Use of Herding Agents to Facilitate In-Situ Burning

Presentation Overview

- Two experiments performed in 2015, 2016
- First involved "ice"; second involved open water
- Brief reference to companion study:
 - Windows of opportunity

ISB Experiment in "Ice" Objectives

- Validate use of herders in conjunction with ISB
- Validate use of helicopter-borne
 - herder application system; and
 - igniters

Summary of testing

Test	Oil volume	Herding agent	HeliTorch Fuel	Max Slick Area	Burn Efficiency		Herder success	Aerial ignition
	Volume	идент	Tuci	Arcu	By weight*	By area**	3466633	success?
1	70 L	1 L OP40	60%diesel/ 40%gas	101 m ²	86%		Yes	No
2	75 L	4 I OP40	100%gas	193 m²	59%		Yes	No
3	151 L	5 L OP40	20%diesel/ 80%gas	185 m ²	94%	73 to 79%	Yes	Yes
4	155 L	1 L TS6535	20%diesel/ 80%gas	277 m ²	73%		No	Yes***
5	155 L	4 L TS6535	20%diesel/ 80%gas	157 m ²	86%	74 to 84%	Yes	Yes

^{*}Quantifies mass burn efficiency of free floating slick burning + sidewall-associated slick burning

^{**}Quantifies volumetric burn efficiency of free floating slick burning only; not converted to mass since inherent measurement errors and burn rate assumptions preclude accuracy required for meaningful comparison

^{***}Test 4 slick was ignited from the air, but only after slick was herded by wind against the sidewall

Experiments at Sea with Herders and In-Situ Burning

Primary objective:

Validate findings of an earlier study re: herders in open water

Methodology

- Three spills: 4 m³ to 6 m³
- One spill reference slick: no herder applied
- Herder applied from small boats
- Igniters manually applied approx. one hour after oil release
- Aerial imagery used to document experiments

Results

Test	Burn duration, minutes	Volume burned, litres
1	20	3390
2	13	1226
3	8	770

Conclusions

- Successfully demonstrated open water HISB
- Higher wind speeds in test 3 may indicate an upper limit in open water of 4 to 5 m/s (10 kts)
- Reference slick, without the use of herder, was also partially ignited

Windows of Opportunity Research

- "If oils will flow, herders will work"
- At temperatures >10C below pour point herders are ineffective
- As an oil emulsifies there is a loss of herder effectiveness

Conclusions

- Helicopter delivery system is being developed for application of herder and igniter
- In-situ burning should be considered a viable technique in:
 - Remote areas
 - Regions with partial ice cover
 - Inland areas with poor access