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21. RED ABALONE FISHERY MANAGEMENT PLAN

Today’s Item Information  ☒ Action  ☐ 

Receive update from DFW on fishery management plan (FMP) process for red abalone. 

Summary of Previous/Future Actions  

 FGC supports red abalone FMP development per Oct 8, 2014; Mt. Shasta 
MRC recommendation

 DFW updates on FMP process and timeline 2015-2016; MRC meetings 

 Update on FMP process and timeline Mar 23, 2017; MRC, San Clemente 

 Update on FMP process and timeline Jul 20, 2017; MRC, Santa Rosa 

 Update on FMP process and timeline Dec 6-7, 2017; San Diego 

Background 

At its Oct 2017 meeting, FGC requested to receive an update from DFW on progress in 
developing the red abalone FMP. Throughout the FMP development process, DFW has 
provided updates at MRC meetings on stakeholder input and next steps.  

Today DFW will provide an update on red abalone FMP progress, as informed by recent 
conditions in the fishery, and discuss the possible role of various survey methods related to 
harvest control rules.  

Significant Public Comments  

 The Nature Conservancy (TNC) submitted two comments regarding abalone FMP
development. First, at the July MRC meeting, TNC highlighted using citizen science as
a means to efficiently inform an adaptive management framework for red abalone
(Exhibit 1). The second letter (Exhibit 2) requests that DFW consider using the
described harvest control proposal within the abalone FMP.

 Mendocino County Fish & Game Commission recommends that data streams and
management approaches that use the best available science be considered in the FMP
and to consider employing more citizen science as a cost-effective means to gather
more and better data on red abalone (Exhibit 3).

 Seven members of the scientific community encourage FGC to consider two things
when reviewing the abalone FMP: (1) all proposed harvest control rules should be
subjected to a peer review process by independent scientists and (2) as the standard-
bearer for testing harvest control rules, Management Strategy Evaluation is a formal
evaluation process using computer simulation that should be used in the peer review
process. (Exhibit 4)

Exhibits 

1. Email from The Nature Conservancy, received Jul 7, 2017

2. Email from The Nature Conservancy, dated Nov 22, 2017
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3. Letter from Mendocino County Fish & Game Commission, received Nov 21, 2017

4. Email from University of California at Santa Barbara, University of Miami, and others,
received Nov 22, 2017
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November 22, 2017 

 

Mr. Eric Sklar, President 

California Fish and Game Commission 

1416 Ninth Street, Room 1320 

Sacramento, CA 95814 

 

Re: Agenda Item on Red Abalone Fishery Management Plan 

 

Dear President Sklar, 

 

In advance of the October 2017 Commission meeting, a group of stakeholders, including The Nature 

Conservancy, submitted a collaborative harvest control rule (HCR) proposal and formally requested that the 

proposal be considered for inclusion in the red abalone fishery management plan (FMP), and undergo peer review 

alongside any harvest control rule proposal put forth by the California Department of Fish and Wildlife (CDFW).   

 

To inform the Commission’s evaluation of the collaborative HCR proposal, as well as any future peer review 

process, we have attached a report summarizing the management strategy evaluation (MSE) used to assess the 

collaborative HCR, including the specifications of the operating model and metrics used to evaluate HCR 

performance against management objectives.  The most recent version of the collaborative HCR proposal 

incorporates feedback from CDFW and ensures a conservative approach to resource management under the recent 

extreme environmental conditions, thereby ensuring full stock recovery, while still maintaining access to the 

resource.  Results from the MSE clearly show that under extreme environmental conditions the collaborative 

HCR proposal can adjust catch to levels that reduce the possibility of stock collapse while continuing to maintain 

the recreational fishery.  In the absence of extreme environmental conditions, it can also maintain stock 

productivity and catch at levels that approach maximum sustainable yield. 

 

As the Commission develops their recommendation to CDFW on the necessary content to include in the Red 

Abalone FMP, we urge you to include the collaborative, harvest control rule proposal.  Such collaborative 

proposals leverage the expertise of a diverse array of stakeholders, including academic researchers, non-profits, 

and divers, and align with mandates in the California Marine Life Management Act that support use of the best 

available science and stakeholder engagement in discussions around and development of content to include in 

fishery management plans.   

 

 

Sincerely, 

 

 
 

Alexis M. Jackson, Ph.D. 

Fisheries Project Director 

The Nature Conservancy 

California Oceans Program 

tel     [831] 333-2046  

fax    [831] 333-1736 

nature.org  

nature.org/california 
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Executive summary 

Selection of a management strategy for the red abalone fishery is a process that requires 

objective and transparent evaluation of alternative approaches. Here we have built a hierarchical 

decision tree that was originally designed at a public meeting in collaboration with fishery 

stakeholders and the Department of Fish and Wildlife. The Decision Tree has been refined over 

the past year and a half based on feedback from the CDFW and interested fishermen. Our model 

results provide an opportunity for Commissioners, members of the public and independent 

scientists to review the specification and performance of this approach. We recommend that all 

possible management strategies under consideration in the Fishery Management Plan be 

subjected to the same guidelines for transparency and evaluation of performance as the approach 

undertaken here. 

The Decision Tree management strategy evaluated in this report incorporates landings data from 

each of 56 sites reported by fishermen as well as length frequency information collected by both 

CDFW and Reef Check, California at 15 sites. The decision tree can easily accommodate length 

frequency data from additional sites as they become available. The management strategy 

evaluation clearly shows that the decision tree can adjust catch to levels that reduce the 

possibility of stock collapse while continuing to maintain a fishery under extreme environmental 

scenarios. In the absence of extreme environmental conditions, the decision tree can maintain 

stock productivity and catch at levels that approach maximum sustainable yield.  
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1. Introduction 

Data-limited fisheries management typically proceeds in the absence of quantitative stock 

assessment, relying instead on simpler indicators derived from monitoring data that inform 

decision-making. Circumstances contributing to data limitations are varied, but can arise for 

example, where fine-scale spatial stock structure is at odds with feasible scales of data collection, 

or where an overwhelming number of fishers and landing sites prevents comprehensive 

monitoring (Butterworth et al., 2010; Dowling et al., 2015a; Prince et al., 2008). These data 

limitations are familiar circumstances facing management of the northern California recreational 

fishery for red abalone (Haliotis rufescens). The fishery operates between San Francisco and the 

Oregon border, is estimated to be worth US$40 million and includes approximately 25,000 

registered fishers. In addition to its value, awareness of historical collapses of other California 

abalone species has cultivated considerable interest in monitoring and management of this 

resource (Braje, 2016; Erlandson et al., 2005; Reid et al., 2016).  

The red abalone fishery is regulated under the State of California Department of Fish and 

Wildlife (CDFW) Abalone Recovery and Management Plan (CDFW, 2005). But recently, a 

diver-based survey of red abalone density, that is heavily relied upon for regulatory decision-

making, was subject to scientific review. This review was convened by California’s Ocean 

Science Trust and recommended fundamental improvements to assessment and management 

(OST, 2014). Following this review, the CDFW initiated a plan to re-visit its approach to 

decision-making. In support of this initiative, non-governmental organizations, including The 

Nature Conservancy, have worked closely with recreational fishers to expand data collection and 

to explore management strategy options. For instance, cost-effective length composition 
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monitoring of red abalone has been successfully implemented in collaboration with the citizen 

scientist group Reef Check, California (Freiwald et al., 2016).  

Candidate management strategies have also been developed that emphasize connections 

between resource monitoring, data analysis used in calculating indicator values, and the use of 

indicator-based harvest control rules (HCRs). Monitoring designs can profoundly affect indicator 

reliability, and consequently, the scientific merit of management decisions (e.g., Smith et al., 

2011). Data analysis can vary from summary statistics of survey abundance, fishery catch-per-

unit-effort, or population size composition, to statistical estimation of stock depletion, 

reproductive potential, and fishing mortality rates (Apostolaki and Hillary, 2009; Carruthers et 

al., 2015; Dick and MacCall, 2011; Gedamke and Hoenig, 2006; Geromont and Butterworth, 

2015a; Hordyk et al., 2015c; Klaer et al., 2012; Martell and Froese, 2012). HCRs must be able to 

cohesively integrate indicators and correctly guide regulatory changes towards the achievement 

of fishery objectives (Dowling et al., 2015a; Harford and Babcock, 2016). Indicator-based HCRs 

have already been implemented for some Australian abalone fisheries and this type of approach 

is thought to promote stakeholder buy-in relative to less-transparent ad hoc decision-making 

(Campbell et al., 2007; Prince et al., 2008; Wilson et al., 2010). 

Formulating management strategy options for red abalone required addressing spatial 

variability in red abalone growth, survival, and reproductive success between relatively localized 

habitat patches (e.g., sites < 1000 m apart) (Emmett and Jamieson, 1988; Geibel et al., 2010; 

Haaker et al., 1995; Leaf et al., 2007; McShane and Naylor, 1995; Nash, 1992; Sloan and Breen, 

1988). Globally, it is well established that the small-scale meta-population dynamics of abalone 

species need to be accommodated in management strategy design (Bedford et al., 2013; Mayfield 

et al., 2012; Prince, 2005; Saunders et al., 2008; Shepherd and Brown, 1993). Problematically, 
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within the northern California red abalone fishery, less than 50% of fishing sites along the 

coastline are monitored, aside from recording of catches, and many sites differ with respect to 

fishing pressure. Thus, in relying on existing data streams and their inherent limitations, 

management strategy design accommodated site-specific signals about resource changes where 

this information was available, while also attempting to guide TAC adjustments along the entire 

coast (Fig. 1). Because the northern California coastline consists of approximately 56 fishing 

sites, it was also necessary to offer built-in flexibility to generate regional TACs, as aggregates 

of fishing sites. Regional TACs were necessary to support implementation of regulatory tactics 

for recreational fishing, as well as to reasonably accommodate fishery enforcement. Tactical 

regulation of red abalone catches currently includes a ban on scuba, a minimum shell length of 

178 mm (7 inch) for possession, seasonal and area closures, and daily and annual bag limits. 

During initial development of management strategies, we recognized that design 

complications could not be simply addressed through expert judgement alone (Butterworth et al., 

2010). Accordingly, simulation testing was carried out through management strategy evaluation 

(MSE; Butterworth, 2007; Butterworth and Punt, 1999; Punt et al., 2016; Sainsbury et al., 2000; 

Smith et al., 1999). MSE examines the collective performance of data collection, data analysis, 

and decision-making in the currency of whether fishery objectives are expected to be achieved 

over various time horizons. By comparison, treatment of any isolated aspect of a strategy, 

viewed independent from its intended use in decision-making, is merely an abstraction from the 

objective of sustainable management (Harford and Babcock, 2016). The effects of uncertainty on 

decision-making are also explicitly addressed in MSE, for instance, by replicating the error 

structure or bias of a monitoring program and propagating this (potentially unreliable) 

information into application of a HCR. MSE is also well suited to examining management 
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reactions to changing environmental conditions because MSE simulates recursive decision-

making through time, where each decision in supplied with updated information, and thus, each 

decision is a reaction to new information (A’mar et al., 2010; Punt et al., 2014). 

Through MSE and through feedback from stakeholders and scientists, our initial specification 

of a multi-indicator management strategy was refined. Indicators derived from density surveys, 

catches, length frequency distributions, and an index of environmental conditions were initially 

considered in contributing to a hierarchically structured decision tree (Harford et al., 2017). Like 

other incremental harvest strategies, the decision tree determined the direction of TAC 

adjustments and iteratively modified TACs in small steps until catches stabilized around target 

reference points (Hordyk et al., 2015a; Prince et al., 2011). The results of the initial MSE 

produced concerns that density surveys could be unreliable, resulting from patchily-distributed 

red abalone and modest sampling intensity (see Kashiwada and Taniguchi, 2007). Unreliable 

density estimates sometimes led to erroneous TAC adjustments that produced a non-negligible 

probability of site biomasses falling to low levels. We therefore do no recommend the use of 

density surveys in this updated model specification. Similarly, in the initial model specification, 

anomalies of the El Nino Southern Oscillation index were used as an empirical indicator, 

recognizing that red abalone growth and survival can vary dramatically in response to climate 

variation and its effects on kelp biomass (e.g., Nereocystis luetkeana), which is red abalone’s 

main dietary constituent (Cavanaugh et al., 2011; Jiao et al., 2010; Rogers-Bennett et al., 2011; 

Tegner et al., 2001; Tegner and Dayton, 1987). However, this environmental index was 

subsequently excluded in this updated model specification because in reality, mechanistic 

linkages between red abalone biology and environmental conditions are difficult to confirm and 

because environmental indices typically fail to improve management performance unless 
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mechanistic relationships are well established (A’mar et al., 2010; Punt et al., 2014). Beneficial 

data streams that were included in this harvest control rule were catch histories and length 

frequency distributions, which offered potential to avoid undesirably low biomass levels and to 

maintain sustainable catches that were commensurate with long-term attainment of maximum 

sustainable yield (MSY). Length frequency distributions were used to calculate spawning 

potential ratio (SPR), which is a measure of the state of reproductive potential of the stock 

(Goodyear, 1993; Hordyk et al., 2015c). Catch histories were used in a Monte Carlo method, 

known as catch-MSY, to estimate current harvest rates relative to a harvest rate reference point 

(Froese et al., 2017; Martell and Froese, 2012).  

Development of candidate management strategies also highlighted complexities about how to 

specify reference points, against which indicators are compared (Harford et al., 2017). For 

indicators derived from catch histories and length frequency distributions, reference points could 

be established based on optimality criteria or precautionary principles, which are commonly 

obtained from per-recruit analysis (Beverton and Holt, 1957). Conversely, the use of the diver-

based density survey required that a density reference point be chosen without knowledge of 

corresponding stock status. In some circumstances relative abundance-based HCRs have been 

demonstrably useful for fishery management (Hilborn, 2002; Little et al., 2011; Pomarede et al., 

2010). Nevertheless, reference points based on target or limit exploitation rates and reproductive 

potential can reflect, to some extent, disparate fishery objectives than those related to relative 

abundance indicators, especially when the latter need to be established without an understanding 

of the underlying stock status. MSE also highlighted the potential for incompatibility or 

antagonism among indicators used in multi-indicator decision framework when reference points 

did not reflect a cohesive vision for meeting fishery objectives. This means that if, by 
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happenstance, a historical density reference point reflected an aggressively depleted stock 

condition, while an SPR reference point was established based on a much less depleted target, 

then these reference points could hinder achievement of any policy objective. 

Our initial MSE also contrasted red abalone vulnerability to severe environmental conditions 

(i.e., climate variability, harmful algal blooms) in conjunction with fishery exploitation and 

poaching, which highlighted precautionary considerations for delineating management reference 

points. Under normal environmental conditions and fishing operations, indicators derived from 

catch histories and length frequency data maintained biomass levels that approached maximum 

sustainable yield (BMSY) and catches that approached MSY. However, under scenarios involving 

harsh environmental circumstances, MSE demonstrated the consequences of degree of 

precaution in reference point selection, with less precautionary reference points (e.g., an SPR 

reference point of 0.4 rather than 0.6) enhancing stock declines during environmental conditions 

that were unfavorable to red abalone. 

 In this study, we evaluated the performance of an updated decision tree based on catch 

histories and length frequency data using MSE, according to the following objectives. First, we 

highlighted the effects of specifying historical stock dynamics on future HCR performance, as 

historical conditions are often highly uncertain in data-limited circumstances (i.e., Harford et al., 

2016). Second, we evaluated the cumulative effects of fishing and harsh environmental 

conditions on decision tree performance, as red abalone are known to be vulnerable to climate 

fluctuations and harmful algal blooms; each of which can induce changes to survival, growth, 

and reproductive success (Harley and Rogers-Bennett, 2004; Rogers-Bennett et al., 2012; Tegner 

et al., 2001). Third, we reconciled capacity for achievement of fishery objectives in relation to 

practical impediments of data availability and data quality by contrasting decision tree 



 
 

9 
 

performance against a reference strategy that optimally guided achievement of fishery objectives 

under perfect information (Cadrin and Pastoors, 2008; Dowling et al., 2015b).  

 

2. Methods 

In conducting the MSE, we first developed an operating model that simulated red abalone 

stock dynamics and resource monitoring. Alternative operating model scenarios were developed 

by modifying structural modeling equations or parameter values. These alternative scenarios 

were used to reflect uncertainties about red abalone ecology, historical state of the resource, and 

future environmental conditions. We then developed a decision tree, which consisted of the set of 

instructions used to determine routine adjustments to red abalone TACs. We then developed an 

implementation algorithm that addressed the spatial and temporal distribution of fishing effort, 

and thus, determined how removals at individual sites would occur in relation to regional TACs. 

Simulation runs were then conducted under each of the specified simulation scenarios and 

performance of the decision tree was measured in relation to achievement of common fishery 

management objectives (Punt, 2017).  

Operating model  

Spatial distribution of red abalone 

Stock dynamics were a spatially-explicit representation of red abalone inhabiting the 

northern California coastline. Abalone were distributed along a 1-dimensional array consisting of 

56 sites, each of which corresponded to recreational fishing locations that span a total distance of 

approximately 540 km (334 miles) from San Francisco to the California-Oregon border (Tables 1 

& 2). Given that each site corresponded to an area of one-to-tens of kilometers, we did not model 
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site connectivity because larval dispersal and adult movement likely occur on much smaller 

spatial scales. Short larval durations of abalone species typically act to minimize dispersal 

distances from 10s to 100s of meters (Leighton, 2000; McShane et al., 1988; Prince et al., 1987; 

Shepherd and Brown, 1993). While potential for long distance larval dispersal has been 

suggested (Rogers-Bennett et al., 2016; Watson et al., 2010), most evidence demonstrates that 

nearly all new recruits come from parents located within several hundred meters (Gruenthal et 

al., 2007; Saunders et al., 2008; Temby et al., 2007). Adult movement over various time scales is 

also thought to be limited to 100s of meters (Ault and Demartini, 1987; Coates et al., 2013). In 

addition, we did not represent separation between deep water habitat that is inaccessible to free-

diving fishers and shallow water areas where fishing occurs.  

Temporal dynamics of red abalone 

The red abalone stock was initialized for the year 2002 and historical temporal dynamics 

were modeled for the time period of 2002 to 2016, using actual site-specific catches, before 

projecting the stock forward for 25 years during which time the decision tree determined annual 

TAC adjustments. Temporal dynamics were calculated for each site using length-structured 

population dynamics, which is an approach well-suited for modeling species that are difficult to 

age, like marine invertebrates (Breen et al., 2003; Haddon, 2011). Length-based models account 

for survival, growth, and reproduction through time by assigning individuals to length classes or 

length bins. Numbers-at-length matrices differ from numbers-at-age matrices because the latter 

tracks specific cohorts as they transition between age classes, while the former probabilistically 

tracks transitions between length classes where individuals from several cohorts are likely to be 

found in any given length bin (Haddon, 2011). Red abalone were classified according to 59 

length bins from 5 mm to 300 mm, in 5 mm increments. For a given site l and simulation 
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replicate k, the matrix algebra involved in calculating the progression of individuals between 

length bins, according to an annual time step, j, was (for brevity k and l subscripts are omitted): 

  , 
j+1 j j j j

N G S N R   (1.1) 

where N is the abundance vector with 59 length classes, G is the square growth transition matrix 

with upper triangle of zeros preventing negative growth in length, S is the zero square matrix 

with only diagonal elements having non-zero values, and R is the recruitment vector with 59 

length classes. The growth matrix specified how numbers-at-length would transition 

probabilistically into other length classes based on a Gaussian probability density function with 

expected growth increment in mm obtained from a von Bertalanffy function (i.e., expected 

growth increment is   , , , , , , ,1 exp( )i j k l j k l i j k lL L Lbin K      , where K is Brody growth 

coefficient, L  is average maximum size, and Lbin is the lower bound of each length bin) and 

standard deviation of 8.5 mm (Rogers-Bennett et al., 2007). Because we modeled temporal and 

spatial variation in growth and natural mortality, parameters related to these processes have 

subscripts indicating length bin i, year j, simulation replicate k, and location l.  In the subsequent 

section (Methods: Operating Model: Environmentally-driven life history variation), we describe 

our approach for generating environmentally-driven spatial and temporal variation in life history 

parameters.  

Reproductive dynamics served the dual roles of determining the number of newly recruiting 

individuals and determining the patterns of emergence of mature red abalone from crevices onto 

exposed substrates. At each site, a logistic maturity function ( , ,i k lMat ) was parameterized based 

on average maximum size ( ,k lL ) and using a Beverton-Holt life history invariant relationship, 

such that, , ,50 0.6k l k lL L    and , ,95 50 1.15k l k lL L  , where L50 and L95 are the lengths 
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associated with 50% and 95% probabilities of maturity, respectively (Jensen, 1996; Prince et al., 

2015). Eggs-per-female was a power function of length (feci =2.85exp(-((Lmidsi-

215)2/(2888)))0.5; Lmids is mid-point of each length bin) with a descending right limb reflecting 

the possibility of reproductive senescence (Rogers-Bennett et al., 2004). Numbers of recruits at 

each site were calculated according to the Beverton-Holt stock-recruitment function that was re-

parameterized using steepness (h): 

   
 

2
0, , 1, , 2 , ,

, , , ,

0, , 1, ,

0.8
exp Normal 0, ,

20.2 1 0.2

k l j k l j k l
j k l j k l

k l j k l

R hB
R

B h h B








   
          

  (1.2) 

where σ is standard deviation of lognormal recruitment deviates, B0 is unfished reproductive 

output (i.e., egg production), and B is a measure of reproductive output in year j-1: 

1, , , , , 1, ,j k l i k l i i j k l

i

B Mat fec N      (1.3) 

Steepness was specified as 0.6, as abalone species tend to display weak compensatory 

recruitment at low stock size and this value is similar to those assumed in abalone stock 

assessments (Fu, 2014; Gorfine et al., 2005; Rossetto et al., 2013; Zhang et al., 2007). Age 1 

recruits (Ri,j) populated length bins of the recruitment matrix (Rj) according to a Gaussian 

probability density function with expected length of 26 mm (based on the global average von 

Bertalanffy parameters used in simulation runs: L∞=254 mm shell length, K=0.108 year-1, t0=0) 

and a standard deviation of 8.5 mm (Rogers-Bennett et al., 2007). The second role of 

reproductive ecology was in specifying emergence-at-length from a cryptic existence within 

crevices as juveniles onto exposed substrates as mature adults (Prince et al., 1988). Site-specific 

emergence-at-length probability was specified equal to site-specific maturity-at-length 
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probability. Emergence affected the availability of red abalone to divers conducting surveys of 

length frequency distributions and the availability to the fishery. 

Survival (S) consisted of natural mortality (M) and fishing mortality (F) and was calculated at 

the beginning of each time step: 

 , , , , , , , , ,exp ,i j k l i j k i k l j k lS M sel F     (1.4) 

where sel is selectivity and is a function of availability to free-divers, based on emergence, and 

knife-edge possession beginning at 178 mm total length. For a given l and k, Si,j populated the 

diagonal of the corresponding survival matrix (Sj). We used the mortality-at-length curve of Leaf 

et al. (2008) that describes natural mortality as being 0.65 year-1 for shell lengths less than 50 

mm, 0.05 year-1 for length greater than 245 mm, and a decreasing logistic function in between. 

Catch in numbers (CN) was calculated: 

 
 , , , ,

, , , , , , , , , ,

, , , , , ,

1 .
i k l j k l

N i j k l i j k l i j k l

i j k i k l j k l

sel F
C S N

M sel F
 


  (1.5) 

Environmentally-driven life history variation  

Water temperature has been shown experimentally to have negative effects on red abalone 

gamete production, body condition, survival rates, and somatic growth rates (Moore et al., 2011; 

Perez, 2010; Vilchis et al., 2005). In a related observational study, Jiao et al. (2010) reported 

negative changes to L∞ in relation to warm-phase temperature anomalies of the El Nino 

Southern Oscillation index. Likewise, trends in food availability, especially related to climate- 

and storm-induced variability in kelp biomass (e.g., Nereocystis luetkeana), have been 

implicated in changes to red abalone survival and growth (Cavanaugh et al., 2011; Rogers-

Bennett et al., 2011; Tegner et al., 2001; Tegner and Dayton, 1987).  
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Spatial variation was simulated by generating site-specific mean asymptotic length ( ,k lL ) 

and Brody growth coefficient ( ,k lK ) according to a multivariate Gaussian distribution (

 MVN ,   ) with  254, 0.108L K      and   calculated using a 3% coefficient of 

variation (CV) on L  and a 10% CV on K  (Jiao et al., 2010; Rogers-Bennett et al., 2007). 

Maturity ogives were then calculated based on site-specific growth patterns, thus enabling 

growth and reproductive characteristics to co-vary at each site (Prince et al., 2015).  

Temporal variation in several life history parameters was simulated to be driven by an index 

of the El Nino Southern Oscillation (ENSO) known as the Ocean Nino Index, which measures 

surface temperature anomalies (NOAA, 2017). Life history parameters L  and M co-varied with 

the ENSO index according to Gaussian bivariate probability distributions. Specification of 

temporal life history variation proceeded by first generating time series of ENSO anomalies. 

During the time period of 2002 to 2016, we used actual ENSO autumn season means (i.e., Sept, 

October, November averages). During the projection time period, we randomly selected toroidal-

like segments of the autumn season ENSO index from the time period of 1950 to 2016 and 

applied these segments to projections to preserve patterns of temporal autocorrelation in this 

index. ENSO indices informed the bivariate sampling distributions according to specified 

Pearson correlation coefficients, which determined relationship strength and direction with life 

history parameters. Correlations were -0.5 for ,k lL  and 0.5 for natural mortality and reflected 

correlations reported between kelp biomass and a regional climate signal (Cavanaugh et al., 

2011), which we assumed would similarly influence red abalone. Having multiple life history 

parameters co-vary with ENSO anomalies produced demographic responses that were more 

systematic in response to environmental change than having life history parameters vary 
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independently of one another. Also, empirical data were informative about total variance of life 

history parameters, but were less informative about sources contributing to this variation  (Geibel 

et al., 2010; Jiao et al., 2010; Leaf et al., 2007). Thus, by constructing relationships with the 

ENSO index based on bivariate probability distributions we could conserve the total variance of 

life history parameters, while assigning a partial influence of this variation to a climate-based 

driver. Thus, the resulting temporal variation in life history parameters varied partially in 

response to ENSO anomalies and partially as a site-specific stochastic process, producing 

localized trends in stock dynamics that varied between sites. Temporal variation around the 

parameter ,k lL  was specified with a CV of 0.1 (Jiao et al., 2010). Experimental comparisons of 

red abalone survival between ambient conditions and those representing a severe el Nino warm 

phase (Moore et al., 2011; Vilchis et al., 2005) were used to specify changes in the survival 

fraction (i.e., where survival = exp(-M)) up to 50% under the most extreme conditions. This was 

accomplished using a Gaussian distribution with mean zero and standard deviation 0.25. 

Fractional changes in the average natural mortality-at-length from ENSO anomalies was applied 

to all length classes.  

Recruitment deviations were lognormal with a standard deviation of 0.2. Deviations were 

independent of other environmental signals. We also simulated recruitment failures (generated 

independently for each site and simulation run) to reflect studies that have reported apparent 

absences of red abalone recruitment (Karpov et al., 1998; Rogers-Bennett et al., 2016; Tegner et 

al., 1989). These events were generated as a Bernoulli random variable with recruitment failure 

probability of 0.25, or occurring on average, once per every four years. 

Time-varying natural mortality increases caused by harmful algal blooms were generated as 

separate sequences of events that affected either the northern fishing sites (Mendocino, 
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Humboldt, and Del Norte counties) or the southern fishing sites (Sonoma and Marin counties). 

This approach reflected the pattern of a recent red tide event as well as evidence about large-

scale oceanographic conditions initiating these events (Anderson et al., 2008; Rogers-Bennett et 

al., 2012; Trainer et al., 2000). A discrete Markov process produced Bernoulli random variables 

according to a transition matrix, P, of conditional probabilities (Minkova and Omey, 2014): 

   

   

1 1 1

1 1 1

M M

M Mq q

   

 

   
  

   
P   (1.6) 

where   is the probability of an episodic natural mortality event, q is 1  , and M  is the 

correlation between episodic natural mortality events (Feller, 1971).Given a current state, 1t  , 

the conditional probability of 1 1t    is equal to:  1 1 Mq   . Actual bloom events that were 

severe enough to cause human deaths have been reported at least every four years prior to the 

Second World War, while blooms associated with marine mammal or bird illness have been 

reported annually since 1998 (Lewitus et al., 2012; Price et al., 1991). Thus, we specified events 

to occur once every four years on average, with a probability that one event would be proceeded 

by another event in the following year (and so on) with a probability of 0.5. Event occurrence 

was multiplied by event magnitude, which was drawn from a uniform probability distribution 

with minimum of 0.15 year-1 and maximum of 0.35 year-1. An exception to the probabilistic 

generation of red tide events was during 2011, where we imposed a natural mortality increase of 

0.29 year-1  to sites in Sonoma county and southward to reflect a reported severe event (Rogers-

Bennett et al., 2012).  
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Simulated monitoring of red abalone 

Simulated observation of catches at each site occurred without error. Observation of length 

frequency distributions was simulated at 15 unique sites that are routinely monitored by either 

CDFW and Reef Check California (CDFW, 2005; Freiwald et al., 2016). Lengths were observed 

as a multinomial process with an effective sample size of 200 individuals, which is a sampling 

variance assumption that is common to fisheries modeling (Hulson et al., 2012). Availability of 

length classes to the simulated survey was affected by site-specific emergence. Both Reef Check 

and CDFW do not annually sample all 15 sites and selection of sampling sites is not coordinated. 

During the time period of 2002 to 2016 the actual schedule of sampling events was imposed on 

simulation runs. During the projection time period, 9 of 13 sites monitored by Reef Check were 

randomly selected annually and 3 of 10 sites monitored by CDFW were likewise randomly 

selected.  

Indicator-based decision tree 

The red abalone decision tree used catches (numbers of legal sized red abalone) and length 

frequency distributions to inform TAC adjustments (Table 3). The decision tree represented the 

pre-specified process of linking each possible combination of indicators derived from catches 

and length frequency data to red abalone status (Fig. 2). Delineating red abalone status at a site 

based on indicator combinations reflected population biology of red abalone, propensity for 

environmental perturbations, and past management experience with other abalone species 

(Prince, 2005; Prince et al., 2008). Each possible status had a corresponding TAC adjustment, 

which ranged between -20% and +20% in increments of 10, including zero TAC change. In 

instances where length frequency data or catches became unavailable, break-out rules were 

specified to cope with the remaining data stream (Table 4). 
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Catches were available for each site and were used to in the catch-MSY approach of (Froese 

et al., 2017) to calculate the ratio of last year’s exploitation rate (U) to the exploitation rate 

associated with production of MSY-level catches. This approach uses a site-specific catch 

history within a numerical routine that estimates the intrinsic rate of increase r, unfished 

vulnerable biomass B0, and depletion in the terminal year. A uniform prior probability 

distribution for r was specified according to life-history-based resiliency (Froese and Pauly, 

2011). A uniform prior probability distribution for B0 was specified following the procedure 

outlined in Froese et al. (2017). Estimation proceeded by sampling and retaining r and B0 

parameter combinations that met simple criteria about stock depletion. Point estimates of r, B0, 

and current depletion were used to calculate UMSY=r/2. Current U was calculated as the catch in 

the final year divided by B0 times current depletion. The exploitation ratio was used to indicate 

whether catches were considered high (i.e., U/UMSY was greater than 1.0), low (i.e., U/UMSY was 

less than 0.75), or stable (0.75 < U/UMSY < 1.0). 

Length frequency data was used to calculate spawning potential ratio (SPR) according to the 

LB-SPR method (Hordyk et al., 2015b, 2015c, 2015a). The SPR describes the reproductive 

potential of an exploited stock relative to its reproductive potential in an unexploited state 

(Goodyear, 1993; Restrepo and Powers, 1999). The theoretical basis for the LB-SPR method is 

that mortality will affect both SPR and the length frequency distribution of the stock. Thus, in the 

absence of a direct measure of total mortality and fishery selectivity, sampling of length 

frequency distributions can be used to infer current SPR, given a few additional life history 

parameters (Hordyk et al., 2015b). The maximum likelihood LB-SPR estimation routine requires 

input parameters of M/K, asymptotic length, coefficient of variation of asymptotic length, and a 

logistic maturity curve (Hordyk et al., 2015c). For all sites, M/K and the coefficient of variation 
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of asymptotic length were specified as 0.9 and 0.1, respectively, which conformed to life history 

expectations for abalone species (Prince et al., 2015). Because emergence is thought to reflect 

site-specific maturation trends (e.g., Prince et al., 1988), and because we simulated emergence 

coincident with maturation, logistic maturity parameters (L50 and L95) were obtained from the 

emergence trends captured in the left-hand side of the length frequency distribution (Fig. 3). 

Using all length bins less than or equal to the mode of the length frequency distribution, a 

cumulative distribution function (CDF) was constructed and scaled such that the mode was the 

95% percentile. The L95 was specified as the mode and the L50 input parameter was specified as 

the 50% percentile of CDF. Asymptotic length was calculated as L50 divided by 0.6, based on 

the Beverton-Holt life history invariant (Jensen, 1996; Prince et al., 2015). 

 Ideally, status would always be based on site-specific length frequency data. But while 

catches were available at each site, length frequency data was only available at several sites in 

any given year. Because monitoring at all 15 sites did not occur annually, any site where length 

frequency sampling occurred within the previous three years was considered to have a current 

SPR estimate. If a site was sampled more than once during the previous three years, the most 

recent sampling event was used. For sites where monitoring did not occur, the mean SPR from 

sampled sites within the region (Sonoma county and southward or Mendocino county and 

northward) was applied. SPR was compared to a set of SPR reference points to determine red 

abalone status at a given site. When reproductive potential was between 0.66 and 0.54 it was 

considered stable. The target reference point of 0.6 was chosen to represent a MSY-based target, 

with a 10% variation around this target considered stable. Above 0.66 reproductive potential was 

considered high and between 0.54 and 0.3 it was considered low. The SPR limit reference point 

of 0.3 was selected to trigger more severe catch reductions to support rebuilding towards the SPR 
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target. Using an SPR-based reference point enabled TAC adjustments to avoid both undesirably 

low stock sizes (i.e., recruitment overfishing) and high stock sizes (i.e., under-utilization of the 

red abalone resource). 

Spatial allocation of fishing 

Given the practical challenges associated with managing site-specific TACs, site-specific 

TACs were summed and implemented as regional TACs. Two regions were defined using the 

Sonoma-Mendocino county line, with one region consisting of Mendocino and northward (i.e., 

Mendocino, Humboldt, and Del Norte counties) and the other consisting of Sonoma and 

southward (i.e., Sonoma and Marin counties). Regional TACs were simulated to be removed 

(harvested) without error; however, implementation error occurred at the level of site-specific 

removals. We utilized a spatial effort allocation model that increased or decreased regional effort 

as necessary to achieve removal of the regional TAC, while maintaining the relative spatial 

distribution of effort commensurate with simulated 2016 effort distribution. This effort allocation 

model reflected the idea that each site would continue to maintain its relative popularity into the 

foreseeable future, despite local abundance changes. In initial model development we considered 

alternative effort allocation models; however, resulting simulation results did not vary 

dramatically between model formulations and thus we opted to utilize only a single effort 

allocation framework in this updated model specification (Harford et al., 2017) 

Performance testing 

Performance testing was a factorial combination of two decision tree variants, two historical 

abundance trends, and two future scenarios about environmental conditions. Decision trees 

differed with respect to TAC adjustments made during stock rebuilding, with a slow rebuild 
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scenario applying more modest TAC reductions than a faster rebuilding scenario with larger 

TAC reductions (Table 3). To specify historical abundance trends, a process of model tuning to 

actual catches and SPR estimated from length frequency distributions was carried out. Because 

trends in SPR from 2002-2016 differed between length frequency datasets collected by CDFW 

and Reef Check, two distinct historical abundance trends emerged: 

Historical scenario 1: high but declining abundance, negative survival trend in historical data.  

Historical scenario 2: low but stable abundance. 

In simulating historical scenario 1, depletion at each site was initialized at 0.8 and continued to 

decline in a reasonably similar manner to expectations based on SPR estimates obtained from 

Reef Check length frequency data. In simulating historical scenario 2, low but stable abundance, 

depletion at each site was initialized at 0.2. Technical details of model tuning can be found in 

Appendix B: Simulated stock reconstruction and historical trends. 

The two scenarios about future environmental conditions involved simulating (1) the 

frequency and magnitude of future ENSO anomalies and (2) ENSO anomalies in addition to 

severe episodic harmful algal blooms, and episodic recruitment failure.  Collectively simulating 

all of these influences on red abalone abundance reflected a suite of conditions to which the 

actual red abalone stock is, at times, simultaneously subjected. 

Projections of HCRs were implemented for 25 year durations and 100 replicate simulations 

were carried out. All time- and space- varying stochastic parameter values were generated ahead 

of simulation runs and applied in parallel against all HCRs to ensure that all evaluations occurred 

against the same sequences of events to avoid chance differences inherent in a sample of random 

draws from affecting performance outcomes (Punt et al., 2016). In all simulation runs, the 

minimum harvest length was seven inches (178 mm). The reference HCR was a constant fishing 
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mortality rule using F60%SPR = 0.13 year-1, as determined from equilibrium stock characteristics 

(see Appendix A).  

Four performance measures were specified. First, we measured the effect of the decision tree 

on spawning biomass trends by calculating the ratio of projected biomass to the biomass in 2016. 

Second, we calculated the ratio of projected catches to the catches in 2016. Third, we calculated 

the ratio of projected biomass to BMSY. Finally, we calculated the ratio of projected catches to 

MSY. These performance metrics were calculated separately for each site and each simulation 

run at years 10 and 25 of the projection time period. Performance metrics are presented as the 

central tendency and dispersion of measures made at 56 sites times 100 simulation runs. 

 

3. Results 

Using the fishing site called Van Damme, we illustrate here the process of generating 

historical stock dynamics and then projecting stock dynamics forward according to a specified 

HCR (Fig. 4). Under historical conditions described as low but stable abundance, historical 

trends fluctuate according to stochastic effects on recruitment, survival, growth, and catch 

histories (Figs. 4A & B). During projections, recovery occurs towards BMSY. The functioning of 

the decision tree can be observed as follows. A reduction in catches during the early part of the 

projection time period is followed by gradual catch increases as biomass returns to more 

sustainable levels. Time lags are apparent between the changes in biomass and subsequent 

detection of these changes and TAC adjustments (see Appendix D for more details on time lags). 

The effect of the responsiveness of the decision tree is also observed under the historical 

condition described as high but declining (Figs. 4C & D). In comparison to the scenario of 

historically stable abundance, catch reductions that facilitate rebuilding are not detected and 
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triggered as rapidly, and thus, recovery does not occur to the same extent over a 25-year 

projection period. This illustration demonstrates how simulation testing via MSE was executed 

in a manner consistent with the study objectives. First, two scenarios reflecting historical 

conditions were imposed, although in each simulation run stochastic elements caused 

fluctuations in abundance trends. Second, the cumulative effects of fishing and environmental 

conditions are observed in red abalone dynamics as well as in the application of the decision tree. 

Third, practical considerations of management strategy design are collectively revealed via MSE, 

particularly as the illustrated management strategy integrates several complexities related to data 

availability and data quality and implements TAC adjustments, all while unpredictable 

environmental fluctuations occur. 

Short-term (10 year) and long-term (25 year) projections suggested a clear rebuilding trade-

off between maintaining catches and achieving increases in stock biomass (Figs. 5 & 6). For 

demonstration, the natural rate of stock recovery in the absence of fishing was simulated (i.e. the 

fishery was simulated to be closed for 25 years). Two HCRs (slow rebuild and fast rebuild) were 

compared to fishery closure. Under typical ENSO-driven survival and growth patterns as well as 

recruitment variability, rebuilding to BMSY is unlikely in 10 years, even with no fishery (Fig. 5). 

Recovery in the absence of fishing is likely to occur within 25 years (Fig. 6A). The problem of 

achieving timely stock recovery is exacerbated by the episodic occurrence of more severe 

environmental events, like red tide-induced mortality increases and recruitment failure (Fig. 6C 

& D) and by rapidly declining abundance prior to implementing a HCR, which requires a greater 

time frame to sufficiently rebound towards BMSY (Fig. 6B). Given the desirability to maintain an 

active fishery, the trade-off becomes one of catch reductions to improve stock recovery in the 

near and production of yields commensurate with MSY in the longer-term. The slow rebuild 
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decision tree produces catches most similar to the reference HCR (F60%SPR with perfect 

information), while enabling the stock to increase towards BMSY (Fig. 5A). The fast rebuild 

decision tree offers accelerated rebuilding, most similar to that which can be achieved by closing 

the fishery, although fast rebuild imposes a dramatic reduction in catches during rebuilding. 

These trade-offs can also be illustrated using performance metrics that reflect changes to the 

stock in relation to the simulated state of the stock in 2016 (Figs. 7 & 8). Relative biomass and 

relative catches (in numbers) highlight the same patterns of recovery and trade-offs that impose 

fishery reductions to rebuild the stock towards a more sustainable stock size. 

The results of the MSE are somewhat alarming with respect to prospects for stock recovery 

under severe conditions that include red tide mortality events and recruitment failure (Fig. 5C, 

5D, 6C, 6D). It is important to recognize that these projections exist at the confluence of initially 

low stock sizes and the propensity for episodic events in the future that we specified. Since 

fishery closure results in almost no instances of stock recovery under these severe conditions 

within 25 years, the inability of the decision tree variants to enable recovery should not be 

interpreted as poorly designed HCRs. Instead, failure to recover – under severe future 

environment – is the consequence of the simulated stock becoming depleted to problematically 

low levels before the decision tree is implemented.  

 

4. Discussion 

The decision tree was designed and tested by a group of fishery stakeholders in the red 

abalone fishery as a viable approach to meeting objectives of fishery management. The decision 

tree is a harvest control rule that relies on the interaction between two independent assessment 

methodologies to recommend TAC adjustments based on two independent data sources. As such, 
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it is imperative that these stock assessment methods (SPR and catch-MSY) be evaluated in terms 

of the capacity to meet management objectives when combined in the decision tree framework, 

and not independently. The operating models were designed to be sufficiently complex to enable 

determination of trends in decision tree performance in support of development of a fishery 

management plan. The operating model reflected the most current estimates of life history 

parameters (Kashiwada and Taniguchi, 2007; Leaf et al., 2008; Rogers-Bennett et al., 2004, 

2007). We incorporated life history variation in space and time in a manner consistent with 

empirical and experimental evidence and we considered not only stochastic variation, but also 

systematic variation linked to an environmental signal (Cavanaugh et al., 2011; Jiao et al., 2010; 

Leaf et al., 2007). Consequently, our performance testing reflected scenarios where red abalone 

were subject to combined detrimental influences of fishery exploitation and harsh environmental 

conditions (Harley and Rogers-Bennett, 2004). We simulated each site as an isolated component 

of the larger red abalone stock, which is consistent with expectations related to larval dispersal 

and adult movement (Ault and Demartini, 1987; Coates et al., 2013; Gruenthal et al., 2007; 

Saunders et al., 2008; Temby et al., 2007).  

Under two historical depletion trends, declining and stable, both of which resulted in 

expectations of a rather depleted red abalone stock in 2016, the decision tree variants 

demonstrated an ability to correctly gauge stock status and implement stock rebuilding. These 

results were most evident when future environmental conditions were expected to follow typical 

ENSO-driven survival and growth patterns as well as recruitment variability. Following 

rebuilding, the decision tree sequentially increased TACs, to the benefit of the fishery. 

Furthermore, the decision tree shifted biomass and catches toward MSY-related targets under 

typical environmental conditions. The two decision tree variants differed in magnitude of TAC 
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reductions implemented during rebuilding and we emphasize that these decision trees trade-off 

the extent to which shorter-term reductions in TACs are tolerable against the extent to which 

rapid stock rebuilding is desirable. As a precaution and as an illustration of the potential 

vulnerability of red abalone to episodic natural morality events (i.e., harmful algal blooms) or 

localized recruitment failures, the stock could take longer than 25 years to recover if these 

unfortunate events do occur. 

The design of decision-tree was aimed at addressing four practical policy considerations 

about the red abalone fishery. First, site-specific indicators informed decision-making, while also 

enabling catch adjustments along the entire coastline. Second, indicators consisted of the most 

cost-effective and reliable existing data sources, rather than exploring alternate or new data 

streams. Third, flexibility was maintained in the framework to accommodate monitoring at 

additional sites, should monitoring programs expand. Fourth, TAC adjustment algorithms remain 

flexible to be implemented at aggregate regional spatial scales as a means to reasonably 

accommodate enforcement activities and specification of tactical regulations (e.g., bag limits).  

From the perspective of formulating a management strategy for the red abalone fishery that 

accommodates small-scale meta-population dynamics, using an indicator derived from site-

specific length frequency data offers some practical solutions to on-going challenges. 

Measurement of site-specific indicators, especially given considerable variation in localized 

abundance trends, is known to be paramount to successful management of abalone fisheries 

(Geibel et al., 2010; McShane and Naylor, 1995; Prince, 2005; Prince et al., 2008). Because 

diver-based observation of length frequency distributions can be systematically expanded to 

accommodate monitoring at additional sites, coverage of the coastline can be improved without 

requiring major changes to a fishery management plan. Note that the SPR indicator that is 
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derived from length frequency data is compared to a biological baseline that is independent of 

historical conditions (i.e., an SPR reference point). To the contrary, where red abalone density 

surveys have been previously used to inform decision-making, the existing 8-10 sampling sites 

have been criticized as not being indicative of red abalone abundance along the entire coastline, 

nor does averaging historical conditions across sites constitute an acceptable coast-wide density 

reference point (OST, 2014). The status quo practice under the ARMP is to calculate a historical 

reference density as an average across three sites, which is then compared to a current average 

across 8-10 recently sampled sites (CDFW, 2005). The approach used in the ARMP appears to 

confound temporal changes in density with site-specific causes of density changes, like fishing, 

local habitat conditions, and local productivity. Adding more density survey sites could address 

the spatial coverage issue only if survey precision was increased and if contemporary density 

estimates were compared only to historical density at the same site. Of course, this would require 

a “shifting baseline” of reference density conditions as new sites are added, which is not a 

desirable component of a fishery policy.   

Reliance on length frequency data also arguably better addresses sampling design principles 

when it comes to the red abalone stock. Length frequency distributions measure relative changes 

in size structure, and are not dependent on reliable counts. Therefore, length-frequency sampling 

appears to be less affected by depth-oriented movement or re-distribution of red abalone as long 

as diver searches adhere to sampling designs that reflect the entire depth range of habitats and as 

along as post-exploitation sized individuals are not subject to size-based differences in detection 

probability. Density surveys appear to be more problematic in this regard, as unless specifically 

accounted for using stratified random sampling, or some other scheme, and corresponding 

statistical calculation procedures are used (e.g., see Cochran, 1977), year-to-year movement of 
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red abalone between deep and shallow habitats can be difficult to separate from changes in total 

abundance. Lastly, there remains an unresolved complication pertaining to whether habitat 

conditions, including instances of low kelp density, affect the detection probability or 

‘catchability’ during density surveys. Problematically, when detection probability is not 

accounted for in sampling of animal populations, the magnitude of bias in density can co-vary 

with environmental conditions (Guillera-Arroita et al., 2010; Monk, 2014; Royle and Dorazio, 

2009).  

The cohesive functioning of indicators reflecting exploitation status (from catch-MSY) and 

reproductive potential of the stock (from LB-SPR) are worth pointing out. Simply put, catch 

histories are available for all sites, and thus, an indicator of exploitation status is made available 

via the catch-MSY approach. But this indicator alone is limited to fishery exploitation status, 

rather than indicating the overall cumulative fishery and environmental effects that determine 

whether recruitment overfishing is likely to be occurring. The SPR calculation estimated using 

LB-SPR provides an indication of recruitment overfishing. When SPR levels trigger TAC 

reductions, the exploitation status indictor works as a mitigating factor that recognizes when 

fishery exploitation has been sufficiently reduced to theoretically induce stock rebuilding. Thus, 

since rebuilding is a slow process, the fishery exploitation indicator prevents ad nauseam TAC 

reductions and instead recognizes when reductions should be sufficient for rebuilding. 

Collectively, the SPR and fishery exploitation indicators work non-antagonistically and reflect 

target reference points (i.e., SPR of 0.6 and harvest rate of 0.75 – 1.0 time FMSY), while also 

enabling avoidance of limit reference points (i.e., SPR < 0.3 and harvest rate > FMSY). 

The development of this decision tree reflected the categorization of the red abalone fishery 

as being data-limited. As it was applied here, MSE provided guidance on decision tree design, 
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and in doing so, illustrated how the use of indicator-based approaches requires pragmatism. In 

addition, MSE revealed the central importance of examining red abalone vulnerability to 

environmental conditions in conjunction with fishery exploitation (Harley and Rogers-Bennett, 

2004; Rogers-Bennett et al., 2012; Tegner et al., 2001). Accordingly, we demonstrated that the 

application of data-limited methods should be made cautiously and be subjected to simulation 

testing. Data-limited approaches can often rely on simplifications of complex stock dynamics, 

and therefore, can sometimes result in poor management performance (Carruthers et al., 2014; 

Fulton et al., 2016; Hordyk et al., 2015a). Furthermore, data availability and data quality must be 

balanced against expectations about achievement of fishery objectives. But despite challenges 

faced in developing and implementing data-limited management strategies, some data-limited 

methods have been shown to be on par in achievement of fishery objective with more complex 

approaches requiring quantitative stock assessment (Geromont and Butterworth, 2015b). Like the 

application we have presented herein, relating changes to indicator values to corresponding 

changes in fish stock status is a particular strength of indicator-based approaches and has the 

potential to provide clarity in decision-making and development of fisheries policy (Campbell et 

al., 2007; Prince et al., 2008; Wilson et al., 2010). We recommend the results and conclusions 

drawn from this work be subjected to independent peer review and evaluated against any 

alternative harvest control rule put forth by CDFW or other stakeholders for consideration in the 

red abalone fishery management plan. 
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6. Figures 

 

 

Figure 1. Data availability and its influence on harvest control rule design. 
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Figure 2. Decision tree. 
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Figure 3. Simulated patterns of red abalone 

emergence (A & B) and empirical pattern 

from Van Damme (C) used in calculating 

maturity parameters L50 and L95 (D). Note 

that ratio 50 /L L  is similar to expectation 

from Beverton-Holt life history invariant. 
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Figure 4. An example of the processes involved in MSE that consist of generating historical 

stock dynamics and then projecting these stock dynamics forward according to a specified 

management strategy. Historical conditions differ between plots with (A) and (B) reflecting low 

but stable historical stock size and (C) and (D) reflecting high but declining historical stock size. 
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Note: Plot 5B does not show slow rebuild decision tree, this will be updated in follow-up report. 

 

Figure 5. Trade-off plot illustrating performance at year 10 of projections for two decision trees 

(slow rebuild and fast rebuild) and two reference strategies (no fishery and perfect 

implementation of F60%SPR). Plots indicate different historical conditions and different 

environmental conditions that affect both historical conditions and projection time period. 
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Note: Plot 6B does not show slow rebuild decision tree, this will be updated in follow-up report. 

 

Figure 6. Trade-off plot illustrating performance at year 25 of projections for two decision trees 

(slow rebuild and fast rebuild) and two reference strategies (no fishery and perfect 

implementation of F60%SPR). Plots indicate different historical conditions and different 

environmental conditions that affect both historical conditions and projection time period. 
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Note: Plot 7B does not show slow rebuild decision tree, this will be updated in follow-up report. 

 

Figure 7. Changes in projected spawning biomass relative to 2016 level for two decision trees 

(slow rebuild and fast rebuild) and two reference strategies (no fishery and perfect 

implementation of F60%SPR). Plots indicate different historical conditions and different 

environmental conditions that affect both historical conditions and projection time period. 
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Note: Plot 8B does not show slow rebuild decision tree, this will be updated in follow-up report. 

 

Figure 8. Changes in projected catches (in numbers) relative to 2016 level for two decision trees 

(slow rebuild and fast rebuild) and two reference strategies (no fishery and perfect 

implementation of F60%SPR). Plots indicate different historical conditions and different 

environmental conditions that affect both historical conditions and projection time period. 
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7. Tables 

Table 1. Summary of sites in Del Norte, Humboldt, and Mendocino counties. Catches are in 

numbers of abalone. 

 
Site Region Mean Catch No-take Reef CDFW 

  Catch 2016 Zone Check Sampling 

  2002-2016   Sampling 

 

Crescent City 1 135 79    

Other Del Norte 1 45 6    

Patrick’s Point 1 585 343    

Trinidad 1 326 198    

Punta Gorda 1 788 182    

Shelter Cove 1 3041 1557    

Other Humboldt 1 619 209    

Bear Harbor 1 386 282    

Usal 1 239 77    

Hardy Creek 1 1373 669    

Abalone Point 1 2871 1445    

Westport 1 1805 974    

Bruhel Point 1 645 188    

Kibesillah 1 572 0 ✓   

MacKerricher 1 4690 3204    

Glass Beach 1 5475 5685  ✓  

Georgia Pacific 1 7316 5627    

Todds Point 1 7259 6272   ✓ 

Hare Creek 1 4605 2949    

Mitchell Creek 1 2685 2290    

Jughandle 1 5714 6464    

Caspar Cove 1 6597 6283  ✓ ✓ 

Russian Gulch 1 7097 8110  ✓ ✓ 

Jack Peters Gulch 1 3792 8404    

Mendocino Hdlnds 1 10371 12222  ✓  

Gordon Lane 1 3140 4424    

Van Damme 1 16525 17051  ✓ ✓ 

Dark Gulch 1 4636 5941    

Albion Cove 1 7688 6016    

Salmon Creek 1 1654 1449    

Navarro River 1 3306 2447    

Elk 1 8193 6506    

Point Arena Lighthouse 1 4387 1010  ✓  

Arena Cove 1 8993 4040  ✓ ✓ 

Moat Creek 1 9592 5132    

Schooner Gulch 1 539 161    

Saunders Landing 1 701 0 ✓   

Anchor Bay 1 4965 3785    

Robinson Point 1 1327 1414    
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Table 2. Summary of sites in Sonoma and Marin counties. Catches are in numbers of abalone. 

 
 

Site Region Mean Catch No-take Reef CDFW 

  Catch 2016 Zone Check Sampling 

  2002-2016   Sampling 

 

Gualala Point 2 850 321    

Sea Ranch 2 10803 5723  ✓ ✓ 

Black Point 2 244 26    

Stewarts Point 2 1098 153    

Rocky Point 2 232 39    

Horseshoe Cove 2 1038 0 ✓   

Fisk_Mill Cove 2 5542 1415    

Salt_Point State Park 2 8555 4197  ✓ ✓ 

Ocean Cove 2 4293 2897  ✓ ✓ 

Stillwater Cove 2 3747 3147  ✓  

Timber Cove 2 7625 3681   ✓ 

Fort Ross 2 28672 2366  ✓ ✓ 

Jenner 2 2515 963    

Bodega Head 2 902 263  ✓  

Tomales Point 2 1968 561    

Point Reyes 2 281 31    

Other Marin 2 424 124    
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Table 3. Rationale for the decision tree based on indicators of spawning potential ratio (SPR) and 

exploitation rate calculated via catch-MSY approach. Two decision trees are described that differ 

with respect to rebuilding red abalone abundance with it is at low levels. 

 

SPR indicator Catch-MSY 

indicator 

Exploitation 

status 

TAC 

adjustment 

Explanation 

Slow rebuild     

High High Over exploited -10% Watch and wait 

High Stable Under exploited +10% SPR high under stable catches 

High Low Under exploited +10% Possibly restrictive management 

Stable High Over exploited -10% SPR stable, but fishing is increasing 

Stable Stable Fully exploited 0% SPR stable around reference 

Stable Low Under exploited +10% Possibly restrictive management 

Low High Depleted -20% Recruitment overfishing possible 

Low Stable Over exploited -10% Recruitment overfishing possible 

Low Low Fully exploited 0% Recruitment overfishing possible 

Extremely low High Very depleted -20% Rebuild abundance 

Extremely low Stable Very depleted -10% Rebuild abundance 

Extremely low Low Very depleted -10% Rebuild abundance 

     

Fast rebuild     

High High Over exploited -10% Watch and wait 

High Stable Under exploited +10% SPR high under stable catches 

High Low Under exploited +10% Possibly restrictive management 

Stable High Over exploited -10% SPR stable, but fishing is increasing 

Stable Stable Fully exploited 0% SPR stable around reference 

Stable Low Under exploited +10% Possibly restrictive management 

Low High Depleted -20% Recruitment overfishing possible 

Low Stable Over exploited -10% Recruitment overfishing possible 

Low Low Fully exploited 0% Recruitment overfishing possible 

Extremely low High Very depleted -20% Rebuild abundance 

Extremely low Stable Very depleted -20% Rebuild abundance 

Extremely low Low Very depleted -20% Rebuild abundance 
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Table 4. Break-out rules in instances where length frequency data or catch time series are not 

available or not included in the analysis. 

 

 

Indicator TAC 

adjustm

ent 

Catch history  

High -10% 

Stable 0% 
Low +10% 

  

Length frequency data  

(for either fast and slow 

rebuilding) 

 

High +10% 

Stable 0% 

Low -10% 

Extremely low -20% 
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Appendix A. Equilibrium characteristics and fishing mortality reference points 

Per-recruit analyses have been widely applied to abalone species and used to derive eggs-per-

recruit or biomass-per-recruit based reference points (Leaf et al., 2008; McShane and Naylor, 

1995; Nash, 1992; Rogers-Bennett and Leaf, 2006; Shepherd and Baker, 1998). Here, we used 

the operating model to generate per-recruit metrics as a means to summarize characteristics of 

the red abalone stock. The surplus production relationship was calculated using average stock 

dynamics parameters: K=0.108, Linf=254, logistic maturity L50=0.6Linf, L95=1.15L50, M-at-

length according to Leaf et al. (2007), fecundity-at-length from Rogers-Bennet et al. (2004), 

Beverto-Holt stock-recruitment with steepness 0.6, fishery availability-at-length equal to logistic 

maturity, and possession knife-edge at 178 mm (7 inches) shell length (Fig. A1 and Table A1).  

 

Table A1. Fishing mortality reference points obtained from equilibrium characteristics of the 

simulated red abalone stock. SSB is spawning output in eggs, SSB0 is unfished egg production, 

SPR is spawning potential ratio. 

Referernce point Fishing 

mortality rate 

SPR SSB/SSB0 Catch biomass / 

MSY 

FSPR60% 0.13 0.60 0.51 0.99 

FMSY 0.17 0.54 0.45 1.00 

FSPR40% 0.43 0.40 0.28 0.93 
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Fig. A1. Equilibrium yield curve versus SPR and mean length in the catch (upper) and 

reproductive output (SPR and SSB/SSB0; lower) for simulated red abalone stock dynamics. SSB 

is spawning output in eggs, SSB0 is unfished egg production, SPR is spawning potential ratio, 

calculations produced based on f assuming fishery selectivity at 178 mm (7 inches). 
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Appendix B. Simulated stock reconstruction and historical trends   

Background 

Like other data-limited fisheries, historical trends in abundance are not well established for 

red abalone. Simulated historical trends are required in most MSEs because simulated data 

collection is conducted in relation these historical trends. Accordingly, we re-constructed red 

abalone stock dynamics from 2002 to 2016 by adjusting initial depletion (the same value was 

used for each site). Tuning was conducted such that simulated red abalone characteristics were 

reasonably consistent with the following characteristics derived from actual data collected by 

CDFW and Reef Check: 

• Reproduction of catches between 2002 – 2016 

• CDFW annual site-specific estimates of SPR calculated from length frequency data 

• Reef Check annual site-specific estimates of SPR calculated from length frequency data 

Technical details 

In producing simulated reconstructions, all sites were initialized using the same specified 

depletion. The actual catch from 2002 was used to scale relative length structure (associated with 

the specified depletion level) to absolute abundance and in scaling other parameters like unfished 

recruitment (R0). After initialization, actual annual catches between 2002 and 2016 were 

reproduced by the simulations unless catches exceeded vulnerable abundance. Tuning was 

conducted using deterministic stock dynamics to elicit the average historical trend, prior to 

running stochastic simulations. This means that no stochastic recruitment variation occurred. 

Effects of the ENSO index on life history parameters was included according to the expected 

relationships between these variables. No red tide events were simulated with the exception of 

the 2011 severe red tide event, with an approximate mortality increase of 0.29 year-1 , was forced 
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to occur at sites in Sonoma and Marin counties (Rogers-Bennett et al., 2012)). Note that while 

tuning demonstrates deterministic trends, implementing these reconstructions in MSE simulation 

runs did include stochastic processes, and thus, each simulation run produced a somewhat unique 

reconstruction, while also ensuring that observed catches were reproduced.  

In producing SPR estimates from actual datasets collected by CDFW and Reef Check (for 

comparison with simulated stock dynamics), several input parameters are required for the LB-

SPR method. We considered three different estimation routines that differed with respect to 

parameter inputs. LB-SPR fitting steps were applied separately to each site and year and 

separately to Reef Check & CDFW data. There were three steps and each fitting routine differed 

in step #3. 

1. Truncate observed length frequency at 178 mm 

2. Bin length comp in 5 mm bins 

3. Specify LB-SPR input parameters (see three different approaches, described below) 

Fit 1: Histology-based and using LVB from van Damme applied to every site/yr. 

       MyPars@CVLinf=0.1 

        MyPars@Walpha=1x10-4 

        MyPars@Wbeta=3.03 

        MyPars@Linf <- 254 

        MyPars@L50 <- 118    

        MyPars@L95 <- 130 

        MyPars@MK<-0.9 

        MyPars@L_units <- "mm" 

Fit 2: Use LVB only, rely on B-H constants for other parameters, apply to every site/yr 

       MyPars@CVLinf=0.1 

        MyPars@Walpha=1x10-4 
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        MyPars@Wbeta=3.03 

        MyPars@Linf <- 254 

        MyPars@L50 <- 0.6*254    

        MyPars@L95 <- 0.6*254*1.15  

        MyPars@MK<-0.9 

        MyPars@SL50 <- 160  

        MyPars@SL95 <- 195 

        MyPars@L_units <- "mm" 

Fit 3: Empirical cumulative density of age comp. 

i. Get full length comp (all sizes) 5 mm and up. 

ii. For a given site, pool data from all years, allowing most comprehensive view of left 

side of the length comp distribution. 

iii. Find the main mode. 

iv. Set main mode = L95 (length at 95% maturity). 

v. Using length comp =< main mode, build empirical cumulative distribution using 5 

mm bins. 

vi. Main mode becomes the 100% probability of the cumulative distribution. Re-scale 

the cumulative distribution so that main mode is 95% probability. 

vii. Find the 50% probability, set L50 equal to this length bin. 

viii. Linf = L50*1.66 

Now we have site-specific Linf, L50 and L95 derived from the pattern of emerging abalone 

at length. 

        MyPars@CVLinf=0.1 

        MyPars@Walpha=1x10-4 

        MyPars@Wbeta=3.03 

        MyPars@Linf <- Linf 

        MyPars@L50 <- L50    

        MyPars@L95 <- L95  

        MyPars@MK<-0.9 

        MyPars@SL50 <- 160  

        MyPars@SL95 <- 195 

        MyPars@L_units <- "mm" 
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Tuning results 

In model tuning a complication arose between producing stock dynamics that were consistent 

with SPR trends estimated from actual length frequency distributions collected by CDFW and 

Reef Check (Fig. B1). Sites sampled by CDFW indicated low SPR (often < 0.3) but consistent 

SPR through time. Sites sampled by Reef Check suggest SPR was higher earlier in the time 

series, but declined rapidly to low levels (often < 0.3) by 2016. This situation occurred primarily 

because the largest abalone observed by Reef Check were either not observed or observed in 

lower proportions in CDFW sampling (Fig. B1). This inconsistency led to the development of 

two scenarios about historical stock trends between 2002 and 2016:  

Historical scenario 1: high but declining abundance, negative survival trend in historical data  

Historical scenario 2: low but stable abundance. 

Tuning to high but declining abundance resulting in initial depletion of 0.8 (where depletion 

is the level of spawning biomass relative to unfished spawning biomass). To produce this trend, 

we also had to introduce a time-varying natural morality trend that consisted of decreasing 

survival by 20% during the final 10 years of the historical time period. Without this exogenous 

mortality source, specified catches nor el Nino events alone could produce the downward SPR 

trajectory observed in the Reef Check dataset (Figs. B2 and B3). Tuning to low but stable 

abundance resulted in initial depletion of 0.2 (Figs. B4 and B5). 
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Figure B1. Histograms of observed length composition as sampled by Reef Check and CDFW at 

corresponding sites (rows). Sample collections at each site are pooled across site visits between 

2007 and 2015. Arrows point to largest size classes. 
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Figure B2. Historical scenario 1 (high but declining abundance). Simulated catches (in number 

of red abalone times 100; thick transparent lines) versus actual catches (thin dotted lines) during 

stock reconstruction. 
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Figure B3. Historical scenario 1 (high but declining abundance).  Simulated SPR trends (thick 

lines) and point-estimates of SPR from Reef Check length frequency distributions. Blue squares 

are estimates from fit #1, red circles are from fit #2, and green triangles are from fit #3. 
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Figure B4. Historical scenario 2 (low but stable abundance). Simulated catches (in number of red 

abalone times 100; thick transparent lines) versus actual catches (thin dotted lines) during stock 

reconstruction. 
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Figure B5. Historical scenario 2 (low but stable abundance). Simulated SPR trends (thick lines) 

and point-estimates of SPR from CDFW length frequency distributions. Blue squares are 

estimates from fit #1, red circles are from fit #2, and green triangles are from fit #3. 
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Appendix C. Hypothetical application of the decision tree 

As with any stock assessment, we are continuing to refine and review the methodology and 

reserve the right to modify this section and its results as necessary. 

Below is a step-by-step summary of the application of the indicator-based decision tree to actual 

datasets, with the terminal year of data collection being 2016. A hypothetical calculation of 2017 

TACs is also provided.  

 

Step 1. Gather datasets 

1. Gather catch histories (numbers of red abalone) for 56 fishing sites from 2002 – 2016. 

2. Identify sampling sites where length frequency sampling has occurred within the last 3 years. 

3. Gather length frequency these sampling from sites, but include all sampling events prior to 

and including 2016 

Step 2. Calculate current harvest rate at each site using catch-MSY 

• Uses catch histories from each of 56 fishing sites 

• Parameter inputs (names reflect those used in catch-MSY): 

o r prior: uniform (0.05, 0.5) 

o B0 prior, as per Froese et al. 2017. This varies by site. 

o Parameters to determine resilience: 

▪ minAge=8; maxAge=50; K=0.108 

Step 3. Calculate SPR using LB-SPR method 

• Uses length frequency data gathered as stated above. 

• Analysis for each site is carried out separately (do not pool data across sites)  

 

1. Find L50 and L95, which are parameters of the logistic maturity curve and indicate the 

lengths at which 50% and 95% of the abalone at a site are mature. 

• Pool length data from all years, allowing most comprehensive dataset reflecting the left 

side of the length comp distribution. 

• Find the main mode of this distribution. 

• Set main mode = L95 (length at 95% maturity). 

• Using length comp =< main mode, build empirical cumulative distribution (5 mm bins). 

• Thus, main mode becomes the 100% probability of the cumulative distribution. Re-scale 

the cumulative distribution so that main mode is 95% probability. 

• Find the 50% probability, set L50 equal to this length bin. 

• Linf = L50/0.6 

 

2. Apply LB-SPR method to estimate SPR 

• Subset length frequency data from only the most recent sampling year.  
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• Truncate observed length frequency at 178 mm 

• Bin length comp in 5 mm bins 

• Specify LB-SPR input parameters: 

o L50, L95, and Linf as calculated above 

o M/K=0.9; CVLinf=0.1;  

o L-W conversion parameters: beta=3.03; alpha=0.0001 (mm to g conversion) 

• If sampling did not occur at a site, the mean SPR from sampling sites within its region 

(Sonoma county and southward or Mendocino county and northward) was applied.  

• Calculate SPR ratio as SPR estimate / 0.6; where 0.6 is the SPR reference point. 

• The SPR ratio indicates whether reproductive potential was considered high (i.e. ratio > 

1.1), was considered low (ratio < 0.9), and in between 0.9 and 1.1 it was considered 

stable. 

Step 4. Apply the decision tree to each site, determining local adjustment relative to 2016 TAC.  

• Note that because this management strategy is novel, site-specific TACs were not 

necessarily identified in previous management strategies. Thus, as a starting point, 2016 

site-specific catches were used as initial TACs, from which 2017 TACs were calculated 

Step 5. Calculate regional TACs by summing across site-specified TACs 
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Table C1. Slow rebuild decision tree - TAC calculations for Mendocino, Humboldt, and Del 

Norte counties using catch histories (2002 – 2016) and from length frequency data (most recent 

site visit within last 3 years). 2017 TAC calculation is for demonstration only. 

 

 

 

Site Region   U/U MSY SPR Harvest rate status SPR status Adjustment 2016 Catch 2017 TAC

Crescent City 1 0.6655837 0.5 Low Low 0 79 79

Other Del Norte 1 0.3101644 Low extremely low -0.1 6 5

Patrick’s Point 1 0.4789021 Low extremely low -0.1 343 309

Trinidad 1 0.5533836 Low extremely low -0.1 198 178

Punta Gorda 1 0.2368731 Low extremely low -0.1 182 164

Shelter Cove 1 0.326394 Low extremely low -0.1 1,557 1,401

Other Humboldt 1 0.301346 Low extremely low -0.1 209 188

Bear Harbor 1 0.3508368 Low extremely low -0.1 282 254

Usal 1 NA NA extremely low -0.1 77 69

Hardy Creek 1 0.3641383 Low extremely low -0.1 669 602

Abalone Point 1 0.3632512 Low extremely low -0.1 1,445 1,301

Westport 1 0.4059291 Low extremely low -0.1 974 877

Bruhel Point 1 NA NA extremely low -0.2 188 150

Kibesillah 1 NA NA NA 0 0

MacKerricher 1 0.43104 Low extremely low -0.1 3,204 2,884

Glass Beach 1 1.3422904 High extremely low -0.2 5,685 4,548

Georgia Pacific 1 0.6465173 Low extremely low -0.1 5,627 5,064

Todds Point 1 0.5659898 Low extremely low -0.1 6,272 5,645

Hare Creek 1 0.5596426 Low extremely low -0.1 2,949 2,654

Mitchell Creek 1 0.74787 Low extremely low -0.1 2,290 2,061

Jughandle 1 0.2285531 Low extremely low -0.1 6,464 5,818

Caspar Cove 1 0.1760962 0.3 Low Low 0 6,283 6,283

Russian Gulch 1 0.2276864 0.29 Low extremely low -0.1 8,110 7,299

Jack Peters Gulch 1 0.5030301 Low extremely low -0.1 8,404 7,564

Mendocino Hdlnds 1 0.2156431 0.19 Low extremely low -0.1 12,222 11,000

Gordon Lane 1 0.2301862 Low extremely low -0.1 4,424 3,982

Van Damme 1 0.1945215 0.17 Low extremely low -0.1 17,051 15,346

Dark Gulch 1 0.3900723 Low extremely low -0.1 5,941 5,347

Albion Cove 1 0.4481624 Low extremely low -0.1 6,016 5,414

Salmon Creek 1 0.5481317 Low extremely low -0.1 1,449 1,304

  Navarro River 1 0.5470234 Low extremely low -0.1 2,447 2,202

Elk 1 0.147326 Low extremely low -0.1 6,506 5,855

Point Arena Lighthouse 1 0.5942807 Low extremely low -0.1 1,010 909

Arena Cove 1 0.3630416 0.15 Low extremely low -0.1 4,040 3,636

Moat Creek 1 0.6571551 Low extremely low -0.1 5,132 4,619

Schooner Gulch 1 0.2289149 Low extremely low -0.1 161 145

Saunders Landing 1 NA NA 0 0 0

Anchor Bay 1 0.1417376 Low extremely low -0.1 3,785 3,407

Robinson Point 1 0.3304633 Low extremely low -0.1 1,414 1,273

Average SPR 0.27

Totals 133,095 119,834

TAC percent change -9.96325933
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Table C2. Fast rebuild decision tree - TAC calculations for Mendocino, Humboldt, and Del 

Norte counties using catch histories (2002 – 2016) and from length frequency data (most recent 

site visit within last 3 years). 2017 TAC calculation is for demonstration only. 

 

 

 

Site Region   U/U MSY SPR Harvest rate status SPR status Adjustment 2016 Catch 2017 TAC

Crescent City 1 0.6655837 0.5 Low Low 0 79 79

Other Del Norte 1 0.3101644 Low extremely low -0.2 6 5

Patrick’s Point 1 0.4789021 Low extremely low -0.2 343 274

Trinidad 1 0.5533836 Low extremely low -0.2 198 158

Punta Gorda 1 0.2368731 Low extremely low -0.2 182 146

Shelter Cove 1 0.326394 Low extremely low -0.2 1,557 1,246

Other Humboldt 1 0.301346 Low extremely low -0.2 209 167

Bear Harbor 1 0.3508368 Low extremely low -0.2 282 226

Usal 1 NA NA extremely low -0.2 77 62

Hardy Creek 1 0.3641383 Low extremely low -0.2 669 535

Abalone Point 1 0.3632512 Low extremely low -0.2 1,445 1,156

Westport 1 0.4059291 Low extremely low -0.2 974 779

Bruhel Point 1 NA NA extremely low -0.2 188 150

Kibesillah 1 NA NA NA 0 0

MacKerricher 1 0.43104 Low extremely low -0.2 3,204 2,563

Glass Beach 1 1.3422904 High extremely low -0.2 5,685 4,548

Georgia Pacific 1 0.6465173 Low extremely low -0.2 5,627 4,502

Todds Point 1 0.5659898 Low extremely low -0.2 6,272 5,018

Hare Creek 1 0.5596426 Low extremely low -0.2 2,949 2,359

Mitchell Creek 1 0.74787 Low extremely low -0.2 2,290 1,832

Jughandle 1 0.2285531 Low extremely low -0.2 6,464 5,171

Caspar Cove 1 0.1760962 0.3 Low Low 0 6,283 6,283

Russian Gulch 1 0.2276864 0.29 Low extremely low -0.2 8,110 6,488

Jack Peters Gulch 1 0.5030301 Low extremely low -0.2 8,404 6,723

Mendocino Hdlnds 1 0.2156431 0.19 Low extremely low -0.2 12,222 9,778

Gordon Lane 1 0.2301862 Low extremely low -0.2 4,424 3,539

Van Damme 1 0.1945215 0.17 Low extremely low -0.2 17,051 13,641

Dark Gulch 1 0.3900723 Low extremely low -0.2 5,941 4,753

Albion Cove 1 0.4481624 Low extremely low -0.2 6,016 4,813

Salmon Creek 1 0.5481317 Low extremely low -0.2 1,449 1,159

  Navarro River 1 0.5470234 Low extremely low -0.2 2,447 1,958

Elk 1 0.147326 Low extremely low -0.2 6,506 5,205

Point Arena Lighthouse 1 0.5942807 Low extremely low -0.2 1,010 808

Arena Cove 1 0.3630416 0.15 Low extremely low -0.2 4,040 3,232

Moat Creek 1 0.6571551 Low extremely low -0.2 5,132 4,106

Schooner Gulch 1 0.2289149 Low extremely low -0.2 161 129

Saunders Landing 1 NA NA 0 0 0

Anchor Bay 1 0.1417376 Low extremely low -0.2 3,785 3,028

Robinson Point 1 0.3304633 Low extremely low -0.2 1,414 1,131

Average SPR 0.27

Totals 133,095 107,748

TAC percent change -19.0439911
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Table C3. Slow rebuild decision tree - TAC calculations for Sonoma and Marin counties using 

catch histories (2002 – 2016) and from length frequency data (most recent site visit within last 3 

years). 2017 TAC calculation is for demonstration only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Region   U/UMSY SPR Harvest rate status SPR status Adjustment 2016 Catch 2017 TAC

Gualala Point 2 0.4291862 Low extremely low -0.1 321 289

Sea Ranch 2 0.4071729 0.25 Low extremely low -0.1 5,723 5,151

Black Point 2 0.149921 Low extremely low -0.1 26 23

Stewarts Point 2 0.1409166 Low extremely low -0.1 153 138

Rocky Point 2 0.1787852 Low extremely low -0.1 39 35

Horseshoe Cove 2 0 NA NA NA 0 0

Fisk_Mill Cove 2 0.2965497 Low extremely low -0.1 1,415 1,274

Salt_Point State Park 2 0.3244974 0.21 Low extremely low -0.1 4,197 3,777

Ocean Cove 2 0.3988714 0.23 Low extremely low -0.1 2,897 2,607

Stillwater Cove 2 0.5228199 0.21 Low extremely low -0.1 3,147 2,832

Timber Cove 2 0.3358609 0.11 Low extremely low -0.1 3,681 3,313

Fort Ross 2 0.0970061 0.15 Low extremely low -0.1 2,366 2,129

Jenner 2 1.006257 High extremely low -0.2 963 770

Bodega Head 2 0.3208284 Low extremely low -0.1 263 237

Tomales Point 2 0.3047123 Low extremely low -0.1 561 505

Point Reyes 2 0.0920407 Low extremely low -0.1 31 28

Other Marin 2 0.2803942 Low extremely low -0.1 124 112

Average SPR 0.19

Totals 25,907 23,220

TAC percent change -10.37
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Table C4. Fast rebuild decision tree - TAC calculations for Sonoma and Marin counties using 

catch histories (2002 – 2016) and from length frequency data (most recent site visit within last 3 

years). 2017 TAC calculation is for demonstration only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Region   U/UMSY SPR Harvest rate status SPR status Adjustment 2016 Catch 2017 TAC

Gualala Point 2 0.4291862 Low extremely low -0.2 321 257

Sea Ranch 2 0.4071729 0.25 Low extremely low -0.2 5,723 4,578

Black Point 2 0.149921 Low extremely low -0.2 26 21

Stewarts Point 2 0.1409166 Low extremely low -0.2 153 122

Rocky Point 2 0.1787852 Low extremely low -0.2 39 31

Horseshoe Cove 2 0 NA NA NA 0 0

Fisk_Mill Cove 2 0.2965497 Low extremely low -0.2 1,415 1,132

Salt_Point State Park 2 0.3244974 0.21 Low extremely low -0.2 4,197 3,358

Ocean Cove 2 0.3988714 0.23 Low extremely low -0.2 2,897 2,318

Stillwater Cove 2 0.5228199 0.21 Low extremely low -0.2 3,147 2,518

Timber Cove 2 0.3358609 0.11 Low extremely low -0.2 3,681 2,945

Fort Ross 2 0.0970061 0.15 Low extremely low -0.2 2,366 1,893

Jenner 2 1.006257 High extremely low -0.2 963 770

Bodega Head 2 0.3208284 Low extremely low -0.2 263 210

Tomales Point 2 0.3047123 Low extremely low -0.2 561 449

Point Reyes 2 0.0920407 Low extremely low -0.2 31 25

Other Marin 2 0.2803942 Low extremely low -0.2 124 99

Average SPR 0.19

Totals 25,907 20,726

TAC percent change -20.00
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Appendix D. Technical aspects of LB-SPR 

This appendix is structured as a series of questions and answers related to technical aspects of the 

LB-SPR method for estimating spawning potential ratio (SPR) from length frequency data. 

 

Question 1: does LB-SPR produce reliable SPR estimates under steady-state conditions?  

We conducted simulation testing to evaluate the extent to which the SPR produced by the 

more complex operating model of red abalone agreed with the SPR estimates produced by LB-

SPR. The input parameters needed for LB-SPR matched those used in the simulated data 

produced by the operating model, which allowed us to ask whether the simpler structural 

equations used in LB-SPR would produce reliable SPR estimates. We simulated equilibrium 

length distributions using the red abalone operating model that corresponded to “true” simulated 

SPR levels of 0.3, 0.4, 0.5, 0.6, and 0.7. Finally, we fit these simulated length frequencies (i.e., 

observed lengths sampled from multinomial distribution with effective sample size of 200 

individuals, actual sample size 400 individuals). We repeated this process 100 times.  

Answer: Yes, LB-SPR produces reasonable reliable SPR estimates. 

At low simulated SPR, the estimated SPR tends to be negatively biased, but nevertheless 

often correctly indicates the overly depleted state of the stock. There is a positive bias at high 

simulated SPR, which likely reflects differences between the LB-SPR estimation routine and the 

red abalone operating model, namely in terms of the stock-recruitment relationship (i.e., 

steepness = 0.6) (Fig. D1).  

 

Question 2: do changes to length frequency data lag behind actual changes to underlying 

spawning biomass (or SPR)? 
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It is well established that size-based indicators respond slowly to changes in fishing 

mortality, which can sometimes lead to delays in triggering TAC changes (Punt et al., 2001; Shin 

et al., 2005; Wayte and Klaer, 2010). As a demonstration of this effect, we simulated a 100-year 

projection using the HDT with only the LB-SPR indicator. This simulation was carried out under 

completely deterministic conditions (i.e., no stochastic recruitment and no temporal 

environmental variation or life history variation) 

Answer: Yes.  

Cyclic behavior of spawning biomass can emerge from delays in changes to length frequency 

distributions, which are then picked up and acted upon by the harvest control rule (Fig. D2).  

 

Question 3: how to dynamically changing recruitment, growth and survival affect SPR 

estimation? 

This is a complex question that was best addressed using the simulated outcomes of MSE. In 

the MSE, we retained SPR estimates that were calculated at each time step and we also recorded 

the true simulated SPR. Thus, we could compare how SPR trends were estimated with respect to 

changing stock size as well as in response to environmental fluctuations. 

Answer: Some care must to taken in employing LB-SPR, but the careful integration of this 

approach with other indicators and an appropriate harvest control can produce reasonable 

management outcomes. 

We first simulated stable but low historical abundance, followed by stock rebuilding in years 

15 through 40 for 100 simulation runs (Fig. D3). This scenario highlights that at low simulated 

SPR, the estimated SPR tends to be slightly negatively biased, but nevertheless often correctly 

indicates the overly depleted state of the stock. There is a positive bias at high simulated SPR, 
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which likely reflects differences between the LB-SPR estimation routine and the red abalone 

operating model, namely in terms of the stock-recruitment relationship (i.e., steepness = 0.6). 

We then simulated declining historical abundance, followed by stock rebuilding in years 15 

through 40 for 100 simulation runs (Fig. D4). During very rapid stock declines, changes in 

biomass outpace changes in length composition, and consequently biased SPR estimates are 

produced. The stabilizing of the length composition does result in reasonable SPR estimates, 

reduction of TACs, and stock rebuilding. Again, the examination of assessment methods in 

isolation inevitably will identify challenges facing any data limited assessment method. We 

therefore stress the need to consider the assessment pieces within the integrated harvest control 

rule and whether the integration and subsequent decision-making meets target management 

objectives. 

 

Question 4: Does increased natural mortality cause a decrease in SPR and is this decrease 

detected by the LB-SPR fitting routine? 

We simulated a stock in a stable state for 10 years, followed by an increase in M on all length 

classes of 0.1 year-1. We then returned the natural mortality to its baseline rate for a subsequent 

10 years. During this 30-year time period, fishing mortality was held constant at FMSY. The 

resulting trends in stock dynamics demonstrate a simulated decline in SPR, followed by a 

rebounding once natural mortality was returned to its baseline rate (Fig. D5). We then simulated 

the observation of length frequency data at various points during this 30 year duration and used 

the LB-SPR fitting routine to estimate SPR (following the procedure used in the MSE for 

estimating SPR). We plotted the percent bias in SPR between the estimated values and true 

simulated values. 
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Answer:  

Yes, SPR changes owing to period changes in natural mortality and this effect is detected 

using the LB-SPR fitting routine (Fig. D5). During the initial 10-year stable state, a negative bias 

is evident, as we have demonstrated in other plots in this appendix. During stock decline, the 

SPR estimate lags behind the changes in stock size, but later adjusts. Importantly, when natural 

mortality increases are driving changes in stock size, these changes will be picked up by the LB-

SPR method. As noted previously, the examination of assessment methods in isolation inevitably 

will identify challenges facing any data limited assessment method. We therefore stress the need 

to consider the assessment pieces within the integrated harvest control rule and whether the 

integration and subsequent decision-making meets target management objectives. 
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Figure D1. Comparison of “true” simulated SPR to estimates obtained from the LB-SPR fitting 

approach under steady-state or equilibrium conditions.  
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Figure D2. Depletion trends (spawning B / B0) based on deterministic projections using only the 

LB-SPR indicator in the decision tree.  
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Figure D3. Summary of SPR estimation reliability under historically low but stable abundance. 

Upper panel is average SPR trend in 100 simulation runs, middle panel is percent bias boxplots 

in select years of simulation runs, and lower panel is the percent of instances of SPR estimates 

being correctly assigned to a status category. Asterisks indicate no true simulated instances of a 

status category.  
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Figure D4. Summary of SPR estimation reliability under historically declining abundance. Upper 

panel is average SPR trend in 100 simulation runs, middle panel is percent bias boxplots in select 

years of simulation runs, and lower panel is the percent of instances of SPR estimates being 

correctly assigned to a status category. Asterisks indicate no true simulated instances of a status 

category.  
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Figure D5. Upper panel shows 10 simulated stock trends that reflect increased natural mortality 

between years 11 and 20. The lower panel shows the corresponding bias in SPR estimation via 

the LB-SPR fitting method at years 5, 10, 20, 25, and 30. 

 





November 22, 2017 
 
California Fish & Game Commission 
1416 Ninth Street 
Sacramento, CA 95814 
 
RE: Red Abalone Fishery Management Plan 
 
 
Dear Commissioners, 
 
We are writing to you as leaders in the marine science community to request that the Commission 
ensure the best available science is used to guide the development of the fishery management plan 
for sustainable management of the red abalone fishery.  
 
We encourage the Commission to consider two things when reviewing the Red Abalone Fishery 
Management Plan: 
 
 
1) All proposed harvest control rules submitted to the Commission, including the ones proposed 
by external stakeholders, and CDFW staff biologists, should be subjected to a peer reviewed 
process by independent scientists. All scientific rationale, specifications of the approach and 
intended use should be made public prior to approval of any one approach. 
 
2) Management Strategy Evaluation (MSE) is a formal process used to objectively compare 
alternative harvest control rules through computer simulation. MSE is the standard-bearer for 
development and testing of harvest control rules and should be used in the peer review process to 
ensure the highest level of scrutiny and objective analysis of tradeoffs in the fishery. 
 
Thank you for your consideration. 
 
 
Sincerely, 
 
 
Jono Wilson, PhD, The Nature Conservancy and UCSB 
Bill Harford, PhD, University of Miami 
Steve Gaines, PhD, Dean Bren School of Environmental Science & Management, UCSB 
Jeremy Prince, PhD, Biospherics, Murdoch University, Australia 
Lyall Bellquist, PhD, The Nature Conservancy & Scripps Institute of Oceanography, UCSD 
Stuart Sandin, PhD, Director at the Center for Marine Biodiversity and Conservation, UCSD 
Hunter Lenihan, PhD, Professor Bren School of Environmental Science & Management, UCSB 
 
 
 


	Staff Summary
	21.1_TNC_Letter_to_MRC_re_abalone_management _7.7.17
	21.2_EML_TNC_Jackson,Alexis_AbaloneFMP_MSE Report_112217
	21.3_LTR_MendocinoCountyFGC_Vann,Randy_112217
	21.4_EML_Science Community_AbaloneFMP_112217



