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PREFACE 
 
This study plan outlines the approaches that may be used by the California Department 
of Fish and Wildlife (Department) to evaluate instream flow needs for anadromous 

steelhead and Coho Salmon in upper Mark West Creek, Sonoma County. The 
California Water Action Plan1 (CWAP) outlines ten actions and associated sub-actions 
to address water management challenges and promote reliability, restoration, and 
resilience in the management of California’s water resources. Action Four of the CWAP, 

to protect and restore important ecosystems, directs the Department and the State 
Water Resources Control Board (State Water Board) to implement a suite of actions to 
enhance instream flows within at least five priority stream systems. Mark West Creek, a 
tributary to the lower Russian River, is among these first five priority streams. The 

Department plans to begin work on the upper Mark West Creek study in 2018 as part of 
the suite of actions to address instream flow enhancement for anadromous salmonid 
species present within upper Mark West Creek.  
 

The Department is the Trustee Agency for California’s fish and wildlife resources and a 
Responsible Agency under CEQA §21000 et seq. Fish and wildlife resources are held in 
trust for the people of the State of California under FGC §711.7. As Trustee Agency, the 
Department seeks to maintain natural communities and native fish, wildlife, and plant 

species for their intrinsic ecological values and for their benefits to all citizens in the 
State. This includes habitat protection and maintenance of habitat of sufficient amount 
and quality to ensure the survival of all native species and natural communities. The 
results of the study may be used to assist with flow enhancement activities in upper 

Mark West Creek through the CWAP and other salmonid restoration and recovery 
efforts.   
  

                                              
1 More information about Proposition 1 and the California Water Action Plan can be found at 
http://resources.ca.gov/california_water_action_plan/ 
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1.0 INTRODUCTION 
 
The Russian River watershed, to which Mark West Creek is a tributary, currently 
supports several species of anadromous salmonids, including anadromous Rainbow 

Trout (commonly known as steelhead; Oncorhynchus mykiss), Chinook Salmon (O. 
tshawytscha), and Coho Salmon (O. kisutch). Salmon and steelhead populations within 
coastal California watersheds, including those found within the Russian River watershed 
have declined significantly due to habitat modification, overfishing, and environmental 

stressors (Steiner 1996; CDFG 2004; NMFS 2008; NMFS 2012; CDFW 2015b; NMFS 
2016). The National Marine Fisheries Service (NMFS) has consequently made several 
listing determinations pursuant to the federal Endangered Species Act (ESA) for the 
Distinct Population Segments (DPS)/ Environmentally Significant Units (ESU) of the 

respective species. These determinations cover all anadromous salmonid species found 
within the Mark West Creek subwatershed: Central California Coast (CCC) steelhead, 
listed as threatened in 1997 (62 FR 43937); California Coastal (CC) Chinook Salmon, 
listed as threatened in 1999 (64 FR 50394); and CCC Coho Salmon, listed as 

endangered in 2005 (70 FR 37160). CCC Coho Salmon north of San Francisco Bay 
were also listed as endangered under the California Endangered Species Act (CESA) in 
2005.  
 

Despite the CESA/ESA listings, populations of anadromous salmonid species continue 
to decline in the Russian River watershed and throughout their ranges. The Russian 
River population of Coho Salmon was nearly extirpated in the late 1990s (CDFG 2004; 
NMFS 2008). In response to the decline, county, state, and federal agencies formed the 

Russian River Coho Salmon Captive Broodstock Program (Broodstock Program) in 
hopes of preventing imminent extirpation. This collaborative effort has been supporting 
species recovery by breeding Coho Salmon from local genetic stocks and releasing 
juveniles into streams historically inhabited within the Russian River watershed, 

including Mark West Creek.  
 
The degradation and loss of freshwater habitat, caused by a decrease in water quality 
and insufficient water quantity, is one of the leading causes of salmonid decline (CDFG 

2004; NMFS 2012). Water diversions, modifications to riparian vegetation, and 
sediment delivery to streams that provide critical habitat to salmonid species in the 
Russian River watershed have contributed to the degradation and loss of habitat (NMFS 
2008; Sonoma RCD 2015). This instream flow study conducted by the Department of 

Fish and Wildlife (Department) will provide information to help support the recovery of 
anadromous species within upper Mark West Creek by identifying the flow regimes 
necessary to support salmonids and the habitats upon which they depend. 
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2.0 PROJECT BACKGROUND 
 
The Mark West Creek subwatershed provides habitat for listed anadromous salmonid 
species including CCC steelhead, CC Chinook Salmon, and CCC Coho Salmon as well 

as various other aquatic species of special concern such as the California Roach 
(Lavinia symmetricus), Northwestern Pond Turtle (Actinemys marmorata), and Foothill 
Yellow-Legged Frog (Rana boylii). One of the primary motivations for this flow study is 
the California Water Action Plan (CWAP). Released by Governor Brown in 2014, the 

CWAP directs the Department and State Water Resources Control Board (State Water 
Board) to initiate a suite of actions to enhance water flows in at least five stream 
systems that support critical habitat for anadromous fish species. Mark West Creek was 
established as a priority CWAP stream. In addition to being a CWAP priority stream, 

limiting factors and recovery actions identified in recovery plans for the listed salmonid 
species inhabiting Mark West Creek (CDFG 2004; NMFS 2012; NMFS 2016) provide 
contextual background for this instream flow study.  
 

Prior assessments (e.g., NMFS 2008; Grantham et al. 2012; Obedzinski et al. 2016) 
have indicated that impaired streamflow is a factor affecting steelhead and Coho 
Salmon survival in the Russian River watershed. The State’s Steelhead Restoration and 
Management Plan (CDFG 1996) suggests that water diversions have led to insufficient 

flow conditions within the Russian River watershed, contributing to the decline of 
steelhead populations. Part of the difficulty in managing the impacts of water diversions, 
the plan stated, stems from the lack of studies to determine the instream flow 
requirements for salmon and steelhead within the Russian River and its tributaries 

(CDFG 1996). The Department’s Coho Salmon Recovery Strategy (CDFG 2004) 
suggested that altered flow regimes were likely presenting an obstacle to Coho Salmon 
recovery within the Russian River watershed. Finally, both the CCC Coho Salmon 
Recovery Plan (NMFS 2012) and Coastal Multispecies Recovery Plan (NMFS 2016) 

identified insufficient baseflow conditions as a limiting factor facing rearing juveniles 
within the Russian River and Mark West Creek focus populations, respectively. To aid in 
the prioritization of recovery actions from the Coho Salmon recovery plans, the 
Department and NMFS formed the Priority Action Coho Team (PACT). The PACT 

identified Mark West Creek as one of the top ten streams north of San Francisco Bay in 
which flow enhancements could benefit the recovery of the species.   
 
In 2014, prolonged drought conditions and the likelihood of significant impacts to listed 

salmonid species prompted the Department and NMFS to develop the Voluntary 
Drought Initiative (VDI) Program2. Mark West was identified as a priority watershed in 
which to implement the VDI Program, one of four within the entire CCC steelhead DPS 
and CCC Coho Salmon ESU. In 2015, as poor conditions persisted, the State Water 

                                              
2 Governor Brown declared a State of Emergency in 2014 due to ongoing drought conditions and 
subsequently issued an Executive Order directing the Department to coordinate with other agencies and 
landowners to minimize the combined impacts of the drought on listed species within priority watersheds. 
The VDI Program aimed to incentivize landowners to reduce water use and “prevent unreasonable 
impacts to fishery resources.”  
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Board adopted an emergency regulation titled “Enhanced Water Conservation and 
Additional Water User Information for the Protection of Specific Fisheries in Tributaries 
to the Russian River” (CCR Title 23 Section 876). This regulation applied to the four 

Russian River subwatersheds identified in the VDI effort (i.e., Dutch Bill, Green Valley, 
Mill, and Mark West creeks), and mandated that landowners reduce water use and 
provide water use information on surface and subsurface diversions.  
 

The Russian River Coho Water Resources Partnership (RRCWRP) identified Mark 
West Creek as one of five critical subwatersheds within the Russian River basin where 
important water management strategies could help restore the Coho Salmon population 
(RRCWRP 2017). In order to help address the low-flow limiting factor, developing an 

understanding of flow regimes and the relationship between streamflow and available 
salmonid habitat within upper Mark West Creek is required. This study will develop 
these habitat-flow relationships and identify the flows necessary to provide suitable 
habitat to support species recovery and guide future management decisions. 

 
 
 

3.0 PROJECT DESCRIPTION 
 

Department staff will conduct the instream flow study within upper Mark West Creek. 
Department Water Branch staff will coordinate and carry out data collection, data 
analysis, and generate a technical report (Table 1). Given the diverse nature of interests 
within the watershed, stakeholder coordination and outreach will be a vital component of 

the project. Bay-Delta Region staff will identify key outreach opportunities and will be 
supported by Water Branch staff participation. Bay-Delta Region, Conservation 
Engineering, and the Fisheries Branch will review the study plan, technical project 
components, and reports produced by the Water Branch.  
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Table 1. Roles and responsibilities in the Department’s Mark West Creek study. 

Department Lead   Role 

Water Branch 

Technical Study Project Coordination 
Study Planning 

Field Data Collection 

Engineering 
Data Management and Analysis 

Data Reporting 

 
Bay-Delta Region 

 

Project Context and Objectives 
Study Plan Review 

Field Data Collection (resources permitting) 

Project Review 

Shared (Water Branch and 
Region)  

Study Design 
Stakeholder Identification, Coordination, and 

Outreach 
Landowner Access 

 
Conservation Engineering 

 

Study Plan Review 

Project Consultation and Review 

 
Fisheries Branch 

 

Study Plan Review 
Project Review 

 
 

3.1 Study Goals and Objectives 

The goal of this study is to develop relationships between streamflow and salmonid 
habitat in upper Mark West Creek. Information developed will identify important flow 

thresholds for the protection and maintenance of anadromous steelhead and Coho 
Salmon juvenile rearing, and may be used to generate Department flow 
recommendations. 
 

The objectives of this study are to: 

• Identify and develop relationships between streamflow and available salmonid 
habitat using a combination of empirical approaches and hydraulic habitat 
modeling. 

• Determine flows needed to maintain rearing habitat and connectivity for 
juvenile salmonids.  

• Identify flows that support productive riffle habitats for benthic 
macroinvertebrates, an important food source for juvenile salmonids.  

• Monitor water quality conditions, including temperature and dissolved oxygen. 
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3.2 General Approach 

Relationships between streamflow and habitat within upper Mark West Creek will be 
developed using a combination of scientifically defensible methods, which may include 
hydraulic habitat modeling and empirical approaches described by the Instream Flow 
Council in Instream Flows for Riverine Research Stewardship (Annear et al. 2004). The 

resulting relationships will serve as a basis to help identify important flow thresholds for 
the conservation, restoration, and protection of salmonids and other aquatic resources 
within the watershed. Study components include assessing rearing habitat, riffle 
productivity and connectivity flows in upper Mark West Creek. In addition, monitoring of 

temperature and dissolved oxygen will be conducted to evaluate water quality 
conditions. 
 
 

4.0 WATERSHED DESCRIPTION 
 
Depending on the source of information, the boundary of the Mark West Creek 
subwatershed can vary. The U.S. Geological Survey (USGS) National Hydrologic 
Dataset and the Sonoma County Water Agency (SCWA) define Mark West Creek as a 

tributary to the Russian River (Nishikawa 2013). However, several other sources identify 
Mark West Creek as a tributary to the Laguna de Santa Rosa, which then flows into the 
Russian River (Sloop et al. 2007; Baumgarten et al. 2014; CEMAR 2015). The 
discrepancy stems in part from the complex lower reaches of the creek. Lower Mark 

West Creek’s channel has undergone natural course migrations across its alluvial fan, 
but has also been subject to substantial anthropogenic modifications since the late 
1800s (Baumgarten et al. 2014). For the purposes of this study, we are defining the 
Mark West Creek subwatershed using a modified USGS 12-digit hydrologic unit code 

(HUC12) boundary3 and Mark West Creek as a tributary to the Russian River. Mark 
West Creek enters the Russian River near river mile 24 (Figure 1). 
 

                                              
3 Quantum Spatial developed these hydrologic data products for the Sonoma County Vegetation Mapping 
and LiDAR Program based on high-resolution LiDAR data collected in 2013. 
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Figure 1. Mark West Creek HUC12 subwatershed. 

 
 

Situated about five miles north of the City of Santa Rosa along the eastern boundary of 
Sonoma County, the Mark West Creek HUC12 subwatershed is the second largest in 
the Russian River basin, draining an area of approximately 59 square miles. Mark West 
Creek stretches roughly 34 miles from its confluence with the Russian River to its 

headwaters in the Mayacamas Mountains. The three main tributaries to Mark West 
Creek are Windsor and Porter creeks, and the Laguna de Santa Rosa. Smaller 
significant tributaries include Mill, Humbug, Weeks, Van Buren, North Fork Mark West, 
and Neal creeks.  

 
With a maximum elevation of approximately 2,350 feet, the watershed drains a portion 
of the Mayacamas Mountain Range in a general westward direction towards its 
confluence with the Russian River, which occurs at an elevation of roughly 30 feet. 

Longitudinally, the watershed’s topography varies greatly. Towards its western 
boundary, the watershed encompasses a low relief valley area. The Rodgers Creek 
fault that runs northwest and lies approximately mid-watershed marks a noticeable 
topographic boundary at the foot of the Mayacamas Mountain Range (Figure 1; Sloop et 
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al. 2007). From this point, the watershed begins to climb into rolling foothills and 
ultimately terminates in the steep-walled, narrow valleys of the mountainous headwater 
region along its eastern boundary (Honton and Sears 2006). 

 
The watershed’s land uses and land cover differ between the lower valley and upper 
mountainous region. Around the mid-19th century, the lower watershed underwent a 
conversion from a landscape dominated by oak savannah, seasonal and perennial 

wetlands, to a landscape structured around grazing and ranching; this later shifted to 
dairy farming, orchards, hay fields, and row crops (Honton and Sears 2006; Sloop et al. 
2007). In the mid-20th century, rapid urbanization began to shift land use from 
agriculture (Sloop et al. 2007). Today, most of the lower watershed’s land cover is 

dominated by urbanized land and irrigated cropland (predominantly vineyards), and to a 
lesser extent native hardwood forests, riparian forests, and grassland (CEMAR 2015).  
 
Ranching and timber harvest were the major early land uses in the eastern 

mountainous region of the watershed (i.e., the upper watershed; Sonoma RCD 2015). 
Mirroring population growth and changes in the lower watershed, land use in the upper 
watershed began to shift in the mid-20th century when parcels were subdivided, allowing 
for the expansion of rural residential development (Sotoyome RCD 2008). Like the 

lower watershed, vineyards emerged as a dominant crop towards the end of the 20th 
century (Sonoma RCD 2015), although vineyard land cover by percentage area is far 
smaller in the upper watershed as compared to the lower watershed with approximately 
2% and 37%, respectively4. Coniferous forest, hardwood forest, grassland, and shrubs 

presently dominate land cover in the upper watershed (CEMAR 2015; Sonoma RCD 
2015). Approximately 90% of the land within the Mark West Creek subwatershed is 
privately owned.5   
 

 

4.1 Target Species and Life Stages 

Collectively, CCC steelhead, CC Chinook Salmon, and CCC Coho Salmon utilize the 
Mark West Creek subwatershed year-round to carry out the freshwater stages of their 

life histories. CCC steelhead and CC Chinook Salmon are both listed as threatened 
under the federal ESA, while CCC Coho Salmon are listed as endangered under both 
the ESA and CESA. Bjorkstedt et al. (2005) and Moyle et al. (2008) concluded that CCC 
steelhead within Mark West Creek exist as an essential, potentially independent 

population within the steelhead DPS. CCC Coho Salmon in lower Russian River 
tributaries, including Mark West Creek, exist as part of a single, functionally 
independent population that is at high risk of extirpation (NMFS 2008). NMFS (2008) 
suggests that, historically, CCC Coho Salmon populations in the lower Russian River 

were the most abundant population source for other streams within the CCC ESU. 
Accordingly, the persistence of CCC steelhead and CCC Coho Salmon populations in 

                                              
4 Vineyard land cover estimate from GIS analysis using the fine-scale vegetation and habitat map data 
from the Sonoma County Vegetation Mapping and LiDAR Program. 
5 Land ownership estimate from GIS analysis using data from the California Department of Fores try and 
Fire Protection, Fire Resource and Assessment Program (FRAP). 
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the Russian River is necessary to support the recovery of the species within their 
respective DPS/ESU (NMFS 2008). The Department identified the juvenile life stages of 
steelhead and Coho Salmon as the focus for this instream flow and habitat assessment 

project. Because the juvenile life stages of these species rear in the creek throughout 
the summer and fall months (Table 2), maintaining adequate streamflow conditions 
during this period is essential to support the species’ recovery (NMFS 2008). 
 

Table 2. Generalized seasonal periodicities of target salmonid species in upper Mark 
West Creek. 

Species and 
Life Stages 

Jan Feb Mar April May June July Aug Sep Oct Nov Dec 

CCC steelhead  

Adult                          

Juvenile                         

CCC Coho Salmon 

Adult                          

Juvenile                        
Legend:                  

  Present                 

Sources: Steiner (1996); R2 Resource Consultants, Inc. and Stetson Engineers, Inc. 
(2007); NMFS (2012); NMFS (2016). 

 
 
Long-term systematic fish surveys are lacking within the Mark West Creek 
subwatershed (NMFS 2016). Several short-term studies have been conducted and 

observations have been noted during periodic habitat analyses conducted by the 
Department and other entities. Historically, steelhead were observed over a wide range 
of Mark West Creek where habitat remained wetted through the summer and fall 
seasons (CDFG 1953, 1966, 1969, 1971), though current densities are thought to be 

significantly reduced from observations noted through the 1950s to 1970s (NMFS 
2016). Information on the historical presence and distribution of Coho Salmon within the 
Russian River watershed, and Mark West Creek, specifically, is much more limited 
(Spence et al. 2005; NMFS 2008). Nonetheless, both Brown and Moyle (1991) and 

Spence et al. (2005) found evidence from past stream surveys to conclude that Coho 
Salmon populations historically existed in Mark West Creek.  
 
In the early 2000s, the Broodstock Program conducted surveys in the lower Russian 

River and found limited numbers of wild juvenile Coho Salmon in only five creeks, 
including Mark West (Conrad 2006). A study conducted by Merritt Smith Consulting 
(2003) during the summer and fall months from 1993-2002 observed small numbers of 
Coho Salmon across their three Mark West Creek study reaches in 2001 only. 

Steelhead were observed in moderate numbers in each of the study reaches in most 
years, with greater abundances in the upper watershed (Merritt Smith Consulting 2003). 
The SCWA also conducted electrofishing distribution/abundance surveys in Mark West 
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Creek to detect steelhead and Coho Salmon in 2001 and found only steelhead 
throughout the creek, with numbers increasing from the most downstream to upstream 
survey sites (Cook and Manning 2002).  

 
 

4.2 Habitat Suitability and Biological Criteria 

Accurate representation of available habitat in relation to discharge requires linking 

stream channel hydraulics, over a range of flows, with known habitat suitability criteria 
(HSC) for the target species and life stages (CDFG 2008). The target species and life 
stage for this project have been identified as juvenile CCC steelhead and juvenile CCC 
Coho Salmon. Appropriate HSC are a critical element of hydraulic habitat modeling. No 

site-specific HSC have been developed for the above listed species in the Russian 
River watershed.  
 
The creation of suitable HSC requires a minimum sample size of fish observations 

(typically greater than 150 per life stage/species, mesohabitat category, and 
microhabitat component) while also accounting for the influence of habitat availability on 
observed habitat use (Bovee 1986). HSC are developed by associating fish 
observations with water depth, velocity, cover, and other important site-specific 

microhabitat components, ideally in systems that have a minimally altered flow regime. 
To accomplish this, field-based techniques including fish snorkel surveys and 
measurements/classification of physical habitat attributes are employed based on 
methods described by Holmes et al. (2014). General guidelines for HSC development 

can be found in Bovee (1986), Bovee and Zuboy (1988), and CDFG (2008).  
 
Obtaining representative and unbiased information is an important step in developing 
HSC. There are two factors that make the development of HSC uncertain in Mark West 

Creek. First, Mark West Creek has an impaired hydrograph and can be subject to 
sustained low flow conditions. Because of this, hydraulic habitat availability and 
associated fish behavior observed in a HSC study may not be representative of ideal 
conditions since fish are unable to utilize preferred habitat. Second, estimates of current 

Coho Salmon populations within Mark West Creek have been very low and it would 
likely be difficult to observe the required sample size. Instead, HSC from two coastal 
California watersheds will likely be used to support the habitat analysis of juvenile CCC 
steelhead and CCC Coho Salmon life stages in Mark West Creek: the Big Sur River 

(Holmes et al. 2014) and the South Fork Eel River (to be completed in 2018/2019).  
 
 

4.3 Hydrology  

The watershed’s Mediterranean climate is characterized by arid to semi-arid summers 

and punctuated storm events during the winter and spring months. Long-term 
meteorological data coverage in the Mark West Creek subwatershed is limited and 
records from existing monitoring stations often have short periods of record, contain 
significant data gaps, or are situated in the lower elevations of the watershed making it 
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difficult to characterize precipitation patterns in the mountainous upper watershed 
(Woolfenden and Nishikawa 2014). Because precipitation within the watershed is 
strongly influenced by topography (Nishikawa 2013), many analyses rely upon PRISM 

(Parameter-elevation Regressions on Independent Slopes Model) datasets, which use 
elevation and nearby meteorological stations to interpolate precipitation values for 
ungaged locations. Average yearly precipitation values vary from about 30 inches in the 
valley floor to about 47 inches in the Mayacamas Mountains, with a watershed average 

of approximately 40 inches6 (800m PRISM 30-year normal, 1981-2010). In a 2015 
report, the Center for Ecosystem Management and Restoration (CEMAR) presented 
information from a landowner in the upper watershed who recorded an annual average 
of approximately 65 inches (1965-2011), indicating that the PRISM normals are likely 

underestimates, at least in the upper watershed (CEMAR 2015). Although winter 
temperatures may be conducive to snow formation at the higher elevations, nearly all of 
the precipitation in the watershed falls as rain (Nishikawa 2013). Rantz (1972) analyzed 
streamflow and precipitation records (1931-1970) in relatively undeveloped watersheds 

including nearby Mill and Santa Rosa creeks, and found that roughly half of the 
precipitation that fell in those watersheds was converted into streamflow. 
 
Springs and seeps such as those that contribute to Neal Creek, a small tributary in the 

headwater region of Mark West Creek, play an important role in maintaining water 
connectivity and perennial flows within the upper watershed (Nishikawa 2013; CEMAR 
2015). Some of the tributaries to Mark West Creek also maintain minimal perennial 
flows through the dry season, though the majority undergo significant drying and 

generally lose surface connectivity with Mark West Creek (SRPBAP 2014). Baseflow, 
which comprises only a small portion of the hydrograph in Mark West Creek, is an 
extremely important component of flow during the dry season (Nishikawa 2013). Results 
from the USGS Santa Rosa Plain Hydrologic Model (SRPHM)7 indicate that surface 

runoff is the main component of the hydrograph in Mark West Creek from November 
through April, while baseflow is dominant from May through October (Woolfenden and 
Nishikawa 2014). CEMAR (2015) indicated their multiyear streamflow monitoring 
conducted in upper Mark West Creek showed that, while consistently low, flows were 

relatively more stable over the course of each dry season compared to other Russian 
River tributaries in their monitoring network. 
 
As with many streams subject to the seasonality of Mediterranean climates, the timing 

of higher streamflow in Mark West Creek and other Russian River tributaries in the late 
winter and spring does not coincide with the high demand in the summer and fall dry 
seasons (Deitch and Dolman 2017). CEMAR (2015) found that total annual rainfall and 
discharge generally surpass demand; however, demand in the summer and fall exceeds 

surface water availability leading to a reliance on wells and springs to meet dry season 

                                              
6 PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, accessed September 
2017. 
7 The SRPHM is a groundwater-surface water model that was developed by the USGS. It is used to 
characterize a water balance including streamflow, groundwater recharge and storage, and the impacts of 
diversions on these hydrologic components. The model utilized information and data collected during a 
hydrologic characterization of the Santa Rosa Plain completed by the USGS in 2013 (Nishikawa 2013). 
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water needs (Deitch and Dolman 2017). This reliance upon wells and springs can have 
cumulative impacts on baseflow and likely contributes to the low flow conditions 
observed throughout the dry season, especially during extended periods of low rainfall 

(SRPBAP 2014; CEMAR 2015; Sonoma RCD 2015). Results from the 2015 
informational order (see Section 2) show dense concentrations of groundwater wells 
along areas of Mark West Creek and its tributaries (Figure 2). 
 

 

Figure 2. Diversions within the Mark West Creek subwatershed. Figure from SWRCB 
(2017). 
 

 
Numerous streamflow gages have been operated across the Mark West Creek 
subwatershed (Figure 3 and Table 3), though meaningful hydrologic analysis is 
constrained by short periods of record, data gaps, and seasonal data collection (Sloop 

et al. 2007; Nishikawa 2013). A USGS gage near Mirabel Heights (USGS 11466800) 
has the longest period of record within the watershed, with approximately 12 years of 
data starting in the 2006 water year (WY). This gage is located downstream of Mark 
West Creek’s confluence with two large tributaries, the Laguna de Santa Rosa and 

Windsor Creek. The lack of flow information for these contributing tributaries means the 
amount of flow originating from upper Mark West Creek cannot accurately be discerned. 
CEMAR has operated three gages to varying lengths during WY 2010-WY 2017. One of 
these gages, MW01, is located high in the watershed near Tarwater Road. This gage 

provides the best available indicator of conditions in the upper watershed during the dry 
season. Average daily streamflow at MW01 has generally dropped below 1 cubic foot 
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per second (cfs) by May or June. The minimum and maximum average daily summer 
flows captured at MW01 over the period of record were 0.06 and 11.8 cfs, respectively. 
The mean and median average daily flows during the same period were 0.41 and 0.22 

cfs, respectively. The lack of a long-term, year-round gage network throughout the 
watershed makes it difficult to assess flow regimes and to understand how the range of 
flows can affect biological processes and species recovery in the creek (Honton and 
Sears 2006).  

 

 
Figure 3. Streamflow monitoring gages in the Mark West Creek subwatershed. 
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Table 3. Streamflow monitoring gages within the Mark West Creek subwatershed. 

Operator  Gage Identifier  Period of Record Notes 

USGS 

11466800 
Mark West Creek 

near Mirabel 

Heights 

October 2005-Present 

Some small data gaps in 

record, and a large gap 
for most of WY 2010. 

Gage sometimes 
influenced by 

backwatering from 
Russian River during high 

flows.  

NMFS 
Mark West Creek 

at River Road 
November 2011-Present Significant data gaps.  

USGS 
11465500 

Mark West Creek 
near Windsor 

October 2006-April 2008 
Significant data gap in 

second half of WY 2007. 

USGS 

11465450 
Mark West Creek 

at Mark West 

Springs 

1958-1962 
Peak annual discharges 

only.  

CEMAR 

MW02 
Mark West Creek 

above Porter 
Creek 

May 2010-Present 
Record covers mostly low 
flow periods. Significant 

recent data gaps.   

NMFS 
Mark West Creek 
at Calistoga Road 

October 2011-Present 
Discharge extrapolated 

above 30 cfs. Some data 
gaps. 

CEMAR 

MW01 
Mark West Creek 

below Tarwater 
Road 

March 2010-Present 

Early records were mostly 
year-round with 

discharges estimated 
below 50 cfs only. Some 

small data gaps. Since 
WY 2015, only seasonal 
low flow measurements 

taken. 

CEMAR 
MW06 

Mark West Creek 
at Neal Creek 

June 2011-November 
2014 

Record covers mostly low 
flow periods. Some small 

data gaps.  
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Long-term unimpaired streamflow records are generally used by the Department IFP to 
aid in the determination of a range of representative target flows for field data collection. 
The lack of long-term gages in the Mark West Creek subwatershed, as well as the 

surrounding watersheds, complicates the unimpaired streamflow determination. Given 
this, to identify target flows for data collection in upper Mark West Creek the Department 
intends to select an appropriate range of flows based on unimpaired average monthly 
flow estimates (1950-2015) from the California Natural Flows Database8 (CNFD; 

Zimmerman et al. 2017). The unimpaired average monthly flow estimates in the stream 
reach (COMID 8272495) located near the CEMAR MW01 gage will serve as the basis 
for a flow duration analysis, which estimates the likelihood of a particular discharge 
value being equaled or exceeded (referred to as an exceedance flow; CDFW 2013b; 

Searcy 1969). The unit of time used to calculate exceedance flows affects the utility of 
the flow duration curve (i.e., a shorter time unit will result in a greater representation of 
flow variability). The CNFD only provides average monthly unimpaired flow estimates. 
While exceedance calculations using the average monthly estimates may result in 

diminished flow variability, the CNFD provides the best available information for 
calculating target flows. Target flows for data collection on upper Mark West Creek will 
likely fall within the 20 to 80 percent exceedance flow range (CDFW 2013b). The 20, 50, 
and 80 percent exceedance flows estimated for this reach of upper Mark West Creek 

are 23.5, 2.9, and 0.5 cfs, respectively.  
 
 

4.4 Groundwater Hydrology 

The Mark West Creek subwatershed overlies three groundwater subbasins identified in 
the Department of Water Resources’ (DWR) Bulletin 118 (DWR 2003), though the 
subbasins’ areal extent within the watershed varies. The upper Mark West Creek 
subwatershed overlies small sections of both the Rincon Valley Subbasin (1-55.03) and 

the Alexander Subbasin (1-54.01). Most of the lower Mark West Creek subwatershed 
overlies the Santa Rosa Plain Subbasin (1-55.01). In addition to these named 
subbasins, small, localized aquifers likely exist within the alluvial deposits along the 
stream channels in the middle watershed (Nishikawa 2013). The Sonoma Volcanics, 

which comprise a significant portion of the Mayacamas Mountains in the upper 
watershed, can also contain disconnected aquifers within fractured or porous strata 
(Cardwell 1958; Nishikawa 2013). Groundwater that discharges from springs and seeps 
provides a significant source of baseflow in parts of Mark West Creek (Nishikawa 2013), 

especially within the Sonoma Volcanics (Cardwell 1958).  
 
The geologic heterogeneity surrounding Mark West Creek, especially in the 
mountainous upper watershed, results from the numerous fault zones that traverse the 

area as well as the interaction between the North American and Pacific tectonic plates 
that formed the Mayacamas Mountains and northern California Coast Ranges 
(SRPBAP 2014; RRISRP 2016). The interactions that result from the juxtaposition and 

                                              
8 The California Natural Flows Database was a collaborative effort between the USGS and The Nature 
Conservancy to develop estimates of natural (unimpaired) flows for all of the streams in California from 
1950-2015 (Zimmerman et al. 2017).  
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interfingering of these geologic units can affect groundwater flow and yields (Nishikawa 
2013). For example, evidence suggests that Mark West Creek likely gains streamflow 
near the Rodgers Creek fault zone, where shallow groundwater originating in the 

mountainous upper watershed mounds and discharges to the creek as a result of the 
horizontal flow barrier (SRPBAP 2014).  
 
Several surficial geologic units are present in the upper Mark West Creek subwatershed 

including Quaternary Alluvium, the Sonoma Volcanics, and the Franciscan Assemblage 
(Nishikawa 2013; CEMAR 2015); the Sonoma Volcanics are the dominant unit in terms 
of areal coverage (Nishikawa 2013). The Sonoma Volcanics are generally porous and 
can be highly fractured in areas, allowing for development of wells (RRISRP 2016), 

though their yield is highly variable and is dependent upon the extent of fracturing 
(Cardwell 1958; Nishikawa 2013). Due to the inconsistent fracturing within the Sonoma 
Volcanics, determining the direct impacts of groundwater pumping is difficult (CEMAR 
2015). Although domestic wells have tapped into areas of fractured bedrock that 

underlie the Sonoma Volcanics, the existence of groundwater within the Franciscan 
complex is much more limited and the wells consistently have low yields (Nishikawa 
2013). Where wells exist in the upper Mark West Creek subwatershed, the alluvial 
deposits generally consist of coarse material (Nishikawa 2013), which leads to higher 

streambed conductivities and a greater potential for groundwater-surface water 
interactions (SRPBAP 2014).  
 
Lower in the watershed, both the Sonoma Volcanics and the Glen Ellen Formation 

outcrop in the area surrounding the Rodgers Creek fault zone (SRPBAP 2014). In the 
lower Mark West Creek subwatershed, the valley is comprised of quaternary alluvium 
and loosely consolidated alluvial deposits of the Glen Ellen Formation (SRPBAP 2014). 
Well pumping yields within the Glen Ellen Formation are highly variable (DWR 1975) 

and the alluvial deposits are generally comprised of finer material than those found in 
the upper Mark West Creek subwatershed, leading to lower conductivities and 
infiltrative capacity (SRPBAP 2014).  
 

 

4.5 Connectivity 

Low streamflow can limit the hydrologic connectivity of riverine habitats, impacting water 
quality, food production, and critical salmonid life history strategies. Salmonids have 

learned to survive in systems with long low flow periods by rearing in deep pools and 
runs throughout the summer and fall months (Moyle 2002; CDFG 2004). Disconnected 
stream segments can prevent juvenile salmonids from relocating to suitable over-
summer holding habitat having adequate cover and water quality conditions. Due to 

various factors such as climate, water diversions, antecedent precipitation, and 
groundwater-surface water interactions, sections of Mark West Creek become 
disconnected during the dry season. Merritt Smith Consulting conducted seasonal 
fisheries surveys from 1993-2002 along three reaches of Mark West Creek and 

observed that the reach in the upper watershed downstream of Calistoga Road 
occasionally became intermittent in the late spring and summer months, forcing fish to 
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rear in isolated pools (Merritt Smith Consulting 2003).  
 
The watershed’s Mediterranean climate and lack of precipitation during summer months 

is a significant factor contributing to seasonal low flows and intermittence in Mark West 
Creek (CEMAR 2015). Additionally, springs and seeps that help maintain stream 
connectivity in the upper watershed are frequently diverted during the dry season when 
streamflow is already naturally low. While unintentional, baseflow may be impacted by 

the cumulative impact of diversions, depending on the extent of groundwater-surface 
water interconnection (CEMAR 2015).  
 
In 2013, the UC Cooperative Extension added Mark West Creek to their list of streams 

monitored for wetted habitat conditions (wet/dry mapping)9 during the low flow period. 
The objective of the wet/dry mapping effort is to document the extent and location of 
wet, dry, and intermittent instream habitat during the driest period of the year, which 
usually occurs in September. The effort has indicated that Mark West Creek remains 

wetted through most of the middle and upper watershed, though streamflow remains 
low. In the alluvial reach near the Porter Creek confluence (middle watershed), Mark 
West Creek has experienced dry or intermittent conditions each year since 2013, with 
the exception of 2014.  

 
 

4.6 Geomorphology 

The Mark West Creek subwatershed is situated within the Northern Coast Range 

geomorphic province. The Mayacamas Mountain Range that comprises much of the 
terrain in the upper Mark West Creek subwatershed was formed as a result of complex 
tectonic interactions between the North American and Pacific plates. Mark West Creek 
and its tributaries have eroded the Mayacamas Mountains over time, transporting and 

depositing sediment into the mountain valleys and alluvial fan in the valley below. The 
northwest trending Rodgers Creek fault zone acts as a rough boundary between the 
sediment production zone of the upper watershed and the depositional zone in the 
valley floor (Sloop et al. 2007).  

 
Hydrologic soil group classifications (NRCS 2007), which are based on soil properties 
such as permeability and soil thickness, can be a useful tool in understanding a 
watershed’s response to precipitation. In general, soils in the lower portion of the 

watershed have low-moderate runoff potential, while soils in the mountainous upper 
watershed are thinner with a significant amount of exposed bedrock, leading to a 
moderate-high runoff potential (Nishikawa 2013). Landscape alteration and disturbance 
can also affect runoff, erosion processes, and sediment transport. Historical landscape 

changes in the Mark West Creek subwatershed such as road development, timber 
harvest, and rural subdivisions, as well as shifting land use practices (e.g., grazing and 
vineyard development), have contributed to higher rates of runoff and sedimentation 
(Sloop et al. 2007; Sonoma RCD 2015).  

                                              
9 Information on wet/dry mapping available at: https://caseagrant.ucsd.edu/project/coho-salmon-
monitoring/flow-and-survival-study. 
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The upper and middle portions of the watershed are comprised of moderate gradient 
channels that drain steep hillsides (Nishikawa 2013). In the valley floor, as Mark West 
Creek traverses its alluvial fan, the channel assumes a more modified character with a 

relatively straight, channelized, and entrenched channel (RRISRP 2016). An analysis of 
generalized stream typologies presented in the 2016 RRISRP report, developed by 
Walls (2013), suggests that five different stream types exist within Mark West Creek: 
dissected alluvium, unconfined alluvial, alluvial fan, semiconfined alluvial, and bedrock 

canyon. The alluvial channel forms are dominant in the valley floor up to the transition 
zone near the Rodgers Creek Fault. With the exception of a dissected alluvium channel 
downstream of the Porter Creek confluence, bedrock canyons and semiconfined alluvial 
channels dominate the upper watershed (RRISRP 2016).  

 
Few on-the-ground assessments of the stream channel have been completed in Mark 
West Creek; the most recent watershed-wide mainstem survey was conducted by the 
SCWA in 1996 (CDFG 2006). The surveyors identified six different reaches and channel 

types from the downstream extent up to the Neal Creek confluence: F4, F2, B2, B3, C3, 
and B1-2 (Table 4). Flatwater habitat was the dominant Level II habitat type and 
comprised approximately 50% of the stream length, followed by approximately 40% 
pool habitat, 8% riffle habitat, and 1% dry channel (CDFG 2006). 

 
 

Table 4. Mark West Creek channel types, presented from downstream to upstream. 

Channel 
Type 

Description  

F4 
Entrenched, meandering riffle/pool channel with low gradient and high 

width/depth ratio; gravel-dominated substrate 

F2 
Entrenched, meandering riffle/pool channel with low gradient and high 

width/depth ratio; boulder-dominated substrate 

B2  
Moderately entrenched, riffle-dominated channel with moderate 

gradient; boulder-dominated substrate 

B3 
Moderately entrenched, riffle-dominated channel with moderate 

gradient; cobble-dominated substrate 

C3 
Low-gradient, meandering, riffle/pool alluvial channel with well-defined 

floodplain; cobble-dominated substrate 

B1-2 
Moderately entrenched, riffle-dominated channel with moderate 

gradient; boulder- and bedrock-dominated substrate 

Source: Rosgen (1994). 

 
 
Following two landslides that contributed large amounts of fine sediment to upper Mark 
West Creek in the mid-2000s, Li and Parkinson (2009) assessed instream habitat in a 

small section of the upper watershed from Tarwater Road up to the confluence with 
North Fork Mark West Creek. In this assessment, pools were identified as a the 
dominant Level II habitat type and comprised approximately 68% of the stream length, 
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followed by approximately 20% riffle habitat, 11% flatwater habitat, and 1% dry channel 
(Li and Parkinson 2009).  
 

 

4.7 Water Quality 

Pursuant to section 303(d) of the Clean Water Act, the State Water Board is responsible 
for assessing, protecting, and restoring surface water quality and submitting a list of 

impaired water bodies to the U.S. Environmental Protection Agency (EPA). The State 
Water Board has listed Mark West Creek and its tributaries upstream of the confluence 
with the Laguna de Santa Rosa as 303(d) impaired water bodies for sedimentation and 
temperature. Downstream of the confluence with the Laguna, Mark West Creek is also 

impaired for aluminum, dissolved oxygen, phosphorous, and manganese.  
 
The NMFS Multispecies Recovery Plan (2016) also rates the entirety Mark West Creek 
as poor for temperature and watershed processes/sediment transport as they relate 

specifically to the rearing life stage of juvenile steelhead. Because juveniles rear in the 
creek throughout the year, Moyle (2002) and NMFS (2008) highlight the importance of 
maintaining temperatures below approximately 57°F, the maximum optimal temperature 
for rearing steelhead and Coho Salmon. Additionally, Reiser and Bjornn (1979) and 

Moyle (2002) note that high levels of suspended fine sediments can adversely impact 
rearing habitat and food availability, and can negatively impact survival by damaging the 
gills of juvenile fish. In an attempt to help address impairments caused by sediment, 
Pacific Watershed Associates assessed approximately half of the unpaved roads in the 

upper Mark West Creek subwatershed for potential sediment delivery sites (Sonoma 
RCD 2015). Other water quality related assessments in the watershed have generally 
been short-term and sporadic in nature, focused mainly on temperature. In general, 
targeting the causes of temperature-related impairments has been difficult. The Sonoma 

Resource Conservation District (RCD) noted that temperature loggers deployed over 
several years in reaches along St. Helena Road have consistently recorded water 
temperatures below 70°F through the low flow season, whereas temperatures lower in 
the creek near the Porter Creek confluence are significantly warmer, typically 

surpassing 70°F by mid-June (Sonoma RCD 2015). In the lower reaches, it is 
suspected that the higher temperatures result from lack of riparian canopy cover (NMFS 
2016) and cold-water spring inputs (Sonoma RCD 2015).  
 

 

4.8 Tubbs Fire 

In October 2017, the Tubbs Fire burned approximately 57 square miles across sections 
of Napa, Sonoma, and Lake counties, including approximately 22 square miles (37%) of 
the Mark West Creek subwatershed. The burn area spanned the entire north-south 

extent of the watershed and was concentrated from just west of Highway 101 to 
Calistoga and Petrified Forest roads to the east. In addition to water quality and 
biological impacts, the fire may affect the hydrology of Lower Mark West Creek. 
Depending on the upslope burn severity, CalFire (2017) predicted that the 10% 
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exceedance flow (CDFW 2013b) in reaches of Mark West Creek could increase 
anywhere from 9-25%. Due to the likelihood of channel instability (e.g., channel 
aggradation) after the Tubbs fire, the potential study area has been constrained to the 

reaches of Mark West Creek above Calistoga Road (Figure 4).  
 

 

Figure 4. Map of the Mark West Creek subwatershed showing the Tubbs Fire burn area 
and the proposed study area.  

 
 

5.0 METHODS AND PROTOCOLS 
 

Department staff will conduct a stream survey within upper Mark West Creek following 
the Level III-IV (i.e., modified Level III) habitat type survey classifications, as described 
in the California Salmonid Stream Restoration Manual (Flosi et al. 2010) to identify 
mesohabitat types (CDFW 2015a). A corresponding discharge measurement (CDFW 

2013a) will be measured each day of the survey; data will only be collected where 
landowner access is granted. Upon completion of the survey, the modified Level III 
mesohabitat classifications will be grouped into riffle, pool, run, or glide categories. The 
classification of different habitat types is based on characteristics such as channel 
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morphology, gradient, substrate composition, and hydraulic characteristics. The 
assemblage and overall proportion of each mesohabitat type will help guide site 
selection for hydraulic habitat modeling (CDFW 2015c). 

 
Mesohabitats were mapped using the on-the-ground method and are typed to the most 
detailed level III-IV typing as described in Flosi et al. (2010). This level of habitat 
delineation allows data to be used for other studies or aggregated into less detailed 

levels depending on the needs of individual studies (e.g. hydraulic habitat modeling). 
These surveys entail the identification of habitat types using specified criteria, along with 
measurements of habitat unit length and maximum pool depth for pool units. In addition, 
landmarks such as road crossings, bridges, and significant streambank alterations are 

noted. 
 
Each habitat unit will be characterized as modelable or unmodelable according to the 
limitations of standard one-dimensional (1D) and two-dimensional (2D) hydraulic 

modeling methods. Modelable, in this context, is a term used to characterize a habitat 
unit’s hydraulic properties and refers to whether the unit’s water surface along a 
hypothetical transect would remain steady and flat over a broad enough range of flows 
to develop a predictive model. This characterization is necessary for the dataset to be 

compatible with stratified study site and transect selection techniques, where 
unmodelable mesohabitat units may be rejected prior to the selection process.  
 
Below is a list of modified Level III mesohabitat types containing sufficient detail for the 

purpose of transect placement, hydraulic data collection, and transect weighting 
consistent with stratified sampling for hydraulic habitat modeling. The following 
mesohabitat types are generally considered modelable and should be retained for study 
site and transect selection: 

 

• Pool (e.g., mid-channel, lateral scour, channel confluence) 

• Glide 

• Run/Step-run 

• Pocket Water 

• Low-Gradient Riffle 

 

The following mesohabitat types are generally considered unmodelable and should be 
excluded from study site and transect selection: 
 

• Cascade 

• Chute 

• High-Gradient Riffle 

 
For hydraulic data collection, cascade and chute types are not sampled. High-gradient 
riffles may occasionally be sampled, but the determination must be done on a case-by-

case basis.  
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Ideally, surveys will be conducted under flow conditions at which the mesohabitat types 
are readily apparent. That is, not when flows are so high that it appears as though all 
unit types are either runs or riffles or so low that there are only pools with 

undifferentiated riffles in between. For safety purposes, the survey team(s) will consist 
of at least two staff members familiar with salmonid habitat requirements. Team 
members will already have experience with or will have received recent training in 
habitat typing methods. At least one member of each survey team should be sufficiently 

experienced with hydraulic habitat modeling to classify each mesohabitat unit as 
modelable or unmodelable, irrespective of mesohabitat unit type. 
 
 

5.1 Single Transect Hydraulic Based Habitat Methods 

Single transect hydraulic based habitat methods require site-specific data to be 
collected along one or more transects within a stream reach. The site-specific data are 
used with a computer program to model hydraulic parameters. Single transects are 

placed across the shallow portion (i.e., hydraulic control) of representative riffles. Single 
transect hydraulic based habitat methods assume that if adequate conditions are 
maintained over the shallow portions of a stream reach, then the hydraulic habitat in 
other parts of the stream reach will also be sufficient (Annear et al. 2004).   

5.1.1 Habitat Retention Method 

The Habitat Retention Method (HRM; CDFW 2016) is a single-transect biology-based 

method (Nehring 1979) used to estimate hydraulic characteristics (i.e., average depth, 
average velocity, and percent wetted perimeter) over a range of flows. The HRM 
quantifies a minimum flow, sufficient to provide a basic survival level for fish during 
times of the year when streamflow is at its lowest (Annear et al. 2004). With a goal of 

sampling at least three representative riffles per reach, the method assumes that if a 
prescribed flow adequately meets hydraulic criteria at the shallowest part of the riffles 
(i.e., the hydraulic control), then conditions throughout the remainder of the reach 
should also be sufficient (Nehring 1979; Annear et al. 2004). The HRM may also be 

used to evaluate fish passage and/or habitat connectivity flows at riffle sites.  

5.1.2 Wetted Perimeter Method 

The Wetted Perimeter Method (WPM) is used to determine flows that support the 
maintenance of benthic macroinvertebrate (BMI) habitat and productivity in riffles with 
rectangular streambed profiles. The WPM is typically applied during the summer and/or 
fall low flow months (Annear et al. 2004, CDFW 2013d). The wetted perimeter refers to 

the perimeter of a cross-sectional area of the wetted streambed along a transect, which 
varies according to discharge. After collecting WPM data and corresponding 
discharges, a relationship between discharge and wetted perimeter can be developed. 
Historically, application of the WPM required collecting data over an expansive range of 

discharge events to determine the relationship between wetted perimeter and discharge 
at each site. Recent applications of the WPM generally use computer-based water 
surface profile modeling programs based on the Manning’s equation to develop this 
relationship (Annear et al. 2004). Using the graphical relationship between wetted 
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perimeter and discharge, the inflection point on the wetted perimeter/discharge curve is 
identified as a threshold where it is assumed that the corresponding flow can protect 
BMI production at an adequate level to sustain fish populations (Annear et al. 2004).   

 
 

5.2 Hydraulic Habitat Modeling 

Hydraulic modeling, in conjunction with depth, velocity, and substrate/cover criteria for 

the target fish species and life stage(s) can be used to determine the relationship 
between streamflow and suitable habitat. One-dimensional or two-dimensional 
hydraulic-based habitat models are designed to predict hydraulic conditions within a 
reasonable range of flow levels that are not sampled. Study site selection for 1D or 2D 

modeling will depend on reach access, the need for applying a 2D model, and channel 
complexities identified through habitat mapping. 
 
Any currently available standard software package that meets the standards set by 

Waddle (2000) can be used for 1D habitat modeling. Except in reaches with highly 
complex channel hydraulics, reaches of most river channels can be adequately 
evaluated with standard 1D hydraulic models such as those found in PHABSIM (Waddle 
2001), SEFA (Payne and Jowett 2012), or similar programs.  

 
In highly complex channels where depth and velocities cannot be accurately predicted 
using a single transect approach, a 2D hydrodynamic model is often used to predict flow 
characteristics and features of ecological importance (Crowder and Diplas 2000; 

Waddle 2010). While virtually any available 2D model can be used for hydraulic 
assessment, the modeling software River2D (Steffler & Blackburn 2002) is frequently 
used by the Water Branch. River2D has the ability to evaluate fish passage criteria for 
depth and velocity along with site-specific topographic features to produce relationships 

between flow and habitat suitability or passage conditions.  
 
 

5.3 Single Transect Hydraulic Based Habitat Method Data Collection 

Department staff identify representative riffle sites for HRM and WPM that are 

representative of the overall geomorphic structure and shape of the reaches of interest 
within the study area (CDFW 2016). Once sites are selected, cross-sectional transects 
are established along the hydraulic control of each riffle with a measuring tape and a 
headpin and tailpin positioned on the left bank and right bank, respectively. The pins are 

placed at or above the bankfull elevation. For the purposes of this method, bankfull 
elevation is defined as the location where the vegetation emerges at the toe of the bank, 
there is a change in slope along the cross-sectional channel profile, and/or there is a 
change in substrate composition from coarser to finer material (CDFW 2016). Bed 

elevations are measured along each transect using an auto level and surveying stadia 
rod at one-foot intervals following the procedures set forth in the Department’s standard 
operating procedure (SOP) for Streambed and Water Surface Elevation Data Collection 
(CDFW 2013c). Smaller increment measurements are taken in areas with highly 
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variable bed topography. In addition, water surface elevations (WSELs) are measured 
mid-channel and near each bank to determine the water surface profile along the 
transect (CDFW 2013c). The length of the riffle along with WSELs measured near the 

left and right bank at the downstream extent of the riffle are used to compute the water 
surface slope. A temporary staff gage is used to monitor the stage at the beginning and 
end of each data collection event to ensure that flow levels do not fluctuate during the 
course of data collection. A discharge measurement is taken for each transect using a 

flow meter and top setting wading rod (CDFW 2013a), or if one exists, flow data from a 
nearby stream gage can be paired with the date and time the transect was surveyed. 
Discharge measurements are then associated with the survey data to estimate 
hydraulic properties using Manning’s equation for open channel flow. 

 
Along with the measured discharge (Q) and calculated channel slope (S), the bed 
elevation data are used to calculate the flow area (A), wetted perimeter (P), and 
hydraulic radius (R) for the cross-section. These values are then used to calculate the 

Manning’s roughness coefficient (n) using the Manning’s equation for open channel 
flow, given below: 
 

Q = (
1.486

n
) AR

2
3S

1
2 

 
 
While several programs are capable of modeling these hydraulic parameters, the 
Department generally uses the commercially available software program Hydraulic 

Calculator (HydroCalc; Molls 2008). HydroCalc is based on the Manning’s equation and 
can be used to develop discharge rating curves in addition to estimating the listed 
hydraulic parameters (see HRM SOP for procedures; CDFW 2016).  
 

For HRM, when the criteria for average depth and at least one other parameter are met 
(Table 5), flows are assumed to be adequate for habitat connectivity and aquatic 
ecosystem habitat maintenance. For the WPM analysis, a relationship between 
discharge and wetted perimeter is developed (CDFW 2016). The breakpoint and 

incipient asymptote (curve inflections), are identified as thresholds of desired habitat 
conditions. These curve inflections (i.e., the breakpoint and incipient asymptote) are 
used to determine the instream flow needs necessary to maintain riffle habitat and 
production of benthic macroinvertebrates.  
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Table 5. Key flow parameters used to determine flow criteria in riffle habitats using the 
HRM. 

Bankfull Width 

(ft) 

Average Depth 

(ft) 

Average Velocity 

(ft/sec) 

Wetted Perimeter  

(%) 

1-20 0.2 1.0 50 

21-40 0.2-0.4 1.0 50 

41-60 0.4-0.6 1.0 50-60 

61-100 0.6-1.0 1.0 70 

Sources: Nehring 1979; CDFW 2016 

 
 

5.4 Hydraulic Habitat Modeling Data Collection  

The number and range of river flows, mesohabitats, reaches, and transects sampled 

within river segments influence the extrapolation range, representativeness, 
applicability, reliability, and utility of any model. It is critical that discharges, 
mesohabitats, and microhabitats are effectively sampled in order to develop usable 1D 
and/or 2D simulations. The Department’s standard for 1D analyses is to include: a) 

sampling of at least three distinct river flows; b) sampling of three units of each 
significant mesohabitat type within each generally homogeneous river segment; and c) 
for simulations, at least three transects within each mesohabitat unit. The actual number 
of flows, mesohabitats, or transects sampled may be dependent upon the complexity of 

riverine conditions, the length of homogeneous reaches, the study objectives, and 
landowner access. In specific cases, it may be appropriate to sample less or more than 
three replicates of each mesohabitat unit, three microhabitat transects per unit, and/or 
water depth and velocity characteristics at a range of at least three flows.  

 
Hydraulic and structural parameters are measured using a combination of standard 
techniques from the U.S. Fish and Wildlife Service (USFWS) methodology (Trihey and 
Wegner 1981; Bovee 1982; Bovee 1997; Bovee et al. 1998; USFWS 2011). The data 

collected at the upstream and downstream transects at each site (i.e., site boundaries) 
include: 1) WSELs; 2) wetted streambed elevations; 3) dry ground elevations to points 
above bankfull discharge; 4) mean water column velocities measured at the points 
where bed elevations are taken; and 5) substrate and cover classification at locations 

where wetted streambed and dry ground elevations are surveyed (CDFW 2013c; CDFW 
2015c). If there is a hydraulic control downstream of a given transect, differential 
leveling is used to survey the stage of zero flow, which is found in the thalweg 
downstream of the transect.  

 
Each cluster of transects, or each transect if need be, should have a corresponding 
discharge that accurately represents the conditions at the time of survey. A temporary 
staff gage is used to monitor the stage at the beginning and end of each data collection 

event to ensure that flow levels do not fluctuate during the course of data collection. 
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Continuously recording water level loggers may be deployed in certain reaches to 
monitor changes in stage during calibration measurements. Bed topography, substrate 
data, instream/overhead cover, water surface elevations, velocity profiles, and 

associated discharges are collected.  
 
Two-dimensional hydrodynamic models use depth-averaging techniques to simulate 
water depth and velocity in sites with complex flow patterns. Data collection for 2D 

models consists of detailed bed elevations, horizontal position, estimates of substrate 
composition, and instream/overhead cover. Transects at the upstream and downstream 
extent of a site are established and used to define the boundary conditions, which are 
determined by water stage, flow, and channel roughness. Channel roughness is an 

important hydraulic parameter that is characterized in the model by the bed topography 
and, to a lesser degree, the substrate size estimates. The upstream boundary requires 
an accurate inflow amount and the downstream boundary requires a corresponding 
WSEL for the given inflow. The bed topography data are collected with a total station 

and/or Real Time Kinematic Global Positioning System (RTK GPS) surveying 
equipment. Bed topography data are collected at a higher point density in areas with 
highly variable topography and patchy substrate and cover, and at a lower point density 
in areas with more uniform topography, substrate, and cover. Topography data are 

collected at a distance of one channel width upstream of the upstream transect to 
improve the accuracy of the flow distribution at the upstream end of the sites.  
 
 

5.5 Hydraulic Habitat Modeling 

One-dimensional hydraulic modeling procedures, appropriate to the study site, will be 
used to model water surface elevations and velocities at each selected cross-section. 
For WSELs, these procedures include the development of stage-discharge rating 

curves using log-log regression, hydraulic conveyance (MANSQ or similar), and/or step-
backwater models (e.g., WSP, HEC-RAS); direct comparison of results; and selection of 
the most appropriate and accurate method. Water velocities will be simulated using the 
Manning’s n method of velocity distribution across all transects, with calibrations 

generally consisting of correction of over- or under-simulated velocities at individual 
sample points (i.e., velocity adjustment factors, or VAFs). Data file construction, 
calibration, simulation, reporting, review, and consultation will follow standard 
procedures and guidelines. 

 
Mesohabitat types are weighted and combined to develop a representation of hydraulic 
characteristics and fish habitat suitability for each 1D reach or sub-reach. Mesohabitat 
weighting is based on the relative proportion of each of the modeled mesohabitats 

within the reach or sub-reach. A final habitat index for each study site is produced by 
combining hydraulic simulations over a range of flows with HSC for the target species 
and life stage(s). Any currently available standard software package that meets the 
standards set by Waddle (2000) can be used for 1D habitat modeling. 
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Two-dimensional model calibration consists of adjusting the roughness values in the 
model until a reasonable match is obtained between the simulated water surface 
elevations and the surveyed water surface elevations as well as the channel’s wetted 

edge measurements taken along the study site at a given flow. Models may be 
calibrated at a single flow and then validated at the two other flows, or the model can be 
calibrated at each measured flow.  
 

Once calibrated, the downstream water surface elevation and the inflow to the 2D 
model site are changed to simulate the flows of interest. Each modeled flow is then run 
to a steady state solution. That is, for a constant inflow to the site, the model is run until 
there is a constant outflow and the two flows are essentially equal. Typical convergence 

tolerance is 1% of the inflow. Another measure of convergence is the solution change. 
Ideally the solution change will become sufficiently small (e.g., 0.00001) once 
converged. In some cases, the solution change will reach a relatively small value and 
refuse to decrease any further indicating a small, persistent oscillation at one or more 

points. This oscillation is often associated with a shallow node that alternates between 
wet and dry. This oscillation may be considered acceptable if the size of the variation is 
within the desired accuracy of the model (Steffler and Blackburn 2002). 
 

At least 50 randomly selected paired depth and velocity measurements are collected (in 
addition to the depths and velocities measured along the upstream and downstream 
transects) to validate the 2D model10 (USFWS 2011). The locations of the validation 
measurements will be distributed randomly throughout the site. The flow present during 

validation data collection will be determined from gage readings, if gage data are 
available. If gage data are not available, staff will measure the flow during validation 
data collection. 
 

The fish habitat component of River2D is based on the same habitat index utilized in 
standard 1D models. The habitat index for the entire site is calculated by expanding the 
composite suitability index for every point in the model domain with the area associated 
with that point, and then summing those values for all points. The composite suitability 

is calculated as the product of suitability values for depth, velocity, and channel index 
(cover and substrate codes). The output includes node characteristics of habitat 
suitability values for depth, velocity, channel index (substrate and/or cover), and 
combined parameters at a number of flows for each species and life stage of interest. 

Model outputs at selected flows will also include image files of the plan view showing 
any change in suitability for each habitat parameter for each species and life stage. 
 
The habitat index versus discharge function is a static relationship between discharge 

and habitat that does not represent how often a specific flow/habitat relationship occurs. 
For this reason, in many cases the index alone should not be considered the final result 
of a 1D or 2D model. A more complete analysis is known as a habitat time series (HTS) 
analysis. A HTS analysis integrates the habitat index versus flow function with 

hydrology to provide a dynamic analysis of flow versus habitat. Results of the HTS are 

                                              
10 2D model calibration and validation will follow USFWS (2011) standards, as discussed in Section 6.1 
Quality Assurance. 
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most useful when the broadest possible range of hydrology is used for the model. For 
this reason, it may be necessary to extend the stage-discharge rating curve beyond 2.5 
times the highest calibration flow with additional stage-discharge measurements made 

during field data collection to support the analysis. 
 
 

5.6 Temperature Monitoring 

Water temperature data may be collected and evaluated as part of this study. Water 
temperature data would be recorded at a frequency of no less than hourly 
measurements at key locations throughout the study reaches using digital HOBO®, 
Solinst®, or TidbiT® data loggers. TidbiT® data loggers are used where water depths 

are anticipated to be too shallow to use the larger HOBO® or Solinst® loggers. 
Calibration, placement, sampling interval, and data processing of the logger data is 
done in a manner consistent with guidance provided by the U.S. Department of 
Agriculture (Dunham et al. 2005). Data loggers are generally placed in secured stilling 

wells or anchored to exposed roots along the banks of the creek in pool habitats using 
plastic cable zip ties. Suspending the loggers prevents them from being buried by 
sediment and keeps the instruments out of sight to avoid tampering by humans and/or 
animals. Any temperature data collected may be combined with existing temperature 

monitoring data when appropriate to assess temperature and discharge relationships 
during the rearing period. 
 
 

6.0 QUALITY ASSURANCE/QUALITY CONTROL 

All field equipment, including the Marsh-McBirney and HACH FH950 flow meters, will be 
calibrated according to manufacturer’s instructions before data collection begins. 

Discharges will be measured following the protocols set forth in the SOP for Discharge 
Measurements in Wadeable Streams (CDFW 2013a). Velocities will be measured to the 
nearest 0.01 cfs. Water surface and bed elevations will be measured to the nearest 0.01 
ft using standard surveying techniques (i.e., differential leveling) as described in the 

Streambed and Water Surface Elevation SOP (CDFW 2013c).  
 
Wetted streambed elevations will be determined by subtracting the measured depth 
from the surveyed WSEL at a measured flow. WSELs will be measured at a minimum of 

three locations along each transect. WSELs measured along each transect for each 
survey event will be averaged together unless the surface is found to be sloped along 
the transect line or if a portion of the surface is determined to be unrepresentative of the 
water surface with respect to the transect stage-discharge relationship. The WSELs 

measured at each transect will be evaluated and a single representative WSEL will be 
derived consistent with the guidance provided in the PHABSIM User’s Manual (Waddle 
2001). WSELs will be collected at a minimum of three relatively evenly spaced 
calibration flows, spanning approximately an order of magnitude. Model calibration flows 

will be selected so that the lowest simulated flow is no less than 0.4 of the lowest 
calibration flow and the highest simulated flow is at most 2.5 times the highest 
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calibration flow. If a 2D model is used for the study, the accuracy of the 2D bed 
topography elevations collected should be 0.1 ft and the horizontal accuracy should be 
at least 1.0 ft (USFWS 2011). 

 
The Department will use the USFWS (2011) standards for calibrating and validating any 
two-dimensional hydraulic habitat model, if used. The standards include:  

• Mesh Quality: the quality of the fit between the final bed profile and the 

computational mesh, as measured by the Quality Index value, should be at least 

0.2.  

• Solution Change/Net Flow: when the model is run to steady state at the highest flow 

simulated, the solution change should be less than 0.00001 and the net flow should 

be less than one percent.  

• Froude Number (FN): the maximum FN for low gradient streams should be less 

than one.  

• Water Surface Elevation: if developing a 2D model, WSELs predicted at the 

upstream transect should be within 0.1 foot of the WSEL predicted by PHABSIM for 

the highest simulated flow (or observed at the highest measured flow).  

• Velocity Validation: the correlation between at least 50 spatially-distributed 

measured and simulated velocities should be greater than 0.6.  

Data sheets will be checked in the field by a designated field team lead to ensure that 

all data and relevant information has been collected for the given method(s) being used. 
All data are transferred from field data sheets into an electronic format upon returning 
from field data collection events, and quality control checks will be conducted for every 
electronic data sheet to ensure that the data were translated correctly. If data collection 

errors are discovered, the Project Coordinator will review the issues with the appropriate 
personnel to develop a plan for corrective action so that resampling, if required, can be 
scheduled during the same sampling season.  
 

 

7.0 DATA MANAGEMENT AND REPORTING 

Field data will be collected by Department staff from the Water Branch and, with 

resources permitting, Bay-Delta Region staff. Water Branch staff will prepare a final 
technical report with assistance from Bay-Delta Region staff. The Bay-Delta Region, 
Department Engineering, and Fisheries Branch will review the technical report. 
 

 

7.1 Target Audience and Management Decisions 

The Department has the responsibility to conserve, protect, and manage fish, wildlife, 
native plants, and their associated habitats. Accordingly, the Department has an interest 

in assuring that water flows within streams are maintained at levels that are adequate 
for long-term protection, maintenance, and proper stewardship of fish and wildlife 
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resources. Using criteria generated from the flow study, the Department intends to 
develop flow recommendations for juvenile steelhead and Coho Salmon in upper Mark 
West Creek. These recommendations are not requirements that will be self-executing. 

Rather, they will represent beneficial uses relating to fish and wildlife preservation and 
enhancement to be considered by the Water Board in any future proceedings that the 
Water Board may or may not hold regarding applications for new diversions, permit 
requests, or other proceedings as set forth in Section 1257.5 of the California Water 

Code. 
 
 

7.2 Coordination and Review 

To the extent possible, entities or stakeholders that have an interest in the results and 
interpretation of the study may be involved in study scoping and implementation.  
 
 

7.3 Data Management and Reporting 

All data generated by this project will be maintained in field log books and/or data 
sheets, as well as in an electronic spreadsheet format. The Department will store the 
hard copies and electronic data. Final documents, including the technical report, will be 
posted on the Department’s website.  
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