) - Map 2. Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 25 mg/L) - Map 3. Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 20 mg/L) - Map 4. Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 15 mg/L) - Map 5. Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 12 mg/L) - Map 6. Zebra Mussel and Quagga Mussel Management Priority - 2. Data Table - 3. Priority Table Map 1 Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 28 mg/L) Legend Sites Vulnerable to Colonization Sites Not Vulnerable o78 100 Miles SFEI182 Map 2 Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 25 mg/L) Legend Sites Vulnerable to Colonization Sites Not Vulnerable o78 100 Miles SFEI183 Map 3 Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 20 mg/L) Legend Sites Vulnerable to Colonization Sites Not Vulnerable o78 100 Miles SFEI184 Map 4 Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 15 mg/L) Legend • Sites Vulnerable to Colonization Sites Not Vulnerable o78 100 Miles SFEI185 Map 5 Zebra Mussel and Quagga Mussel Potential Distribution (based on calcium threshold of 12 mg/L) Legend • Sites Vulnerable to Colonization Sites Not Vulnerable o78 100 Miles SFEI186 # DATA TABLE | | | | | _ | | Wate | r Quality | Data - | | _ | Sites | with ! | Suitab | ole Wa | ater | | |---------------------------
--|----------|-----------|------------|------|------|-----------|--------|-------|--------|-------|--------|--------|--------|------|----------| | # Decises | Cita Nama | Latituda | Langituda | الما | Avg | Max | Salinity | DO | C- | Dessi- | Qu | ality, | assur | ning a | a | Æ | | 환 Region | Site Name | Latitude | Longitude | рН | Temp | Temp | Salinity | DO | Ca | cation | Calc | ium T | hresh | old of | f | Priority | | 03 | | | | | (°C) | (°C) | (ppt) | (ppm) | (ppm) | (no=1) | | 15 | 20 | 25 | 28 | Ь | | 1 North Coast | Klamath River below Iron Gate Dam | 41.93 | -122.44 | 8.2 | 18.4 | 24.0 | 0 | 9.6 | 12 | 1 | 1 | 0 | 0 | 0 | 0 | 3 | | 2 North Coast | Klamath River at Hamburg | 41.83 | -122.98 | 8.2 | 19.4 | 26.5 | 0 | 9.7 | 13 | 1 | 1 | 0 | 0 | 0 | 0 | 3 | | 3 North Coast | Smith River near Crescent City | 41.79 | -124.08 | 8.2 | 17.4 | 22.5 | 0 | 9.6 | 7 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 4 North Coast | Scott River near Fort Jones | 41.64 | -123.02 | 8.1 | 19.8 | 25.5 | 0 | 10.2 | 19 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | | 5 North Coast | Klamath River near Klamath | 41.51 | -124.00 | 8.4 | 19.0 | 23.5 | 0 | 9.4 | 15 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | | 6 North Coast | Salmon River at Somesbar | 41.38 | -123.48 | 7.6 | 15.4 | 23.5 | 0 | 10.2 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 7 North Coast | Klamath River at Orleans | 41.30 | -123.53 | 7.9 | 17.0 | 27.0 | 0 | 10.2 | 13 | 1 | 1 | 0 | 0 | 0 | 0 | 3 | | 8 North Coast | Trinity River at Hoopa | 41.05 | -123.67 | 7.8 | 16.9 | 26.5 | 0 | 10.2 | 16 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | | 9 North Coast | Mad River near Arcata | 40.91 | -124.06 | 7.9 | 18.0 | 23.5 | 0 | 10.5 | 22 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | | 10 North Coast | Trinity River near Burnt Ranch | 40.79 | -123.44 | 7.6 | 15.5 | 20.0 | 0 | 10.2 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 11 North Coast | Trinity River at Lewiston | 40.72 | -122.80 | 7.6 | 10.9 | 13.0 | 0 | 11.1 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 12 North Coast | Eel River at Scotia | 40.49 | -124.10 | 8.3 | 20.4 | 24.0 | 0 | 9.7 | 31 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 13 North Coast | Van Duzen River near Bridgeville | 40.48 | -123.89 | 7.9 | 17.2 | 22.0 | 0 | 10.1 | 25 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | 14 North Coast | Eel River South Fork Near Miranda | 40.18 | -123.78 | 8.1 | 19.1 | 26.0 | 0 | 10.8 | 21 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | | 15 North Coast | Eel River at Black Butte River | 39.83 | -123.08 | 7.9 | 17.6 | 27.0 | 0 | 10.3 | 27 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | 16 North Coast | Eel River near Dos Rios | 39.63 | -123.34 | 8.1 | 19.6 | 29.0 | 0 | 9.5 | 23 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | | 17 North Coast | Russian River near Ukiah | 39.20 | -123.19 | 7.4 | 13.6 | 22.0 | 0 | 10.2 | 20 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | | 18 North Coast | Lake Sonoma- Dry Creek Arm | 38.72 | -123.02 | 7.5 | 16.3 | | 0 | 8.5 | 14 | 1 | 1 | 0 | 0 | 0 | 0 | 3 | | 19 West Sacramento Valley | Thomes Creek at Paskenta | 39.89 | -122.53 | 8.2 | 20.3 | 32.1 | 0 | 9.5 | 31 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 20 West Sacramento Valley | Black Butte Reservoir | 39.81 | -122.34 | 8.0 | 21.1 | - | 0 | 6.5 | 31 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 21 North Coast | Pillsbury Lake near Potter Valley | 39.41 | -122.96 | 7.8 | 16.8 | _ | 0 | 8.8 | 18 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | | 22 West Sacramento Valley | Indian Valley Reservoir | 39.08 | -122.54 | 7.8 | 15.6 | _ | 0 | 6.4 | 17 | 1 | 1 | 1 | Ō | 0 | Ö | 2 | | 23 West Sacramento Valley | Clear Lake - upper arm | 39.06 | -122.87 | 7.9 | 21.0 | _ | 0 | 7.4 | 20 | 1 | 1 | 1 | 1 | 0 | Ö | 2 | | 24 West Sacramento Valley | Clear Lake - lower arm | 38.97 | -122.68 | 7.7 | 21.2 | _ | 0 | 7.8 | 21 | 1 | 1 | 1 | 1 | 0 | Ö | 2 | | 25 West Sacramento Valley | Cache Creek near Lower Lake | 38.92 | -122.57 | 7.8 | 20.8 | 27.0 | 0 | 8.3 | 22 | 1 | 1 | 1 | 1 | 0 | Ö | 2 | | 26 West Sacramento Valley | Putah Creek below Monticello Dam | 38.53 | -122.09 | 7.8 | 12.5 | 12.9 | 0 | 9.4 | 16 | 1 | 1 | 1 | 0 | 0 | Ö | 2 | | 27 West Sacramento Valley | Lake Berryessa at dam | 38.51 | -122.10 | 7.3 | 15.1 | - | 0 | 8.9 | 17 | 1 | 1 | 1 | Ō | 0 | Ö | 2 | | 28 North Coast | Shasta River below Dwinnell Reservoir | 41.55 | -122.38 | 8.1 | 17.8 | 24.5 | 0 | 8.0 | 11 | 1 | 0 | 0 | Ō | 0 | Ö | 4 | | 29 Upper Sacramento River | Pit River near Canby | 41.41 | -120.93 | 8.1 | 18.9 | 25.5 | 0 | 8.6 | 19 | 1 | 1 | 1 | Ō | 0 | Ö | 2 | | 30 Upper Sacramento River | Siskiyou Lake - upper end near Shasta City | 41.29 | -122.35 | 7.1 | 12.3 | | 0 | 9.3 | 3 | 1 | 0 | 0 | Ō | 0 | Ö | 4 | | 31 Upper Sacramento River | Pit River - South Fork near Likely | 41.23 | -120.44 | 8.1 | 15.4 | 25.0 | 0 | 9.0 | 10 | 1 | 0 | Ö | Ō | 0 | Ö | 4 | | 32 Upper Sacramento River | McCloud Reservoir at dam | 41.13 | -122.07 | 7.6 | 10.0 | | 0 | 10.1 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 33 Upper Sacramento River | Iron Canyon Reservoir | 41.05 | -121.99 | 7.8 | 14.1 | _ | 0 | 10.4 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 34 Upper Sacramento River | Lake Britton at Ferry Crossing | 41.02 | -121.67 | 7.8 | 14.5 | _ | 0 | 7.5 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 35 Upper Sacramento River | McCloud River above Shasta Lake | 40.96 | -122.22 | 7.8 | 14.1 | 20.0 | Ö | 10.3 | 13 | 1 | 1 | 0 | 0 | 0 | 0 | 3 | | 36 Upper Sacramento River | Pit River near Montgomery Creek | 40.85 | -122.03 | 7.9 | 16.5 | 19.5 | 0 | 9.9 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 37 Upper Sacramento River | Shasta Lake near Shasta Dam | 40.73 | -122.41 | 7.5 | 16.0 | - | 0 | 7.3 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 38 Upper Sacramento River | Whiskeytown Reservoir at dam | 40.60 | -122.54 | 7.3 | 15.0 | _ | Ö | 8.0 | 5 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 39 Sierra Nevada | Lake Almanor - east arm | 40.24 | | 7.8 | 10.0 | _ | Ö | 9.4 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 40 Sierra Nevada | Antelope Lake | 40.02 | | 7.6 | 15.5 | _ | 0 | 8.6 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 41 Sierra Nevada | Frenchman Lake | 39.92 | | 7.8 | 13.3 | _ | 0 | 9.0 | 12 | 1 | 0 | 0 | 0 | 0 | Ö | 4 | | 42 Sierra Nevada | Lake Davis | 39.92 | | 7.7 | 17.3 | _ | 0 | 6.7 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 43 Sierra Nevada | Feather River Middle Fork near Portola | 39.82 | | 7.7 | 14.3 | 19.5 | 0 | 8.4 | 12 | 1 | 1 | 0 | 0 | 0 | 0 | 3 | | 44 Sierra Nevada | Butte Creek near Chico | 39.73 | | 7.3 | 17.3 | 22.0 | 0 | 10.3 | 10 | 1 | 0 | 0 | 0 | 0 | 0 | 3
4 | | 45 Sierra Nevada | Thermalito Afterbay | 39.73 | | 7.8 | 17.3 | 22.0 | 0 | 9.4 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 46 Sierra Nevada | Truckee River at Farad | 39.42 | | 7.2
7.6 | 11.2 | 18.5 | 0 | 8.3 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 47 Sierra Nevada | South Yuba River near Cisco | 39.32 | | | 11.8 | 13.4 | 0 | 10.1 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | TI SICITA INCVAUA | Journ Tuba River Heat CISCO | 39.32 | -120.36 | 7.1 | 11.0 | 13.4 | U | 10.1 | 3 | I | ı | U | U | U | U | 7 | | | | | | _ | | Wate | r Quality | Data | | | Sites | with S | Suitak | ole Wa | iter | $\overline{}$ | |-----------------------------|---|----------------|--------------------|------------|--------------|--------------|-----------|-------------|----------|--------|---------|--------|--------|--------|------|---------------| | #
0 | Cita Nama | 1 - 4:4 | | 11 | Avg | Max | Callinia | DO | 0- | Dessi- | - Qu | ality, | assur | ming a | i | Priority | | 환 Region | Site Name | Latitude | Longitude | рН | Temp | Temp | Salinity | DO | Ca | cation | 1 Calci | um Tl | hresh | old of | | . <u>ē</u> | | 0) | | | | | (°C) | (°C) | (ppt) | (ppm) | (ppm) | (no=1) | | | 20 | | 28 | Ь | | 48 Sierra Nevada | Yuba River near Marysville | 39.18 | -121.52 | 7.5 | 16.3 | 18.1 | 0 | 10.0 | 7 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 49 Sierra Nevada | Lake Tahoe | 39.13 | -120.08 | 7.7 | _ | - | 0 | - | 8 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 50 Sierra Nevada | Bear River near Wheatland | 39.00 | -121.41 | 7.8 | 18.1 | 20.6 | 0 | 9.0 | 10 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 51 Sierra Nevada | Feather River near Nicolaus | 38.90 | -121.58 | 7.5 | 18.4 | 20.5 | 0 | 9.9 | 8 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 52 Sierra Nevada | American River - South Fork near Lotus | 38.82 | -120.95 | 7.2 | 15.0 | 18.5 | 0 | 10.0 | 2 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 53 Sierra Nevada | Folsom Lake near Folsom | 38.71 | -121.16 | 7.0 | 16.2 | - | 0 | 7.2 | 4 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 54 Sierra Nevada | American River at Nimbus Dam | 38.64 | -121.22 | 7.1 | 17.5 | 19.0 | 0 | 8.2 | 4 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 55 Sierra Nevada | American River near Carmichael | 38.57 | -121.37 | 7.0 | 18.4 | 19.5 | 0 | 8.6 | 5 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 56 Sierra Nevada | Cosumnes River at Michigan Bar | 38.50 | -121.04 | 7.5 | 21.0 | 28.7 | 0 | 8.6 | 6 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 57 Sierra Nevada | Stanislaus River - Middle Fork at Dardanelle | 38.34 | | 7.3 | 7.9 | 11.0 | 0 | 10.1 | 3 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 58 Sierra Nevada | Pardee Reservoir | 38.25 | -120.83 | 7.6 | _ | _ | 0 | _ | 3 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 59 Sierra Nevada | Camanche Reservoir | 38.23 | -120.91 | 7.1 | 17.6 | _ | 0 | 8.0 | 3 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 60 Sierra Nevada | Mokelumne River at Woodbridge | 38.16 | | 7.3 | 18.8 | 22.5 | 0 | 9.1 | 4 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 61 Sierra Nevada | Hetch Hetchy Reservoir | 37.93 | -119.78 | 7.8 | _ | _ | 0 | _ | 9 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | 62 Sierra Nevada | Don Pedro Reservoir at influent | 37.88 | -120.31 | 6.5 | 23.7 | _ | 0 | 8.1 | 3 | 1 | - | 0 | 0 | 0 | 0 | 4 | | 63 Sierra Nevada | Stanislaus River at Ripon | 37.73 | -121.11 | 7.5 | 17.3 | 24.8 | 0 | 9.2 | 8 | 1 | - | 0 | 0 | 0 | 0 | 4 | | 64 Sierra Nevada | Tuolumne River at La Grange Bridge | 37.67 | -120.46 | 7.1 | 12.6 | 16.0 | 0 | 10.4 | 3 | 1 | - | 0 | 0 | 0 | 0 | 4 | | 65 Sierra Nevada | Merced River - South Fork near El Portal | 37.65 | -119.89 | 7.3 | 10.0 | 10.0 | 0 | 10.9 | 3 | 1 | - | Ö | 0 | 0 | 0 | 4 | | 66 Sierra Nevada | Tuolumne River at Modesto
| 37.63 | -120.99 | 7.8 | 21.8 | 30.0 | 0 | 9.7 | 13 | 1 | | 0 | 0 | 0 | 0 | 3 | | 67 Sierra Nevada | Merced River near Stevinson | 37.37 | -120.93 | 7.5 | 21.2 | 32.5 | 0 | 8.6 | 10 | | · | 0 | 0 | 0 | 0 | 4 | | 68 Sierra Nevada | San Joaquin R - S Fork at Mono Hot Springs | 37.31 | -118.96 | 7.3 | 12.2 | 17.0 | 0 | 8.5 | 1 | 1 | | 0 | 0 | 0 | 0 | 4 | | 69 Sierra Nevada | Mariposa Creek below Mariposa Dam | 37.30 | -120.16 | 8.0 | 17.6 | 23.0 | 0 | 12.2 | 25 | | . ~ | 1 | 1 | 1 | 0 | 1 | | 70 Sierra Nevada | Chowchilla River below Buchanan Dam | 37.22 | -119.99 | 7.6 | 17.7 | 27.0 | 0 | 10.9 | 15 | 1 | · | 1 | Ö | Ö | 0 | 2 | | 71 Sierra Nevada | Fresno River near Daulton | 37.10 | -119.89 | 7.5 | 15.4 | 22.0 | 0 | 9.7 | 18 | 1 | | 1 | 0 | 0 | 0 | 2 | | 72 Sierra Nevada | Millerton Lake near Friant Dam | 37.01 | -119.70 | 7.1 | 17.0 | | 0 | 9.1 | 3 | 1 | · | 0 | 0 | 0 | 0 | 4 | | 73 Sierra Nevada | Friant-Kern Canal at Friant | 37.00 | -119.70 | 6.7 | 15.9 | 22.0 | 0 | 9.9 | 2 | | - | 0 | 0 | 0 | 0 | 4 | | 74 Sierra Nevada | Kings River near Trimmer | 36.87 | -119.14 | 7.3 | 16.7 | 23.5 | 0 | 9.7 | 2 | 1 | il ö | 0 | 0 | 0 | 0 | 4 | | 75 Sierra Nevada | Pine Flat Reservoir above dam | 36.83 | -119.32 | 7.2 | 13.0 | 23.3 | 0 | 6.5 | 3 | 1 | - | 0 | 0 | 0 | 0 | 4 | | 76 Sierra Nevada | Kings River - South Fork at Cedar Grove | 36.81 | -118.75 | 7.2 | 10.6 | 19.0 | 0 | 10.1 | 2 | 1 | | 0 | 0 | 0 | 0 | 4 | | 77 Sierra Nevada | Kaweah River at Three Rivers | 36.44 | | 7.6 | 17.5 | 25.0 | 0 | 10.0 | 10 | 1 | | 0 | 0 | 0 | 0 | 4 | | 78 Sierra Nevada | Kaweah River below Terminus Dam | 36.41 | -119.01 | 7.4 | 16.3 | 24.0 | 0 | 9.8 | 9 | 1 | _ | 0 | 0 | 0 | 0 | 4 | | 79 Sierra Nevada | Tule River below Success Dam | 36.06 | -118.92 | 7.4 | 18.6 | 28.0 | 0 | 9.6 | 18 | 1 | | 1 | 0 | 0 | 0 | 2 | | 80 Sierra Nevada | Kern River above Fairview | 35.94 | | 7.0 | 11.5 | 15.0 | 0 | 10.3 | 4 | 1 | · | 0 | 0 | 0 | 0 | 4 | | 81 Sierra Nevada | Lake Isabella at Engineer Point | 35.66 | -118.46 | 7.5 | 16.9 | 13.0 | 0 | 6.4 | 7 | 1 | - | 0 | 0 | 0 | 0 | 4 | | 82 Sierra Nevada | Kern River near Bakersfield | 35.44 | | 7.5 | 18.2 | 23.0 | 0 | 9.1 | 10 | 1 | - | 0 | 0 | 0 | 0 | 4 | | 83 Sacramento R. (mainstem) | | 40.60 | -122.44 | 7.5 | 11.2 | 15.0 | 0 | 10.4 | 9 | 1 | | 0 | 0 | 0 | 0 | 4 | | |) Sacramento River at Reswick
) Sacramento River near Red Bluff | 40.80 | -122.44 | 7.5
7.5 | 12.4 | 15.5 | 0 | 10.4 | 9 | 1 | | 0 | 0 | 0 | 0 | 4 | | ` , |) Tehama-Colusa Canal near Red Bluff | 40.29 | -122.19 | 7.3
7.6 | 14.5 | 18.5 | 0 | 10.7 | 10 | 1 | - | 0 | 0 | 0 | 0 | 4 | | ` , | | | | 8.0 | 20.0 | 20.0 | 0 | 9.8 | 9 | 1 | - | 0 | 0 | 0 | 0 | 4 | | , |) Glenn-Colusa Canal near Hamilton City | 39.74
38.46 | | 7.7 | 19.5 | 25.0 | 0 | | | 1 | | 0 | 0 | 0 | 0 | 4 | | | Sacramento River at Freeport | 38.46 | -121.50 | 7.7
7.8 | 22.6 | 29.0 | U | 8.8
8.1 | 11
59 | 1 | 1 | 1 | 1 | 1 | 1 | 4
1 | | | San Joaquin River near Stevinson | | -120.93
-120.55 | | | | _ | | | 1 | | 1 | 1 | 1 | 1 | 1 | | |) San Joaquin River at Highway 152 Bridge
) San Joaquin River Below Friant Dam | 37.06
36.98 | | 7.8
7.1 | 22.0
12.8 | 22.0
22.0 | 0 | 8.7
11.6 | 31
3 | 1 | | 0 | 0 | 0 | 0 | 4 | | 91 Delta | San Joaquin River Below Friant Dam Sacramento River at Delta | | | 7.1
7.9 | | | - | | 6 | 1 | 1 0 | 0 | 0 | 0 | 0 | 4 | | | San Joaquin River at Antioch Ship Channel | 38.17 | | | 16.1 | 19.5 | _ | 10.0 | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 92 Delta | | 38.02 | | 7.8 | 20.8 | 25.0 | - | 8.5 | 33 | 1 | . ', | 1 | 1 | ı | | 1 | | 93 Delta | Rock Slough at Plant | 37.97 | -121.66 | 7.7 | 21.8 | 25.2 | _ | - 0.0 | 12 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 94 Delta | Old River Intake | 37.91 | -121.53 | 7.4 | 22.0 | 25.3 | _ | 9.0 | 9 | - 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 95 Delta | Clifton Court Forebay | 37.83 | -121.56 | 7.9 | 20.5 | 27.0 | _ | 8.8 | 15 | | 1 1 | 1 | 0 | 0 | 0 | 2 | | 96 Delta | Old River at Tracy Road Bridge | 37.80 | -121.45 | 7.8 | 21.2 | 27.0 | - | 7.6 | 32 | | 1 1 | ı | ı | 1 | 1 | 1 | | 41 | | | | _ | | Water | Quality D | Data – | | _ | | | | e Wate | r | _ | |-----------------------------|---|----------|-----------|-----|------|--------|-----------|------------|----------|--------|-------|----------|--------|--------|----------|------------| | #
ይ Region | Site Name | Latituda | Longitude | рН | Avg | Max | Salinity | DO | Ca | Dessi- | Qu | ality, a | assum | ing a | Ţ. | <u>-</u> , | | म्
Region | Site Name | Latitude | Longitude | рп | Temp | Temp | Samily | ЪО | Ca | cation | Calci | um Th | nresho | ld of | Priority | 2 | | | | | | | (°C) | (°C) | (ppt) | (ppm) | (ppm) | (no=1) | 12 | 15 | 20 | 25 2 | 28 | - | | 97 SF Bay Local Watersheds | Napa River near Napa | 38.37 | -122.30 | 8.1 | 19.4 | 24.5 | _ | 9.2 | 28 | 1 | 1 | 1 | 1 | 1 | 1 1 | | | 98 SF Bay Local Watersheds | North Bay Aqueduct at Barker Slough | 38.28 | -121.78 | 7.6 | 19.9 | 26.8 | 0 | 7.3 | 18 | 1 | 1 | 1 | 0 | 0 | 0 2 | 2 | | 99 SF Bay Local Watersheds | Contra Loma Reservoir | 37.96 | -121.75 | 7.5 | 17.7 | - | 0 | 10.6 | 19 | 1 | 1 | 1 | 0 | 0 | 0 2 | 2 | | 100 SF Bay Local Watersheds | San Pablo Reservoir | 37.83 | -122.08 | 8.5 | - | - | 0 | - | 18 | 1 | 1 | 1 | 0 | 0 | 0 2 | 2 | | 101 SF Bay Local Watersheds | South Bay Pumping Plant | 37.78 | -121.62 | 7.9 | 19.7 | 24.1 | 0 | 8.3 | _ | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | | 102 SF Bay Local Watersheds | San Antonio Reservoir | 37.68 | -121.83 | 8.4 | 24.1 | _ | 0 | - | 28 | 1 | 1 | 1 | 1 | 1 | 1 1 | ı | | 103 SF Bay Local Watersheds | | 37.65 | -121.77 | 8.1 | 20.5 | 23.3 | 0 | 9.6 | 17 | 1 | 1 | 1 | 0 | 0 | 0 2 | 2 | | 104 SF Bay Local Watersheds | Lake Del Valle at Glory Hole | 37.63 | -121.71 | 8.5 | 17.8 | _ | 0 | 7.8 | 32 | 1 | 1 | 1 | 1 | 1 | 1 1 | | | 05 SF Bay Local Watersheds | San Andreas Reservoir | 37.60 | -122.42 | 8.2 | 22.5 | _ | 0 | _ | 13 | 1 | 1 | 0 | 0 | 0 | 0 3 | 3 | | 06 SF Bay Local Watersheds | Crystal Springs Reservoir | 37.58 | -121.50 | 8.2 | 18.5 | _ | 0 | _ | 13 | 1 | 1 | 0 | 0 | 0 | 0 3 | 3 | | 07 SF Bay Local Watersheds | , , , | 37.58 | -121.83 | 7.9 | 20.8 | 26.3 | 0 | 9.1 | 18 | 1 | 1 | 1 | 0 | 0 | 0 2 | | | 08 SF Bay Local Watersheds | Upper San Leandro Reservoir | 37.47 | -122.17 | 8.5 | _ | _ | 0 | _ | 26 | 1 | 1 | 1 | 1 | 1 | 0 1 | | | 09 SF Bay Local Watersheds | • • | 37.20 | -121.99 | 7.9 | 16.3 | _ | Ö | 7.0 | 36 | 1 | 1 | 1 | 1 | 1 | 1 1 | ı | | 10 SF Bay Local Watersheds | · · | 37.18 | -121.77 | 8.1 | 19.2 | _ | 0 | 8.3 | 26 | 1 | 1 | 1 | 1 | 1 | 0 1 | ı | | 11 SF Bay Local Watersheds | | 37.17 | -121.63 | 8.0 | 13.8 | 22.0 | 0 | 10.2 | 35 | 1 | 1 | 1 | 1 | 1 | 1 1 | | | 12 SF Bay Local Watersheds | | 37.16 | | 7.7 | 19.8 | _ | Ö | 9.3 | 33 | 1 | 1 | 1 | 1 | 1 | 1 1 | , I | | 13 Central Coast | San Lorenzo River near Boulder Creek | 37.21 | -122.14 | 8.3 | 14.1 | 17.0 | 0 | 9.6 | 76 | 1 | 1 | 1 | 1 | 1 | 1 1 | | | 14 Central Coast | Pajaro River at Chittenden | 36.90 | -121.60 | 8.1 | 18.6 | 23.0 | 0 | 7.9 | 81 | 1 | 1 | 1 | 1 | 1 | 1 1 | - 1 | | 15 Central Coast | San Benito River near Willow Creek School | 36.61 | -121.20 | 8.4 | 21.3 | 26.0 | 0 | 10.1 | 27 | 1 | 1 | 1 | 1 | 1 | 0 1 | • | | 16 Central Coast | Salinas River near Chualar | 36.56 | | 8.4 | 22.4 | 28.5 | 0 | 9.5 | 49 | 1 | 1 | 1 | 1 | 1 | 1 1 | | | 17 Central Coast | Carmel River near Carmel | 36.54 | -121.87 | 7.7 | 16.7 | 20.5 | _ | 9.8 | 33 | 1 | 1 | 1 | 1 | 1 | 1 1 | - 1 | | 18 Central Coast | Arroyo Seco near Soledad | 36.28 | -121.33 | 8.2 | 20.1 | 22.0 | 0 | 10.0 | 62 | 1 | 1 | 1 | 1 | 1 | 1 1 | | | 19 Central Coast | Salinas River near Bradley | 35.93 | -121.33 | 8.1 | 21.3 | 23.5 | 0 | 9.4 | 48 | 1 | 1 | 1 | 1 | 1 | 1 1 | - | | 20 Central Coast | San Antonio River below San Antonio Dam | 35.80 | -120.85 | 8.2 | 20.3 | 24.0 | 0 | 11.3 | 50 | 1 | 1 | 1 | 1 | 1 | 1 1 | - | | 21 Central Coast | Nacimiento Reservoir - lower arm | 35.73 | -120.03 | 8.0 | 22.0 | 24.0 | 0 | 8.7 | 28 | 1 | 1 | 1 | 1 | 1 | 1 1 | - | | 22 Central Coast | Santa Ynez River at Narrows near Lompoc | 34.64 | -121.06 | 8.0 | 20.1 | 30.5 | - | 9.6 | 110 | 1 | 1 | 1 | 1 | 1 | i i | - | | 23 SWP & CVP Aqueducts | Delta Mendota Canal at head | 37.78 | -120.43 | 7.6 | 20.1 | 25.0 | 0 | 8.9 | 20 | 1 | 1 | 1 | 1 | 0 | 0 2 | | | 24 SWP & CVP Aqueducts | San Luis Reservoir at trashracks | 37.76 | -121.08 | 8.3 | 19.6 | 25.2 | 0 | 9.8 | 24 | 1 | 1 | 1 | 1 | | 0 2 | | | 25 SWP & CVP Aqueducts | Delta Mendota Canal 2.2 mi S of Firebaugh | 36.83 | -121.08 | 8.0 | 19.6 | 26.0 | 0 | 9.6
7.6 | 28 | 1 | 1 | 1 | 1 | 1 | 1 1 | | | • | · · | | | 7.9 | 21.4 | 27.0 | 0 | 7.6
8.4 | 28
18 | 1 | 1 | 1 | 0 | 0 | | - | | 26 SWP & CVP Aqueducts | California Aqueduct near Check 21 | 36.02 | -119.98 | | | | 0 | | | 1 | 1 | 1
1 | 1 | | - | | | 27 SWP & CVP Aqueducts | California Aqueduct near Kettleman | 36.02 | -119.98 | 7.7 | 22.3 | 26.8 | - | 8.5 | 23 | 1 | 1 | 1 | 1 | | 0 2 | | | 28 SWP & CVP Aqueducts | California Aqueduct at Check 41 | 34.93 | -118.83 | 7.9 | 20.8 | 26.3 | 0
0 | 8.5 | 22 | 1 | 1 | 1 | 1 | | 0 2 | | | 129 SWP & CVP Aqueducts | Pyramid Lake at inlet | 34.68 | -118.80 | 8.4 | 20.8 | - 22.0 | - | 8.9 | 24 | 1 | 1 | 1 | 1 | 0 | 0 2 | | | 30 SWP & CVP Aqueducts | Piru Creek release from Pyramid Dam | 34.64 | -118.76 | 7.8 | 14.6 | 22.0 | 0 | 10.1 | 32 | 1 | 1 | 1 | 1 | 1 | | • | | 31 SWP & CVP Aqueducts | Lake Castaic | 34.55 | -117.58 | 9.0 | 21.3 | - | 0 | 10.1 | 30 | 1 | 1 | 1 | 1 | 1 | 1 1 | | | 32 SWP & CVP Aqueducts | Silverwood Lake at San Bernardino | 34.28 | -117.33 | 8.4 | 19.1 | - | 0 | 9.0 | 18 | l
a | 1 | 1 | 0 | | 0 2 | | | 133 SWP & CVP Aqueducts | Lake Perris at inlet | 33.83 | -117.17 | 8.5 | 23.2 | - | 0 | 8.7 | 26 | l
a | 1 | 1 | 1 | | 0 1 | - | | 34 South Coast | Sespe Creek near Fillmore | 34.45 | -118.93 | 8.6 | 20.9 | 26.0 | 0 | 9.1 | 86 | 1 | 1 | 1 | 1 | 1 | 1 1 | - 1 | | 35 South Coast | Santa Clara River at
LA-Ventura Co. line | 34.40 | | 8.2 | 22.5 | 28.0 | 0 | 8.1 | 122 | 1 | 1 | 1 | 1 | 1 | 1 1 | . | | 36 South Coast | San Gabriel River at Azusa | | -117.91 | 8.3 | 19.6 | 26.0 | 0 | 8.9 | 43 | 1 | 1 | 1 | I | ı | 1 1 | | | 37 South Coast | Santa Ana River at MWD Crossing | 33.97 | | | 23.2 | 34.5 | 0 | 10.0 | 94 | 1 | 0 | 0 | 0 | | 0 4 | | | 38 South Coast | Los Angeles River at Long Beach | 33.82 | | 9.7 | 27.9 | 34.0 | _ | 19.3 | 75 | 1 | 0 | 0 | 0 | | 0 4 | | | 39 South Coast | San Luis Rey River at Oceanside | 33.22 | | 8.0 | 25.7 | 35.0 | - | 8.7 | 147 | 1 | 0 | 0 | 0 | | 0 4 | | | 40 South Coast | San Diego River at El Capitan Dam | 32.88 | | 8.0 | 26.0 | 31.0 | 0 | 8.5 | 24 | 1 | 1 | 1 | 1 | | 0 2 | | | 41 Northeastern California | Goose Lake | 41.92 | | 9.1 | 18.8 | - | - | 9.1 | 11.5 | 1 | 0 | 0 | 0 | | 0 4 | - | | 142 Northeastern California | Upper Alkali Lake | 41.75 | -120.12 | - | - | - | - | - | - | 0 | 0 | 0 | 0 | | 0 4 | | | 143 Northeastern California | Lower Alkali Lake | 41.33 | -120.08 | - | - | - | 3 | - | 7 | 0 | 0 | 0 | 0 | | 0 4 | | | 144 Northeastern California | Eagle Lake | 40.62 | | 9.1 | 15.7 | - | 0.4 | 8.8 | 9 | 1 | 0 | 0 | 0 | | 0 4 | | | 145 Northeastern California | Honey Lake | 40.25 | -120.30 | _ | - | - | 7 | - | - | 0 | 0 | 0 | 0 | 0 | 0 4 | 4 | | | | | | _ | | Wate | r Quality | Data - | | _ | Sites | with S | Suital | ole Wa | iter | | |---------------------------|--|----------|-----------|-----|------|------|-----------|--------|-------|--------|-------|--------|--------|--------|------|------| | # Region | Site Name | Latitude | Longitude | На | Avg | Max | Salinity | DO | Ca | Dessi- | | | | ming a | | rity | | 환 Region | Site Hame | Latitado | Longitudo | Pii | Temp | Temp | Jaminey | 50 | Cu | cation | Calc | ium T | hresh | old of | | Ϋ́ | | | | | | | (°C) | (°C) | (ppt) | (ppm) | (ppm) | (no=1) | 12 | 15 | 20 | 25 | 28 | ш | | 146 East of Sierra/Mojave | Mono Lake | 38.00 | -119.12 | 9.9 | _ | _ | 69 | _ | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 147 East of Sierra/Mojave | Los Angeles Aqueduct - Grant Lakes | 37.83 | -119.08 | 7.4 | 12.7 | 18.0 | 0 | 7.8 | 6 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 148 East of Sierra/Mojave | Mammoth Creek at Highway 395 | 37.64 | -118.90 | 7.9 | 10.7 | 18.0 | 0 | 10.2 | 9 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 149 East of Sierra/Mojave | Los Angeles Aqueduct - Tinemaha | 37.08 | -118.20 | 8.3 | 19.5 | 25.4 | 0 | 7.6 | 21 | 1 | 1 | 1 | 1 | 0 | 0 | 2 | | 150 East of Sierra/Mojave | Owens River below Tinemaha | 37.05 | -118.23 | 8.1 | 17.8 | 23.0 | 0.3 | 8.5 | 18 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | | 151 East of Sierra/Mojave | Los Angeles Aqueduct - Merritt Cut | 36.02 | -118.00 | 8.2 | 20.2 | 26.2 | 0 | 8.1 | 17 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | | 152 East of Sierra/Mojave | Mojave River near Victorville | 34.57 | -117.32 | 7.9 | 25.2 | 32.0 | - | 7.3 | 34 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 153 Colorado River Basin | Colorado River at Aqueduct intake | 34.32 | -114.16 | 8.0 | 22.3 | - | 0 | 7.6 | 79 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 154 Colorado River Basin | Lake Havasu at Parker Dam | 34.30 | -114.13 | 7.8 | 22.5 | - | 0 | 6.5 | 75 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 155 Colorado River Basin | Colorado River Aqueduct - Lake Mathews | 33.83 | -117.43 | 8.5 | 24.4 | - | 0 | - | 77 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 156 Colorado River Basin | Salton Sea - midpoint near County Line | 33.42 | -115.95 | 8.3 | 26.6 | - | 40 | - | 1416 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 157 Colorado River Basin | Alamo River near Calipatria | 33.10 | -115.39 | 8.0 | 26.5 | 32.5 | - | 7.4 | 177 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | 158 Colorado River Basin | All American Canal | 32.75 | -114.71 | 7.9 | 28.0 | 30.4 | - | 8.0 | 67 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 159 Colorado River Basin | East Highline Canal | 32.70 | -115.28 | 8.3 | 25.2 | 30.0 | 0 | 7.6 | 76 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 160 Colorado River Basin | New River at international boundary | 32.67 | -115.50 | 7.7 | 27.4 | 31.8 | _ | _ | 250 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | | Suitability | Priority | |------------------|---------------------| | 1 = Suitable | 1 = High Priority | | 2 = Not Suitable | 2 = Medium Priority | | | 3 = Low Priority | | | 4 = Not Vulnerable | Number of sites with suitable water quality: 84 75 54 40 33 Number and Percent of High Priority sites: 40 25% Number and Percent of Medium Priority sites: 35 22% Number and Percentof Low Priority sites: 9 6% Number and Percent of sites that are not vulnerable to colonization: 76 48% #### PRIORITY TABLE | # | Region | Site Name | | # | Region | Site Name | |--|--|--|--------|---|--|---| | | Region | | PRIORI | | | | | 1 | 12 North Coast | Eel River at Scotia | Ī | 115 | Central Coast | San Benito River near Willow Creek School | | | 13 North Coast | Van Duzen River near Bridgeville | | | Central Coast | Salinas River near Chualar | | | 15 North Coast | Eel River at Black Butte River | | 117 | Central Coast | Carmel River near Carmel | | 2 | 20 West Sacramento Valley | Black Butte Reservoir | | 118 | Central Coast | Arroyo Seco near Soledad | | | 69 Sierra Nevada | Mariposa Creek below Mariposa Dam | | | Central Coast | Salinas River near Bradley | | 8 | 38 San Joaquin R. (mainstem) | San Joaquin River near Stevinson | | 120 |
Central Coast | San Antonio River below San Antonio Dam | | 8 | 39 San Joaquin R. (mainstem) | San Joaquin River at Highway 152 Bridge | | 121 | Central Coast | Nacimiento Reservoir - lower arm | | 9 | 92 Delta | San Joaquin River at Antioch Ship Channel | | 122 | Central Coast | Santa Ynez River at Narrows near Lompoc | | 9 | 96 Delta | Old River at Tracy Road Bridge | | 125 | SWP & CVP Aqueducts | Delta Mendota Canal 2.2 mi S of Firebaugh | | 9 | 97 SF Bay Local Watersheds | Napa River near Napa | | 130 | SWP & CVP Aqueducts | Piru Creek release from Pyramid Dam | | 10 | 01 SF Bay Local Watersheds | South Bay Pumping Plant | | 131 | SWP & CVP Aqueducts | Lake Castaic | | | 02 SF Bay Local Watersheds | San Antonio Reservoir | | | SWP & CVP Aqueducts | Lake Perris at inlet | | 10 | 04 SF Bay Local Watersheds | Lake Del Valle at Glory Hole | | 134 | South Coast | Sespe Creek near Fillmore | | 10 | 08 SF Bay Local Watersheds | Upper San Leandro Reservoir | | 135 | South Coast | Santa Clara River at LA-Ventura Co. line | | | 09 SF Bay Local Watersheds | Lexington Reservoir at dam near Los Gatos | | 136 | South Coast | San Gabriel River at Azusa | | | 10 SF Bay Local Watersheds | Calero Reservoir near New Almaden | | 153 | Colorado River Basin | Colorado River at Aqueduct intake | | | I 1 SF Bay Local Watersheds | Coyote Creek below Anderson Dam | | | Colorado River Basin | Lake Havasu at Parker Dam | | | 12 SF Bay Local Watersheds | Anderson Reservoir at dam | | 155 | Colorado River Basin | Colorado River Aqueduct - Lake Mathews | | 11 | 13 Central Coast | San Lorenzo River near Boulder Creek | | 158 | Colorado River Basin | All American Canal | | 11 | 14 Central Coast | Pajaro River at Chittenden | | 159 | Colorado River Basin | East Highline Canal | | | | | PRIORI | ITY 2 | 2 | - | | | 4 North Coast | Scott River near Fort Jones | I | 95 | Delta | Clifton Court Forebay | | | 5 North Coast | Klamath River near Klamath | | | SF Bay Local Watersheds | North Bay Aqueduct at Barker Slough | | | 8 North Coast | Trinity River at Hoopa | | | SF Bay Local Watersheds | Contra Loma Reservoir | | | 9 North Coast | Mad River near Arcata | | | SF Bay Local Watersheds | San Pablo Reservoir | | | 14 North Coast | Eel River South Fork Near Miranda | | | SF Bay Local Watersheds | South Bay Aqueduct at Mile 16.27 | | | 16 North Coast | Eel River near Dos Rios | | | SF Bay Local Watersheds | South Bay Aqueduct at Santa Clara Terminus | | | 17 North Coast | Russian River near Ukiah | | | SWP & CVP Aqueducts | Delta Mendota Canal at head | | 2 | 21 North Coast | Pillsbury Lake near Potter Valley | | | SWP & CVP Aqueducts | San Luis Reservoir at trashracks | | | 22 West Sacramento Valley | Indian Valley Reservoir | | | SWP & CVP Aqueducts | California Aqueduct near Check 21 | | | 23 West Sacramento Valley | Clear Lake - upper arm | | | SWP & CVP Aqueducts | California Aqueduct near Kettleman | | | 24 West Sacramento Valley | Clear Lake - lower arm | | | SWP & CVP Aqueducts | California Aqueduct at Check 41 | | | 25 West Sacramento Valley | Cache Creek near Lower Lake | | | SWP & CVP Aqueducts | Pyramid Lake at inlet | | | 26 West Sacramento Valley | Putah Creek below Monticello Dam | | | SWP & CVP Aqueducts | Silverwood Lake at San Bernardino | | | 27 West Sacramento Valley | Lake Berryessa at dam | | | South Coast | San Diego River at El Capitan Dam | | | 29 Upper Sacramento River | Pit River near Canby | | | East of Sierra/Mojave | Los Angeles Aqueduct - Tinemaha | | | 70 Sierra Nevada | Chowchilla River below Buchanan Dam | | | East of Sierra/Mojave | Owens River below Tinemaha | | | 71 Sierra Nevada | Fresno River near Daulton | | | East of Sierra/Mojave | Los Angeles Aqueduct - Merritt Cut | | | 79 Sierra Nevada | Tule River below Success Dam | | | | | | | | | PRIORI | ITY 3 | 3 | | | | 1 North Coast | Klamath River below Iron Gate Dam | l | 43 | Sierra Nevada | Feather River Middle Fork near Portola | | | 2 North Coast | Klamath River at Hamburg | | | Sierra Nevada | Tuolumne River at Modesto | | 1 | 7 North Coast | Klamath River at Orleans | | 105 | SF Bay Local Watersheds | San Andreas Reservoir | | | 18 North Coast | Lake Sonoma- Dry Creek Arm | | | SF Bay Local Watersheds | Crystal Springs Reservoir | | 3 | 35 Upper Sacramento River | McCloud River above Shasta Lake | | | - | | | | | | PRIORI | ITY 4 | ŀ | | | | 3 North Coast | Smith River near Crescent City | | | Sierra Nevada | Tuolumne River at La Grange Bridge | | | 6 North Coast | Salmon River at Somesbar | | | Sierra Nevada | Merced River - South Fork near El Portal | | 1 | 10 North Coast | Trinity River near Burnt Ranch | | 67 | Sierra Nevada | Merced River near Stevinson | | | 11 North Coast | Trinity River at Lewiston | | | Sierra Nevada | San Joaquin R - S Fork at Mono Hot Springs | | | 19 West Sacramento Valley | Thomes Creek at Paskenta | | 72 | Sierra Nevada | Millerton Lake near Friant Dam | | | 28 North Coast | Shasta River below Dwinnell Reservoir | | | Sierra Nevada | Friant-Kern Canal at Friant | | 3 | | | | | | | | | 30 Upper Sacramento River | Siskiyou Lake - upper end near Shasta City | | | Sierra Nevada | Kings River near Trimmer | | 3 | 31 Upper Sacramento River | Siskiyou Lake - upper end near Shasta City
Pit River - South Fork near Likely | | 74
75 | Sierra Nevada | Kings River near Trimmer
Pine Flat Reservoir above dam | | | 31 Upper Sacramento River
32 Upper Sacramento River | Siskiyou Lake - upper end near Shasta City
Pit River - South Fork near Likely
McCloud Reservoir at dam | | 74
75
76 | Sierra Nevada
Sierra Nevada | Kings River near Trimmer
Pine Flat Reservoir above dam
Kings River - South Fork at Cedar Grove | | | 31 Upper Sacramento River
32 Upper Sacramento River
33 Upper Sacramento River | Siskiyou Lake - upper end near Shasta City
Pit River - South Fork near Likely
McCloud Reservoir at dam
Iron Canyon Reservoir | | 74
75
76 | Sierra Nevada | Kings River near Trimmer
Pine Flat Reservoir above dam | | 3 | 31 Upper Sacramento River
32 Upper Sacramento River
33 Upper Sacramento River
34 Upper Sacramento River | Siskiyou Lake - upper end near Shasta City
Pit River - South Fork near Likely
McCloud Reservoir at dam
Iron Canyon Reservoir
Lake Britton at Ferry Crossing | | 74
75
76
77
78 | Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam | | 3 | 31 Upper Sacramento River
32 Upper Sacramento River
33 Upper Sacramento River
34 Upper Sacramento River
36 Upper Sacramento River | Siskiyou Lake - upper end near Shasta City
Pit River - South Fork near Likely
McCloud Reservoir at dam
Iron Canyon Reservoir
Lake Britton at Ferry Crossing
Pit River near Montgomery Creek | | 74
75
76
77
78
80 | Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview | | 3
3
3 | 81 Upper Sacramento River
82 Upper Sacramento River
83 Upper Sacramento River
84 Upper Sacramento River
86 Upper Sacramento River
87 Upper Sacramento River | Siskiyou Lake - upper end near Shasta City
Pit River - South Fork near Likely
McCloud Reservoir at dam
Iron Canyon Reservoir
Lake Britton at Ferry Crossing
Pit River near Montgomery Creek
Shasta Lake near Shasta Dam | | 74
75
76
77
78
80
81 | Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point | | 3
3
3 | 31 Upper Sacramento River
32 Upper Sacramento River
33 Upper Sacramento River
34 Upper Sacramento River
36 Upper Sacramento River
37 Upper Sacramento River
38 Upper Sacramento River | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam | | 74
75
76
77
78
80
81
82 | Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield | | 3
3
3
3 | 31 Upper Sacramento River
32 Upper Sacramento River
33 Upper Sacramento River
34 Upper Sacramento River
36 Upper Sacramento River
37 Upper Sacramento River
38 Upper Sacramento River
39 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm | | 74
75
76
77
78
80
81
82
83 | Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sacramento R. (mainstem) | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick | | 3
3
3
3
4 | 31 Upper Sacramento River
32 Upper Sacramento River
33 Upper Sacramento
River
34 Upper Sacramento River
36 Upper Sacramento River
37 Upper Sacramento River
38 Upper Sacramento River
39 Sierra Nevada
40 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake | | 74
75
76
77
78
80
81
82
83 | Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sierra Nevada
Sacramento R. (mainstem) | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff | | 3
3
3
3
4
4 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake | | 74
75
76
77
78
80
81
82
83
84
85 | Sierra Nevada Sacramento R. (mainstem) Sacramento R. (mainstem) | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff | | 3
3
3
3
4
4
4 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis | | 74
75
76
77
78
80
81
82
83
84
85
86 | Sierra Nevada Sacramento R. (mainstem) Sacramento R. (mainstem) Sacramento R. (mainstem) | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City | | 3
3
3
3
4
4
4
4 | 31 Upper Sacramento River
32 Upper Sacramento River
33 Upper Sacramento River
34 Upper Sacramento River
36 Upper Sacramento River
37 Upper Sacramento River
38 Upper Sacramento River
39 Sierra Nevada
40 Sierra Nevada
41 Sierra Nevada
42 Sierra Nevada
43 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico | | 74
75
76
77
78
80
81
82
83
84
85
86
87 | Sierra Nevada Sacramento R. (mainstem) Sacramento R. (mainstem) Sacramento R. (mainstem) Sacramento R. (mainstem) | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport | | 3
3
3
3
4
4
4
4
4 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay | | 74
75
76
77
78
80
81
82
83
84
85
86
87 | Sierra Nevada Sacramento R. (mainstem) | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam | | 3
3
3
3
4
4
4
4
4
4 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 45 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91 | Sierra Nevada Sacramento R. (mainstem) Delta | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta | | 3
3
3
3
4
4
4
4
4
4
4 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91 | Sierra Nevada Sacramento R. (mainstem) Delta Delta | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant | | 3
3
3
3
4
4
4
4
4
4
4
4 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
94 | Sierra Nevada Sacramento R. (mainstem) Delta Delta Delta | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River at Reswick Genn-Colusa Canal near Red Bluff Glenn-Colusa Canal
near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake | | 3
3
3
3
4
4
4
4
4
4
4
4
4
4 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
94 | Sierra Nevada Sacramento R. (mainstem) Dearamento R. (mainstem) Saramento R. (mainstem) Delta Delta Delta Delta South Coast | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Red Bluff Sacramento River at Tereport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing | | 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 49 Sierra Nevada 49 Sierra Nevada 40 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
94
137 | Sierra Nevada Sacramento R. (mainstem) Delta Delta Delta Delta South Coast South Coast | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach | | 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 50 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
94
137
138
139 | Sierra Nevada Sacramento R. (mainstem) Sacramento R. (mainstem) Sacramento R. (mainstem) Sacramento R. (mainstem) Delta Delta Delta Delta Delta South Coast South Coast | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside | | 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 49 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
94
137
138
139 | Sierra Nevada Sacramento R. (mainstem) Decramento R. (mainstem) San Joaquin R. (mainstem) Delta Delta Delta Delta South Coast South Coast South Coast Northeastern California | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River at Keswick Sacramento River at Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake | | 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada 56 Sierra Nevada 57 Sierra Nevada 58 Sierra Nevada 59 Sierra Nevada 50 Sierra Nevada 50 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus Folsom Lake near Folsom | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
94
137
138
139
141 | Sierra Nevada Sacramento R. (mainstem) (ma | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Red Bluff Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake Upper Alkali Lake | | 33
33
33
33
44
44
44
44
44
45
55
55
55 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River
34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus Folsom Lake near Folsom American River at Nimbus Dam | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
94
137
138
139
141
142
143 | Sierra Nevada Sacramento R. (mainstem) Delta Delta Delta Delta Delta South Coast South Coast South Coast Northeastern California Northeastern California | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake Upper Alkali Lake | | 33
33
33
33
44
44
44
44
44
45
55
55
55
55 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada 56 Sierra Nevada 57 Sierra Nevada 58 Sierra Nevada 59 Sierra Nevada 50 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus Folsom Lake near Folsom American River at Nimbus Dam American River near Carmichael | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
137
138
139
141
142
143
144 | Sierra Nevada Sacramento R. (mainstem) Delta Delta Delta Delta Delta Delta South Coast South Coast South Coast Northeastern California Northeastern California Northeastern California Northeastern California | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake Upper Alkali Lake Eagle Lake | | 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada 56 Sierra Nevada 57 Sierra Nevada 58 Sierra Nevada 59 Sierra Nevada 50 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus Folsom Lake near Folsom American River near Carmichael Cosumnes River at Michigan Bar | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
138
139
141
142
143
144 | Sierra Nevada Sacramento R. (mainstem) Delta Delta Delta Delta Delta Delta Delta South Coast South Coast South Coast Northeastern California Northeastern California Northeastern California Northeastern California | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake Upper Alkali Lake Lower Alkali Lake Eagle Lake Honey Lake | | 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada 56 Sierra Nevada 57 Sierra Nevada 58 Sierra Nevada 59 Sierra Nevada 50 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada 56 Sierra Nevada 57 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus Folsom Lake near Folsom American River at Nimbus Dam American River near Carmichael | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
94
137
138
139
141
142
143
144
145
146 | Sierra Nevada Sacramento R. (mainstem) Sar Joaquin R. (mainstem) Delta Delta Delta Delta South Coast South Coast South Coast Northeastern California South Coast South Coast Northeastern California Northeastern California Northeastern California South Coast South Coast Northeastern California Northeastern California Northeastern California East of Sierra/Mojave | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake Upper Alkali Lake Eagle Lake | | 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 | 81 Upper Sacramento River 82 Upper Sacramento River 83 Upper Sacramento River 84 Upper Sacramento River 85 Upper Sacramento River 86 Upper Sacramento River 87 Upper Sacramento River 88 Upper Sacramento River 89 Sierra Nevada 91 Sierra Nevada 91 Sierra Nevada 92 Sierra Nevada 93 Sierra Nevada 94 Sierra Nevada 95 Sierra Nevada 96 Sierra Nevada 97 Sierra Nevada 98 Sierra Nevada 99 Sierra Nevada 90 Sierra Nevada 91 Sierra Nevada 91 Sierra Nevada 92 Sierra Nevada 93 Sierra Nevada 94 Sierra Nevada 95 Sierra Nevada 96 Sierra Nevada 97 Sierra Nevada 98 Sierra Nevada 98 Sierra Nevada 99
Sierra Nevada 99 Sierra Nevada 90 Sierra Nevada 90 Sierra Nevada 91 Sierra Nevada 92 Sierra Nevada 93 Sierra Nevada 94 Sierra Nevada 95 Sierra Nevada 96 Sierra Nevada 97 Sierra Nevada 98 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus Folsom Lake near Folsom American River at Nimbus Dam American River at Michigan Bar Stanislaus River - Middle Fork at Dardanelle Pardee Reservoir | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
94
137
138
139
141
142
143
144
145
146 | Sierra Nevada Sacramento R. (mainstem) Delta Delta Delta Delta Delta South Coast South Coast South Coast Northeastern California Northeastern California Northeastern California Northeastern California East of Sierra/Mojave East of Sierra/Mojave | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake Upper Alkali Lake Lower Alkali Lake Eagle Lake Honey Lake Mono Lake Los Angeles Aqueduct - Grant Lakes | | 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada 56 Sierra Nevada 57 Sierra Nevada 58 Sierra Nevada 59 Sierra Nevada 59 Sierra Nevada 50 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada 56 Sierra Nevada 57 Sierra Nevada 58 Sierra Nevada 59 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus Folsom Lake near Folsom American River at Mimbus Dam American River near Carmichael Cosumnes River at Michigan Bar Stanislaus River - Middle Fork at Dardanelle Pardee Reservoir | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
141
142
143
144
145
146
147
148 | Sierra Nevada Sacramento R. (mainstem) Delta Delta Delta Delta Delta Delta South Coast South Coast South Coast South Coast Northeastern California Northeastern California Northeastern California Northeastern California Southeastern | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake Upper Alkali Lake Eagle Lake Honey Lake Mono Lake Los Angeles Aqueduct - Grant Lakes Mammoth Creek at Highway 395 | | 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 | 81 Upper Sacramento River 82 Upper Sacramento River 83 Upper Sacramento River 84 Upper Sacramento River 85 Upper Sacramento River 86 Upper Sacramento River 87 Upper Sacramento River 88 Upper Sacramento River 89 Sierra Nevada 91 Sierra Nevada 91 Sierra Nevada 92 Sierra Nevada 93 Sierra Nevada 94 Sierra Nevada 95 Sierra Nevada 96 Sierra Nevada 97 Sierra Nevada 98 Sierra Nevada 99 Sierra Nevada 90 Sierra Nevada 91 Sierra Nevada 91 Sierra Nevada 92 Sierra Nevada 93 Sierra Nevada 94 Sierra Nevada 95 Sierra Nevada 96 Sierra Nevada 97 Sierra Nevada 98 Sierra Nevada 98 Sierra Nevada 99 Sierra Nevada 99 Sierra Nevada 90 Sierra Nevada 90 Sierra Nevada 91 Sierra Nevada 92 Sierra Nevada 93 Sierra Nevada 94 Sierra Nevada 95 Sierra Nevada 96 Sierra Nevada 97 Sierra Nevada 98 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus Folsom Lake near Folsom American River at Nimbus Dam American River at Michigan Bar Stanislaus River - Middle Fork at Dardanelle Pardee Reservoir | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
141
142
143
144
145
146
147
148 | Sierra Nevada Sacramento R. (mainstem) Delta Delta Delta Delta Delta South Coast South Coast South Coast Northeastern California Northeastern California Northeastern California Northeastern California East of Sierra/Mojave East of Sierra/Mojave | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake Upper Alkali Lake Lower Alkali Lake Eagle Lake Honey Lake Mono Lake Los Angeles Aqueduct - Grant Lakes | | 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada 56 Sierra Nevada 57 Sierra Nevada 58 Sierra Nevada 58 Sierra Nevada 59 Sierra Nevada 59 Sierra Nevada 50 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada 56 Sierra Nevada 57 Sierra Nevada 58 Sierra Nevada 59 Sierra Nevada 50 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus Folsom Lake near Folsom American River at Nimbus Dam American River near Carmichael Cosumnes River at Michigan Bar Stanislaus River - Middle Fork at Dardanelle Pardee Reservoir Camanche Reservoir Mokelumne River at Woodbridge Hetch Hetchy Reservoir | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
93
94
137
138
141
142
143
144
145
146
147
148
152 | Sierra Nevada Sacramento R. (mainstem) Sacramento R. (mainstem) Sacramento R. (mainstem) Sacramento R. (mainstem) Saramento R. (mainstem) San Joaquin R. (mainstem) Delta Delta Delta Delta South Coast South Coast South Coast Northeastern California South Sierra/Mojave East of Sierra/Mojave East of Sierra/Mojave Colorado River Basin | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at
Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake Upper Alkali Lake Lower Alkali Lake Lower Alkali Lake Honey Lake Mono Lake Los Angeles Aqueduct - Grant Lakes Mammoth Creek at Highway 395 Mojave River near Victorville Salton Sea - midpoint near County Line | | 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 | 31 Upper Sacramento River 32 Upper Sacramento River 33 Upper Sacramento River 34 Upper Sacramento River 36 Upper Sacramento River 37 Upper Sacramento River 38 Upper Sacramento River 38 Upper Sacramento River 39 Sierra Nevada 40 Sierra Nevada 41 Sierra Nevada 42 Sierra Nevada 43 Sierra Nevada 44 Sierra Nevada 45 Sierra Nevada 46 Sierra Nevada 47 Sierra Nevada 48 Sierra Nevada 49 Sierra Nevada 50 Sierra Nevada 51 Sierra Nevada 52 Sierra Nevada 53 Sierra Nevada 54 Sierra Nevada 55 Sierra Nevada 56 Sierra Nevada 57 Sierra Nevada 58 Sierra Nevada 59 50 Sierra Nevada 50 Sierra Nevada 50 Sierra Nevada | Siskiyou Lake - upper end near Shasta City Pit River - South Fork near Likely McCloud Reservoir at dam Iron Canyon Reservoir Lake Britton at Ferry Crossing Pit River near Montgomery Creek Shasta Lake near Shasta Dam Whiskeytown Reservoir at dam Lake Almanor - east arm Antelope Lake Frenchman Lake Lake Davis Butte Creek near Chico Thermalito Afterbay Truckee River at Farad South Yuba River near Cisco Yuba River near Marysville Lake Tahoe Bear River near Wheatland Feather River near Nicolaus American River - South Fork near Lotus Folsom Lake near Folsom American River at Minbus Dam American River at Michigan Bar Stanislaus River - Middle Fork at Dardanelle Pardee Reservoir Camanche Reservoir Mokelumne River at Woodbridge | | 74
75
76
77
78
80
81
82
83
84
85
86
87
90
91
142
143
144
145
146
147
148
149
149
156
157 | Sierra Nevada Sacramento R. (mainstem) Sacramento R. (mainstem) Sacramento R. (mainstem) Sacramento R. (mainstem) Delta De | Kings River near Trimmer Pine Flat Reservoir above dam Kings River - South Fork at Cedar Grove Kaweah River at Three Rivers Kaweah River below Terminus Dam Kern River above Fairview Lake Isabella at Engineer Point Kern River near Bakersfield Sacramento River at Keswick Sacramento River near Red Bluff Tehama-Colusa Canal near Red Bluff Glenn-Colusa Canal near Hamilton City Sacramento River at Freeport San Joaquin River Below Friant Dam Sacramento River at Delta Rock Slough at Plant Old River Intake Santa Ana River at MWD Crossing Los Angeles River at Long Beach San Luis Rey River at Oceanside Goose Lake Upper Alkali Lake Lower Alkali Lake Eagle Lake Honey Lake Mono Lake Los Angeles Aqueduct - Grant Lakes Mammoth Creek at Highway 395 Mojave River near Victorville |