Delta Conservation Framework

PARTNERSHIPS AND PLANNING TOOLS FOR 2050

Vision for a Delta in Common

California Department of Fish & Wildlife

California Department of Fish & Wildlife

REPORT AUTHORS Christina Sloop, PhD Brooke Jacobs, PhD Randi Logsdon Carl Wilcox

STAFF CONTRIBUTORS

Bjarni Serup Brandon Amrhein Cindy Hensley

PRODUCTION CREDITS

Editor: Ariel Rubissow Okamoto Design: Darren Campeau Maps: Diane Mastalir, CDFW Illustrations: Afsoon Razavi

Artwork by Afsoon Razavi or photographs identified as a by a specific photographer within this Delta Conservation Framework may not be copied or re-used without the permission of CDFW and the artist/photographer.

This report was produced by the California Department of Fish & Wildlife, December 2018.

Cite as Sloop, Christina, Brooke Jacobs, Randi Logsdon, and Carl Wilcox. 2018. *Delta Conservation Framework – A Delta in Common*, California Department of Fish and Wildlife, Sacramento, CA

http://wildlife.ca.gov/DeltaConservationFramework

For more information please contact us at dcf@wildlife.ca.gov

Publication date: Version 12/31/18

Table of Contents

Executive Summary 5
Section I: A Common Framework for Building a Resilient Delta13
Framework Goals15
Planning History18
Vision for Delta 205021
Framework at a Glance24
The Everglades: A National Model 25
Guide to Related Plans and Programs30

Section II: Integrating Delta Community

with Conservation 39
The Delta as an Evolving Place43
A Regional Approach to Conservation45
Goal A: Regular Stakeholder Communication46
Goal B: Delta Promotion at Local, State, National Levels49
Goal C: Floating All Boats51
Central Delta Public Parcels Conservation Opportunity Region 63

Guide to Supporting	
Partnerships & Programs	

Section III: Value of Conserving

the Delta Ecosystem77
Historic Change in Ecosystems & Uses80
Resilient Delta Landscapes
Goal D: Conserving Ecosystem Function
Yolo-Cache Conservation Opportunity Region

Guide to Delta Ecosystems & Habitats102

Section IV: Delta Conservation

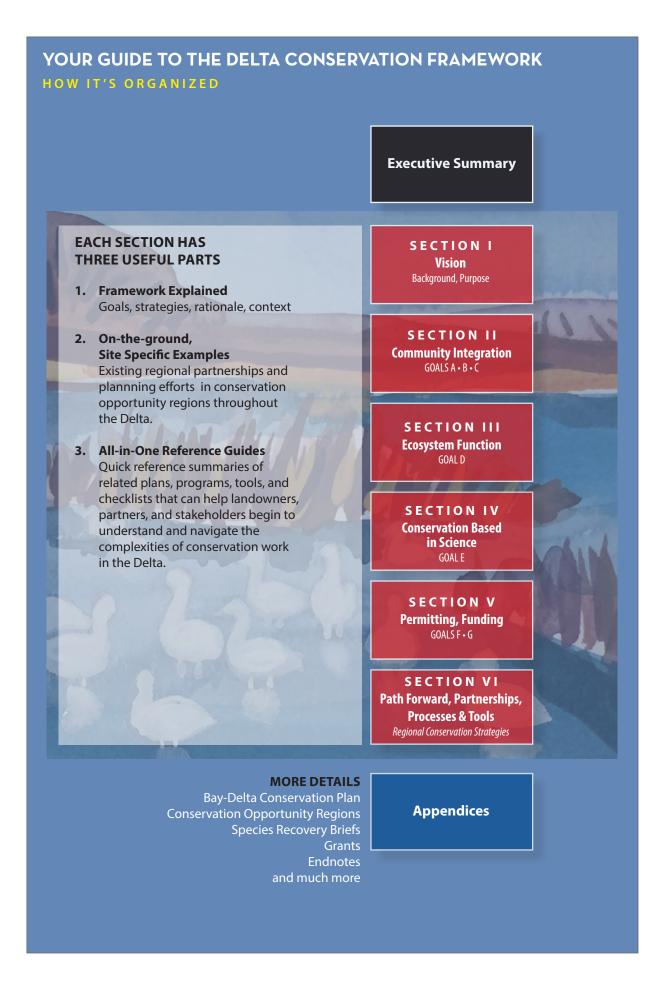
Section IV: Delta Conservation
Based on Science 107
One Delta, One Science109
Adaptive Management110
Goal E: Assessing Progress111
Priority Science Actions113
Conservation Status116
Climate Change Effects118
West Delta Conservation Opportunity Region 121
Guide to Related Plans & Programs128

Section V: Facilitating Permitting & Funding for Delta Conservation 133
Common Permits, Agreements & Disclosures134
Goal F: Improving Agency Capacity136
Goal G: Securing Long Term Funding144
Suisun Marsh Conservation Opportunity Region149
Guide to Related Tools, Permits, Requirements & Programs157
Section VI: Conservation Pathways to 2050
Regional Approach168
Individual Project Approach171
Lasting Sustainability172
The Way Forward173
North-South Delta Conservation Opportunity Region175
Guide to Planning Tools
Index of Key Terms 166
Online Appendices
Appendix 1: Endnotes & References
Appendix 2: Conservation Opportunity

Regions (Extended Versions)

Appendix 3: Bay-Delta Conservation Plan

Appendix 4: *Delta Conservation Framework* 2016 Workshop Series


Appendix 5: Species Recovery Briefs, 4 Terrestrial Species

Appendix 6: Regulatory Compliance and Permitting for Conservation Implementation

Appendix 7: Grants

Delta Conservation Framework and Appendices

www.wildlife.ca.gov/conservation/watersheds/dcf

Partnerships and Planning Tools for 2050

Developing a framework for planning and implementing conservation in a dynamic place with close ties to native biodiversity, California history, agriculture, and statewide economies is a challenging task. Add to that consideration of the myriad existing plans and conservation initiatives that apply to California's Delta, and the task boggles the mind. Then consider the perils and uncertainties presented by climate change and the task becomes a very tall order.

This document, called the *Delta Conservation Framework*, is the product of three years of work (2016-2018) led by the California Department of Fish and Wildlife and developed in partnership with Delta stakeholders. These stakeholders included federal, state, and local government representatives, conservation practitioners, non-profit organizations, landowners, residents, and business owners.

Three primary sets of resources guided development of the Framework:

- 1. Feedback from a series of public workshops held in 2016
- 2. Prior plans focused on the people and ecosystems of the Delta
- 3. Best available science on ecosystem processes in the Delta

From this foundation emerged seven conservation goals, 26 strategies to reach those goals, 200 pages of details, seven appendices, and a 30-year vision for a healthier Delta for both humans and wildlife: the *Delta Conservation Framework*.

VISION 2050

In 2050, the Delta is composed of resilient natural and managed ecosystems situated within a mosaic of towns and agricultural landscapes, where people prosper and healthy wildlife communities thrive.

Hopes for the Delta Expressed by Various Stakeholders in 2016 Workshops

- MULTI-BENEFIT OUTCOMES: In 2050, the Delta is a network of multiple-use landscapes where agricultural productivity, economic vitality, and ecosystem conservation are achieved in a manner that mutually supports the needs of people and wildlife.
- CONSIDERATION OF LANDSCAPE DYNAMICS: In 2050, the Delta is recognized as part of a greater system that functions within the context of California's largest watersheds.
- HEALTHY, RESILIENT ECOSYSTEMS: In 2050, the Delta has healthy, resilient ecosystems with the capacity to adapt through time to impacts associated with climate change, sea level rise, and other environmental uncertainties.
- COLLABORATION: In 2050, state, federal, and local government agencies collaborate with each other and Delta stakeholders to achieve multi-benefit outcomes where possible.
- DECISIONS BASED ON SCIENCE: In 2050, policy decisions and desired conservation outcomes are informed and evaluated through coordinated Delta science endeavors.
- LOCAL SUPPORT: In 2050, Delta residents promote the management of healthy ecosystems as the basis of a healthy and economically thriving Delta region.
- LOCAL BENEFITS: In 2050, Delta residents and visitors actively enjoy the region's unique cultural and natural resource values through wildlife-friendly agricultural practices, tourism, outdoor recreation, and environmental education activities for all ages.
- RELIABLE LOCAL WATER: In 2050, effective integrated water management in the Delta promotes good water quality and a reliable water supply for users in the Delta.
- MULTI-BENEFIT FLOOD MANAGEMENT: In 2050, the Delta's flood management system provides both improved flood protection and increased habitat value for fish and wildlife, where possible.

History of the Push to Reframe Delta Conservation

6

The California Water Code recognizes the Delta as "the most valuable ecosystem on the west coast of North America and South America." However, over the last century, the wildlife habitats and ecosystem services that the Delta provides have been impacted by environmental degradation, land use conversions, and economic shifts. Efforts to protect, enhance and restore the Delta's natural riches and ecosystem services are ongoing. Indeed large-scale conservation of Delta aquatic and terrestrial habitats is called for in a wide variety of California state laws, mandates, plans, mitigation requirements, and initiatives, many of which are the result of decades-long debates, and reports based on scientific research.

The origins of the Delta Conservation Framework derive from changes in Delta conservation and water policies between 2006 and 2016. In 2006, Delta planning agencies began crafting the Bay Delta Conservation Plan (BDCP), intending to provide a comprehensive tool for planning and permitting conservation projects and new water conveyance infrastructure. The resulting 2013 BDCP public draft contained measures to protect 54 sensitive native species and specific actions to protect and restore habitat in the Delta. The BDCP also contained plans to add three new water intakes along the Sacramento River to divert water for the state and federal water projects. In spring 2015, the Brown administration announced a shift from the BDCP to two parallel but separate programs: California WaterFix, to pursue water supply infrastructure; and California EcoRestore, to implement focused restoration in the Delta.

Since then, the California Department of Fish and Wildlife (CDFW) has continued to work to maintain and increase the momentum of conservation planning and implementation that began with the BDCP. To this end, CDFW started a new initiative in 2016 called the *Delta Conservation Framework*. The department began by holding a series of meetings with its state partners to present the new initiative, gather feedback, and hear perspectives. The group collectively acknowledged two key points: 1) the need for a new approach to conservation planning after the BDCP and 2) the need to bring Delta stakeholders into the planning process early. Two years later, the result is the 200-page *Delta Conservation Framework* described in this executive summary.

Outside the variety of scientific resources, planning tools, and regional partnerships brought together under the umbrella of this new 30-year Framework, the strongest current state guidelines for overarching conservation and management of Delta aquatic and terrestrial ecosystems are the 2009 Delta Reform Act and subsequent 2013 Delta Plan, the 2014 California Water Action Plan as well as the 2006-2013 work to draft the Bay Delta Conservation Plan described above. Additionally, in 2016, the San Francisco Estuary Institute completed the last of three important reports establishing a strong foundation of science on the Delta's historical ecology, transformation by humans, and future restoration prospects: A Delta Renewed. The latter is an important science basis for the Delta Conservation Framework.

What is not in the *Delta Conservation Framework*, however, are any conservation actions associated with changing flows into or through the Delta. Nor are there any acreage targets or maps showing where conservation should occur. Instead, the Framework offers a guide for how best to plan and implement conservation.

In the coming decades, this planning context for Delta conservation will be challenged by substantial additional changes to the region due to climate change. While California has long experienced droughts, floods, wildfires, and other climate-driven events, recent extremes and accelerated climate change clearly derive from human activities such as the burning of fossil fuels. As a result, Delta managers and residents must prepare for sea level rise, extreme droughts, and storms with associated flooding. These events will influence the evolution of the Delta landscape, ecosystems, and economy far into the future.

What is the Delta?

The Delta, once a vast freshwater marsh, drains the watersheds of California's Sacramento and the San Joaquin Rivers. Combined with Suisun Marsh, this inland reach of the San Francisco Estuary spans six counties and 1,300 square miles of land and water. Nearly half of California's surface water unites in the Delta, flowing through hundreds of miles of interconnected waterways west to San Francisco Bay. Ecologically rich and diverse prior to European settlement, the Delta is now largely a center for agricultural operations interspersed with small towns and communities, and bordered by larger cities including Stockton and West Sacramento. A vast levee system protects over 400,000 acres of

high-quality farmland, communities, and municipalities that are situated within the historic Delta floodplain.

The Delta plays a crucial role supporting California's economic vitality as a central component of the state's water supply infrastructure and contributor to the state's substantial agricultural productivity. Statewide, more than 3 million acres of prime irrigated farmland and two-thirds of the state's population depend on the Delta watershed for some portion of their water supply. The Delta is also home to a growing population of more than 550,000 people. Delta communities are primarily concentrated in the large and expanding cities around its fringes.

Framework Goals & Strategies

The *Delta Conservation Framework's* goals and strategies, used collaboratively, offer pathways to realizing the vision of the Delta as a place where people prosper and wildlife communities thrive by 2050.

Goals A, B and C underscore a growing recognition of the role people and communities must play as partners in conservation. Public

Framework Goals

People: Communicating, engaging, educating

- GOAL A: Ensure that regular communication among stakeholders and socioeconomic considerations are integrated into all Delta conservation initiatives.
- GOAL B: Support and expand existing public outreach efforts advancing Delta conservation.
- GOAL C: Develop multi-benefit conservation and land management strategies and plans that balance environmental and human needs.

Ecosystem: Making science-based decisions

- GOAL D: Conserve Delta ecosystems and their ecological processes and functions to benefit society and wildlife, and to enhance resilience to climate change.
- GOAL E: Evaluate conservation progress and address climate change stressors and other drivers of change by implementing the science strategies and priorities of the Delta Science Program and Interagency Ecological Program, the adaptive management program for Biological Opinions related to state and federal water project operations, and adaptive management recommendations emerging from interagency integration teams.

Permits & Funds: Thinking ahead collectively

- GOAL F: Improve resource agency and regulatory capacity for permitting Delta conservation projects.
- GOAL G: Optimize use of existing short-term funding and support current and new mechanisms to secure long-term funding for continued conservation implementation and management.

agencies, restoration practitioners, and scientists can all benefit from working in collaborative partnerships with Delta residents, landowners, farmers, tribes and nongovernmental organizations, at the local and regional levels, to plan conservation projects. The intention of these partnerships is to overcome the current climate of guardedness and move toward sustained communication and collaboration. Mutual respect for, and a commitment to, evaluating challenges and opportunities together is essential to the success of conservation.

Goal D highlights the importance of conserving Delta ecosystems and ecological processes and functions, and is founded on a landscape-scale approach that directly aligns with recommendations in A Delta Renewed. Delta ecosystems have degraded substantially over time, and continue to do so, because of a host of factors including land use changes, poor water quality, reduced sediment supply, and invasive species. Populations of native fish and wildlife species have seriously declined in the past decade. The Delta's capacity to supply ecosystem services, drinking and irrigation water, and agricultural livelihoods to its residents and the state, while also sustaining its native fish and wildlife, continues to decrease. The novel, much altered, current Delta

Delta landscapes are a mixture of water, farms, wildlife habitats, and small towns. Photo: Amber Manfree

ecosystem is weak and climate change will exacerbate its weaknesses. Any conservation effort must embrace the importance of scale and ecosystem function to be resilient.

Goal E highlights pre-existing and ongoing scientific research and adaptive management efforts necessary to successfully implement conservation in the Delta. Understanding the complexities, and reverberating impacts on the use of the Delta by both people and native species, requires collaborative multi-interest science, long-term monitoring, and adaptive management based on this research and monitoring. Without science-based conservation practices that support rapid responses to crises and provide long-lasting solutions, Delta conservation may not be successful in the long term.

Goals F and G recognize that there are major challenges to the timely and cost-effective implementation of conservation projects in the Delta related to permitting and funding. Even the most seasoned engineers, resource managers, biologists, and advocates for conservation projects struggle with the complexity and cost of moving projects through planning, permitting, compliance, and construction. The Framework offers strategies and tools for how facilitate permitting and funding for conservation.

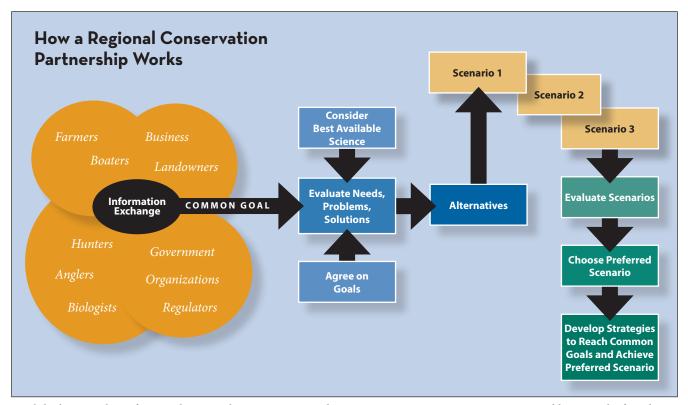
Each section of the Delta Conservation Framework includes three parts: a description of goals and strategies; on-the-ground examples of regional-scale conservation planning efforts already underway; and reference guides introducing readers to the many existing plans and programs in the Delta, as well as useful tools, checklists, and models. The Framework also provides the basics on Delta science enterprise and adaptive management efforts. One section summarizes the most current landscape-scale science on how to implement conservation to support ecosystem function. Other sections provide an invaluable counterpart, describing how farm fields, pastures, and working lands can contribute to ecosystem health and conservation. By pulling it all together in one place, and by identifying all the latest policy, regulatory, science, and management resources available, the document is much more than another plan on the shelf.

An Emphasis on Regional Approaches

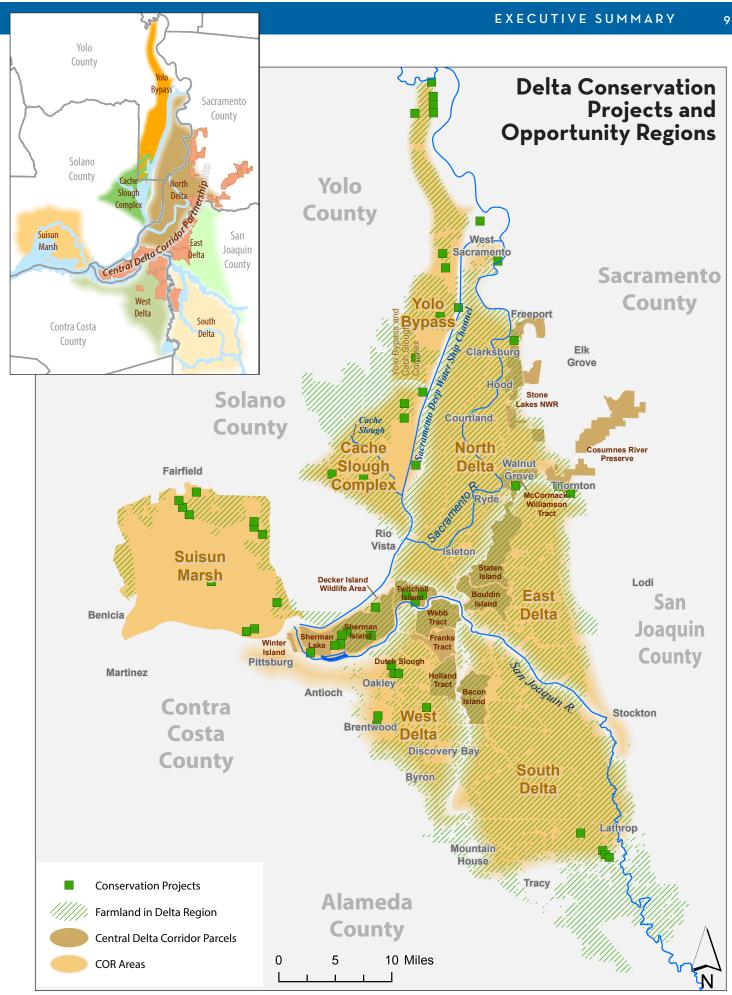
A strong thread throughout the *Delta Conservation Framework* is to focus on "regions" that make sense in terms of landscapes, watersheds, ecosystems, human history, or communities as an organizing principle for conservation work in the future.

The Framework references a number of different kinds of "regional" approaches:

- **Regional Conservation Partnerships** made up of diverse interests, public and private, that work together to achieve landscape level goals;
- **Regional Conservation Strategies** developed by regional partnerships that map out how conservation goals might be achieved in the regions with an eye toward fitting the regional pieces together across a larger landscape picture;
- **Conservation Opportunity Regions** roughly identified by Delta stakeholders where promising opportunities for major conservation and restoration successes exist;
- Regional Conservation Investment Strategy (RCIS), a California Department of Fish and Wildlife program offering a structure for analysis, assessment, scenario-planning, investment and mitigation to regions interested in developing nonbinding, voluntary conservation and habitat enhancement actions around focal species and habitats (see also Section V).*


Of the above, the "regional conservation strategy" is a central organizing idea for implementation of the

Delta Conservation Framework. A regional strategy might be an existing plan, such as the *Suisun Marsh Habitat Restoration and Management Plan*, or may be the result of a new effort.


The main idea is to develop non-regulatory, longterm, broadly-supported regional conservation action plans. These would be developed collaboratively by regional planning partnerships comprised of public agencies, Delta community stakeholders, representatives of existing regional partnerships and tribes, other interest groups, scientists, restoration practitioners, non-governmental organizations, and interested citizens.

The resulting strategies or plans would focus on public lands or collaborations with willing private landowners in a given "conservation opportunity" region. The Framework identifies seven conservation opportunity regions of the Delta that include public lands, existing conservation lands, or existing planning partnerships (see map next page). This sub-regional division of the Delta, derived from stakeholder discussions during the 2016 *Delta Conservation Framework* public workshops, reflects variation in local land use, communities, ecosystem types, and public lands.

Each resulting regional conservation strategy would tailor a set of conservation objectives, specific actions, and an adaptive management framework to the needs of each sub- region. To achieve multiple, landscape scale benefits, however, these strategies would also be aligned with the overarching goals and strategies of the *Delta Conservation Framework*.*

* While the core ideas of regional partnerships, strategies, and conservation opportunity regions presented here are the foundation of the Framework, they appear largely without capitalization throughout these pages to underscore an intent of inclusivity and collaboration.

Source: CDFW, 2018

Building on Existing Plans and Partnerships

Any evaluation of conservation opportunities in the Delta requires consideration of the many existing planning documents, programs, and related regulatory requirements. The *Delta Conservation Framework* does not supersede these individual planning efforts, but instead connects and integrates them into the larger landscape-scale perspective. It also suggests them as important references for consideration as part of ongoing or future regional conservation strategies and individual projects. To make this integration more transparent, the Framework provides summarized guides to related plans and programs.

The tricolored blackbird, a threatened species with diminishing habitat in the Delta. Photo: Matt Elyash, CDFW

Current Major Initiatives Aligned with the Delta Conservation Framework

Agricultural Lands Stewardship Framework

and Toolkit: A working group launched by the Department of Water Resources in 2014 to develop a list of strategies to provide project proponents and those affected by proposed conservation projects with an integrated and collaborative approach to address protecting and changing uses of agricultural land.

California Department of Fish and Wildlife Grant Solicitation Guidelines: Draft 2018 Proposition 1 solicitation guidelines make it a priority to fund the development of regional planning partnerships and to facilitate the collaborative development of regional conservation strategies or plans in the Delta.

Central Delta Corridor Partnership: A partnership launched in 2017 to coordinate planning and restoration on a network of roughly 50,000 acres of publicly-owned or funded lands in the central Delta.

Delta Plan Interagency Implementation Committee: A committee established in 2013 to facilitate *Delta Plan* implementation through increased coordination and integration among local, state and federal agency participants. The committee has encouraged the development of programmatic permitting tools for conservation projects.

Delta Science Program Social Science Task Force: The Delta Science Program is coordinating a Social Science Task Force tasked with developing a strategic plan to strengthen and integrate social sciences into the science, management, and policy landscape of the Delta. Composed of individuals with a diverse set of expertise in the social sciences, the task force's key goal will be to develop a set of recommendations that can be acted upon by the Delta science community.

Franks Tract Feasibility Study: A study led by the California Department of Fish and Wildlife aimed at restoring portions of Frank's Tract to tidal marsh. This effort solicited feedback from local residents, boaters, and anglers and includes a locally proposed design.

Yolo Bypass Cache Slough Partnership: A partnership of representatives from local, state, federal agencies who signed a memorandum of understanding to oversee collaborative implementation of conservation in this region, all before initiation of the Framework in 2016.

Additional Important Regional Plans & Partnerships

Central Valley Joint Venture Implementation Plan, outlines objectives for Central Valley habitats that support shorebirds, waterbirds, and riparian songbirds.

Delta Working Landscapes Program, coordinated through the Delta Protection Commission, provides examples of what wildlife friendly agriculture and wetland restoration measures private landowners could adopt on larger scales throughout the Delta.

Habitat Conservation Plans & Natural Community Conservation Plans: The *Delta Conservation Framework* defers to the species and acreage targets outlined in HCPs and NCCPs, or relevant Conservation Strategies, where they overlap with the Delta planning region. These include: the East Alameda Conservation Strategy; the East Contra Costa County HCP/NCCP; the South Sacramento HCP/NCCP; the Solano Multispecies HCP; the San Joaquin County Multi-Species HCP and Open Space Plan; and the Yolo HCP/NCCP.

Migratory Bird Conservation Partnership – comprised of Audubon California, Point Blue Conservation Science, and the Nature Conservancy – works with a broad array of partners to develop multi-benefit conservation solutions for birds, wildlife, and human communities to address issues concerning bird habitat and biological needs.

Nature Conservancy BirdReturns, a pilot project combining crowd-sourced data, hard science and economic incentives, provides pop-up habitats for birds on rice fields in the Sacramento Valley.

North Delta Habitat Arc, a reconciled ecosystem strategy, creates an arc of habitats connected by the Sacramento River to benefit native fish and other wildlife.

Suisun Marsh Habitat Management, Preservation and Restoration Plan, established in 2013, provides a structure for conservation planning and implementation in the Suisun Marsh region.

Permitting, Funding & Planning Tools – The Implementation Questions

Whether it's restoring a few acres of wetland or planting riparian vegetation on levees or removing invasive weeds, most conservation projects on Delta landscapes, let alone infrastructure upgrades, require permissions and permits from government regulators.

Myriad regulations reflect federal, state, regional and local goals for environmental quality, wildlife protection, public safety, land use, and other areas of public interest and common good. Faced with the many layers of regulatory oversight governing Delta projects – not to mention sometimes conflicting definitions and directives –even the most

Delta Conservation Framework

HOW IT'S ORGANIZED

SECTION I Vision Background, Purpose

SECTION II Community Integration GOALSA+B+C

SECTION III Ecosystem Function GOAL D

SECTION IV Conservation Based in Science GOALE

SECTION V Permitting, Funding GOALSF+G

SECTION VI Path Forward, Partnerships, Processes & Tools Regional Conservation Strategies seasoned practitioners struggle with the complexity and cost of moving projects through planning, permitting, compliance, and construction. By the time projects are approved and shovel-ready, the dollars and equipment required to do the job may have already evaporated.

The Delta Conservation Framework, as an overarching framework for coordinating largescale conservation, recognizes that these are major challenges to the timely and cost-effective implementation of conservation projects in the Delta. The Framework offers strategies and solutions for how to facilitate permitting and funding for conservation, as well as how to develop conservation plans on project, local and regional scales with the Framework in mind.

Permitting Strategies

The Framework recommends supporting and increasing the capacity of regulatory agencies to review and approve conservation projects. It also supports the development of easily accessible online resources to explain permitting guidelines and requirements clearly, as well as the development of more regional and programmatic permitting frameworks for the Delta. The Framework also includes various examples of how to tackle permitting challenges.

Funding Strategies

The Framework explores both short-term and long-term funding challenges. It underscores the need to shift from the parcel-by-parcel, project-by-project thinking that pervades short term funding models to landscape scale, regionwide, longer-term models. It also advocates for the development of more long term funding opportunities for Delta conservation and adaptive management, ranging from direct budget allocations and environmental trust funds to emerging carbon markets.

Planning Scales - Regional or Individual

The Framework recognizes two approaches to future conservation. The first approach is to continue, or form, independently facilitated, multi-stakeholder regional partnerships in each suggested conservation opportunity region. These partnerships would then work together to develop recommendations and project lists relevant to their region. The second approach allows for individual project implementation in areas without an established regional partnership.

Planning Tools

The Framework describes a number of well-established planning tools to aid decisionmaking by regional partnerships and individual project proponents. These include: the Open Standards for the Practice of Conservation; scenario planning; and structured decision-making. These tools are specifically designed to bring unconscious prejudices to the surface, tackle complexity, move through uncertainty, weigh alternatives, consider trade offs and arrive at priority conservation actions and strategies.

The Path Forward – A More Resilient Delta in 2050

The path toward more ecologically functional Delta ecosystems within a thriving Delta community remains controversial. Despite mitigation requirements for infrastructure projects and the state and federal water projects, and a long history of public investment in Delta ecosystems through bond funds, few projects have been initiated and managed over the long term. Implementing conservation in the Delta will continue to stall unless Delta stakeholders are willing to work collaboratively, knowing they may have to be open to considering and accepting tradeoffs. If no solutions can be found, Delta ecosystem conservation will remain on hold, or occur in a piecemeal fashion. In the meantime, Delta ecosystems and their important services to humans and wildlife will continue to decline.

Multi-benefit projects that float all boats may seem like an impossible dream. But in reality, what local landowners, hunters, farmers, anglers, and boaters want may not be that far off from what species need to survive and what public infrastructure projects need to provide the greatest good for the lowest price. Every interest – both human and wild – faces the common uncertainty of drought, fire, earthquakes, and political change. There is an equally common reverence, however, for the Delta landscape and a desire to renew the riches of the past in the future.

The *Delta Conservation Framework* is an invitation to all interested stakeholders to come to the table. It is a call to continue the work of improving ecosystem health, supporting and recovering Delta wildlife, and growing the science capacity to learn from conservation actions. It is a warning of the urgency of facing the challenges of climate change, drought, and flooding head on.

Find your place, your region, your partners, review the goals and tools provided in the *Delta Conservation Framework*, and set out to make positive progress.

It's up to each and every one of us to build the conservation commons of the future within the unique landscape, and among the unique people, that comprise the Delta.

What Does the Framework Mean to Me?

- For farmers ideas and support for wildlife friendly agriculture, and a seat at the conservation planning table.
- For landowners opportunities to participate in bottom-up conservation planning, and affirmation that conservation goals focus on public lands first.
- For residents –ideas for how your way of life may be preserved, and protected from floods and climate change.
- For policymakers a concrete glimpse of how multi-benefit projects and regional conservation partnerships can optimize conservation spending.
- For scientists briefs on the most current recommendations, science initiatives, and adaptive management programs designed to nurture species resilience and ecosystem processes.
- For birders, hunters, and anglers avenues for protecting and improving the habitats, migration routes, and food supplies of the Delta's fish, birds, and wildlife.
- For boaters improved access to Delta waterways due to conservation activities that often support invasive weed management.
- For regulators a call to consider common delta guidelines and regional permits, and support for these efficiencies. Opportunities to shift away from time-consuming project-by-project approvals to more landscape scale conservation.
- For conservation and resource managers Pathways for going beyond single species management, a way to work together at larger scales, and a guide to navigate permitting.
- For you a way to fit in with all of the above and cherish your Delta.

The *Delta Conservation Framework* Online wildlife.ca.gov/DeltaConservationFramework

The California Department of Fish and Wildlife acknowledges and appreciates the support of the Sacramento-San Joaquin Delta Conservancy beginning with the 2016 public workshops. The Delta Conservancy facilitated communication with Delta stakeholders through the use of its Delta interests contact list, funding for professional facilitation services, and engagement in each of the public workshops.

The Delta Conservation Framework. California Department of Fish and Wildlife Publication Date: Version 12/31/18

Authors: Christina Sloop, Brooke Jacobs, Randi Logsdon, Carl Wilcox Editor: Ariel Rubissow Okamoto

Graphic Design: Darren Campeau Illustrations: Afsoon Razavi Maps: Diane Mastalir, CDFW

For more information please contact us at dcf@wildlife.ca.gov

CALIFORNIA DEPARTMENT O FISH & WILDLIFE

SECTION I

A Common Framework for Building a Resilient Delta

Framework Goals 15
Planning History
Vision for Delta 2050 21
Framework at a Glance24
The Everglades: a National Model25
Guide to Related Plans & Programs30

KEY TERMS

- COEQUAL GOALS As mandated by the Delta Reform Act of 2009, coequal goals means the "two goals of providing a more reliable water supply for California, and protecting, restoring, and enhancing the Delta ecosystem. The coequal goals shall be achieved in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place." (CA Water Code §85054) Additionally, Water Code Section \$85021 states that it is the Policy of the State to "reduce reliance on the Delta in meeting California's future water supply needs."
- CONSERVATION is defined as the protection, enhancement, and restoration of ecological function of Delta ecosystems.
- DELTA STAKEHOLDERS are residents, landowners, farmers, and businesses situated in the Delta; the public, including citizens who rely on the Delta for water supply or for recreational uses; beneficiaries up- and downstream of the estuary; restoration practitioners; local, state and federal agencies; non-government organizations; Native American tribes; academic institutions; private entities; and policy-makers.
- **DELTA COMMUNITY** refers to the residents, landowners, farmers, and businesses situated in the Delta.

- DELTA refers to the Sacramento-San Joaquin Delta as defined in Water Code §85058, Suisun Marsh and Bay, and the northern Yolo Bypass. This "Delta" area includes the principal conservation opportunity regions described in Section VI and Appendix 2. Areas immediately adjacent to the "Delta" comprise the supplementary conservation opportunity regions to be considered in long-term planning.
- ECOSYSTEM SERVICES are
 "the direct and indirect contributions of ecosystems to human well-being. They support directly or indirectly our survival and quality of life." Ecosystem services can be categorized into four main types: provisioning, regulating, habitat and cultural services.
- WILDLIFE refers to all native plant and vertebrate and invertebrate animal species that inhabit the Delta as permanent residents or during part of their migratory life cycle.

The Delta Conservation Framework *footnote and endnote references can all be found in Appendix 1 online by section.*

Introduction

The 2018 *Delta Conservation Framework* provides a new, integrated, toolbox and guide to landscape-scale planning and implementation of conservation projects in the Sacramento-San Joaquin Delta, Suisun Marsh, and the Yolo Bypass (collectively, the "Delta").

The Framework was developed by the California Department of Fish and Wildlife as part of a three-year collaborative stakeholder process founded on openness, listening, and direct engagement by public agencies with landowners and stakeholders. The resulting vision for 2050 is of a Delta composed of resilient natural and managed ecosystems situated within a mosaic of towns and agricultural landscapes, where people prosper and healthy wildlife communities thrive. Beyond this vision, the Framework presents seven specific conservation goals, 26 strategies to reach those goals, 200 pages of details, and seven appendices.

The process that resulted in this *Delta Conservation Framework* involved stakeholders in a collaborative approach to conservation planning at a pivotal time for Delta science and policymaking. This pivotal time followed a period of changes in Delta conservation and water policies between 2006 and 2016 that are summarized as follows, in order to provide context for development of the Framework.

In 2006, Delta planners and agencies began crafting a Bay Delta Conservation Plan (BDCP), intending to provide a comprehensive tool for planning and permitting conservation projects and new water conveyance infrastructure. The resulting 2013 BDCP public draft^{1,2,3} contained measures to protect 54 sensitive native species and specific actions to protect and restore habitat in the Delta. The BDCP also contained plans to add three new water intakes along the Sacramento River to divert water for the state and federal water projects. In spring 2015, the Brown administration announced a shift from the BDCP to California WaterFix⁴ and EcoRestore.⁵ These two new parallel but separate programs were initiated to pursue water supply infrastructure and implement more focused restoration in the Delta respectively.

To maintain the momentum of conservation planning and implementation that had begun in the BDCP over the long term, the California Department of Fish and Wildlife started a new initiative called the *Delta Conservation Framework* in 2016. The Department held a series of meetings with its

Framework Goals

People: Communicating, engaging, educating

- GOAL A: Ensure that regular communication among stakeholders and socioeconomic considerations are integrated into all Delta conservation initiatives.
- GOAL B: Support and expand existing public outreach efforts advancing Delta conservation.
- GOAL C: Develop multi-benefit conservation and land management strategies and plans that balance environmental and human needs.

Ecosystem: Making science-based decisions

- GOAL D: Conserve Delta ecosystems and their ecological processes and functions to benefit society and wildlife, and to enhance resilience to climate change.
- GOAL E: Evaluate conservation progress and address climate change stressors and other drivers of change by implementing the science strategies and priorities of the Delta Science Program and Interagency Ecological Program, the adaptive management program for Biological Opinions related to state and federal water project operations, and adaptive management recommendations emerging from interagency integration teams.

Permits & Funds: Thinking ahead collectively

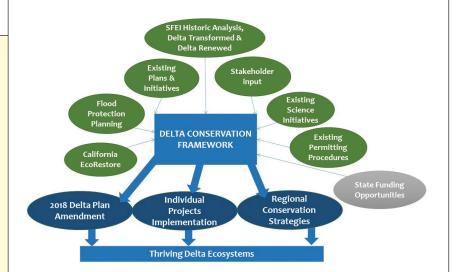
- GOAL F: Improve resource agency and regulatory capacity for permitting Delta conservation projects.
- GOAL G: Optimize use of existing short-term funding and support current and new mechanisms to secure long-term funding for continued conservation implementation and management.

state partners to present the new initiative, gather feedback, and hear perspectives. The group collectively acknowledged two key points: 1) the need for a new approach to conservation planning after the BDCP and 2) the need to bring Delta stakeholders into the planning process early.

In June 2016, the California Department of Fish and Wildlife held an initial public workshop to have the same conversation with a wider stakeholder audience. In this meeting participants expressed many concerns about the myriad past and present Delta conservation planning efforts. They also made some general, overarching suggestions for improvements:

- Bring together the confusing array of existing Delta planning efforts, instead of creating yet another plan to sit on the shelf.
- Focus conservation efforts on public lands first.
- Acknowledge agriculture as the primary land use and way of life in the Delta in any conversation about conservation planning.
- Include stakeholders in the conservation planning process early and often.
- Plan for conservation on a regional scale to better embrace the size and diversity of the Delta.

In response to this initial meeting, the California Department of Fish and Wildlife launched a series of six monthly public workshops. At these workshops, participants from diverse public and private interests reviewed and discussed draft portions of the document. The Department encouraged participants to offer new perspectives and suggest revisions, and then used this input to build the core components of the 2017 Public Draft Delta Conservation Framework. After releasing the 2017 Public Draft, the Department solicited more feedback through comment letters, individual stakeholder meetings, and two additional public workshops. The resulting public and final drafts offer an integrated vision and guide for regional conservation planning in the Delta.


Each section of the Delta Conservation Framework includes three parts: a description of goals and strategies; on-the-ground examples of regional-scale conservation planning efforts already underway; and reference guides introducing readers to the many existing plans and programs in the Delta, as well as to useful tools, checklists, and models. The Framework also provides the basics on Delta science enterprise^{6,7,8,9,10,11} and adaptive management^{12,13} efforts to help conservation practitioners learn about ongoing efforts and put them in a broader context.^{14,15} As an example, a section on the San Francisco Estuary Institute's A Delta Renewed — which serves as the Framework's scientific foundation - summarizes the most current landscape-scale science on how to implement conservation to support

ecosystem function. Other sections provide an invaluable counterpart, describing how farmfields, pastures, and working lands can contribute to ecosystem health and conservation. By pulling it all together in one place, and by identifying all the latest policy, regulatory, science, and management resources available, the document is much more than another plan on the shelf: it's a strategic, stakeholder-informed pathway to a healthy and prosperous Delta in 2050.

Although the *Delta Conservation Framework* was initiated as a conservation planning effort in response to the pivot away from the BDCP, what emerged at the end of the public participation and feedback process looks very different from the BDCP. For example, the Framework does not contain acreage targets. Nor does it provide detailed maps showing where conservation should occur. Instead, it is a guide for how best to plan and implement conservation.

In terms of the broader planning and policy context, the *Delta Conservation Framework* supports achieving the ecosystem goals of the Delta Reform Act and the Delta Stewardship Council's *Delta Plan*.¹⁷ In June of 2015, the Delta Stewardship Council identified the need to amend the *Delta Plan* to address the shift from the BDCP to California Waterfix and EcoRestore. During the development of the *Delta Conservation Framework*, the Delta Stewardship Council initiated an amendment to Chapter 4 of the *Delta Plan*, Protect, Restore, and Enhance the Delta Ecosystem.

While the Council goes through the amendment process, and while many other plans and programs continue to evolve and adapt to changing circumstances, the Framework is intended to serve as a valuable reference and resource. If the Framework's conservation goals and strategies are pursued Figure 1.1: The Delta Conservation Framework offers a nexus and guide for diverse planning initiatives and perspectives in the Delta region.

by all Delta stakeholders, and if stakeholders embrace and champion the kind of multiobjective, regional scale projects that optimize benefits, the vision of a healthy Delta for all in 2050 could become reality.

Setting

The Delta, once a vast freshwater marsh, drains the watersheds of California's Sacramento and the San Joaquin Rivers. Combined with Suisun Marsh, this inland reach of the San Francisco Estuary spans six counties and 1,300 square miles of land and water.¹⁷ Nearly half of California's surface water unites in the Delta, flowing through hundreds of miles of interconnected waterways west to San Francisco Bay. Ecologically rich and diverse prior to European settlement, the Delta is now largely a center for agricultural operations interspersed with small towns and communities.

The Delta plays a crucial role supporting California's economic vitality as a central component of the state's water supply infrastructure and contributor to the state's substantial agricultural productivity.¹⁸ It is also home to a growing population of more than 550,000 people. Delta communities are primarily concentrated in the large cities around its fringes, but they are also expanding into the Delta's non-urban areas, such as Discovery Bay, the River Islands near Lathrop, and Hotchkiss tract in Oakley.^{18,19} Statewide, more than three million acres of prime irrigated farmland and two-thirds of the state's population depend on the Delta watershed for some portion of their water supply.²⁰ Water flowing through the Delta provides a critical base for most of the state's economic output.²¹ A vast levee system protects 400,600 acres of high-quality farmland, communities, and municipalities that occur within the historic Delta floodplain.

Although the California Water Code recognizes the Delta as "the most valuable ecosystem on the west coast of North and South America", the wildlife habitats and ecosystem services^{21,22} that the Delta provides have been impacted by environmental degradation, land use conversions, and economic shifts. In the coming decades the Delta is expected to undergo substantial additional changes due to climate change. While California has long experienced droughts, floods, wildfires, and other climate-driven events, recent extremes and accelerated climate change derive from human activities such as the burning of fossil fuels.²³ As a result, the Delta must prepare for sea level rise, extreme droughts, and storms with associated flooding.²³ These events will influence the evolution of the Delta landscape far into the future.^{3,14,17,18,20,23,24,25} Over the short and long term, these impending changes could impact land use and affect Delta ecosystems, agricultural operations, communities, and the Delta economy. 18,20,23,24

Workers sort apples, part of the Delta's thriving agriculture related industries. Photo courtesy Delta Protection Commission

Planning History

Large-scale conservation of Delta aquatic and terrestrial habitats is called for in a wide variety of California state laws, mandates,

plans, mitigation requirements, and initiatives, many of which are the result of decades-long debates, and efforts based on scientific research. 20,26,27,28,29,30,31,32,33,34

Numerous government agencies, non-governmental organizations, academic institutions, private entities, policy-makers, landowners, and citizens are involved in these conservation, stewardship, and science activities.

The strongest current state guidelines

for overarching conservation and management of Delta aquatic and terrestrial ecosystems are the 2009 Delta Reform Act and subsequent 2013 *Delta Plan*, the 2014 *California Water Action Plan* (CWAP)²⁰ as well as the work that went into the 2006-2013 *Bay Delta Conservation Plan* (BDCP)¹ that in 2015 resulted in the separation of water supply management and resource conservation programs into California Water Fix² and California Eco-Restore.³ The two recent state planning resources developed in parallel. Additionally, in 2016, the San Francisco Estuary Institute issued three important reports including *A Delta Renewed*, an important science basis for the Framework. ^{16,32,33}

The *Delta Conservation Framework* does not include conservation actions associated

"The Legislature finds and declares that the Sacramento-San Joaquin Delta, referred to as the Delta in this division, is a critically important natural resource for California and the nation. It serves Californians concurrently as both the hub of the California water system and the most valuable estuary and wetland ecosystem on the west coast of North and South America."(California Water Code, §85002). with changing flows into or through the Delta. Although the magnitude, timing, and pattern of flow through the Delta are vital factors driving ecosystem function, conservation actions to address flows are championed in parallel efforts to the Framework. These parallel efforts include the update to the *Bay* Delta Water Quality Control Plan by the State Water Resources Control Board, implementation of the current Biological Opinions²⁵ on

the operations of the State Water Project and Central Valley Project, the re-initiation of consultation on these biological opinions, and incidental take authorizations for the operations of the state water project issued by the California Department of Fish and Wildlife. Collectively, they seek to understand the role of flow in the Delta in supporting ecosystem function and, if needed, place regulatory restrictions on water project operations to minimize the effects on listed species and their habitats.

The information integrated and compiled

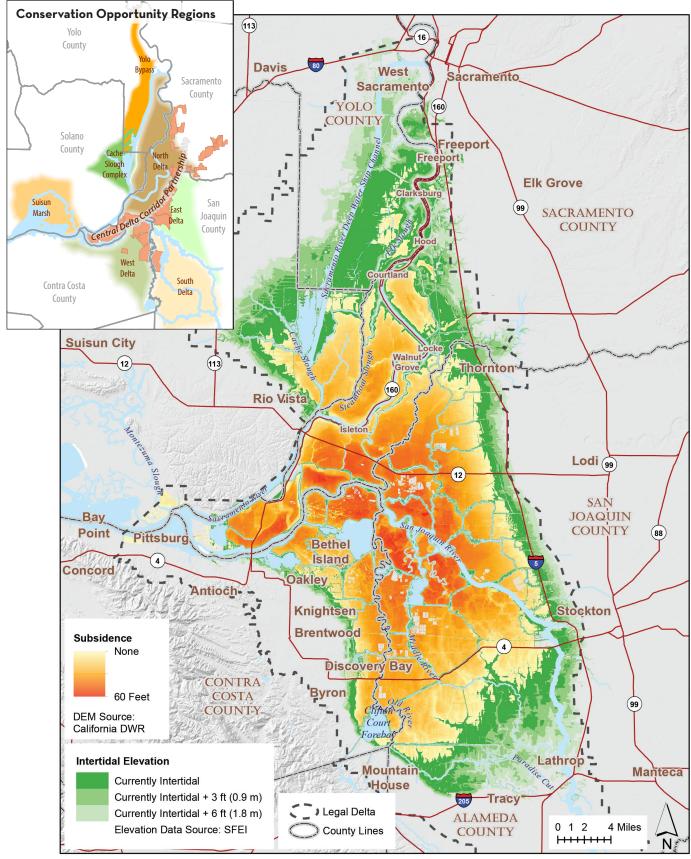
in the Delta Conservation Framework is also needed to protect, restore, and improve the function of Delta ecosystems to support native communities of fish and wildlife, particularly populations of special status species.

Photo: Christina Sloop

19

Regulatory History Timeline

- 1992 DELTA PROTECTION ACT states that "The Delta is a natural resource of statewide, national, and international significance, containing irreplaceable resources. It is the policy of the State to recognize, preserve, and protect those resources of the Delta for the use and enjoyment of current and future generations, in a manner that protects and enhances the unique values of the Delta as an evolving place (PRC §29701-2)."
- 1992 DELTA PROTECTION COMMISSION


was established by the Delta Protection Act as a forum for Delta residents to participate in decisions to recognize and enhance the unique cultural, recreational, and agricultural resources of the Delta (PRC §29703.5(a)).

- 1994 CALFED BAY-DELTA COORDINATION PROGRAM (CALFED) was created to resolve some of the challenging issues affecting Delta ecosystems and wildlife, following a decade of disputes between the State of California, the federal government, agricultural interests, environmental groups, and municipal water services.
- 2006 BAY DELTA CONSERVATION PLAN (BDCP) was initiated by the Department of Water Resources and the Bureau of Reclamation as a permitting framework for the construction of new Delta water conveyance through a combined 50-year Habitat Conservation Plan and Natural Community Conservation Plan spanning the Delta, Yolo Bypass, and Suisun Marsh.
- 2006 DELTA VISION BLUE RIBBON TASK FORCE superseded CALFED, laying the groundwork for the Legislature to craft the 2009 Delta Reform Act.
- 2009 DELTA REFORM ACT includes a package of bills that defined regulatory accountability in the Delta for implementation of conservation measures, as well as measures for water conservation, groundwater monitoring, enforcement to prevent illegal water diversions, and a bond measure to provide needed funding (California Water Code §85054).

- 2009 DELTA STEWARDSHIP COUNCIL
 - was established by the Delta Reform Act to advance the Delta Reform Act's coequal goals and to develop and oversee implementation of the Delta Plan, a long-term sustainable management plan for the region founded on those goals in the context of the "Delta as an evolving place." The Council is supported by the Delta Independent Science Board and the Delta Plan Interagency Implementation Committee.
- 2009 SACRAMENTO-SAN JOAQUIN DELTA CONSERVANCY was established by the Delta Reform Act as the state agency responsible for implementing ecosystem restoration in the Delta and supporting efforts that advance both environmental protection and the economic well-being of Delta residents.
- 2013 DELTA PLAN was unanimously adopted by the Delta Stewardship Council. It is guided by best available science and founded on cooperation and coordination among federal, state and local agencies.
- 2014 CALIFORNIA WATER ACTION PLAN

highlights overarching goals for "Reliability, Restoration, and Resilience," and outlines ten main actions that include: "Achieve the coequal goals for the Delta, protect and restore important ecosystems, increase flood protection, increase operational and regulatory efficiency, and identify sustainable and integrated financing opportunities."

- 2015 CALIFORNIA WATERFIX was launched in lieu of the BDCP to realize new Delta water conveyance infrastructure under ESA Section 7 and the California Endangered Species Act.
- 2015 CALIFORNIA ECORESTORE was launched in lieu of BDCP conservation measures as a new Natural Resources Agency led initiative to swiftly implement conservation projects in the Delta, Yolo Bypass, and Suisun Marsh.

Primary challenges to conservation in the Delta remain land subsidence behind levees, flood protection, and rising sea levels and extreme precipitation events related to climate change. Conservation lands offer important buffers for Delta communities and farmlands. INSET: The Delta Conservation Framework focuses on improving public lands first (Central Delta Corridor) to benefit the ecosystem and wildlife. The Framework also identifies conservation opportunity regions where it hopes to support regional partnerships and multi-benefit, public private collaborations for a healthier Delta. Source: CDFW, 2018

Photo courtesy Delta Protection Commission.

Vision for Delta 2050

Despite substantial efforts to plan conservation in the Delta, many challenges to ecological resilience and function remain. Over the next three decades, efforts to restore the Delta ecosystem will occur in an ever-changing social, ecological, and regulatory environment influenced by economic shifts and climate change effects, such as sea level rise.^{7,9,14,35,36} Human uses of, and impacts on, the Delta are central to considerations of how the landscape functions now and into the future.¹⁹

In 2050, the Delta is composed of resilient natural and managed ecosystems situated within a mosaic of towns and agricultural landscapes, where people prosper and healthy wildlife communities thrive. As cornerstones for the success of Delta conservation and lasting multi-benefit solutions, Delta stakeholders developed a

30-year vision and set of guiding principles for collaboration and mutual respect during a series of Delta Conservation Framework public workshops in 2016. This vision will be achieved by all Delta stakeholders, local, state and federal, as they align future conservation efforts with the seven overarching goals established in the Framework.

What do stakeholders hope to see as the results of the framework and vision?

- MULTI-BENEFIT OUTCOMES: In 2050, the Delta is a network of multiple-use landscapes where agricultural productivity, economic vitality, and ecosystem conservation are achieved in a manner that mutually supports the needs of people and wildlife.
- CONSIDERATION OF LANDSCAPE DYNAMICS: In 2050, the Delta is recognized as part of a greater system that functions within the context of California's largest watersheds.
- HEALTHY, RESILIENT ECOSYSTEMS: In 2050, the Delta has healthy, resilient ecosystems with the capacity to adapt through time to impacts associated with climate change, sea level rise, and other environmental uncertainties.
- COLLABORATION: In 2050, state, federal, and local government agencies collaborate with each other and Delta stakeholders to achieve multi-benefit outcomes where possible.
- DECISIONS BASED ON SCIENCE: In 2050, policy decisions and desired conservation outcomes are informed and evaluated through coordinated Delta science endeavors.
- LOCAL SUPPORT: In 2050, Delta residents promote the management of healthy ecosystems as the basis of a healthy and economically thriving Delta region.
- LOCAL BENEFITS: In 2050, Delta residents and visitors actively enjoy the region's unique cultural and natural resource values through wildlife-friendly agricultural practices, tourism, low-impact outdoor recreation, and environmental education activities for all ages.
- RELIABLE LOCAL WATER: In 2050, effective integrated water management in the Delta promotes good water quality and a reliable water supply for users in the Delta.
- MULTI-BENEFIT FLOOD MANAGEMENT: In 2050, the Delta's flood management system provides both improved flood protection and increased habitat value for fish and wildlife, where possible.

Foundations of the Framework

The Framework is based on a 2050 vision, guiding principles, and a three-year effort to integrate public input, science, and existing plans into a cohesive framework for conservation planning.

Input from the Delta Stakeholder Community

Stakeholders from a variety of sectors and interests, including local Delta community members, play a key role in the successful planning and implementation of conservation-oriented programs and projects. Their involvement is especially important when reconciling the complex, often multi-dimensional, human and environmental uses of Delta landscapes and waterways.

During a series of six workshops in 2016, stakeholders from local, state, and federal agencies, water contractors, non-governmental organizations, environmental consulting firms, reclamation districts, universities, private businesses, and local residents raised important issues for consideration in developing a common vision and an integrated conservation approach for Delta ecosystems (see also Section II and Appendix 4).

Overall, workshop participants emphasized the importance of agriculture as the Delta's economic engine and the need to involve Delta community members when planning, implementing, and managing conservation actions.

The participation of Delta community members in the 2016 workshop series was limited until a local champion got involved to spread the word and share a sense of urgency. Reasons for the initial lack of local turn out included work demands, lack of trust in the process based on past experiences, an unfavorable attitude toward conservation, or insufficient outreach and communication about the workshops in local newspapers and at community gathering spots.

In general, participating stakeholders established that Delta conservation would move forward most successfully by focusing on lands currently under public ownership or on lands managed under specified conservation easements owned by non-governmental organizations, businesses, or private citizens. They also emphasized the importance of preserving local tax bases, adequately funding long-term management of public lands, and avoiding additional regulations and negative impacts on agriculture. Stakeholders supported a focus on multi-benefit solutions, including financial incentives for wildlife-friendly farming practices,37,38 long-term agricultural conservation easements with willing Delta landowners,³⁷ or other incentives.

During the workshops, Delta local stakeholders also emphasized the importance of a "bottom-up" approach, where conservation projects are developed at a regional level with local support that ensures resident landowner participation in conservation planning and implementation. They agreed that applying good-neighbor practices to avoid negative impacts on agriculture and other neighboring land uses³⁷ would go a long way toward obtaining local support and

The California Department of Fish and Wildlife asked for *early community* feedback from residents of Bethel Island on a proposed *design for a tidal* marsh restoration project for Delta smelt habitat on Franks *Tract. The community responded with their* own counter proposal. Such exchanges, early in planning timelines, are critical to achieving conservation in collaboration with Delta communities. Photo: Christina Sloop successfully implementing Delta conservation. Stakeholders also called for a balance of publicly accessible and "wild" conservation lands, to allow restricted or seasonal recreational access to some areas, while protecting sensitive wildlife areas from disturbance. There was also overall recognition that strong levees are beneficial to everyone.

In terms of conservation goals, workshop participants supported a greater focus on improving ecological processes to restore ecosystem function¹⁶ and going beyond emphasis on single species conservation under federal and state endangered species laws and regulations (Federal Endangered Species Act (ESA)/California ESA (CESA)), to improve wildlife habitat and connectivity. This expanded approach would benefit wildlife and help recover declining populations of special status species. Specifically, participants favored a landscape conservation approach tied to locally driven project planning and implementation that builds on, or integrates, existing regional planning efforts. Stakeholders also recognized the need to make the conservation permitting process more efficient to expedite implementation and reduce costs.

One take home was the need for conservation proponents to take responsibility over the long term for achieving desired conservation outcomes. To be effective, such efforts will require not only regular evaluations of conservation performance on the basis of predefined goals, but also regular communication of successes and failures to stakeholders.

The Delta Conservation Framework integrates many of these stakeholder concerns and suggestions into its goals and strategies (see Section II).

Considering Existing Plans

Any evaluation of conservation opportunities in the Delta requires consideration of the many existing planning documents and programs. Those plans and programs considered in the development of this *Delta* Conservation Framework, and descriptions of how they align with the Framework, are detailed in the Guide to Related and Aligned Plans and Programs at the end of this section (see pp. 30-37). The Delta Conservation *Framework* does not supersede these individual planning efforts, but instead connects and integrates them into the larger landscape-scale perspective. It suggests them as important references for consideration as part of ongoing or future regional conservation strategies and individual projects. In particular, in locations where regional conservation strategies overlap with regionally-focused planning efforts, such as Habitat Conservation Plans and Natural Community Conservation Plans (HCPs and NCCPs), regional goals, strategies, and objectives should tie in with those in the pre-existing plans. Appendix 6 provides summaries of the existing plans that should be considered by regional conservation partnerships in regional conservation strategy planning, and by individual conservation practitioners in project planning, and it offers further insight into how these plans relate to the Delta Conservation Framework (see also p. 45 for a discussion of the various "regional" strategies, partnerships, and plans terminology).

Framing Conservation Goals

The Delta Conservation Framework's goals and strategies, used collaboratively, offer pathways to realizing the vision of the Delta as a place where people prosper and healthy wildlife communities thrive by 2050. In sections II-V the Framework suggests strategies for communication, planning, funding, and permitting conservation that could be used to achieve each goal over the coming decades. Some of the goals and strategies, such as Goal E, highlight pre-existing and ongoing efforts to successfully implement conservation in the Delta that should be used as resources moving forward. Other goals, such as Goals F and G, highlight the need to consider new approaches to implementing conservation. Still others, such as Goals A-C, underscore a growing recognition of the role people and communities must play as partners in conservation.

Delta Conservation Framework at a Glance

SHARED VISION AND OVERARCHING GOALS ON HOW TO ACHIEVE DELTA CONSERVATION

 Serves as a high-level Delta conservation guidance document for all stakeholders engaged in conservation planning, and for the collaborative development of focused regional conservation strategies that link to the system-wide goals outlined in this document.

SUPPORT FOR GOALS OF THE DELTA REFORM ACT AND CALIFORNIA WATER ACTION PLAN

• Encourages collaborative approaches through stakeholder partnerships and development of regional conservation strategies to inform the amendment of the ecosystem elements of the *Delta Plan* and implement *California Water Action Plan* Action 3. Recommends goal-based strategies to improve integrative conservation planning by Delta stakeholders that emphasize multi-benefit outcomes where possible.

PARTNERSHIP APPROACH FOR COLLABORATIVE ENGAGEMENT

 Establishes a goal and strategies for actively engaging landowners, federal, state, and local government agencies, regional partnerships, non-governmental organizations, and other relevant stakeholders to advance ecosystem conservation goals and strategies collaboratively on both landscape and regional scales, while ensuring consistency with existing conservation initiatives.

EDUCATION AND OUTREACH ABOUT THE IMPORTANCE OF A HEALTHY DELTA AT LOCAL, STATE, AND NATIONAL LEVELS

 Offers strategies for promoting public education and outreach about the Delta to improve public understanding of its economic, cultural, and environmental importance and to garner far-reaching support for its health and related socioeconomic sustainability. This is in direct alignment with the public trust doctrine outlined in the Delta Reform Act.

STRATEGIES AND OBJECTIVES FOR POTENTIAL SOLUTIONS TO KNOWN DELTA CONSERVATION CHALLENGES

 Offers strategies to address challenges, including the effective integration of community and conservation goals; regulatory conflicts, permitting, and funding barriers hindering conservation project implementation; and needed resources for the long-term maintenance and management of Delta projects.

FLOOD PROTECTION PLANNING LINKS

 Connects with flood protection planning through the emphasis on approaches for conservation that consider multi-benefit outcomes, as outlined in the 2016 *Central Valley Flood Protection Plan Conservation Strategy* and North Delta Program.

PRIORITIES FOR STATE AND OTHER FUNDING

 Directly informs grant solicitation language for some state funding programs, helps guide distribution of other available conservation support, and serves as a basis for future funding for long-term Delta conservation, including national, state, regional, and private sources.

GUIDANCE FOR THE COORDINATION OF COLLABORATIVE REGIONAL CONSERVATION STRATEGIES

 Provides a framework for coordinated implementation and management to build on early conservation successes and to guide collaborative future planning, implementation, and long-term management activities.

Photo: Rick Lewis

NATIONAL MODEL

Restoration Plan for Florida Everglades Mirrors Delta Approach

Although located 2,500 miles away and in a markedly different ecosystem, Florida's Everglades nevertheless face similar challenges, and offer a useful parallel, to the Delta.

The Everglades — a wide, slow-moving swath of wetland dubbed "the river of grass" — is one of the largest wetland ecosystems in the world, covering nearly 18,000 square miles in southern Florida. It is now the focus of an extensive and historically significant watershed restoration program to mitigate the damage done by more than two centuries of redirecting estuarine water for flood control and other human uses. This ongoing and largely successful restoration program is tackling many of the same problems, and coming to many similar conclusions about best solutions, as California's Delta Conservation Framework.

"Success for the human systems will be to maintain or improve current levels of water supply and flood protection in a rapidly growing human population in south Florida, consistent with the goals of the Plan for the natural system."

Everglades. Photo courtesy National Park Service.

"Success for the natural system will be to recover and sustain those essential hydrological and biological characteristics that both defined the original pre-drainage greater Everglades and made it unique among the world's wetlands. These defining characteristics include the great extent of naturally interconnected and interrelated wetlands, sheet flow, extremely low levels of nutrients in freshwater wetlands, high levels of estuarine productivity, and the great resilience of the plant community mosaics and abundance of many of the native wetland animals."

Vision, Comprehensive Everglades Restoration Plan, USACE 2003 NATIONAL MODEL

CONTINUED

Plan Overview

Similar to the Delta Plan's coequal goals, the main objectives of the Comprehensive Everglades Restoration Plan (CERP) are "getting the right amount of water of the right quality to the right places at the right time" and "to find the correct balance among the flow types throughout all regions to ensure a healthy and sustainable natural and human environment." Everglades restoration goals include recovery of freshwater flows into the estuaries, restoring the ecosystem processes that once supported diverse wetland habitats, and providing resiliency to changing conditions.^{1,2,3} This focus further includes making recommendations for structural or operational modifications to the existing water project to restore important functions and services of the Everglades and south Florida ecosystem while also planning for agricultural and urban water needs and flood protection for the next 50 years.

The Plan is founded on an adaptive management program as a basis for continually improving the design, operation, and performance over time. Maximizing operational flexibility is considered to be an essential strategy for meeting the natural and human system performance goals of the Plan.

Human and Natural System Integration

The CERP's greatest strength is that it integrates natural and human objectives into a single design, and brings together an array of public interests into a common strategy for the future of south Florida.

Although the future Everglades ecosystem will not recreate historic conditions, because it will be smaller than the pre-drainage system, planned restoration is intended to recover these defining characteristics and create a new Everglades that behaves functionally as a wild

Source: CERP

Everglades system rather than as a set of managed, disconnected wetlands.

Like the *Delta Conservation Framework*, the CERP acknowledges both human and natural demands on a rich estuarine system, and the need to sustain both as functional systems far into the future. In the Delta Framework's case however, (the DCF has no flow- or water supply- management actions), the human dimension is more related to the Delta's agricultural legacy.

Direct Community Involvement

In both the Delta and Everglades, planning is based on an open collaborative process with interdisciplinary, cross-sector, and public outreach and engagement. The lead agencies of the CERP-the U.S. Army Corps of Engineers (USACE) and the South Florida Water Management District (SFWMD)—are leading one of the largest conservation partnerships in the world. This multi-stakeholder partnership is composed of tribes and federal, state, and local government agencies, as well as private and environmental interests including the fishing community; business organizations; local community groups; environmental organizations; the agricultural community; homeowners; and other members of the public who are concerned about the health of the Everglades, including recreation groups and the sugar industry.^{1,4,5}

Community participation has been an important component of restoration in the Everglades. Community members have been engaged in the planning and ecosystem restoration process through public workshops and volunteer opportunities, in part as a result of a 2010 Clean Water Fund survey that resulted in recommendations to improve public outreach and participation. Development of the *Delta Conservation Framework* has involved similar community surveys, stakeholder outreach, and resulting emphasis on collaborative planning.

Multiple-Benefit Management and Public Lands

Both the Delta and the Everglades are made up of a patchwork of public and private lands owned by various entities and managed to achieve a variety of goals (though there may be more public land in the Everglades system). The greater Everglades ecosystem contains four national park units, 16 national wildlife refuges, and over one million acres of public lands managed by the water district. These lands support recreation, public use, and conservation of natural resources. As such, individual CERP projects may have one or more multi-benefit objectives, including:

- 1. Restoring wetlands and watersheds and reestablishing flows to maintain ecosystem connectivity
- 2. Improving flood protection
- 3. Sustaining existing and future water supply, while increasing water storage capacity
- 4. Improving the water quality and timing of discharges into estuaries, lakes, wild and scenic rivers and managing water conservation areas for municipal, agricultural, and recreational uses.

Electrofishing research in the Everglades. Photo: Larry Perez, courtesy National Park Service

NATIONAL MODEL CONTINUED

28

Examples of multi-benefit approaches to the Everglades restoration efforts with characteristics similar to some of those referenced in the *Delta Conservation Framework* include:

- A Master Recreation Plan, included in CERP, under which regional plans and projects evaluate and address compatibility between recreation and restoration and incorporate workshop participants' feedback on recreation needs into the regional plans.⁵
- A community outreach program, developed by USACE, including a quarterly newsletter, to inform the public of project planning meetings and to educate and engage young adults and children.⁶
- The Invasive Exotic Species Strategic Action Framework (South Florida Ecosystem Restoration Task Force 2015), which engages partner agencies and the public in managing the impacts of invasive species on ecosystems, native and special status species, cultural values, recreational opportunities, and economic interests that affect the entire state of Florida.⁷

Environmental Overview

As in the Sacramento-San Joaquin River Delta in California, humans reclaimed a large acreage of the Everglades wetlands for farming and development starting before 1900. Infrastructure changes to support urban development and agriculture reduced freshwater flow through the estuaries, and the vast Everglades wetland ecosystem ultimately shrank to half its original size as a result. Encompassing Lake Okeechobee and its tributary areas, the Everglades ecosystem includes the roughly 40- to 50-mile-wide, 130-mile-long wetland mosaic that once extended continuously from Lake Okeechobee to the southern tip of the Florida peninsula at Florida Bay.⁸ A large canal developed for flood control transformed the meandering Kissimmee River into a straight, deep channel that caused catastrophic damage to floodplain habitats and water quality, severely affecting several fish and wildlife species and reducing ecosystem services to humans.

Conservation Focused on Restoring Ecosystem Function

Even in their diminished states, the ecosystems on both coasts provide innumerable ecological services. The Everglades contains a mosaic of wetlands, freshwater ponds, prairies, and forested uplands that support rich communities of plants and wildlife. In 1994, Congress passed the Everglades Forever Act to reverse the decline in water quality and ecosystem health which led to the development of the CERP, an overarching framework for restoration projects with objectives to recover freshwater flows into the estuaries; restore the ecosystem processes that once supported diverse wetland habitats; improve water quality; and provide resiliency to changing conditions.

Florida panther. Photo courtesy Everglades National Park Service

Estuaries and coastal areas in the Everglades receive either too little or too much water, causing fluctuations in salinity that affect the health of ecosystems. By capturing, storing, cleaning, and redistributing water, the CERP addresses this challenge to restore freshwater flows to the estuary while still providing for the needs of the public. CERP projects are:

- rehydrating coastal wetlands by distributing freshwater to the estuary over a broad area, instead of through individual drainage canals
- capturing runoff and excess water to reduce harmful discharges to the estuary during wet periods and provide water during dry periods
- improving water quality to reduce salinity and nutrient impacts on the estuary; removing flow and connectivity barriers
- reestablishing underground aquifers

These landscape-scale projects are already restoring habitats for native plants, fish, wading birds, shorebirds, and waterfowl. Although invasive species, heavy rains, drought, and other challenges continue to degrade the ecosystems in the Everglades, restoration has helped with recovery. Imperiled Everglades species, such as the federally endangered Florida panther, and declining native fish populations, including largemouth bass, Everglades pygmy sunfish, and other species of sunfish, have benefitted from CERP actions.

Science Informing Everglades Restoration Efforts

Restoration efforts in the Everglades combine the best available scientific and technical information with policy, management, and public opinion. Congress established the South Florida Ecosystem Restoration Task Force to coordinate the development of policies, strategies, plans, programs, and projects that address restoration and protection of the South Florida ecosystem. One of the Task Force advisory bodies is the Science Coordination Group, including senior managers and scientists, which supports efforts to coordinate the scientific aspects of restoration with management decisions. A multiagency collaboration of scientists and resource specialists (The Restoration Coordination and Verification program, or RECOVER) provides scientific and technical information to incorporate into the CERP effort.

RECOVER develops five-year plans to ensure project design, construction, operations, and adaptive management incorporate the latest updates in science. The five-year plans establish tasks and make recommendations for changes to goals or targets, decision-making processes, and communication. Regular RECOVER meetings evaluate and refine conceptual models.

The Delta Conservation Framework is also based on best available science, science-based adaptive management, and monitoring and tracking of conservation outcomes based on goals and objectives. Many layers of multiagency science, research, and collaboration underly the Framework.

QUICK LINKS

Comprehensive Everglades Restoration Plan³ https://www.saj.usace.army.mil/Portals/44/docs/ Environmental/Report%20to%20Congress/2015CERPReportCongressDRAFT.pdf

Kissimmee River⁷ www.sfwmd.gov/our-work/kissimmee-river

Comprehensive Everglades Restoration Plan (CERP)³ http://141.232.10.32/pm/recover/recover.aspx

Everglades Restoration¹ www.evergladesrestoration.gov

Restoration Coordination and Verification five-year plan⁹

https://evergladesrestoration.gov/content/scg/minutes/ 2017meetings/012317/RECOVER_5-yr.pdf

Western Everglades Restoration Project ¹⁰ www.sfwmd.gov/sites/default/files/documents/jtf_western_glades_planning.pdf

United States Geological Survey ⁸ https://pubs.usgs.gov/circ/circ1182/pdf/12Everglades.pdf

GUIDE TO RELATED & ALIGNED PLANS & PROGRAMS

Bay Delta Conservation Plan Public Draft

30

This plan was initiated in 2006 as a permitting framework for the construction of proposed Delta water conveyance improvements through a combined 50-year habitat conservation plan (HCP/NCCP) spanning the Delta, Yolo Bypass, and Suisun Marsh. A draft was completed in 2013, but in April 2015, the Brown administration announced a change in the permitting approach for new Delta water conveyance infrastructure, shifting state efforts away from the BDCP. Conservation measures presented in the 2013 Public Draft of the BDCP were intended to restore a more naturally functioning Delta ecosystem, contribute to the recovery of covered species through establishing a large Delta reserve system, and establish a secure and reliable Delta water supply for human use while managing flows to protect and support life history requirements of special status fish. The draft BDCP offers a wealth of information useful to inform future planning and development of Regional Conservation Strategies. The Delta Conservation Framework goals and strategies reflect many of the BDCP conservation measures targeted to improve Delta ecosystem function to benefit fish, wildlife, and natural communities. However, the Delta Conservation Framework does not offer direct acreage targets beyond those already established through existing planning documents, nor does it address the issue of providing a secure and reliable water supply for human use. For more details of how the Delta Conservation Framework incorporates elements of the BDCP, please refer to Table III.1 in Appendix 3.

Endangered Delta smelt. Photo: DWR

California State Parks Recreation Proposal for the Sacramento-San Joaquin Delta

This 2011 proposal provides recommendations for the improvement or expansion of California State Parks' four Delta recreation areas and six other state parks on the edge of the Delta and Suisun Marsh, and for connecting them with destinations inside the Delta and Suisun Marsh region. It outlines opportunities to create four new state parks for the region, and suggests ways to improve recreational use of wildlife habitat areas, publicly owned levees, scenic highways, state recreational trails, and other public lands. It also includes suggestions for coordination of recreation and tourism efforts. The proposal suggests a network of recreation areas — including parks, resorts, boating facilities, historic communities, agricultural-tourism attractions, and other visitor-oriented places that are connected by scenic driving routes, boating trails, or bicycling and hiking trails. The proposal highlights existing recreation assets as well as new recreation opportunities. These may include flood-control efforts, pipelines and canals, and restoring large wildlife habitat areas, especially at the six potential "restoration opportunity areas" mapped in the recreation proposal.

Partnerships among agencies, businesses, and nonprofit groups would help advance such multi-benefit outcomes and reveal the region to more visitors under this proposal. Co-benefit recreation opportunities are integrated into *Delta Conservation Framework* Goal C, "Develop multi-benefit focused conservation and land management solutions to balance environmental and human needs."

California State Wildlife Action Plan

The 2015 update to this strategic conservation plan (the "SWAP") developed by California Department of Fish and Wildlife provides a blueprint for sustaining the integrity of California ecosystems.

SWAP 2015 articulates conservation priorities for implementation by 2025, with a goal of desired conditions to be attained and sustainability improved within 50 years. The following goals summarize the SWAP priorities and provide a framework for complementary tier-down regional goals and objectives aimed at: 1) enhancing the abundance and richness of species and ecosystems, 2) enhancing the quality of ecosystem conditions; and 3) enhancing ecosystem functions and processes. Supported by 12 subgoals, these statewide goals represent the overarching desired outcomes of integrated implementation.

SWAP 2015 highlights the Delta as part of the Bay Delta Conservation Unit, within the Bay Delta and Central Coast Province, and identifies target ecosystems and species of greatest conservation need.

The SWAP also highlights pressures in the Delta that make it a prime region for conservation. Targets and conservation strategies were developed by reviewing and synthesizing other planning efforts for more specific guidance, including the BDCP, Delta Plan, and other planning documents described in this appendix. However, regional conservation partnerships and project proponents should consult the SWAP when planning projects for or within target ecosystems and are strongly advised to consult the SWAP if applying for federal funding through the State Wildlife Grant or Endangered Species Act Section 6 program.

Species Recovery Briefs can be found in Appendix 5 online.

California Water Action Plan

Concerns regarding declines in the Delta's wildlife species, the resilience of Delta levees to significant seismic events, and the Delta's vulnerability to floods and the effects of sea level rise are the focus of the 2014 California Water Action Plan (CWAP). This plan outlines ten main actions for achieving reliable and resilient water systems and restoring the most important California ecosystems. The CWAP recognizes the social and political complexities around Delta issues yet states that "the status quo in the Delta is unacceptable and it would be irresponsible to wait for further degradation or a natural disaster before taking action".

Relevant CWAP actions include:

- Action 3: Achieve the coequal goals for the Delta
- Action 4: Protect and restore important ecosystems
- Action 8: Increase flood protection
- Action 9: Increase operational and regulatory efficiency

Implementation of the *Delta Conservation Framework* will serve to further the above actions in the future, with several overarching long-term goals with strategies that address these CWAP actions. These include strategies aimed at:

- Reestablishing or improving Delta ecosystem function (GOAL D; Section III);
- Optimizing connectivity, functional food webs, management of harmful invasive species, and low-impact human use of conservation areas to reduce negative effects on sensitive wildlife (GOAL D; Section III);
- Levee maintenance and flood management practices that also afford additional or improved habitat, and advancing agency land management processes and procedures (GOAL C; Section II);
- Climate adaptation and adaptive management in Delta conservation and community planning going forward (GOAL E; Section III);
- Improving permitting procedures (GOAL F, Section V);
- Securing funding support (GOAL G, Section V).

Central Valley Flood Protection Plan and Conservation Strategy 2017

This plan (the CVFPP) serves as a guide to the state's participation in managing flood risk and prioritizing investments in areas protected by the State Plan of Flood Control (SPFC). The CVFPP recognizes that flood risks, water supplies, and functioning Central Valley ecosystems are interconnected, with actions in one area influencing the other areas.

The 2017 update contributes to a programmatic vision for flood system improvements over time in accordance with the requirements of the Flood Protection Act of 2008. The non-regulatory companion, CVFPP Conservation Strategy, is an integral part of the CVFPP that focuses on the improvement of ecosystem functions. The CVFPP planning area includes the Delta Conservation Framework Conservation Opportunity Regions; see section VI and Appendix 2. Planning partnerships and individual project proponents should look to the CVFPP for specific guidance on conservation of fluvial, riparian, and floodplain ecosystems in the context of flood protection activities.

The CVFPP Conservation Strategy goals directly overlap with Goal C, Strategy C1 of the *Delta Conservation Framework*. Other goals and strategies also overlap regarding river and floodplain conservation with a focus on:

- Multi-benefit projects that combine flood risk reduction with ecological benefits, environmental improvements, and agricultural stewardship (*Delta Conservation Framework* Goal C, Strategies C1, C2, C4, C5, C6);
- Promoting natural dynamic hydrologic and geomorphic processes underlying ecosystem function (*Delta Conservation Framework* Goal D, Strategy D1);
- Contributing to the recovery of special status species in

riverine and floodplain habitats (*Delta Conservation Framework* Goal D, Strategies D1, D2, D3, D4, D5);

- Increased predictability and cost effectiveness of permitting processes as related to multi-benefit projects (*Delta Conservation Framework* Goal F); and
- Goals and measurable objectives for progress evaluation within an adaptive management framework (*Delta Conservation Framework* Goal E).

Delta Economic Sustainability Plan

To inform the Delta Stewardship Council's policies concerning the socioeconomic sustainability of the Delta region, the 2009 Delta Reform Act required the Delta Protection Commission to prepare an *Economic* Sustainability Plan (ESP) for the Delta region. The ESP, adopted in January 2012 (Public Resources Code §29759), includes recommendations on levees, public safety, and updates to the Department of Water Resources flood management plan, to inform local government general plans and economic efforts affecting Delta agriculture and infrastructure. It also provides options for Delta Legacy Communities to encourage recreation and tourism investments in the Delta to maintain and enhance economic prosperity, particularly if there are declines in agriculture. As a key finding, the ESP emphasizes water quality, water supply, and the ability to divert water in the Delta as essential drivers for the sustainability of habitat and ecosystem improvement, agriculture, tourism, and recreation in the Delta. The ESP is being updated with the most current information on recreation, agriculture, tourism, business development, and more. This ESP update and available Community Action Plans will be critical resources to inform regional conservation partnership planning processes and help integrate Delta conservation practices with the human dimension going forward. Planning partner-

GUIDE TO RELATED & ALIGNED PLANS & PROGRAMS - CONTINUED

ships and individual project proponents should look to the updated ESP and Community Action Plans for specific guidance on how Delta socioeconomic aspects relate to conservation in a given region.

The Delta Plan

32

First released in 2013 when state and federal agencies were working toward a habitat conservation planning approach with the 50-year Bay-Delta Conservation Plan (see p.30 and Appendix 3), the Delta Plan outlines policies and recommendations to provide a more reliable water supply for California; preserve and improve Delta ecosystems; protect and enhance "Delta as an evolving place"; improve water quality; and reduce risk to people, property, and state interests. It further highlights funding needs and options for Delta Plan implementation. Associated white paper publications also provide guidance on adaptive management, performance measures, a levee investment strategy, and a long-term strategy for dredged sediment reuse.

Delta Landscapes Project Report Series, SFEI

This series of reports (2012-2016) informs landscape-scale conservation of the Sacramento-San Joaquin Delta ecosystem. Funded by the California Department of Fish and Wildlife Ecosystem Restoration Grants Program, the project includes the Delta historical ecology investigation outlining how Delta ecosystems functioned prior to the California Gold Rush and subsequent landscape-level changes in the early 1800s. Two successive reports utilized the resulting historical baseline to evaluate and describe how the Delta was altered over time (A Delta Transformed) and how it might be improved in the future to better support resilient populations of native wildlife (A Delta Renewed: A Guide to Science-Based Ecological Restoration in the Sacramento-San Joaquin Delta).

The Delta Conservation Frame*work* goals and strategies related to ecosystem function as part of a landscape-level perspective (in particular for Goal D) are directly based on information provided in the Delta Landscapes Project report series (see Section IV for more information). Regional conservation partnerships and individual project proponents should look to the Delta Landscapes Project report series for detailed maps, historical context and how Delta function has changed, and for recommendations on conservation practices to support ecological functions in the Delta going forward (see also SFEI p. 132).

Ecosystem and Species Recovery Plans and Conservation Strategies

Recovery plans have been drafted by a variety of agencies and organizations for state and federally listed species and habitats; these are summarized below. For federally listed species, the National Marine Fisheries Service and US Fish and Wildlife Service have developed ecosystem-level recovery plans for tidal marsh, vernal pool, and Antioch Dunes ecosystems, and for upland species of the San Joaquin Valley. Plans for individual species include those for California tiger salamander (draft), giant garter snake, California red-legged frog, Least Bell's vireo (draft), California least tern, Central Valley salmon/steelhead, Delta smelt, Sacramento splittail, longfin smelt, green sturgeon, Chinook salmon, and Sacramento perch. State-listed species' plans are generally written by experts-examples include plans prepared for bank swallow, Swainson's hawk, and tricolored blackbird. A draft conservation strategy for greater sandhill crane is in process, but has not yet been released. Some recovery strategies are incorporated in conservation plans for specific ecosystems, such as for riparian bird.

Goal D, Strategy D3 of the *Delta Conservation Framework*, "Create conditions conducive to meeting the goals in existing species recovery plans to maintain or improve the distribution and abundance of listed species supported by Delta ecosystems," refers to the existing recovery goals described above. Other strategies under Goal D focus on optimizing connectivity, ecosystem function to support food webs, control and management of harmful invasive species, and minimizing adverse effects from human disturbance.

Photo: Amber Manfree

See Quick Links p.37 to access above plans and programs.

ERP Conservation Strategy for Restoration of the Sacramento-San Joaquin Delta, Sacramento Valley and San Joaquin Valley Regions

This serves as the conceptual framework to guide the multi-agency Environmental Restoration Program (ERP), including development of conservation priorities and processes to identify and implement restoration opportunities and monitoring to guide and improve their success, in the Sacramento-San Joaquin Delta, the Sacramento Valley, and San Joaquin Valley regions. The ERP approach for ecosystem restoration is focused mainly on aquatic habitats and species in the Delta and the Sacramento and San Joaquin Valley regions.

The ERP Conservation Strategy describes goals and conservation priorities for Stage 2 of the CALFED Bay-Delta Program. The ERP implementing agencies — consisting of CDFW, USFWS, and National Oceanic and Atmospheric Administration Fisheries Service — will use the ERP Conservation Strategy as a guide until 2030.

The vision and goals of the *Delta Conservation Framework* directly integrate what is presented in the ERP Conservation Strategy, while providing an additional link to the Delta community and specific focus on implementation of Delta conservation. regional conservation partnerships and individual project proponents should look to the ERP Conservation Strategy for details on aquatic habitat descriptions, stressors, and related goals and conservation priorities.

Habitat Conservation Plans/ Natural Community Conservation Plans

The Delta Conservation Framework defers to the species and acreage targets outlined in Habitat Conservation Plans (HCPs), Natural Community Conservation Plans (NCCPs), or relevant Conservation Strategies, where they overlap with the Delta planning region. Here, we provide short overviews of HCP or NCCP initiatives within the Delta primary or secondary planning zones. The Delta Conservation Framework recommends that regional conservation partnerships integrate these goals and targets in conservation plans.

EAST ALAMEDA COUNTY CONSERVATION STRATEGY (EACCS)

The EACCS is not an HCP or NCCP; however, it is a framework intended to protect, enhance, and restore natural resources. A final draft was released in October 2010. The purpose of the EACCS is to preserve endangered and other special-status species and their habitats through a shared vision for long-term habitat protection in East Alameda County. The EACCS establishes guiding biological principles for conducting conservation in the county by assessing East Alameda County areas for their conservation value. Recommendations include working with willing landowners to implement long-term conservation stewardship efforts that will offset impacts from local land use, transportation, or other infrastructure projects. Only the most northeastern tip of Alameda County overlaps with the legal Delta, which is conservation zone 7 (CZ7) in the EACCS. This area contains a small amount of grassland and alkali meadows with ponds, while the remainder is agricultural. Special-status species that occur or historically occurred in CZ7 include San Joaquin kit fox, California red-legged frog, and California tiger salamander.

EAST CONTRA COSTA COUNTY HCP/NCCP

This is an approved 30-year HCP/ NCCP, released in 2006 and developed, in part, to address indirect and cumulative impacts to terrestrial species from development supported by increases in water supply provided by the Contra Costa Water District. While the HCP/NCCP plan area includes land within the legal Delta, the focus of the plan is primarily on grasslands, riparian, and other upland habitats and the terrestrial species dependent on these ecosystems. However, some natural community level goals include preserving and restoring wetlands. Most of the investments in land acquisition and habitat improvements are focused outside of the legal Delta. Key restoration priorities in the Delta include the Dutch Slough/Big Break area, lower Marsh Creek, and lower Kellogg Creek. Projects within the Delta would help to achieve the plan's species-level goals for giant garter snake, tricolored blackbird, Swainson's hawk, and western pond turtle. The HCP/NCCP does not cover fish species, including salmonids, and the impact on fish is addressed through separate consultation and permitting.

SOUTH SACRAMENTO HCP

Currently under development, with a working draft released in 2010, the primary focus of the South Sacramento HCP is to protect vernal pool and other upland habitats that are being diminished by vineyards and development, but it also protects wetland and riparian habitats and agriculture. The plan covers several special status terrestrial species that also inhabit the Delta, such as Swainson's hawk, tricolored blackbird, sandhill crane, giant garter snake, Valley elderberry longhorn beetle, western pond turtle, white-tailed kite, California tiger salamander, and western burrowing owl. The geographic scope of this HCP includes a small portion of the Sacramento-San Joaquin Delta in Sacramento County, extending from about the Stone Lakes National Wildlife Refuge in the north (and up to Florin Road in Sacramento) to Tyler Island in the south. The westernmost boundary of the plan

34

GUIDE TO RELATED & ALIGNED PLANS & PROGRAMS - CONTINUED

area is the Sacramento River. Portions of the Plan Area are included in the Delta Conservation Framework's secondary planning zone, where habitat could become important for species such as sandhill crane and giant garter snake as sea levels rise and other future conditions render legal Delta habitat less suitable. Reserve areas adjacent to the Delta could also provide stepping-stone connectivity between Delta wildlife populations and populations to the east. This HCP does not address aquatic species, as they have historically been covered by U.S. Army Corps of Engineers' (USACE) 404 permits and CDFW Streambed Alteration Agreements. Programmatic permits that may be incorporated into the HCP are developed by Sacramento County in collaboration with the USACE, U.S. Environmental Protection Agency, and CDFW.

SOLANO MULTISPECIES HCP (MSHCP)

The Solano MSHCP is still in development, with a final administrative draft updated in October 2012. This HCP will promote conservation of biodiversity and preservation of covered species and their habitats in relation to urban development, flood control, and infrastructure improvement activities. Federally- and state-listed fish species and other species of concern on lands within the Delta will be included in the HCP as covered species. These include many of the species also covered by the Bay Delta Conservation Plan. Natural communities to be protected include grasslands and vernal pools, riparian and stream habitats, and marshes. The plan area includes all of Solano County and a small portion of Yolo County, overlapping the Delta primarily in Suisun Marsh and the vicinity of Cache and Lindsey sloughs.

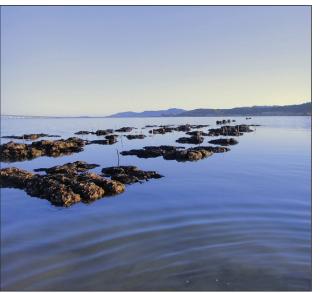
SAN JOAQUIN COUNTY MULTI-SPECIES HABITAT CONSERVATION AND OPEN SPACE PLAN (SJMSCP)

Approved in 2001, this HCP was developed to provide guidelines for preserving agriculture and protecting species in the context of conserving open space and protecting it from conversion to other land uses. The geographic scope includes all lands within the legal Delta that overlap with San Joaquin County, as well as secondary zones to the east and southwest of the Delta. The purpose of the plan is to balance the need to conserve open space and special status species with the region's agricultural economy and landowner property rights. The SJMSCP is a 50-year plan covering 97 special status plant, fish, and wildlife species in 52 vegetative communities. The covered species in the Delta are mostly the same species covered by the BDCP and some species not included in the BDCP, such as bank swallow.

YOLO HCP/NCCP

A second administrative draft of the Yolo county-wide HCP/NCCP, which is under development, was released in 2015. This plan will address the conservation of 70-80 species in five habitat types: wetland, riparian, oak woodland, grassland, and agricultural lands. It will not address aquatic species; however, project-specific mitigation will be developed for projects affecting aquatic resources. Yolo County only overlaps the Delta in the Yolo Bypass and the area between the Sacramento Deep Water Ship Channel and the Sacramento River. However, there are numerous special status species that inhabit this area, including valley elderberry longhorn beetle, giant garter snake, Swainson's hawk, western burrowing owl, and tricolored blackbird; there was even a sighting of least Bell's vireo.

Human Use of Restored and Naturalized Delta Landscapes


This one-year study explored the California Delta from an integrative human-environment perspective. It offers a holistic integration of multiple goals and land use agendas using a landscape planning approach. Released in 2016, the report advances a reconciliation approach, which seeks synergies between ecosystem needs and the desires of those who live, work, and play in the Delta, both now and in the future. Recommendations include the need for a significant shift in the way restored Delta landscapes are conceptualized and considered in planning, policy, and design efforts and advocating for an approach in which human presence is understood as integral to these landscapes. This will require integration of a multitude of values — economic, ecological, scientific, and recreational — and will make restorative efforts more realistic and effective. However, reconciling human uses with restoration objectives will also require a more holistic type of stewardship. Implementing adaptive management efforts is therefore a further recommendation. combined with adequate resources for support.

Many of the recommendations in this report are also integrated into the *Delta Conservation Framework* overarching goals, and they were also voiced and captured during the 2016 stakeholder workshop process (see Appendix 4). In particular, Goals A-C address human integration into Delta conservation processes and the heightening of national, state, and even local awareness of Delta values and culture.

San Francisco Estuary Comprehensive Conservation and Management Plan

Known as the CCMP or *Estuary Blueprint*, this 2016 plan incorporates input from more than 70 organizations that reached collaborative agreement on four long-term goals to be achieved by 2050, plus 32 actions to be taken prior to 2021. The aim is to protect, restore, and sustain the San Francisco Estuary including the Delta and San Francisco Bay.

The overarching goals of the Delta Conservation Framework entirely or in part align with the four long-term CCMP goals to: 1) Sustain and improve the Estuary's habitats and living resources (Goals C-D); 2) Bolster the resilience of Estuary ecosystems, shorelines, and communities to climate change (Goals D-E); 3) Improve water quality and increase the quantity of fresh water available to the Estuary (Goal C - water quality; overall freshwater flow quantities are not addressed by the Delta Conservation Framework); and 4) Champion the Estuary (Goals A-B, and F-G).

In the lower Estuary, biologists and shoreline planners are experimenting with human-engineered oyster reefs that can improve water quality, enhance habitats for estuarine species, and protect nearby communities from storm surge and sea level rise. Such living shorelines are an important element in the Estuary Blueprint. Photo: Kathy Boyer

The Delta Conservation Framework goals also align with the CCMP action priorities to: improve our understanding and monitoring of how watersheds support aquatic resources and to connect the management of streams, rivers, and downstream habitats; to protect and grow a healthy mosaic of habitat types along shorelines and riparian banks; maintain ecosystem function and bolster food webs, connections between habitats, and the movement of fresh water and sediments through the Estuary; support ecological adaptations to rising sea levels through natural infrastructure (wetlands, horizontal levees, buffering habitats); encouraging water conservation, recycling, and regional planning to increase supply without diverting more from fish to cities; keep addressing pollution challenges; persist in finding solutions to climate challenges, including wetland related carbon sequestration and other solutions for improved and resilient land use practices; and make strides in informing and integrating the public in planning and implementation activities.

> While the Delta Conservation Framework only addresses the CCMP goals and priority actions within the upstream portion of the Estuary, the short- and long-term effects of implementation through regional conservation partnerships will extend downstream and out into the Pacific ocean; and perhaps will address upstream conditions as sea level rises and salinity and other effects felt in the Bay reach further into the Delta. Therefore, a sustained and improved connection among efforts in the upstream (Delta) and downstream (Bay) regions of the Estuary will become increasingly important.

The Suisun Marsh Habitat Management, Preservation, and Restoration Plan

This comprehensive, 30-year plan (the SMP) addresses habitats and ecological processes, public and private land use, levee system integrity, and water quality through tidal restoration and managed wetland activities. The SMP's purpose is to create an acceptable balance between protection and enhancement of managed wetlands and the restoration and protection of tidal wetlands. The SMP was developed by and is overseen by the Suisun principal agencies: the U.S. Fish and Wildlife Service; U.S. Department of Interior, Bureau of Reclamation; California Department of Fish and Wildlife; Department of Water Resources; National Marine Fisheries Services: Suisun Resource Conservation District: and the Delta Stewardship Council (successor to the CALFED Bay-Delta Program).

The objectives of the SMP are to preserve and enhance the quality and diversity of the Suisun Marsh aquatic and wildlife habitats and to assure retention of upland areas adjacent to the marsh in uses compatible with its protection.

These objectives are integrated within Delta Conservation Frame*work* Goal C, Strategy C2 "Support sustainable wildlife-friendly agriculture to provide additional wildlife and migratory bird habitats," and Goal D, strategies D1-D2, "Restore, enhance, and manage ecosystem processes Delta-wide to improve function and life history support for native and migratory wildlife, and to build ecological resilience," and "Conduct technical analyses within groups such as regional conservation partnerships to coordinate, identify, and prioritize available geographic areas for conservation and climate adaptation."

For implementation of projects in Suisun Marsh, individual project proponents should work closely with the Suisun Resource Conservation District and the San Francisco Bay Conservation and Development Commission.

GUIDE TO RELATED & ALIGNED PLANS & PROGRAMS - CONTINUED

Water Quality Control Plan for the San Francisco Bay/ Sacramento-San Joaquin Delta Estuary

The California State Water Resources Control Board (State Water Board) put out this plan in 2006 (the Bay-Delta Plan), which focuses on beneficial uses to be protected and water quality control measures needed to afford sound protection of these uses in the watershed. The plan is implemented through water rights and other measures. The State Water Board administers water rights in the Bay-Delta watershed and is currently in the process of updating the Bay-Delta Plan and flow objectives for priority tributaries to the Delta to protect watershed beneficial uses. The first phase updates San Joaquin River flow and southern Delta water quality requirements, followed by other comprehensive changes to protect beneficial uses not addressed in Phase 1 (e.g., Delta outflows, Sacramento River inflows, Suisun Marsh salinity, Delta Cross Channel gate closure, export limits, reverse flows). Additional phases involve changes to water rights and other measures to implement changes to Phases 1 and 2, as well as developing and implementing flow objectives for priority Delta tributaries outside of the Bay-Delta Plan updates.

The Delta Conservation Framework addresses water quality challenges and solutions only in the context of conservation project planning and implementation and so defers to the *Bay-Delta Plan* for addressing the more comprehensive requirements for Delta-wide water quality improvements.

Yolo Bypass Salmonid Habitat Restoration and Fish Passage Implementation Plan

Prepared jointly by the Department of Water Resources and Bureau of Reclamation in 2012, the Yolo Bypass Salmonid Habitat Restoration and Fish Passage Draft Implementation Plan addresses two specific Reasonable and Prudent Alternative (RPA) actions in the National Marine Fisheries Service state and federal water project Biological Opinion for the recovery of endangered salmonid species, focused on increased seasonal inundation and fish passage in the Yolo Bypass:

RPA Action I.6.1: Restoration of floodplain rearing habitat, through the increase of seasonal inundation within the lower Sacramento River basin; and

RPA Action I.7: Reduce migratory delays and loss of salmon, steelhead, and sturgeon, through the modification of Fremont Weir and other structures of the Yolo Bypass.

Flooding in approximately 80 percent of years, the Yolo Bypass offers many characteristics of historic floodplain habitat favorable to various fish species. Flood protection is the primary function of the Yolo Bypass, with managed agricultural activities in most of the area during the dry season. At present, a number of Yolo Bypass focused restoration projects are being planned and implemented through the California EcoRestore initiative.

The associated Yolo Bypass Cache Slough Partnership, convened in 2016, also provides a vehicle for local governments to be involved in planning and decision making. Made up of 15 local, state, and federal agencies, the Partnership's purpose is to improve executive-level interagency coordination. The policy-level Partnership emphasizes the importance of achieving across-the-board improvements in habitat, flood protection, agricultural sustainability, recreation, and other public values. This foundational acknowledgement has set the stage for improved trust between stakeholders, a key ingredient in successful efforts of this scale.

QUICK LINKS

See Appendix I for full references and end notes

Bank Swallow Technical Advisory Committee (2013) https://www.sacramentoriver.org/bans/index. php?id=recovery

Bay Delta Conservation Plan Public Draft (BDCP 2013)

http://baydeltaconservationplan.com/ EnvironmentalReview/EnvironmentalReview/2013-2014PublicReview/2013PublicReview-DraftBDCP.aspx Accessed 6/2/16.

California EcoRestore projects (CNRA 2017) http://resources.ca.gov/ecorestore/california-ecorestore-projects/ Accessed: August 24, 2017.

California State Parks Recreation Proposal for the Sacramento-San Joaquin Delta www.parks.ca.gov/?page_id=26677

California State Wildlife Action Plan (CDFW 2015 update)

www.wildlife.ca.gov/swap/final

California Water Action Plan (CDFA and CalEPA 2014)

http://resources.ca.gov/docs/california_water_action_plan/Final_California_Water_Action_Plan. pdf

California Water Action Plan Update (CNRA, CDFA and CalEPA 2016)

http://resources.ca.gov/docs/california_water_action_plan/Final_California_Water_Action_Plan.pdf

Central Valley Flood Protection Plan: Public Draft (DWR 2011, 2012) www.water.ca.gov/cvfmp/docs/2012_CVFPP_ FullDocumentHighRes_20111230.pdf

Central Valley Flood Protection Plan Conservation Strategy (DWR 2016), Sacramento, CA

https://water.ca.gov/Programs/Flood-Management/Flood-Planning-and-Studies/Conservation-Strategy Accessed: August 24, 2017

ERP Conservation Strategy for Restoration of the Sacramento-San Joaquin Delta, Sacramento Valley and San Joquin Valley Regions (CDFW2014) https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=31232&inline

Accessed December 29, 2015

The Delta Plan: Ensuring a reliable water supply for California, a healthy Delta ecosystem, and a place of enduring value (Delta Stewardship Council 2013) http://deltacouncil.ca.gov/delta-plan-0 Accessed: June 23, 2016

Conservation Plan for the Tricolored Blackbird (Kester 2007) www.fws.gov/migratorybirds/pdf/management/

focal-species/TricoloredBlackbird.pdf

Conservation Strategy for Swainson's Hawks in California

www.swainsonshawk.org/Images/Conservation%20Plan%2009%20final.pdf

Delta Economic Sustainability Plan http://delta.ca.gov/regional_economy/ economic_sustainability/

A Delta Renewed: A guide to science-based ecological restoration in the Sacramento-San Joaquin Delta (SFEI 2016) www.sfei.org/sites/default/files/project/SFEI_DeltaRenewed_102616_lowres.pdf Accessed January 25, 2017

A Delta Transformed: ecological functions, spatial metrics, and landscape change in the Sacramento-San Joaquin Delta (SFEI 2014) www.sfei.org/documents/delta-transformed-ecological-functions-spatial-metrics-and-landscape-change-sacramento-san Accessed: January 26, 2016

East Alameda County Conservation Strategy (EACCS 2010) www.eastalco-conservation.org/documents.html

Accessed: June 29, 2016

East Contra Costa County Habitat Conservation Plan and Natural Community Conservation Plan (ECCCHC 2006) www.co.contra-costa.ca.us/depart/cd/water/HCP/ documents.html Accessed: December 22, 2011

Estuary Blueprint, San Francisco Estuary Comprehensive Conservation and Management Plan (SFEP 2016) www.sfestuary.org/ccmp/

Human Use of Restored and Naturalized Delta Landscapes (Milligan-Kraus-Polk 2016) https://watershed.ucdavis.edu/files/biblio/ Human%20Use%20Report_for%20screen%20 viewing%20%28spreads%29.compressed.pdf

Restoring the Sacramento-San Joaquin Delta Ecosystem (CNRA 2015) http://resources.ca.gov/docs/ecorestore/ECO_FS_ Overview.pdf

Recovery Plan for Sacramento River winter-run Chinook salmon, Central Valley spring-run Chinook salmon and California Central Valley steelhead (NMFS 2014)

www.westcoast.fisheries.noaa.gov/protected_ species/salmon_steelhead/recovery_planning_ and_implementation/california_central_valley/ california_central_valley_recovery_plan_documents.html

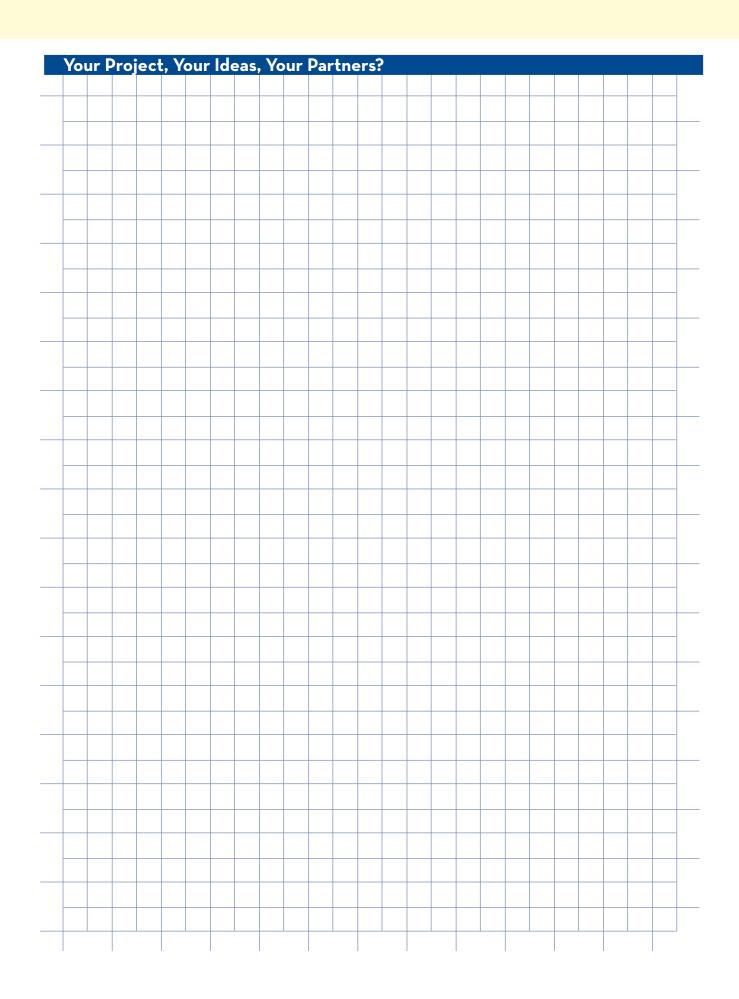
Suisun Marsh Habitat Management, Preservation, and Restoration Plan (USBR, USFWS and CDFG 2013) www.wildlife.ca.gov/Regions/3/Suisun-Marsh

The Riparian Bird Conservation Plan (Point Blue, California Chapter of Partners in Flight 2016) www.prbo.org/calpif/pdfs/riparian_v-2.pdf

San Joaquin Multispecies Habitat Conservation and Open Space Plan (SJMSCP 2000) www.sjcog.org/DocumentCenter/View/5

Solano Multispecies Habitat Conservation Plan (draft Solano County Water Agency 2012) www.scwa2.com/water-supply/habitat/ solano-multispecies-habitat-conservation-plan

South Sacramento Habitat Conservation Plan www.southsachcp.com


Water quality control plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary (SWRCB 2006)

www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/wq_control_ plans/2006wqcp/

Yolo Bypass salmonid habitat restoration and fish passage implementation plan (DWR and Reclamation (2012)

www.water.ca.gov/fishpassage/docs/yolo2.pdf Accessed: 6/3/16.

Yolo Habitat Conservation Plan and Natural Community Conservation Plan (draft 2015) www.yolohabitatconservancy.org/documents

SECTION II

Integrating Delta Community with Conservation

The Delta as an Evolving Place43		
A Regional Approach to Conservation45		
Framework in Depth:		
Goal A: Incorporating Regular Stakeholder Communication into Conservation Practice46		
Goal B: Delta Promotion at Local, State, and National Levels		
Goal C: Floating all Boats51		
Central Delta Corridor Parcels Conservation Opportunity Region63		
Guide to Supporting Partnerships70		

KEY TERMS

- DELTA AS PLACE The concept of "Delta as Place" emerged from the 2007 Delta Vision Blue Ribbon Task Force process¹ and connects to the language in the Delta Reform Act of achieving the coequal goals "in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place" (California Water Code §85054).²
- LANDSCAPE-SCALE BENEFITS The larger the scale of the planning context for conservation, the greater the potential benefits for the ecosystem. Projects planned on a "landscape scale," beyond individual parcels, can multiply benefits for fish and wildlife. Connecting individual projects across a landscape over the long term can yield bigger returns.
- MULTI-BENEFIT PROJECTS Multiple benefits projects balance environmental and human needs either at the project scale, or the landscape scale to result in a variety of beneficial outcomes. As long as projects contribute to multiple benefits in the larger landscape context, not all have to result in multiple benefits at the project scale. Examples include: wildlife-friendly farming, multi-use floodplains that provide flood protection and agricultural fields with annual crops that provide habitat, and low-impact outdoor recreation in conservation areas.

WILDLIFE-FRIENDLY FARMING

endeavors to integrate conservation and agricultural production to benefit wildlife and conserve biodiversity on land that is used to produce food, crops, livestock, and other commodities.

• HABITAT EXCHANGES are voluntary programs that use habitat credit markets and financial returns for landowners to encourage willing landowners to provide wildlife habitat. The Central Valley Habitat Exchange aims to generate a future where landowners are rewarded for sustainable management and restoration activities that result in measurable environmental improvements. Improvements include healthier streams, resilient floodplains and riparian corridors that translate into more jobs and support benefits for farmers who "grow" habitat.

The Delta Conservation Framework footnote and endnote references can all be found in Appendix 1 online by section.

Introduction

There is growing recognition that for conservation practices to be successful they must be reconciled with the needs of Delta community members, tribes, and all Californians.¹

Looking back, early examples show that this is possible.² Native Californians have lived in the Delta region sustainably for at least 6,000 years. Traditional resource management, such as fire management in the Great Valley, has been shown to increase habitat quality and species diversity, reduce evapotranspiration losses, attenuate peak flood flows, prolong stream flows, and increase production of culturally significant resources.

Over time, use of the Delta has intensified, however. As the Delta's population grows, as demand for fresh water and agricultural products continues, and as habitat for birds, fish, and wildlife shrinks, finding ways to do more with less for the benefit of all is becoming an urgent priority for residents and resource managers alike.

Today, the Delta is at a crossroads. In the last two hundred years, reclamation and agricultural development rapidly transformed the Delta from a natural landscape laced with rivers and marshes into a highly developed patchwork of levees, channels, farms, fields, towns and water conveyance systems. Over the next hundred years — faced with pressure to change the water conveyance system,³ subsidence, weakening levees, endangered species, rising sea levels, and new climate extremes — the Delta must change rapidly again.

Restoring ecological processes will nurture ecosystem resilience in the face of future changes and will ensure continued and improved ecosystem services to local Delta communities and agriculture. This includes, but is not limited to open space; opportunities for hunting, fishing, boating, and other recreation that also promote tourism; clean water and fertile soils; subsidence reversal; carbon sequestration; crop pollination; biodiversity; and flood control. (See also Key Terms p.14)

This section of the *Delta Conservation Framework* highlights the need for a more comprehensive, public facing approach to conservation. It explores three specific goals designed to ensure that all stakeholder perspectives – whether business, community, recreational or resource management — are included when planning and implementing conservation in the Delta.

Goal A focuses on stakeholder communication and integration with regional planning partnerships.

Goal B focuses on outreach campaigns to local, statewide, and national audiences.

Goal C focuses on how the integration of conservation goals and existing science and planning can help achieve multi-benefit outcomes for Delta ecosystems and local communities.

While these are important foundational goals for the *Delta Conservation Framework*, it is important to acknowledge that solutions intended to benefit both the Delta ecosystem and local communities may not always result in equal benefits. Solutions, at one point or another, will inevitably include disadvantages, or even losses, for some stakeholders.^{4,5,6,7} Recognizing the potential for unequal benefits must be a first step in any effort to gain the trust and cooperation of stakeholders.

Riverfront agricultural facility near Clarksburg in the heart of the Delta. Photo courtesy Delta Protection Commission

Public Feedback from 2016 Workshops

As described in Section I, efforts to engage stakeholders early in the Delta Conservation Framework planning process, and to start to develop a mutual understanding of common goals, included a series of public workshops in 2016. The workshops revealed that many Delta farmers, business owners, and residents feel that they have gotten the "short end of the stick" in the past, in terms of being given meaningful opportunities to share their views and contribute to the conservation and water planning going on all around them. In some cases, participants attended the 2016 workshops to avoid a potential negative effect on their lands or livelihoods. In other cases, participants were motivated by their desire to undo some of the degradation of Delta ecosystems caused by humans over the past century.

Participants in the 2016 workshops expressed particular concern about the possible impact of conservation on agriculture and Delta counties and communities. Many of these concerns pertain to the economic impacts of converting productive agricultural farmlands to wildlife habitats, floodplains, or other landscapes with benefits to ecosystem health. Concerns expressed about such conversions included the loss of a local tax base for Delta counties, and associated decreases in agricultural processing, labor, and equipment sales.

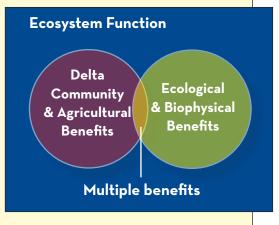
Workshop participants also expressed concerns about being subject to constraints on agricultural operations that might result from the presence of sensitive species on or near private property; the spread of invasive species onto their properties from nearby conservation areas, or vice versa; drainage and seepage from restoration or levee setback sites onto agricultural lands, or vice versa; and other unintended but potential impacts associated with implementation and management of conservation lands, and, in some instances, with public access to conservation lands.

Although it is possible to plan conservation projects with minimal impacts and multiple benefits, the degree of agricultural and community benefit from conservation will likely vary within the Delta and over time. Partnerships, projects and strategies developed through the *Delta Conservation Framework* will emphasize appropriate solutions with long term benefits for all stakeholders whenever possible. They will also focus conservation efforts on public lands first, and on providing lasting support and incentives for private landowners willing to engage in conservation.

Delta communities clearly also recognize that conservation can have positive impacts on their environment and the fish, wildlife, and waterways many rely on for tourism, hunting, fishing, boating, and quality of life. The way of life, and the quality of life, in the Delta are fundamentally supported by functional ecosystems. The ecosystem services provided by conservation efforts benefit all those that are part of the ecosystem, not just salmon, smelt, cranes and otters, but also women, men and children. As such, conservation projects that have small-scale impacts on agriculture should be considered in light of the potential direct and indirect larger, landscape-scale, benefits of ecosystem conservation to society. Ultimately restoring ecosystem processes via conservation may contribute more to local and statewide economies than maintaining marginal agricultural lands in perpetuity. The Delta Conservation Framework seeks to provide a framework for making these kinds of decisions with real consideration for the rich context of the Delta - people, place, and wildlife. It is imperative that all stakeholders get a chance to collaborate in conservation planning efforts and help make "all boats float" in the Delta in the long term.

Walnut Grove ice cream joint. Photo: Amber Manfree

Pear festival in Courtland. Farm festivals in the Delta offer a nexus between tourism, community, and stewardship. Photo courtesy Delta Protection Commission


Delta as an Evolving Place

As mentioned above, in order for conservation to succeed it must occur in a context – such as the *Delta Conservation Framework* — that acknowledges the importance of an evolving place and the people who live there.

The phrase "Delta as Place" emerged from the 2007 Delta Vision Blue Ribbon Task Force process.^{8,9} "Delta as Place" acknowledges that the Delta is a place for people, homes, and businesses, filled with history, cultural richness and diversity, as well as that the Delta is a critical hub for water distribution in California and an important ecosystem.¹⁰

The phrase connects to language in the Delta Reform Act directing that the state's co-equal goals of a reliable water supply and healthy ecosystem be achieved "in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place" (California Water Code §85054). This language calls for consideration of the human dimension in ecosystem conservation. The Delta Plan, in turn, articulates a number of ways to achieve this reconciliation of human uses and protection of the Delta ecosystem in the future.^{10,11} The Plan also outlines regulatory policies, recommendations, and performance measures that track progress toward this end.10

Participants in the 2016 *Delta Conservation Framework* workshops described "Delta as Place" as a local feeling and great love for the Delta as a home, rooted in a multi-generational linkage to the land and in a way of life founded on farming and land management. They also recognized, however, that these strong ties to the landscape and its history may impart a reluctance to embrace change, especially if change is initiated from outside of local communities. Those Delta community members who participated in the 2016 workshops expressed concern that their lifestyle could cease to exist, or drastically change, if state agencies manage more land in the Delta and displace farms, orchards, pastures, and people. Participants also expressed concern that conversion and restoration of agricultural lands to habitat, or other state purposes, could adversely affect water quality and availability and also increase regulatory restrictions on their agricultural activities.

Stakeholder input suggests that research into potential socioeconomic effects, and acknowledgement of local concerns, needs to inform ongoing planning and implementation of conservation projects to be successful. Addressing local concerns may also help to achieve buy-in for long-term solutions.^{12,13,14,15,16} For example, as Delta conditions evolve over time due to climate change or changes in markets, which could both affect which crops are grown, some loss of agriculture could be balanced by improved long-term economic sustainability or other benefits.

Other entities and initiatives are now furthering the preservation of "Delta as place," and inform the Delta Conservation Framework. For example, Chapter 5 of the Delta Plan, Protect and Enhance the Unique Cultural, Recreational, Natural Resource, and Agricultural Values of the California Delta as an Evolving Place, describes the cultural values that make the Delta a unique place and outlines a series of five core strategies to protect and enhance those values. These core strategies include designating the Delta as a special place in state and national registries, maintaining Delta agriculture, encouraging recreation and tourism, sustaining a healthy and diverse Delta economy, and developing plans to protect Delta lands communities.

In addition to the strategies outlined in Chapter 5 of the *Delta Plan*, the Delta as Place Interagency work group was established by the Delta Protection Commission to implement related *Delta Plan* policies and recommendations and to advance Delta

BENEFITS OF CONSERVATION TO DELTA COMMUNITIES

- Control of invasive aquatic vegetation in both conservation areas and adjacent agricultural and recreational waterways and marinas
- Climate change mitigation, adaptation, resiliency
- Removal of submerged debris and abandoned vessels in or near conservation sites
- Discouragement of unsanctioned activities, such as illegal dumping, poaching, unauthorized camping
- Installation and management of water gates, screens, and barriers for the benefit of fisheries and irrigation systems
- Improvement of water quality
- Beneficial reuse of dredge material in restoration of tidal wetlands (e.g., subsided lands or flooded islands or land-side of levees)
- Improvement of fishing access from levees and public conservation staging areas; enhanced wildlife viewing destinations accessible from boats (e.g., Calhoun Cut Ecological Reserve)
- Direct public access in certain conservation area
- Enhanced tourism subsidizing local Delta businesses
- Improvement of air quality and scenic value from the planting of trees
- Public stewardship

"If there isn't community buy-in on restoration projects then they're often seen as an imposition rather than a type of amenity for the community. Those projects that have a good connection with the local community really increase their rate of success, because you have those communities looking out for those projects. If restoration is imposed, it plays itself out where it can get sabotaged, and there isn't support for it. I think most of the scientific community is aware of this now. I'm not sure we have a set of best practices yet. But I think they will have to come to light through trial and error."

BRETT MILLIGAN, UC DAVIS

values. Some of this work involves coordinating activities across federal, state, and local agencies to promote Delta agricultural sustainability, culture, economic development, energy and transportation infrastructure, recreation, and subsidence reversal/ carbon markets.9 Recent work group actions include several initiatives: Community Action Planning, Delta Narratives, a Delta Awareness Campaign, a Delta Leadership Program, and a proposal for a federal designation of the Delta as a National Heritage Area.⁹ This kind of heritage area is defined as "a region designated by the United States Congress, where natural, cultural, historical, and recreational resources combine to form a cohesive, nationally-distinctive landscape arising from patterns of human activity shaped by geography."9

If community attitudes and conservation planning are to evolve as the Delta evolves, and as what defines the "Delta as place" evolves, the region requires a more inclusive and adaptive long-term planning process. Many stakeholders, including government agencies, are rooted in the status quo. With so much change ahead, however, preparing for the future now, using the forward-thinking collaborative effort including representation of the various interests proposed by the *Delta Conservation Framework*, is in everyone's best interest.

A Regional Approach to Conservation

A strong thread throughout the *Delta Conservation Framework* is to focus on "regions" that make sense in terms of landscapes, watersheds, ecosystems, human history, or communities as an organizing principle for conservation work in the future.

The Framework references a number of different kinds of "regional" approaches:

- **Regional Conservation Partnerships** made up of diverse interests, public and private, that work together to achieve landscape level goals;
- **Regional Conservation Strategies** developed by regional partnerships that map out how conservation goals might be achieved in the regions with an eye toward fitting the regional pieces together across a larger landscape picture;
- Conservation Opportunity Regions roughly identified by Delta stakeholders where promising opportunities for major conservation and restoration successes exist (see maps pp. 20 & 170);
- Regional Conservation Investment Strategy (RCIS), a California Department of Fish and Wildlife program offering a structure for analysis, assessment, scenario-planning, investment and mitigation to regions interested in developing nonbinding, voluntary conservation and habitat enhancement actions around focal species and habitats (see also Section V).*

Of the above, the "regional conservation strategy" is a central organizing idea for implementation of the *Delta Conservation Framework*. A regional strategy might be an existing plan, such as the *Suisun Marsh Habitat Restoration and Management Plan*, or a new plan. The main idea is to develop non-regulatory, long-term, broadly supported regional conservation action plans. These would be developed collaboratively by a regional planning partnership comprised of public agencies.

Each regional conservation strategy would be aligned with the overarching goals and strategies of the *Delta Conservation Framework* while tailoring a set of conservation objectives, specific actions, and an adaptive management framework to the needs of a given region.

The Framework also suggests a process for integrated scenario planning to support existing and new regional partnerships in the development of regional conservation strategies. Through this process, regions can select a priority scenario representing the most favorable multiple benefit outcomes for implementation (see Section VI).

* While the core ideas of regional partnerships, strategies, and conservation opportunity regions presented here are the foundation of the Framework, they appear largely without capitalization throughout these pages to underscore an intent of inclusivity and collaboration.

Regional scale planning enables the Yolo Bypass to be used for multiple benefits, including farming and habitat, and protects nearby Sacramento from flooding (such as this January 2017 event). Photo: Carson Jeffres

Framework in Depth: Goal A

Integrate Stakeholder Communication in Conservation Practice

Public agencies, restoration practitioners, and scientists can all benefit from working in collaborative partnerships with Delta residents, landowners, farmers, tribes and nongovernmental organizations, at the local and regional levels, to plan conservation projects.^{1,10,11,13,14} The intention of these partnerships is to overcome the current climate of guardedness and move toward sustained communication and collaboration. Mutual respect for, and a commitment to, evaluating challenges and opportunities together is essential to the success of conservation. Delta ecosystem function could be greatly improved through support for multi-benefit projects.1,8,10

Collaborative Regional Partnerships

Strategy A1 under Goal A of the Delta Conservation Framework encourages the development of collaborative regional partnerships among public and private stakeholders to inform conservation planning. The work of such partnerships is to develop and implement regional conservation strategies within subregions of the Delta, using scenario-planning and decision-making approaches like those outlined in Section VI. These strategies should explore the most appropriate conservation scenario solutions for their sub-region, and consider local ecosystems, land uses, and needs of Delta communities in the process. As regional conservation strategies are developed, they should they not focus on adopting specific conservation measures from the Bay Delta Conservation Plan (see p. 30); they should, however, consider existing acreage targets detailed in regulatory and compliance plans.

As described above, stakeholder input from the 2016 workshops identified both existing regional partnerships and subregions of the Delta (subsequently referred to as conservation opportunity regions) where it makes sense to expand conservation efforts, support existing and new collaborative partnerships, and undertake strategic conservation planning.

The Framework also emphasizes the importance of executive level coordination and facilitation of habitat restoration in the Delta. A combination of such support and independent advisors can help overcome institutional hurdles related to project permitting, long-term management, and project implementation.

Local entities with strong ties to agriculture, such as farm bureaus or leaders within local agricultural communities, could also serve as liaisons to ensure the use of good-neighbor practices consistent with Department of Water Resources' (DWR) Agricultural and Land Stewardship Workgroup strategies¹⁷ (see pp. 48 & 75). These regional liaisons would also ensure that any new priorities emerging from socio-economic studies supporting project planning and implementation be addressed. Regional conservation opportunity areas are featured within each Framework section and include the Suisun Marsh, Yolo Bypass, Cache Slough Complex, Central Delta Corridor, West Delta, South Delta, and North Delta (see pp. 63, 90, 121, 149, & 175).

The Delta Conservation Framework also suggests that easily accessible web tools and content be made available to support regional conservation partnerships. These resources could include existing conservation planning tools such as the Open Standards of the Practice of Conservation¹⁸ and web links to current agency webpages, including CDFW, DWR, the Delta Conservancy, the Delta Protection Commission, the Delta Stewardship Council, and the Good Neighbor Checklist prepared by DWR¹⁷ (see Table 2.2, p. 75). Websites and online forums (e.g., blogs, email list serves) should be designed to facilitate early and consistent communication among all Delta stakeholders. Physical mailings, published announcements, and posted flyers could also be used to inform potentially interested Delta community stakeholders about conservation-related meetings within each Delta region.

Major existing and emerging conservation efforts that are building blocks within the *Delta Conservation Framework* include:

- The Suisun Marsh Habitat Management, Preservation and Restoration Plan, established in 2013 to provide a structure for conservation planning and implementation in the Suisun Marsh region.
- The Central Valley Joint Venture Implementation Plan that outlines objectives for Central Valley habitats that support waterfowl, shorebirds, waterbirds, and riparian songbirds.¹⁹
- The Yolo Bypass-Cache Slough Complex Planning effort, which includes the Yolo Bypass-Cache Slough Partnership, the Corridor Management Framework, and the Yolo Bypass Working Group, that serve as a conduit for successful conservation planning and management in the Yolo Bypass-Cache Slough region.

47

GOAL A

Ensure that regular communication among stakeholders and socioeconomic considerations are integrated into all Delta conservation initiatives.

STRATEGY A1

STRATEGY A2

Maintain and expand communication among diverse individuals, organizations, and agencies with a stake in conservation planning.

- Use existing collaborative regional partnerships and regular coordinated forums to plan, implement, and manage conservation; evaluate progress; and engage in adaptive management.
- Foster new regional partnerships in areas without existing partnerships.
- Support the use of existing tools (such as best practice checklists, science based project design recommendations, and online scenario-building and decision-making methods) to engage stakeholders when planning or developing regional conservation strategies.

- ion among Align conservation practices with best and agencies practices that support Delta agriculture and ing. Consider the Department of Water Resour
 - Consider the Department of Water Resources' Agricultural and Land Stewardship Workgroup strategies, as well as socioeconomic and natural resource management. research (existing, ongoing, or new), in the planning of regional conservation strategies.
 - Identify local experts in land use and agriculture as points of contact for individual projects and regional planning efforts.
 - Consider relevant findings from socioeconomic research in conversation planning.
 - Update conservation practices as ecosystem and stakeholder needs evolve and change.
- The Central Corridor Partnership, which is a regionally focused effort of public landowners and owners of publicly funded lands along the Central Delta Corridor with the goal to develop a regional strategy with coordinated conservation efforts.
- The North Delta Habitat Arc, a reconciled ecosystem strategy that creates an arc of habitats connected by the Sacramento River to benefit native fish and other wildlife.
- The Migratory Bird Conservation Partnership, comprised of three of California's top organizations for bird conservation: Audubon California, Point Blue Conservation Science, and The Nature Conservancy, working with a broad array of partners to develop multi-benefit conservation solutions for birds, wildlife, and human communities to address issues concerning birds' habitat and biological needs.
- The Nature Conservancy's BirdReturns, a pilot project combining crowd-sourced data, hard science and economic incentives to provide pop-up habitats for birds on rice fields in the Sacramento Valley. There is interest and potential to expand this effort to the Delta.
- The Delta Working Landscapes Program, coordinated through the Delta Protection Commission, is providing examples of what wildlife friendly agriculture and wetland restoration measures private landowners could adopt on larger scales throughout the Delta.^{23,24}

See Guide to Supporting Partnerships and Programs on p. 70.

FRAMEWORK IN DEPTH: GOAL A CONTINUED

Agriculture, Land Stewardship and Conservation

Strategy A2 under Goal A of the Delta *Conservation Framework* suggests ways to align conservation practices with agriculture and land stewardship. Local landowners are concerned that conservation projects will take valuable agricultural land out of production, as well as spread invasive species, provide mosquito habitat, impact water supply, increase the risks of drainage and seepage problems, and draw scrutiny from regulatory agencies if listed species move onto their lands. Some participants in the 2016 stakeholder workshops felt that public agencies generally do not manage their lands well, and have insufficient staffing and funding for long-term monitoring and maintenance. They suggested that public agencies focus on finding solutions to improve land management and consider stewardship practices that incorporate agriculture (see also Goal C, Strategy C4).

Several solutions were proposed to address potential conflicts between conservation projects and local community goals. These included incorporating stakeholders' perspectives in conservation planning and implementation processes; using good- neighbor practices when managing conservation lands over the long term; and offering financial, regulatory, or other incentives to compensate landowners for their participation in conservation.

As described under Strategy A1, the *Delta Conservation Framework* suggests that conservation partnerships, state agencies, local agencies, and project proponents should consider the 2014 Department of Water Resources Agricultural and Land Stewardship Workgroup strategies (DWR-ALS)¹⁷ to minimize potential impacts of conservation projects on agricultural lands. The DWR-ALS strategies contain specific tools that balance the needs of agriculture and conservation. They also provide an outline for assessing the ecosystem benefits of a given project, while ensuring that local landowners can achieve or maintain agricultural and economic viability in the surrounding region.

During conservation planning efforts, effective coordination among agricultural practitioners (or their local representatives), local planners, conservation planners, and other stakeholders is essential to ensure that potential impacts to agricultural lands and the environment can be recognized promptly and evaluated.20,21 Farmers and landowners should be involved in planning from the start. Assistance and incentives for farmers and landowners to engage in conservation partnerships are also essential. Because landowners and farmers are often busy managing their own lands, the DWR-ALS strategies¹⁷ suggest the use of public advisors for government projects aimed at conservation. The advisor could serve as a point of contact for agricultural interests in a region, help inform farmers and landowners about ongoing conservation planning processes and advocate for funding to provide incentives to farmers willing to use wildlife-friendly farming practices.

More information on DWR-ALS and Delta Working Landscapes can be found in the Guide to Related Partnerships and Programs on pp. 74-75.

Workers in a Delta field. Photo courtesy DWR-PJH

CONSERVATION ACTIONS WITH SOCIOECONOMIC BENEFITS

- Encourage more farms to adopt wildlife-friendly agricultural practices based on successful examples in the Delta, such as sandhill crane habitat on Staten Island.
- Construct new flood bypasses, or improve existing bypasses, to provide habitat and improve flood protections; for example, in Yolo Bypass and McCormack-Williamson Tract-Cosumnes (north and central Delta) and Paradise Cut (south Delta).
- Conduct restoration on already flooded islands like Frank's Tract to reestablish habitat for listed species, according to the Delta Smelt Resiliency Strategy, before converting productive agricultural land.^{37,38}
- Focus restoration efforts on the mid-channel berms or islands that are in danger of being lost, before converting productive agricultural land, as a wide variety of species are dependent on those types of habitats, including Delta smelt, Chinook salmon, Sacramento splittail, western pond turtle, and Mason's lilaeopsis.
- Encourage the growth of native vegetation on the waterside of Delta levees, where appropriate, to provide habitat for aquatic and semi-aquatic species and provide recreational and tourism benefits.⁴⁰
- In some areas, instead of planning restoration across large swaths of land, enhance existing habitat in smaller restoration areas by improving natural slough structure using dredge and fill material in strategic locations, increasing the variability of flows and water residence times, and creating more natural channel margins along existing sloughs and waterways by establishing native plants. Examples include Twitchell Island and Southport.
- Restore historic floodplains to provide ecosystem benefits onsite and in the Delta to enhance, for example, sediment transport and food web support and to improve system-wide flood management

Source: Adopted from Delta Protection Commission 2012.

Framework in Depth: Goal B

Educate the Public about Delta Cultural and Ecological Values

Most Californians who live and work outside the Delta have little sense of it as a unique place with a rich agricultural and recreational history, or don't understand how Delta ecosystems support local and statewide economies through water supply and other ecosystem services. Some only drive through the Delta on major highways with little notion of "where it begins and where it ends."9 The Delta Conservation Framework recommends that statewide and national Delta education initiatives work in concert with the ongoing Delta Awareness Campaign⁹ to close this awareness gap. These efforts should work to explain the Delta's historical legacy and economic importance to the public and decision-makers, as well as the urgency of improving its degraded natural areas and novel ecosystems (see Key Terms p. 108) so that they can better support Delta residents

and native wildlife. Accordingly, 2016 workshop participants developed a public education goal and related strategies aimed at integrating recognition of the "Delta as an evolving place" with information about the importance of ecosystem conservation. The effort should build on existing education and outreach initiatives and target national, state, and local audiences.

Delta Public Education

Strategy B1 under Goal B of the Delta Conservation Framework suggests the importance of a well-coordinated, widely accessible local education program that heightens public awareness of, and support for, conservation and restoration activities. This increased awareness will foster ongoing local collaboration in conservation planning and increase appreciation for the direct and indirect contributions of ecosystems to people's well-being and quality of life. For example, the ecosystem services provided by conservation — including maintained or expanded areas for boating, fishing, and hunting — benefit both Delta residents and visitors. Increased awareness will also highlight how integrating activities that support conservation with those that support communities and local economies through the Delta Conservation Framework can increase benefits to both. Engaging the local community in conservation related discussions should be an ongoing priority.

The Delta Conservation Framework supports working with the several organizations already engaged in similar activities including: the Delta Regional Foundation, Delta Conservancy, Delta Protection Commission, and Water Education Foundation. One result of these kinds of education efforts has been the Delta Heritage Area Initiative. This initiative will define an area with specific boundaries within which projects and resources are focused to preserve the human heritage of the Delta.⁹ Other educational initiatives have been the non-profit Delta Regional Foundation's Delta Leadership Program and the Delta FOREVER art show, presented at California State University, Sacramento, in March of 2016.22,23

Strategy B2 under Goal B focuses on educating audiences outside the region — across the State of California and the nation — about the Delta. In 2013, the Delta Protection Commission and the Delta Conservancy joined forces in response to a statewide survey that showed that 78 percent of voters had never heard of the Delta. In a two-stage effort they initiated a Delta Awareness Campaign to help educate Californians FRAMEWORK IN DEPTH: GOAL B CONTINUED

Goal B

Support and expand existing public outreach efforts advancing Delta conservation.

STRATEGY B1

STRATEGY B2

Promote and update existing local and regional public education programs to broaden scope, audience, and messaging about future conservation challenges.

- Include educational curricula for all ages integrating agriculture, Delta communities, and ecosystem conservation across large landscapes and regional scales.
- Incorporate education about impending changes to ecosystem services and essential agricultural, wildlife, fish, water, and other common Delta resources from climate change.

Continue support for the implementation and expansion of existing outreach campaigns to statewide and national audiences about the importance of both the Delta and multi-benefit conservation outcomes.

about the Delta as a historic, cultural, recreational, and ecological treasure of the State.⁹ This Delta branding effort – led by the Commission — supported tourism research, identified promising market opportunities in the Delta, and commissioned logos and brand standards for the Great California Delta Trail and the proposed Delta National Heritage Area.⁹ The second phase, led by the Conservancy, is creating a Delta-focused web presence linked to Visit California,²⁴ which will provide a more comprehensive overview of the Delta's cultural, recreational, historical, ecological, and agricultural tourism opportunities to potential visitors.

The *Delta Conservation Framework* also supports a public outreach theme suggested by 2016 workshop participants: "Where does your water come from?" Campaigns answering this question will help inform people throughout California and the U.S. about the Delta as a major source of water and ecosystem services for the fifth largest world economy.²²

The *Delta Conservation Framework* also suggests that the Delta's existing outreach and branding programs be expanded to promote an appreciation for the unique ecosystems and wildlife in the Delta, as well as of impending changes to this unique place associated with climate change, rising sea levels, and extreme weather and precipitation events. Public support will also help fuel future conservation funding initiatives.²⁵

Framework in Depth: Goal C

Seek Multiple Benefits to Float all Boats

When stakeholders and conservationists are able to collaborate, they can identify multi-benefit projects that simultaneously improve ecosystem function and provide human benefits. These kinds of "win-win" conservation strategies include wildlife-friendly farming, multi-use floodplains planted with annual crops, and low-impact outdoor recreation in conservation areas.

The benefits of conservation actions to ecosystems and Delta communities can be realized both immediately after construction and more slowly over the course of years or decades. Individual conservation projects can be designed to achieve multiple benefits within a short time frame, such as incentives for farmers to use wildlife-friendly practices or the addition of hiking trails and boat launches to restoration sites. These shortterm benefits do not preclude more longterm conservation benefits, however. If properly designed, projects should also result in a slow restoration of habitats, biological processes, and ecological function to the Delta system, especially if multiple projects become established within a region.

Such forward thinking, multi-benefit approaches to conservation and agricultural evolution are especially critical for Delta stakeholders preparing for prolonged drought, extreme runoff events, potential levee failures, salinity intrusion and seepage, as sea levels rise and many parts of the Delta continue to sink. Such threats to the Delta's future agricultural productivity ^{26,27,28,29,30} are of particular concern on subsided lands, including most of the western and central Delta islands that are more than 10 feet below mean sea level.

The Delta Conservation Framework suggests that stakeholders explore a variety of

possible solutions to these problems but be sure to consider science-based approaches. Scientific projections of long-term changes in climate, air temperature, precipitation, flooding, ecological trends and economic, social, and land-use priorities can all inform multi-benefit decision-making. If all stakeholders are willing to give a little and embrace certain

"Facing forward will entail envisioning and implementing preferred transitory futures. We will need to drop old battles more quickly and look ahead to what the future holds for our environment and how it fosters our economy and well-being."

RICHARD NORGAARD, PROFESSOR EMERITUS OF ENERGY AND RESOURCES, UC BERKELEY³¹

tradeoffs — short-term losses in light of longer-term gains — community supported, multi-benefit conservation is a real possibility. ^{32,33,34,35}

Flood Management and Conservation

Strategy C1 under Goal C explores opportunities provided by the 2017 Central Valley Flood Protection Plan's (CVFPP) Conservation Strategy.³⁶ The CVFPP strategy presents a comprehensive, non-regulatory approach to providing ecological benefits and protecting public safety through the creation of multi-benefit improvement projects within riverine and floodplain ecosystems. It offers a regional programmatic framework for increasing the efficiency of planning and permitting, improving individual project cost effectiveness, and enhancing ecosystem benefits associated with flood control projects. The Delta Conservation Framework recommends that planning partnerships and project proponents follow the specific guidance in CVFPP Conservation Strategy when planning and implementing projects that integrate flood

Marinas, warehouses, riparian habitats, fishing holes and many other waterfront features all co-exist along Delta channels. Photo: Amber Manfree

Goal C Develop multi-benefit conservation and land management strategies and plans that balance environmental and human needs.

 STRATEGY C1 Incorporate conservation goals in levee maintenance and flood management practices to provide or increase habitat along Delta channels, river corridors, and riparian zones. Work toward the objectives identified by the 2017 Central Valley Flood Protection Plan Conservation Strategy. Collaborate with groups of established flood control experts, such as the Delta Levee Habitat Advisory Committee. STRATEGY C2 	STRATEGY C4 Improve communication and coordination between stakeholders and state and local agencies concerning the ongoing management of state-owned lands. STRATEGY C5
 Support sustainable wildlife-friendly agriculture to provide additional habitat for wildlife and migratory birds. Develop a common, science-based understanding of the potential benefits of wildlife friendly agricultural practices in the Delta. 	Develop best practices that ensure reliable water distribution for in-Delta uses during implementation of conservation plans and projects.
 Use existing incentives (such as agricultural conservation easements and Habitat Exchange programs) and investigate new financial incentives for wildlife friendly farming and ranching. Solicit, reference, and incorporate local agricultural and community expertise in wildlife-friendly agricultural practices during conservation planning. 	STRATEGY C6 Integrate best practices for improving surface- and groundwater quality into conservation project planning and implementation.
 STRATEGY C3 Control and reverse land subsidence and support climate change mitigation efforts in the Delta. Pursue carbon farming projects and conservation funding opportunities provided by growing carbon markets. Prioritize carbon management activities consistent with established carbon sequestration strategies including the practices for Natural and Working Lands in the 2017 AB 32 Climate Change Scoping Plan. Encourage and provide incentives for agricultural practices that reduce subsidence. 	STRATEGY C7 Identify, develop, and implement conservation strategies that integrate habitat management goals and practices across both land and water, and for both terrestrial and aquatic species.

Flooding and levee stress have already started to affect the *Delta during extreme* weather conditions, and such extremes are expected to increase with climate change in the future. In the winter of 2017, heavy rains damaged levees along the North Mokelumne River, forcing residents on Tyler Island to evacuate. Flooding also spurred the evacuation of residents in the New Hope Landing Trailer Park and Marina and damaged farmland. Farmland was damaged along New Hope Road at another levee breach. These areas contain habitat for wildlife, such as the sandhill crane. Planned levee adjustments on nearby McCormack-Williamson Tract (pictured above), where a levee breached in 1997, are intended to provide tidal habitat for endangered species and improve local flood *capacity. Photo: TNC*

management and conservation in the Delta. The *Delta Conservation Framework* also recommends that project proponents coordinate directly with the Delta Levee Habitat Advisory Committee–a group that has been operating for 25 years to balance the need to conduct regular levee maintenance with habitat conservation efforts–and also consult the Delta Levees Investment Strategy Decision Support Tool.^{37,38}

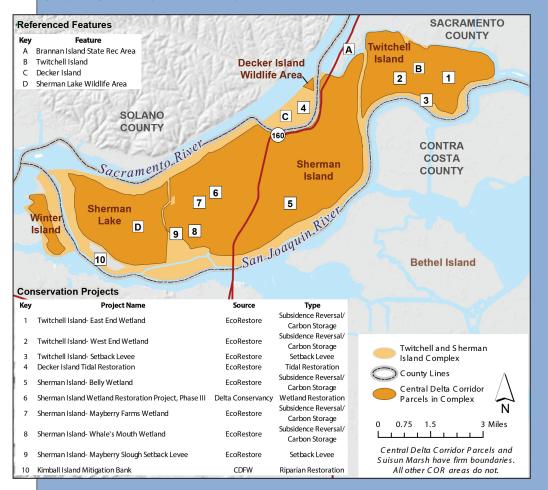
Planning partnerships and project proponents should consider lessons learned from past projects, incorporating long-term monitoring of project results and providing real world assessments of the costs of building and maintaining levee/habitat enhancement projects. Project proponents could also deliberate the importance of water elevation, vegetation (riparian and emergent), bank slope, substrate type for channel margin to benefit juvenile salmonids, for example.^{35,38}

Other considerations in the Delta include evaluating the costs of constructing setback levees on subsided islands and conditioning Delta peat soil to provide stable levee foundations. Working with willing landowners and ensuring protection of existing structures and utilities are also important factors.³⁸ Risk assessments and outcome strategies, developed in close collaboration with levee engineers, will be required when choosing the location and design for setback levee construction. For example, the probability of flooding at a given location due to seismic events needs to be assessed, as well as state priorities for levee improvements. Planning partnerships or project proponents should consult the Delta Levees Investment Strategy and associated tools when planning setback levee projects.37,39

As a combined approach, the CVFPP Conservation Strategy,³⁶ the Delta Levees Investment Strategy,³⁸ and the Delta Levee Habitat Advisory Committee will continue to provide a balance of large-scale Central Valley wide planning and local site-specific expertise, both of which are essential for the success of individual projects and consistency with the broader goals of the *Delta Conservation Framework*.

Wildlife-friendly Agriculture

Strategy C2 under Goal C supports wildlife-friendly agricultural practices as tools farmers can use to improve ecosystem services, control pests, maintain biodiversity, preserve soils, reverse subsidence, and renew soil fertility.^{39,40,41,42,43,44,45,46} Many of the state's HCPs/ NCCPs in the Delta planning area, such as in Yolo County, include wildlife-friendly farming programs. The Delta Conservation Framework recommends that these and other programs that work with farmers to create and maintain habitat on private land should be promoted and expanded where possible. Many agricultural fields already contain wildlife-friendly features, such as hedgerows, irrigation canals with vegetation, and tree rows.


Wildlife-friendly farming is compatible with, and can even increase crop yields.^{40,41} Coupled with financial incentives, this multi-objective approach to agriculture can offer benefits to both farmers and wildlife. For example, wildlife-friendly farming operations on Staten Island have benefited waterbirds particularly migratory waterfowl and wintering sandhill cranes—while growing crops like corn, triticale, potatoes, alfalfa, and supporting permanent pastures.^{39,42,46}

On the Ground Example: Twitchell Island Setback Levees

Many Delta levees need to be strengthened or upgraded to meet modern design standards and withstand future earthquakes, rising sea levels, and extreme flood events. In the process of these upgrades, it is often appropriate to consider adding habitat or additional flood plain by setting levees back from riverfronts. For example, a project on Twitchell Island under the California EcoRestore initiative, if approved and implemented, will not only stabilize a threatened section of the levee along the San Joaquin River but also construct waterside habitat features. The project will span nearly all of the San Joaquin River levee, plus a proposed 80-acre tidal marsh restoration site. Restoration through setback levees is expensive, however, and cannot be considered a standard design approach. Funding may come from Cap-and-Trade funds, Proposition 1 grants, and State Water Project mitigation.

This project would benefit both the Delta community and ecosystem function, reduce flood threat, and solve a number of problems on Twitchell Island. Currently, heavy winds cause waves to run up onto the roads and fields. The amount of space (freeboard) between high water levels and farms or structures is inadequate. The waterside levee slopes are also overly steep.⁶² In addition to enhancing levee stability and increasing freeboard space, the proposed project would create waterside habitat and gently sloping "fish friendly levees." Fish friendly levees are designed to provide rearing and outmigration habitat for juvenile salmon. Adjacent to the main levee, tidally submerged and emergent vegetation will also benefit fish and marsh species, and a continuous corridor of riparian and upland scrub habitats will provide a diversity of vegetation and canopy structure for riparian birds and other wildlife.⁶²

The Delta Conservation Framework suggests that these kinds of projects need to integrate science and monitoring into construction and maintenance in order to succeed. Evaluating the effects of different types of habitat improvements and levee designs on target species requires monitoring data.⁶² Future setback levee designs should consider monitoring results, species responses and life history requirements, and Delta-specific constraints among many factors. For example, elevation of inundated areas needs to be evaluated to determine if: 1) tidal or seasonal inundation will support riparian, wetland, and upland habitats and species; 2) the setback distance will be sufficient to allow the channel to reinitiate riverine processes; and 3) the timing, duration, and frequency of flood flows are appropriate for habitat improvement. To create a multi-benefit project, the amount of setback needs to be balanced with the loss of productive farmland.

Map: CDFW, 2018

FRAMEWORK IN DEPTH: GOAL C CONTINUED

Crop rotation can also benefit wildlife and increase the economic return of farmland. For example, Swainson's hawk primarily forages in alfalfa fields within heterogeneous agricultural lands.⁴⁴ Because Swainson's hawk also forages in other crop types, they may benefit from crop rotations that follow fluctuating market values, as long as some cropland is maintained in high-value foraging crops. For example, fallowed fields, grain crops, sunflower, safflower, dryland pasture, and row crops such as beets or tomatoes are all used by Swainson's hawk^{45,46,47,48} and other special status birds, such as white-tailed kite and tricolored blackbird. Crop rotation patterns are considered when scoring Swainson's hawk habitat value for the Central Valley Habitat Exchange program.48

Carbon farming in subsided areas offers another example of a multi-benefit approach. When rice, tules, or other wetland species are planted to replace conventional crops in subsided areas, they sequester carbon, increase organic substrate, reverse subsidence, and provide income to landowners through the emerging carbon market^{49,50} (see Strategy C3, p. 57). In this example, tule marshes and rice fields could also support Delta wildlife, including giant garter snake and tricolored blackbird.48,50,51 If conservation-focused financial incentives are available to allow farmers to continue earning revenue from wildlife-friendly agriculture, despite changes in ground water salinity levels and flooding frequencies, they could bolster long-term agricultural sustainability in the Delta.

Many governmental and nonprofit entities already recognize the value of establishing a mosaic of wildlife-friendly agricultural areas for wildlife habitat, and offer incentives to farmers for embracing this approach. Resource Conservation Districts, the Natural Resources Conservation Service, and federal Farm Bill programs—including the Conservation Reserve and Wetland Reserve Programs—have all been working in collaboration with farmers for decades to improve wildlife habitat and other aspects of environmental quality on agricultural land.⁵¹

As mentioned before, the DWR's ALS workgroup developed a series of strategies to expand existing collaborations between farmers and local, state, and federal agencies, which the *Delta Conservation Framework* embraces.¹⁷

The Delta Conservation Framework also supports incentive based programs such as the Migratory Bird Partnership⁵¹ and the Nature Conservancy's Bird Returns pilot program.

The white-tailed kite relies on certain kinds of crops for food. Photo: Rick Lewis

The Delta Conservation Framework suggests a number of considerations be taken into account when promoting wildlife-friendly agricultural practices. These include demonstrating the economic benefits of habitat-friendly cultural practices; understanding the social, economic, environmental, and governmental policy hurdles of practicing conservation; and communicating the advantages to landowners.

This *Delta Conservation Framework* strategy recognizes that private agriculture as the major, potentially wildlife-friendly, land use of the Delta can be part of the solution.

More details on bird partnerships, wildlife friendly farming and other multi-benefit initiatives can be found in the Guide to Supporting Partnerships and Programs on pp. 70-75.

Wildlife-Friendly Agriculture³⁹

- Deferring fall tillage until later in the year to increase the quantity of forage on cornfields for waterfowl and greater sandhill cranes
- Shallow flooding of seasonal croplands in fall/winter to increase the availability of forage for wintering waterfowl, shorebirds, and other species
- Retaining a percentage of the crop in the agricultural field for wildlife use to enhance the value of flooding
- Screening agricultural water diversions
- Improving fish passage at water diversion structures
- Maintaining individual trees and tree rows at the margins of agricultural fields
- Planting native hedgerows along farm and district waterways to provide wildlife, pollinator, water conservation, and erosion control benefits
- Promoting vegetated waterways and tail-water ponds
- Using livestock for weed control as a key tool to maintaining desirable habitat conditions, for example, in vernal pool grasslands

Potential benefits to agricultural stakeholders from improving conditions for wildlife include:

- Reduction in regulatory framework with species
 improvements
- Groundwater recharge to aquifers used for summer irrigation
- Leaching salts from soils
- · Biological decomposition of crop residue
- Reduction in soil erosion
- Creation of opportunities for income from hunting and increased aesthetic values, both of which may increase property values
- Financial incentives associated with agricultural conservation easements
- · Improved relationships with regulatory entities

Landscape-Level Farming⁵²

Guidelines for farming in diverse landscapes with a mixture of restored ecosystems and agriculture:

- Maintain the existing benefits from a mixed landscape of agricultural and natural ecosystems, and encourage agricultural practices that maintain this diversity (e.g., maintain forest remnants, scattered trees, and crop diversity).
- Restore native ecosystem connectivity through commonly vetted projects across property boundaries or strategic land acquisition. These measures will benefit species that need large areas and are sensitive to agriculture.

Guidelines for farming in areas where farming is the predominant land use:

- Protect and expand large patches of native vegetation, because these provide important refuge habitat for species sensitive to agriculture.
- Create connections between existing conservation areas to increase the adaptive capacity of wildlife in the face of climate change. Connections may be created by traditional corridors or by innovative management strategies within agricultural lands, such as temporary fallows or intermittently flooded wetlands.
- Increase landscape heterogeneity by diversifying land use and crops, subdividing large fields to create more smaller fields, and establishing beneficial vegetation such as riparian areas and hedgerows along field boundaries and roads, irrigation and drainage canals.

Wintering sandhill cranes visit the Delta's Staten Island and Brack Tract (Isenberg Sandhill Crane Reserve) because of the food and habitat provided by wildlife *friendly agriculture. Their* visits also draw enthusiastic visitors to the Delta, who in turn bring in local revenue. Delta residents, meanwhile, regard the crane as a local icon and celebrate their winter arrival with events such as the Lodi Crane Festival. Photo Rick Lewis

57

FRAMEWORK IN DEPTH: GOAL C CONTINUED

Reversing Land Subsidence

Strategy C3 under Goal C encourages carbon farming conservation practices to reduce land subsidence, build up soils, and offset greenhouse gases. The Delta's peat soils are rich in carbon. If California converted an area the size of the subsided lands in the Delta into carbon farms, the annual benefits could equal: changing from standard light bulbs to compact fluorescents in all California households; turning all SUVs in California into small hybrids; or turning off all residential air conditioners in California.⁴⁹

In 2006, Governor Schwarzenegger signed the Global Warming Solutions Act (AB 32, 2006)⁵³ to scale back California's greenhouse gas emissions to 1990 levels by 2020. AB 32 required the California Air Resources Board to develop solutions to meet emission reduction goals, including carbon sequestration and carbon credit trading. The emerging carbon market can offer opportunities for reversing land subsidence in the Delta while providing benefits to society in the form of carbon storage and financial incentives.

Carbon can be sequestered in the Delta both by restoring wetlands and conserving natural carbon trapping habitats, as well as by replacing conventional crops on subsided lands with rice, tules, or other soil-building wetland species. One large-scale demonstration project can be found on Twitchell Island in the western Delta (see also p.54). In this project the US Geological Survey is collaborating with a team of university researchers in the Carbon Capture Program⁴⁹ to show that flooding tule wetlands or rice fields during most of the year (especially during the summer and early fall months) reverses subsidence. Inundated tules and rice fields reverse subsidence by increasing root structure and producing bulky organic matter and new soil. The program shows promise as a technique to rebuild subsided Delta islands and help combat climate change by taking carbon dioxide (an important greenhouse gas) out of the atmosphere.49

Delta landowners can capitalize on the emerging carbon market by switching from growing traditional crops to farming carbon by planting tules, rice, or alfalfa and maintaining the land in agricultural use. Carbon farming offers a unique multi-benefit, win-win opportunity to increase elevation on subsided lands, restore a large portion of the Delta wetlands, and benefit the local Delta community.^{49,50,51,53}

CARBON FARMING^{49,53}

BENEFITS

- · Reduces the cumulative stress on the levees
- Decreases the risk of levee failure, flooding, and costs of recovery
- Halts soil loss
- · Reverses the effects of subsidence
- Sequesters carbon (captures and converts CO₂ to an organic compound and stores it)
- Generates revenue through carbon credits
- · Creates habitat for Delta wildlife
- Reduces greenhouse gas emissions to meet the 2020 goal established by AB32
- Provides room for adaptation to sea level rise associated with climate change
- Preserves open space

CONCERNS

- Potential adverse environmental impacts need to be resolved, including contamination from mercury and dissolved organic carbon, and the need for mosquito control
- Implementation will be difficult on islands with multiple owners, unless all owners agree to take part in the project.
- Subsidence reversal requires land management practices that differ from much of conventional agriculture in the Delta
- Expansion of low-carbon agriculture, in the form of rice cultivation, may not be economically feasible for farmers, because rice yields are lower in the Delta than in the Sacramento Valley

GROWTH STRATEGIES

- Provide incentives to stabilize or reverse land subsidence
- Help farmers and landowners produce and sell greenhouse gas offset credits
- Investigate options to designate subsidence reduction and carbon sequestration crops as agricultural production for regulatory and incentive purposes.


FRAMEWORK IN DEPTH: GOAL C CONTINUED

Agency Land Management

Strategy C4 under Goal C seeks to advance and improve agency land management processes and procedures. Participants in the 2016 workshop series identified a number of challenges with state and federal land management practices in the Delta. Many of the public lands in the Delta are owned and managed by state agencies such as DWR, CDFW, and California Department of Parks and Recreation. County agencies have title to, and responsibility for, other Delta lands including the Petersen property in the Cache Slough region, owned by the Solano County Water Agency. Federal agencies also own land in the Delta, including the Stone Lakes National Wildlife Refuge owned by the USFWS. During the 2016 workshops, stakeholders repeatedly said there were "too many agencies involved in the Delta" and that government agency landowners can be "bad neighbors." Ownership and management of state lands in the Delta is split among several departments. Better coordination among state and local agencies could improve land management practices, streamline conservation implementation, and address some of the concerns of neighboring private landowners.

DWR's Agricultural and Land Stewardship workgroup provides a checklist (see p.75) for agencies and other conservation practitioners to ensure that they comprehensively consider the impacts of conservation lands on neighbors and neighboring land uses when managing lands in the Delta.¹⁷

The Delta Conservation Framework recommends use of this checklist, which includes specific actions such as contacting and communicating with neighbors, agreeing upon site access routes, discussing security or law enforcement, evaluating increased fire danger and introduction of invasive weeds or pests, identifying potential issues with flood control structures or other infrastructure, and understanding how neighboring agricultural operations may affect conservation projects through applications of chemicals or livestock presence. Through coordination and the development of standard procedures for management of both farmlands and conservation lands, impacts on either side could be measurably reduced.

Multi-benefit conservation, supported by collaborative public-private land management, is exemplified by the Cosumnes River Preserve, which encompasses 46,000 acres of conservation lands. The preserve offers not only hiking trails, canoe and kayak launches, waterfowl hunts, fishing, and classroom field trips, but also sustains row crops such as corn. These crops are farmed in a manner that benefits wintering migratory waterfowl and waterbirds, cranes and hawks.^{32,33} Conservation in the preserve also offers local communities the benefits of improved flood protection and in-Delta water quality.^{34,35,36,37} The conservation lands in the Preserve are owned and managed by multiple partners, including state and federal agencies (Bureau of Land Management, CDFW, California State Lands Commission, and DWR); Sacramento County; and non-governmental organizations (The Nature Conservancy and Ducks Unlimited). Agreed-upon goals and a management plan have been critical to good relations with neighbors. Photo: Carson Jeffres

59

Reliable In-Delta Water Distribution

Strategy C5 under Goal C supports the development of practices and permitting tools to assure reliable water distribution for in-Delta uses when implementing conservation. Water diversions are used to distribute water to agricultural fields or ponds throughout the Delta. As a side effect, small fish and other aquatic or semi-aquatic wildlife may be pulled into these diversions and perish.54 Recent studies show that most small diversions take place at times and places when Delta smelt, especially larval smelt, are not likely to be present. Therefore, while small diversions are found throughout the Delta, it is unlikely that large numbers of Delta smelt have been entrained at the small intakes located close to shore.55 Entrainment of juvenile salmon in unscreened diversions was also low relative to other fish species.⁵⁶

While not opposed to conservation or integrated flood management in principle, local landowners and reclamation district managers are concerned that high profile projects targeted to benefit listed species could result in enforcement actions limiting local water diversions which have been providing water essential to the local agricultural economy for decades. Specifically, reclamation district managers and landowners have expressed concerns that water diversions will be curtailed in the future, or that the cost per unit of water will increase significantly as a result of successful restoration projects on neighboring lands. Without durable assurances that their operations can be maintained over the long term in the vicinity of listed species habitat, these local stakeholders find it difficult, if not impossible, to support individual projects.

The Framework suggests developing tools to minimize adverse effects of local water diversions on native fish, wildlife, and water quality and help preserve a reliable water supply for human use. These best practices could include raised awareness of the critical times when native fish, especially Delta smelt and juvenile salmonids, are most sensitive to entrainment to avoid negative effects. The Family Water Alliance is an example of a partnership among state and federal agencies and private contributors to fund and install fish screens on small agricultural diversions in the Sacramento Valley.⁵⁷ The success of the program resulted in the delivery of diverted water that is free of fish, protecting both the fishery resource and the local agricultural community.⁵⁸ As a further benefit to farmers, certain fish screens can keep fish and debris out of irrigation pipes, saving substantial operational and maintenance costs.58

If fish screens are not feasible — since screens are not effective in excluding larval life stages of fish — permitting tools are available to provide take authorization to conservation practitioners, neighboring landowners, and Delta residents for the diversion-associated take. Existing tools available under the California Endangered Species Act include incidental take permits, safe harbor agreements, and associated neighboring landowner agreements (see p.34 and Section V).

Irrigation water for Delta farms comes from both local waterways and state and federal water projects. Photo: Amber Manfree

FRAMEWORK IN DEPTH: GOAL C CONTINUED

Conservation-Related Water Quality

Strategy C6 under Goal C seeks to improve surface and groundwater quality when undertaking conservation related construction and restoration projects. During conservation project construction and management, certain practices such as the removal of water hyacinth or other invasive floating plants, installing new infrastructure, or breaching levees to reestablish tidal flows into marshes may affect water quality. Potential impacts can include increased turbidity and decreased levels of dissolved oxygen; nutrients and specific toxics can temporarily be affected. The Delta Conservation Framework recommends considering surface and groundwater quality improvements during conservation project planning and implementation. Attention should also be paid to lasting negative effects, especially if they affect groundwater and legacy contaminants.

Long-term negative impacts to water quality from wetland restoration may include an increase in the bioaccumulation of methylmercury or selenium.^{59,60,61,62,63,64,65,66} For example, because of extensive mercury mining in the Coast Range and mercury use in Sierra Nevada gold mining, methylmercury production rates are higher in natural or managed Delta wetland habitat types than in other California aquatic ecosystems.⁶⁷ In some cases, wetland restoration may release mercury from sediment and increase the bioaccumulation of methylmercury in Delta wildlife.^{59,60}

The Central Valley Water Quality Control Board's Delta Methylmercury TMDL Phase 1 implementation program requires studies and pilot projects to develop and evaluate management practices to control methylmercury discharges.62,63 The studies and pilot projects will be evaluated by the Delta Mercury Control Program Technical Advisory Committee and the Board to inform implementation actions to control methylmercury during Phase 2 of the control program. These types of actions may help to minimize adverse impacts of bioaccumulatives like methylmercury or selenium caused by wetland restoration projects. Such actions have been successful in reducing methyl mercury impacts downstream in South Bay Salt Pond Restoration projects, for example.61

Wetland habitat restoration efforts in the Delta also provide numerous positive effects on water quality. With careful management, and attentive monitoring of hot spots and pathways related to each conservation or restoration project, potential contaminant-related negative effects can be minimized.

Like mercury, some pesticides, such as the banned organochlorine pesticide DDT, are legacy problems in the larger San Francisco Estuary Watershed.⁶² Careful project design and monitoring is all that can be done to minimize mobilization of these legacy contaminants into the Delta ecosystem. Yet, most contaminants responsible for reduced water quality arise from current-use compounds from industrial, agricultural, urban, transportation, and natural sources. There is increasing concern over new classes of contaminants, such as pyrethroid pesticides, pharmaceuticals, and personal care products.⁶² Further, major contaminants of California's groundwater include salt, organic compounds, nitrates, pesticides, and metals.63 Such water quality issues may not only affect fish and wildlife, but also recreational waters, fisheries, and farming operations.

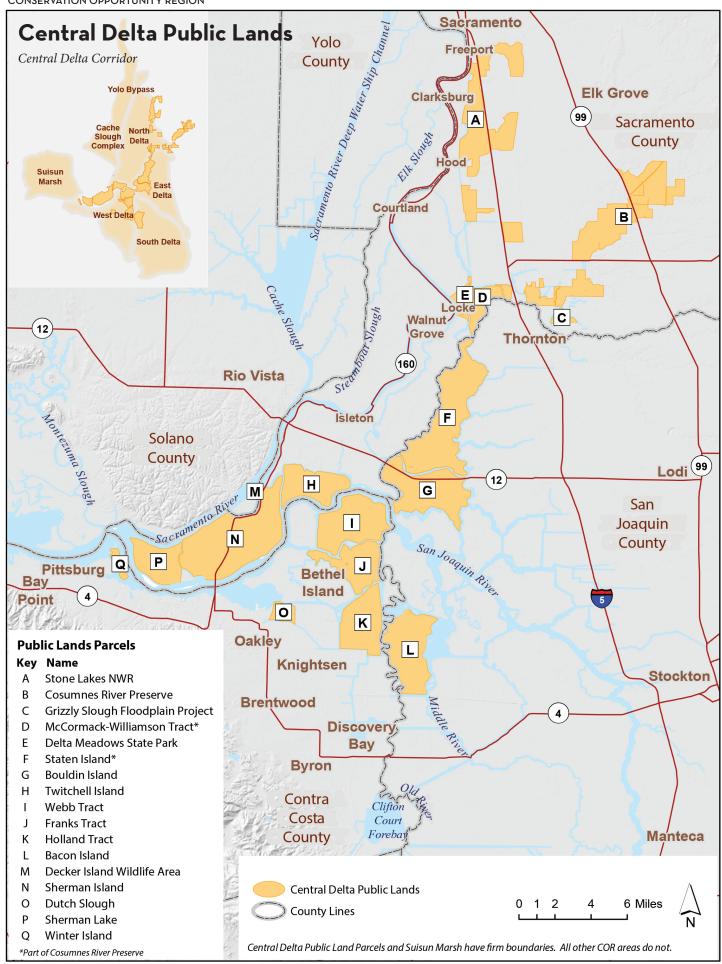
To minimize adverse effects of restoration on water quality and Delta wildlife, the *Delta Conservation Framework* supports integrating or expanding best practices that align with State and Regional Water Board policies for improved surface and groundwater quality.^{64,65} A review of existing best practices during project planning could help ensure the implementation of conservation efforts in a manner appropriate to project conditions and site specific water quality concerns. These gates allow managers of restoration sites in South San Francisco Bay downstream of the Guadalupe River Watershed, site of a historic mercury mine, to control water and limit methylmercury production levels. Photo: Iames Hobbs

Multi-species Floodplain Management

Strategy C7 under Goal C seeks to develop conservation goals to manage floodplain habitat for both terrestrial and aquatic species, while at the same time addressing human needs. Creating floodplains not only benefits terrestrial and aquatic species but also provides multiple benefits by conveying floodwaters away from human infrastructure and settlements, thereby reducing flood risk. In order to benefit fish species, floodplains should mimic natural flooding patterns, and remain flooded long enough to activate food webs and support fish rearing and spawning.66 To support native fish species, remaining lakes should be managed as intermittently flooded habitat allowing fish access to cooler waters. For terrestrial species, particularly riparian wildlife, re-establishing flow and flooding is critical to ensuring dynamic woody riparian habitats.66 To do so, re-establishing and maintaining hydrologic connection to the watershed with appropriate amounts of sediment is important, as is restoring and protecting complex, wide and continuous estuarine-terrestrial transition zones.66

The main objective of this strategy is to identify and implement opportunities to pursue multi-benefit floodplain projects and to manage land simultaneously for terrestrial and aquatic species, for example by planting nesting trees for bird species, and establishing high water refuge areas and overwintering habitat for species such as giant garter snake within floodplains, and by mimicking natural inundation patterns. The Delta Conservation Framework

Economically viable, soil friendly agricultural practices can result in multiple benefits for wildlife and society. Developing and encouraging agricultural practices in the Delta such as no till, cover crops, periodically flooding fields, or walking wetlands helps reduce or negate the amount of subsidence that normally occurs on agricultural lands and allows for wildlife movement. Private agriculture as the major land use of the Delta can be part of the solution.


YOLO HABITAT CONSERVATION PLAN/NATURAL COMMUNITY CONSERVATION PLAN

therefore supports the assessment of habitat suitability across several aquatic and terrestrial taxa found in the Delta.

An innovative setback levee in Hamilton City reconnects the Sacramento River to its floodplain, creates habitat, and strengthens the failing J levee, originally built in 1906. The town has been evacuated six times in the last 25 years due to flood fears. The project is a collaboration of the US Army Corps of Engineers, local landowners, Reclamation District 2140, and The Nature Conservancy. Photo: The Nature Conservancy

CONSERVATION OPPORTUNITY REGION

Map: CDFW, 2018

CONSERVATION OPPORTUNITY REGION

Public Lands First: A Coordinated Central Delta Strategy

Any talk of large scale Delta restoration, especially for those concerned about preserving the rich heritage of farming in the region, begins with the refrain "public lands first." Consideration of this important priority, and a look at just which lands were publicly-owned or funded in the heart of the Delta, reveals a corridor of islands and parcels stretching from Stone Lakes National Wildlife Refuge near Clarksburg in the north, down past the confluence of the Mokelumne and Cosumnes Rivers in the northeast, through the central Delta, and all the way southwest to Chipps Island near Pittsburg – 17+ parcels encompassing roughly 50,000 acres. More importantly, the configuration of this corridor – once mapped – suggests the potential for large-scale ecological benefit in terms of habitat connectivity for fish and wildlife often surviving on remnant patches and

edges of habitat, rather than on more viable landscapes of 1,000 acres or more.

The Central Delta Corridor Partnership, established in 2017 to coordinate planning and restoration for this corridor, reflects Delta Conservation Framework goals for forward-thinking regional partnerships and strategies. The Framework also highlights the corridor as one of seven "conservation opportunity regions" where a critical mass of public lands, potential conservation opportunities, and conservation-minded people and existing partnerships occur in one place. The Framework seeks to support such regions and partnerships in strategic conservation planning. Together these regions will one day add up to a healthier Delta - both for people and wildlife.

CONSERVATION OPPORTUNITY REGION CONTINU

Regional Setting & Background

The Central Delta Corridor Partnership (CDCP) oversees a network of roughly 50,000 acres of publicly owned or funded lands in the central delta area (see map p.62). The region is characterized by lakes, floodplain, tidal wetland, deeply subsided islands,1 and includes the flooded Franks Tract Recreation Area. While the bulk of the lands that are included in the partnership are contiguous, some parcels are interspersed with privately owned property. The Central Delta Corridor partners include government agencies, water districts, and NGO conservancies managing publicly funded lands, among others. The partners have met regularly since early 2017, with the goal of developing a regional strategy of coordinated conservation efforts. The partnership has steadily grown by reaching out to neighboring landowners, both public and private, and including them in conservation planning.

Photo: Christina Sloop

Management goals include flood management, agricultural sustainability, and conservation of aquatic, avian and terrestrial resources. The deep subsidence on most central Delta islands limits potential prospects for conservation, but there are opportunities to enhance channel margin habitat and tidal habitat on the western-most islands. As long as levees are maintained, there is also significant potential for managed marsh for waterfowl, for subsidence reversal, and for the conservation of

interior woodland areas on many of these islands. In the long term, CDCP partners believe that the creation and enhancement of wildlife habitat could go hand-in-hand with levee improvements and maintenance, and not only support target species but also improve flood protection and water quality, and sustain agriculture and the local economy.

Planning History

When Southern California's Metropolitan Water District (MWD) acquired a number of large islands in the central Delta in 2016 for public purposes, the shape of a significant

Central Delta Corridor At A Glance

Area: ~ 50,000 acres

Location: Within the northeast and central Delta, including Stone Lakes National Wildlife Refuge, Cosumnes River Preserve, McCormack-Williamson Tract, Staten Island, Bouldin Island, Twitchell Island, Sherman Island, Webb Tract, Franks Tract, Holland Tract, Bacon Island, Decker Island Wildlife Area, and Dutch Slough

Elevation range: ~ 23 feet below sea level - 56 feet above sea level

Primary land use: ~ 50-60 percent agriculture - 40-50 percent public lands

Other primary land uses: flood protection, wildlife habitat, water supply, recreation, scientific research, carbon sequestration

Natural communities: Managed wetland, tidal wetland, freshwater emergent wetland, floodplain, grasslands, riparian, vernal pools, channel margin, open water, wet meadows

Urban population: 0

Rural or small community population: $\sim 400\text{-}450$

Recreational opportunities: Wildlife observation, hiking trails, boating, fishing, hunting, photography, interpretation

Listed species: Greater sandhill crane, Delta smelt, longfin smelt, Chinook salmon, Central Valley steelhead, green sturgeon, giant garter snake, Swainson's hawk, tricolored blackbird, vernal pool fairy shrimp, vernal pool tadpole shrimp, California black rail, Ridgway's rail, California least tern.

swath of public lands that could be improved, restored or managed for environmental, water quality, and wildlife purposes began to emerge. The Delta Conservancy — tasked with conserving both Delta farmlands and habitat - encouraged MWD and other public landowners in this corridor to begin thinking about their common conservation objectives and the opportunity to pursue the "public lands first" focus popular among in-Delta communities. Current members of the resulting Central Delta Corridor Partnership include MWD, The Nature Conservancy, the California Department of Water Resources (DWR), the California Department of Parks and Recreation, the California Waterfowl Association, the Bureau of Land Management, the U.S. Fish

65

and Wildlife Service, and the California CDFW. Their decision to collaborate in developing a collective corridor vision recognizes their capital investments in the Delta, the historical legacy of the Delta, and the state's policies to rehabilitate the Delta ecosystem. To develop this vision, the Central Delta Corridor Partnership is engaging in a regional conservation strategy planning process of the kind recommended by the Delta Conservation Framework. The Partnership's combination of public and private large-parcel landowners provides a unique chance to explore opportunities for conservation, identify collaborative multi-benefit solutions, and coordinate implementation.

Cornfield at McCormack Williamson Tract before flooding in 2017. Photo: Christina Sloop

Conservation Opportunities

From north to south, the Central Delta Corridor conservation areas range from minimally to deeply subsided, and landscape-level conservation planning efforts need to consider opportunities along the full range of this environmental gradient.² From the perspective of the Delta Conservation Framework, specific conservation strategies that should be considered within this corridor include restoring tidal marshes in areas of intertidal elevations, restoring woody riparian vegetation in areas with stronger fluvial influence, and promoting wildlife-friendly agriculture and the construction of managed marshes in deeply subsided areas.² Other critical connections to the corridor that should be evaluated in conservation planning include: the tidal-terrestrial transition zone in the southwest portion (along the Sacramento River near the Sacramento-San Joaquin River confluence); stepping stone marshes leading to the eastern and southern Delta from the confluence; connections to the upstream watershed and Mokelumne and Cosumnes riversheds; and connections to the brackish estuary on the western edge of the Delta.²

CONSERVATION OPPORTUNITY REGION CONTINUED

Major Central Delta Corridor Existing & Planned Restoration Projects

- McCormack Williamson Tract, 1600 acres floodplain restoration
- Grizzly Slough floodplain project, 400 acres floodplain restoration
- Decker Island Wildlife Area, 34 acres tidal restoration
- Decker Island, 140 acres tidal restoration
- Twitchell Island east end wetland, 800 acres subsidence reversal and carbon storage
- Twitchell Island west end wetland, 1,250 acres subsidence reversal and carbon storage
- Sherman Island belly wetland; 1500 acres subsidence reversal and carbon storage
- Sherman Island Wetland Restoration Project Phase III
- Dutch Slough tidal marsh restoration, 1,187 acres of tidal restoration
- Sherman Island wetland restoration project Phase II, 1,009 acres wetlands
- Sherman Island wetland restoration project Phase I, 666 acres wetlands
- · Winter Island, 589 acres tidal restoration
- Chipps Island 887 acres tidal restoration
- Reclamation District special projects that include some in-channel habitat enhancement

Additional Conservation Opportunities

CHANNEL MARGIN HABITAT AND LEVEE IMPROVEMENTS

Restoration of suitable zones along the aquatic side of levees to a more natural state would benefit salmonids and other native species. Restoration might include planting vegetation, anchoring woody debris, and constructing shallow benches where native species could find refuge from predators.³ Suitable locations include from Franks Tract east through the Delta to the McCormack-Williamson Tract and the Cosumnes River Preserve. These "fish friendly levees" are currently part of the DWR's multi-benefit Delta Levees Program.

AQUATIC HABITAT RESTORATION ON TWO TRACTS

The McCormack-Williamson Tract is considered a prime site for floodplain restoration, tidal freshwater marsh, seasonal wetlands, and riparian forest. The restoration plan would allow the area to flood naturally under high-water conditions to alleviate flood risks downstream while providing valuable aquatic and terrestrial habitat for native Delta species. Over time, this could seasonally reconnect lakes, channels, and marshes to prominent features in the region including Delta Meadows, Snodgrass Slough, the Mokelumne River, Burton Lake, Grizzly Slough, Stone Lakes, Dead Horse Island, Staten Island, and the Cosumnes River Preserve.

Franks Tract offers another unique opportunity for aquatic habitat restoration as it is one of the least subsided flooded islands in the Central Delta Corridor. Restoration of Franks Tract would enhance habitat conditions for Delta smelt⁴ and other native fishes by minimizing suitable habitat for nonnative fish and submerged and floating aquatic invasive plant species, as well as modifying tidal circulation to create channel conditions similar to historic conditions. Results of an early CDFW feasibility study, and efforts to engage the local community early in the planning process, both suggest Franks Tract could be a project of the multi-benefit scope and landscape scale encouraged by the Delta Conservation Framework. In addition, the state's Delta Smelt Resiliency Strategy⁴ identifies Franks Tract as a strong candidate for improvements to smelt habitat and food supply (see also p. 88).

REFERENCING EXISTING REGIONAL

The South Sacramento Habitat Conservation Plan (SSHCP)⁵ encompasses the northern and northeastern part of the corridor. The plan aims to streamline federal and state permitting processes for SSHCP-covered development and infrastructure projects while protecting habitat, open space, Delta smelt habitat at Franks Tract, a state owned recreation area, could be improved with restoration of 40-60 percent of the now flooded tract to tidal marsh. Photo: Christina Sloop

and agricultural lands. It also provides the kind of a carefully analyzed body of existing planning work regarding ecosystems and conservation opportunities in an area of overlap with the corridor that the *Delta Conservation Framework* encourages regional partnerships such as the CDCP to reference.

Potential Solutions to Recognized Challenges

SUSTAINABLE LONG-TERM OPERATION AND MANAGEMENT OF CONSERVATION LANDS

Sherman and Twitchell islands, like other deeply subsided Delta islands, require high flood protection levees that are costly to maintain in the long term. DWR has begun to address the causes of subsidence by withdrawing from agricultural leases and developing wetlands in their place to build back peat soils. However, this transition from agricultural production to ecosystem services means a significant increase in annual management costs and associated loss in revenue. Thus far, DWR has provided the necessary funds for flood control and land management on their lands in the western Delta; however, this is not sustainable. One new possible source of revenue is carbon market credits for carbon capture now associated with subsidence reversal. By quantifying the level of carbon sequestered in the newly-developed peat soil of the wetland, credits can be sold.⁶ Additional alternative sources of revenue may include authorizing hunting leases on the wetlands and fulfilling mitigation requirements associated with other DWR projects.

Levee management and maintenance remains at the forefront of challenges to all Delta islands.⁷ California ground squirrel and beaver dens threaten levee integrity; bird nesting season constrains maintenance activities. Alternative conservation-compatible management activities include: grazing sheep on levees, which would clear vegetation to maintain standards and detect leaks; providing raptor perches to help limit ground squirrel activity; and pre-placing emergency materials for flood events. Creating more gradual landside levee slopes could also create more habitat.

Levee failure at McCormack-Williamson Tract in 2017. Photo: The Nature Conservancy

SUSTAINABLE WILDLIFE-FRIENDLY AGRICULTURAL USES

Providing food resources for migratory birds within a diverse land use mosaic that balances minimal foraging distances with agricultural and recreational uses remains an ongoing challenge on a landscape scale. For example, an enduring management challenge is providing adequate wintering habitat (September-March) to sustain greater and lesser sandhill crane populations on Delta islands, while maintaining economically viable agricultural operations. Both species require shallow flooded areas for roost sites and dry agricultural fields (corn, wheat, pasture, alfalfa) for foraging habitat.8 Land management to benefit sandhill cranes involves finessing the timing and amount of flooding and drawdown, carefully selecting the types and amounts of wildlife-friendly crops that can be grown, and balancing tradeoffs between harvest efficiency and availability of residual grain for waterbirds.9 Crop diversity in the Delta can be limited as a result of soil, climate, low commodity prices, herbicide-resistant weeds, predation by grazing geese, salt build-up, and limited markets for non-GMO crops. All of these factors also limit the economic viability of farming operations on Staten Island, one of the larger islands in the public corridor. One potential solution to balancing agricultural production with wildlife needs would be to use additional flooding to reduce salts and subsequently increase yield.

CONSERVATION OPPORTUNITY REGION CONTIN

To evaluate where decreased agricultural productivity aligns with opportunities for conservation as sea level rises and soil salinities increase, it will be critical to use the kind of strategic scenario planning recommended by the *Delta Conservation Framework*. It will also be important to consider the carbon footprint of certain crop types commonly used to reverse subsidence of peat soils when conducting scenario planning to set the stage for the long-term sustainability of a balanced land-use mosaic across the Central Delta Corridor.

HABITAT FRIENDLY RECREATION

In order to heighten public support for conservation and benefit the local agricultural economy, the Delta Conservation Framework suggests that conservation planning in the corridor incorporate agro-tourism and increased public wildlife viewing opportunities. Sandhill crane conservation on Staten Island and Brack Tract in the corridor is linked not only to wildlife-friendly agriculture, but also to the Lodi Crane Festival and other crane viewing events, which bring many enthusiastic viewers to the area and draw in local revenue. In some cases, however, enhanced public use can result in trespassing, poaching, vandalism, and burglary and compromise safe access for public viewing of wildlife. As a result, the Delta Conservation Framework suggests that public access planning should include consideration of greater enforcement in designated public areas and more signage.18

CLIMATE CHANGE ADAPTATION OPPORTUNITIES

Climate change induced sea level rise and changing rainfall and temperature patterns will increasingly affect the Central Delta Corridor in the next 30-100 years. Lands currently in the intertidal zones are projected to become subtidal (Map p.20).¹⁰ Rising water levels will induce flooding when unprotected shorelines and nearby areas are submerged and will affect levee stability and resilience, especially along subsided islands.¹¹ In some parts of the Delta, sea level rise will mean that current agricultural land will be lost to increased salinity levels or inundation.11 Additionally, flood dynamics are projected to change over the next few decades, with more frequent and extreme storm and rainfall events and associated flood pulses coming through the region.^{11,12}

As mentioned above, the *Delta Conservation Framework* suggests that scenario planning^{13,14} could be a useful tool for helping the CDCP anticipate impacts of climate change on ecosystems, species, infrastructure, agricultural practices, recreation, and other land uses and integrate these into the longterm conservation planning picture. Another useful tool could be pilot projects supported by Proposition 1 bond funding¹⁵ that could explore new technologies and approaches to multi-benefit, adaptive restoration — such as living shorelines,¹⁶ horizontal levees,¹⁷ carbon farming,¹⁸ early detection and rapid response of invasive species¹⁹ — and assist with levee strengthening and subsidence reversal.

Setback levee, riparian habitat strip, and carbon farming on the state's Twitchell Island. Photo: Christina Sloop

COMMUNITY / SECTION II

Monitoring, result sharing, and regular reevaluation of scenarios over time will help with examining how exactly projections play out and how management actions of conservation lands need to be adjusted over time.

CARBON SEQUESTRATION AND SUBSIDENCE REVERSAL

The Central Delta Corridor public lands contain a significant percentage of the most deeply subsided Delta lands. Since the late 1800s when the lands were first drained for agriculture, more than 3.3 billion cubic yards of organic soils have disappeared in the Delta, resulting in land surface elevations 20 to 25 feet below sea level (see map p.20).²⁰ The volume below sea level of approximately 1.7 million acre-feet not only limits continued agricultural practices, but also represents a significant opportunity to implement carbon sequestration projects. Previous research has demonstrated that carbon dioxide (CO_2) emissions are positively correlated with subsidence.²¹ Modelling results estimate that 1.5 to 2 million metric tons of CO₂ are emitted from about 200,000 acres of organic and highly organic mineral soils in the Delta each year as they continue to subside. In addition to CO₂, nitrogen dioxide and methane emissions are also released during oxidation of soils. The Central Delta Corridor provides a unique opportunity to continue and expand subsidence reversal trials to stabilize peat loss and enhance soil accretion. The corridor's Twitchell and Sherman islands, for example, will continue to sink unless subsidence-neutral crops like rice, irrigated pasture, or wetland tules are grown. Subsidence reversal actions also ultimately reduce the risk of flooding as islands increase in elevation over time; maintain revenue through agricultural sales and sale of carbon credits; and provide habitat for terrestrial, aquatic, and avian species.²

Looking Ahead

Delta community members and stakeholders at the 2016 Delta Conservation Framework workshops commented that public lands should be the focus of Delta conservation efforts. The Central Delta Corridor represents a great opportunity to achieve this goal. The current Central Delta Corridor partnership initiated steps in 2018 to inventory and coordinate ongoing efforts, highlight additional opportunities, and develop an outreach strategy. The partnership also recognizes that a critical component of the success of the effort is local support. Partners are conducting focused outreach to engage neighboring landowners early in the process. The partnership is currently developing a high-level strategy document that identifies the most promising opportunities and most challenging constraints. This coordinated conservation strategy is intended to advocate for funding to better manage conservation lands, encourage wildlife-friendly farming, and implement activities for habitat restoration.

QUICK LINKS

Delta Carbon Program http://deltaconservancy.ca.gov/delta-carbon-program/ Franks Tract Restoration Feasibility Study https://www.wildlife.ca.gov/conservation/watersheds/dcf Sacramento-San Joaquin Delta Conservancy Central Delta Corridor Partnerhsip http://deltaconservancy.ca.gov/centraldeltacorridor/ South Sacramento Habitat Conservation Plan https://www.southsachcp.com/ USGS Carbon Capture Farming Program https://ca.water.usgs.gov/Carbon_Farm/ For more detailed descriptions of these conservation opportunity regions, see Appendix 2.

GUIDE TO SUPPORTING PARTNERSHIPS AND PROGRAMS

BirdReturns Project

70

STRATEGY A1, EXISTING PARTNERSHIP

The Nature Conservancy (TNC) is spearheading this project, which aims to conserve the Pacific Flyway. As a result of habitat destruction, water and food shortages, and climate change, migrating birds are having difficulty finding wetlands along the Pacific Flyway to stop for feeding, resting, and overwintering. To address the decline of the Pacific Flyway's support for avian migration from Alaska to South America, the pilot BirdReturns project combines scientific data with economic incentives to provide habitat for birds on rice fields in the Sacramento Valley. Two of the BirdReturns strategies to conserve migratory birds are to 1) protect and enhance bird-friendly agricultural lands; and 2) secure adequate water supply to wetlands and compatible agricultural lands. The project's goal is to create one million acres of Central Valley wetland habitat through citizen science. Bird sightings recorded in the eBird database are sent to the Cornell Lab of Ornithology, which will generate maps showing the highest concentration of birds on the remaining Central Valley wetlands and where the habitat needs are greatest. Along the Sacramento River, for example, TNC pays farmers to keep rice fields flooded to optimal depths as flocks of migrating birds arrive.

Central Delta Corridor Partnership

STRATEGY A1, EXISTING PARTNERSHIP

A large portion of the central Delta is publicly owned or publicly financed, and if restored and managed on a landscape scale could link together conserved lands in the northeastern and central portions of the Delta in a vibrant conservation corridor. The owners of these lands have met regularly since early 2017, and the Central Delta Corridor Partnership (CDCP) has steadily grown via outreach to neighbors. CDCP members own and manage approximately 50,000 acres of land in the Delta, and include The Nature Conservancy (TNC), the Metropolitan Water District (MWD) of Southern California, the California Department of Water Resources (DWR), the California Department of Parks and Recreation, the California Waterfowl Association, the Bureau of Land Management, the US Fish and Wildlife Service, and the California Department of Fish and Wildlife. In March 2018 CDCP began a nine-month inclusive planning process evaluating conservation opportunities available on Delta islands and other existing conservation properties in the central Delta.

See p. 63 for an overview of the Central Delta Corridor Partnership.

Central Valley Joint Venture

STRATEGY A1, EXISTING PARTNERSHIP

A long-standing and cooperative partnership in the region, the Central Valley Joint Venture (CVJV) has worked on conservation to benefit migratory birds, special status species, and other wildlife throughout the Central Valley since 1988. The CVJV is led by a management board of 21 public and private entities and is one of 18 joint ventures throughout North America formed under the North American Waterfowl Management Plan. The CVJV leverages public and private resources for projects throughout the Central Valley. The 2006 CVJV Implementation Plan outlines objectives for Central Valley habitats that support shorebirds, waterbirds, and riparian songbirds.78 A revised CVJV Implementation Plan with updated bird population objectives is slated for release in 2019.

The objectives set by the CVJV for the Yolo-Delta, Delta Basin, and Suisun Marsh are relevant to Delta Conservation Framework Goal C, Strategy C2, "Support sustainable wildlife-friendly agriculture to provide additional habitat for wildlife and migratory birds"; Goal D, Strategy D1, "Restore, enhance, and manage ecosystem processes Delta-wide to improve function and life history support for native and migratory wildlife;" and Goal D, Strategy D2, "Conduct technical analyses within groups such as regional conservation partnerships" to prioritize areas for conservation and climate adaptation.

The *Delta Conservation Framework* suggests that regional partnerships and planning groups should consider and reference CVJV's habitat objectives for resident and migratory birds.

In the first year of BirdReturns, 10,000 acres owned by 40 farmers were flooded for up to eight weeks. Participating farmers included the Rue & Forsman Ranch, which grows sushi rice near Wheatland, California. While the timing of flooding may have had a disadvantage for planting, the compensation was "better than adequate," according to the farmer. Photo: Rick Lewis

Delta Working Landscapes Program

STRATEGY A2, BEST PRACTICES

The Delta Protection Commission program, which ran from 2010–2012, provided examples of wildlife-friendly agriculture and wetland restoration measures private landowners could adopt on larger scales throughout the Delta. In collaboration with Ducks Unlimited, Hart Restoration, Inc., and local landowners, the objectives of this program were to:

- Improve the environmental quality of existing landscapes in the Delta;
- Demonstrate economic benefits of habitat-friendly cultural practices;
- Understand the social, economic, environmental, and governmental policy hurdles to conservation; and
- Communicate the advantages of wildlife-friendly agricultural practices to landowners.

The Delta Working Landscapes Program focused on pilot projects that demonstrated how farmers can integrate habitat restoration into farming practice. For example, the program established vegetative buffers along irrigation ditch banks and hedgerow plantings, designed to provide habitat for wildlife, improve water quality, and enhance levee stability. Restoration projects also included creating seasonal and permanent wetlands on marginal farmlands, providing essential habitat for waterfowl. By the time work on the program was completed in 2012, the projects resulted in a total of 312 acres of wetlands and 6.5 miles of enhanced levees and waterways. The Delta Conservation Framework supports multi-benefit conservation efforts that keep landscapes working for both people and wildlife.

See p. 74, Table 2.1 for examples of projects under this program.

Migratory Bird Conservation Partnership

STRATEGY A1, EXISTING PARTNERSHIP

Since 2008 this partnership has addressed issues concerning bird habitat and biological needs while working with a broad array of partners to develop multi-benefit conservation solutions for birds, wildlife, and human communities. Aligned with the work of the Central Valley Joint Venture, the MBCP is comprised of three of California's top bird conservation organizations: Audubon California, Point Blue Conservation Science, and The Nature Conservancy. The partnership currently focuses on three regions in the Central Valley: Sacramento Valley, San Joaquin River Basin, and the Sacramento-San Joaquin Delta. The ten million acre Central Valley provides particularly important habitat for Pacific Flyway migratory birds. The Delta Conservation Framework supports conservation efforts that integrate migratory bird ecology and habitat needs into working landscapes.

One focus of MBCP is a program on wildlife-friendly working lands. Since the steep decline of natural wetlands in California, millions of birds depend on over 25 million acres of agricultural fields. The MBCP works with farmers to keep agriculture productive for human food supply, while at the same time providing critically needed habitat and food for birds. For example, the MBCP has worked with rice farmers to optimize management practices for wildlife, so migrating birds are able to use the rice fields for nesting, roosting, and foraging on waste grains to prepare for their long migrations. Benefits to the farmers include long-term productivity and protection from urban development.

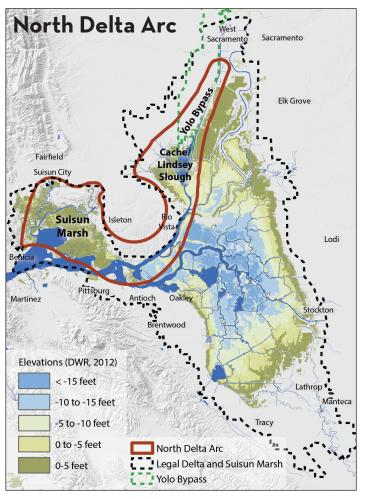
Snow geese near rice field habitats. In *August 2011, the National Resources* Conservation Service (NRCS) provided nearly \$3 million for a pilot program to give farmers incentives to manage their lands as bird habitat. Working closely with the NRCS and the California Rice Commission, the MBCP helped to enroll about 75 *farmers and more than 23,000 acres* in the program. Based on that success, the MBCP helped the NRCS expand the program in 2012 and 2013 to over 100,000 acres. Today, the program encompasses roughly 20 percent of all rice lands in California. Photo: Jim Morris, California Rice Commission.

GUIDE TO SUPPORTING PARTNERSHIPS AND PROGRAMS - CONTINUED

North Delta Habitat Arc

STRATEGY A1, EXISTING PARTNERSHIP

Landscape-scale connectivity is emerging as an important emphasis for Delta conservation. Connecting a series of habitats across regions allows for continuous habitat "corridors" that are more ecologically valuable than individual disconnected parcels. The "North Delta Habitat Arc" is a reconciled ecosystem strategy (originating from UC Davis) that creates an arc of habitats connected by the Sacramento River to benefit native fish and other wildlife. The upstream end of the arc starts in the Yolo Bypass, continues through the Cache-Lindsey Slough-Liberty Island region (CSC) into the Sacramento River, includes Twitchell and Sherman Islands, and ends in Suisun Marsh. The state's Fish Restoration Program, and regional conservation


plans for the two southern components of this "arc" (Suisun Marsh and CSC) are already under implementation by conservation partnerships. The northern portion includes public lands managed by CDFW (Yolo Bypass Wildlife Area) and has several existing successful planning efforts underway, including the Yolo Bypass working group, and the CVJV. While all the geographic subregions of this arc have benefited from conservation planning, there may be an opportunity to tie these efforts together through a landscape-scale approach. The Delta Conservation Framework supports regional scale conservation thinking such as the work that led to proposals for this arc of connected north delta habitats. For more details on the North Delta Arc components see also pp. 90 and 149.

Suisun Marsh Habitat Management, Preservation and Restoration Plan

STRATEGY A1, EXISTING PARTNERSHIP

Established in 2013, this plan (the SMP)⁸⁸ aims to provide a long-term structure for conservation planning and implementation in the Suisun Marsh region. As a 30-year, comprehensive conservation plan it balances protection and enhancement of managed wetlands and the restoration and protection of tidal wetlands. It addresses habitats and ecological processes, public and private land use, levee system integrity, and water quality. Implementation of the SMP is overseen by an advisory team of eight federal, state and regional agencies.

For more details see pp. 35 and 149.

Map: CDFW, 2018

See Quick Links p. 75 to access some of these partnerships and programs.

Yolo Bypass-Cache Slough Complex Planning Effort

STRATEGY A1, EXISTING PARTNERSHIP

Several partnership efforts have focused on conservation and floodplain management issues in the Yolo Bypass-Cache Slough Complex, described below. Their Corridor Management Framework allows local and regional agencies to engage more specifically in the Yolo Bypass partnership efforts. With sufficient coordination, these partnerships can serve as a conduit for successful conservation planning and management in the Yolo Bypass-Cache Slough region.

YOLO BYPASS CACHE SLOUGH PARTNERSHIP

This partnership offers a path for executive-level collaboration among agencies and other stakeholders at the government agency level. Formed in 2016 via a Memorandum of Understanding, the policy-level Yolo Bypass Cache Slough Partnership emphasizes the importance of achieving across-the-board improvements in habitat, flood protection, agricultural sustainability, recreation, and other public values.⁹⁰ Made up of 15 local, state, and federal agencies, its purpose is to improve executive-level interagency coordination. The partnership has set the stage for improved trust between stakeholders, a key ingredient in successful efforts of this scale. It also provides a vehicle to incorporate local governments into planning and decision making, relative to restoration actions in the Yolo Bypass and Cache Slough.

CORRIDOR MANAGEMENT FRAMEWORK

In 2015, local reclamation districts, counties, and flood control agencies developed the Corridor Management Framework (CMF), a vision for the integration of local, state, and federal interests in the region (including the Cache Slough Complex). The CMF continues to guide local agency participation in the Yolo Bypass Partnership and other forums.⁹¹

YOLO BYPASS WORKING GROUP

The Yolo Bypass Working Group, established in 1998, is a grassroots example of a multistakeholder partnership approach to conservation planning. Forty regular attendees represent a wide range of stakeholders interested in managing the multiple uses of the Yolo Bypass for flood control, agriculture, recreation, and floodplain habitat supporting juvenile salmon, waterfowl, and other waterbirds. Over the years, stakeholders have participated in discussions and problem solving efforts related to the many planning efforts affecting the Yolo Bypass. Various topics discussed over the years were the development of the Central Valley Flood Protection Plan, the Regional Corridor Management Framework, Yolo Bypass Wildlife Area Land Management Plan, Central Valley Joint Venture Implementation Plans, and proposed fish passage and flood plain enhancement projects including the Bay Delta Conservation Plan and California EcoRestore. Information on federal and state habitat easement programs has been shared. Initial methyl-mercury studies and projects for Yolo Bypass Drainage and Infrastructure Study were also developed with work group participation.

CACHE SLOUGH RESTORATION PLANNING PARTNERSHIP

73

This effort is an example of a new regional conservation partnership process initiated in the Delta. The Cache Slough Restoration Planning Partnership (CSRPP) was launched in 2016 by the Delta Conservancy and included Solano and Yolo counties, Solano County Water Agency, Reclamation District 2068, agricultural community stakeholders from Resource Conservation Districts, and government agency representatives from the Delta Stewardship Council, California Natural Resources Agency, DWR, and CDFW. The CSRPP's purpose is to develop a regional conservation strategy for the Cache Slough Complex that identifies areas for habitat restoration and projects that would be eligible for Proposition 1 funding and avoid or minimize potential conflict between land uses. The CSRPP incorporated existing land use plans and input from local stakeholders to develop a locally supportable vision using a strategic planning approach. Ultimately, the Cache Slough Complex conservation strategy could integrate with adjacent planning efforts in the Yolo Bypass (upstream) or Suisun Marsh (downstream). This regional planning complements ongoing collaborative work among local, state, and federal agencies in the Suisun Marsh and the larger Yolo Bypass/Cache Slough region, and build on past efforts by the coalition of local agency partners in the Lower Sacramento/Delta North Region Corridor of important habitat for birds and other wildlife. Such landscape scale planning efforts are the foundation of the Delta Conservation Framework.

For more information on conservation opportunities and partnership activities in the Yolo Bypass Cache Slough subregion see pp. 91-101.

GUIDE TO SUPPORTING PARTNERSHIPS AND PROGRAMS - CONTINUED

Table 2.1: Delta Working Landscapes Projects, Delta Protection Commission Strategy A2, Best Practices

Project Name and Location	Project Partners	Project Goals
Uslan Farms, Hamilton Road	Uslan Farm, Ducks Unlimited	Create semi-permanent wetland, seasonal wetland, and associated upland habitat
Winchester Vineyards, Winchester Lake	Ducks Unlimited, Hart Restoration, Winchester Vineyards, Winchester Lake Ski Club, Reclamation District 999	Create habitat along Winchester Lake that promotes slope stability, and create adjacent seasonal wetland habitat in low-yield crop area
Heringer Ranch, Elkhorn Slough	Heringer Vineyards, Hart Restoration	Reduce erosion of landside levee slope and prevent burrowing animals through plantings of native grasses
Heringer Ranch, Netherlands Road	Heringer Vineyards, Hart Restoration	Reduce erosion on slopes along Netherlands Road through vegetation plantings
Heringer Ranch (Vineyard), between Elkhorn Slough and Netherlands Road	Heringer Vineyards, Hart Restoration	Plant native vegetation to reduce erosive surface water runoff and provide habitat for wildlife
Vino Farms (Lambert Road), Pierson District	Vino Farms, Hart Restoration, Ducks Unlimited	Create slope wetland and use buffer plantings to stabilize slope bank
Vino Farms (Ditch 1 & 2), Merritt Island	Vino Farms, Hart Restoration	Plant native grasses and vegetation to reduce erosive surface water runoff and provide habitat for wildlife
C&M Orchards, North Stone Lake	C&M Orchards, Ducks Unlimited	Improve three acres of unfarmable land through creation of seasonal wetland
Woody's by the River, Empire Tract	Woody's by the River, Ducks Unlimited	Create berms around the existing corn field to facilitate seasonal flooding for waterbird habitat
Wilson Farms, Merritt Island	Wilson Vineyards, Hart Restoration	Create buffer strip to promote habitat and slope stabilization
San Joaquin Delta Farms, Lower Jones Tract	San Joaquin Delta Farms, Ducks Unlimited, U.S. Fish and Wildlife Service Partners for Fish and Wildlife Program	Create seasonal wetland, upland habitat, and a brood pond on a 400-acre cereal crop farm
Van Loben Sels Ranch, Pierson District	Van Loben Sels Farms, Hart Restoration	Plant native grasses along the levee of Snodgrass Slough to prevent erosion. Plant wild rye, sedge, and rushes along the irrigation ditch to reduce runoff from irrigation

75

Table 2.2: Good Neighbor Checklist Strategy C4: Multiple Benefits

Department of Water Resources Agricultural Lands Stewardship Workgroup

The Sacramento-San Joaquin Delta is the home of numerous habitat restoration efforts. Many Delta farmers are concerned that habitat lands could harm nearby agriculture in various ways. They would like assurance that entities that establish and manage habitat projects will consult with their neighbors and find ways to avoid impacts and resolve problems if they arise.

Restoration project managers can use the following checklist to ensure they comprehensively consider and examine the impacts of their project on neighbors as well as the impacts of neighboring lands on conservation projects. The checklist is based on a discussion paper, entitled Agricultural and Land Stewardship Strategies, which identifies a menu of mitigation measures and enhancements for the Delta. The measures described in the discussion paper, called Strategies, are referenced in the checklist.

- Have project proponents consulted with all neighboring landowners and operators about the project and its potential impacts? (See Strategy E1.1, which recommends involvement of landowners in project planning.)
- Have project proponents designated a local contact person to meet with neighboring landowners and discuss any issues of concern? (See Strategy D5.1, which suggests establishment of a public advisor position to help the public work with government agencies.)
- Will the project need access through other properties? If so, have access agreements been obtained?
- Does the management plan for the project provide for an on-site patrol or manager to deter trespass and vandalism? (See Strategy A4.3, which suggests the hiring of game wardens, sheriff's deputies, or private security guards.)
- Will the project increase the presence of vegetation susceptible to fire? (If yes, see Strategy A4.3.)
- Will the project discontinue maintenance of flood control features, involve prolonged or repeated flooding of previously dry land, or affect wind fetch across waterways? (If yes, see Strategy A1, which discusses flood protection improvements, and Strategy E1.3.2, which discusses drainage and seepage.)
- As a result of the project, are species on the project site expected to increase markedly in abundance and move from the site to neighboring lands or waterways? If yes, which species? (See Strategy A4.2, which suggests ways to protect landowners from liability under endangered species laws.)
- Is it reasonably possible that species in the project area could damage crops or promote the growth of weeds or diseases on neighboring farms? (If yes, see Strategy A3, which suggests ways to control weeds, and Strategy A4.1, which suggests the use of buffer zones and mechanisms for compensation for crop damages.)
- Will the project disturb utilities, roads, bridges, or other infrastructure that serve agricultural uses? (If yes, see Strategy D3, which suggests improvements to transportation infrastructure.)
- Will the project fragment or isolate farmland? (If yes, see Strategy E1.1, which encourages collaborative project planning.)
- Do domestic or feral animals or livestock occur on lands neighboring the project? (If yes, see Strategy A4.1, which suggests the use of buffer zones.)
- Do neighboring farms use chemicals as fertilizer or to control weeds or crop pests? (If yes, see Strategy A4.1, which suggests the use of buffer zones.)

QUICK LINKS

Bird Returns

www.nature.org/en-us/about-us/where-we-work/ united-states/california/stories-in-california/ california-migratory-birds/

www.nytimes.com/2014/04/15/science/ paying-farmers-to-welcome-birds.html

Change the Course 2017 http://changethecourse.us/projects/sacramento-river-wetland-enhancement-project


Delta Working Landscapes Program (DWLP) http://delta.ca.gov/land_use/wildlife

Good Neighbor Checklist & Strategies

https://water.ca.gov/-/media/DWR-Website/ Web-Pages/Programs/California-Water-Plan/Docs/ Materials/ALS/ALS---Framework-and-Strategies-Updated.pdf?la=en&hash=6E0ED25D3D1906C-F2AD1786DB520D3B0EF2E6539

Migratory Bird Conservation Partnership www.camigratorybirds.org/?page_id=60

Program On Wildlife-Friendly Working Lands www.camigratorybirds.org/?page_id=30

SECTION III

Value of Conserving the Delta Ecosystem

Historical Change in Ecosystems and Uses80
Resilient Delta Landscapes
Goal D: Conserving Ecosystem Function and Processes84
Yolo-Cache Conservation Opportunity Region91
Guide to Delta Ecosystems and Habitats 102

KEY TERMS

• LANDSCAPE CONNECTIVITY -

"Structural connectivity refers to the physical relationship between landscape elements, whereas functional connectivity describes the degree to which landscapes actually facilitate or impede the movement of organisms and processes. Functional connectivity is a product of both landscape structure and the response of organisms and processes to this structure. Thus, functional connectivity is both species- and landscape-specific. Distinguishing between these two types of connectivity is important because structural connectivity does not imply functional connectivity. In general, when we use the term 'connectivity' we are using the functional definition."

- ECOSYSTEM a community of living organisms interacting as a system in conjunction with the nonliving components of their environment (such as air, water and mineral soil). Each ecosystem is a defined area of varying sizes where biotic and abiotic components are interacting as a system and are regarded as linked together through nutrient cycles and energy flows. Example: Grassland ecosystems are made up of low herbaceous plants occupying well-drained soils with native forbs and annual and perennial grasses and are usually devoid of trees. The term "novel ecosystem" is described on p. 108.
- HABITAT an ecological or environmental area that is inhabited by a particular species of animal, plant, or other type of organism. The term typically describes the area in which this organism lives and where it can find food, shelter, protection, and mates for reproduction. It can describe the natural environment in which an organism lives or the physical environment that surrounds a population of a given species. Example: In portions of San Joaquin County, native grassland ecosystems provide habitat to the endangered San Joaquin kit fox.
- ECOLOGICAL RESILIENCE the amount of disturbance that an ecosystem could withstand without changing self-organized processes and structures (defined as alternative stable states).
- ECOLOGICAL SUSTAINABILITY the ability of ecological systems (ecosystems) to persist indefinitely by remaining diverse and productive, another product of functioning ecosystems.

Footnotes: The Delta Conservation Framework *footnote and endnote references can all be found in Appendix 1 online by section.*

79

Introduction

Delta ecosystems have degraded substantially over time, and continue to do so, because of a host of factors including land use changes, poor water quality, reduced sediment supply, and invasive species. Populations of native fish and wildlife species have seriously declined in the past decade.^{1,2} The Delta's capacity to supply ecosystem services, drinking and irrigation water, and agricultural livelihoods to its residents and the state, while also sustaining its native fish and wildlife, continues to decrease. The novel Delta ecosystem is much altered.³ Climate change and related extreme weather events will intensify pressures on the Delta (see Section IV, p. 119-120).⁴

This section of the *Delta Conservation Framework* explains how long-term landscape-scale conservation planning can be used to implement projects that improve ecosystem function and connectivity. It also describes how this approach can benefit listed species and be successfully integrated with the strong agricultural traditions and local communities of the Delta.

Recent investigations into the way Delta ecosystems functioned prior to 1800, how their function changed once land use changes took effect, and what processes will reestablish or improve this function serve as the foundation for Goal D of the Framework. Goal D aims to conserve Delta ecosystems to improve resiliency to climate change and benefit society and wildlife over the long term. Seven strategies under Goal D address the following key factors determining the health of Delta ecosystems:

Regaining ecological function in the Delta is crucial to sustaining native wildlife, supporting persistence and recovery of special status species, and maintaining ecosystem services to Delta residents and Californians.^{5,6} These services directly or indirectly support human survival and quality of life. Uncertainty over future development and climate change impacts on the Delta ecosystem, however, threaten even the most well-intended, well-planned conservation measures. It is both unclear how effectively conservation efforts will reestablish ecological processes and improve resilience in today's Delta^{7,8,9,10} but also clear that without such efforts some of the biological and physical foundations of the Delta may fail.

The *Delta Conservation Framework* seeks to integrate improved ecosystem function with human uses of the Delta, while supporting the persistence of native plants and animals over the long term. The *Delta Conservation Framework* does not seek to achieve a Delta that resembles a pre-development, "pristine" state. Instead it supports an adaptive, long-term management process that guides future responses to uncertain conditions.

This section of the *Delta Conservation Framework* provides a historical overview of changes in Delta ecosystems over the past 300 years, and highlights conservation strategies that promote ecological function on a landscape scale. It also offers an overview of the specific Delta ecosystem types targeted for conservation.

- ecosystem function and life-history support for resident and migratory species
- conservation of transition zones
- ecosystem and wildlife population connectivity
- conditions conducive to listed species recovery
- support for aquatic food webs
- invasive species detection, management and control
- public access to conservation sites

Wetland habitats in the Delta. Photo: Amber Manfree

Historical Change in Ecosystems and Uses

Before the 1800s, the Delta was home to a number of Native American tribes (primarily Miwok and Wintun).¹¹ Native American Delta residents fished, hunted, and foraged for food and materials. Although they did not practice agriculture, they managed the landscape with fire and other tools to favor the plants they used for food, work, or shelter.¹¹ Population estimates in the Delta before European arrival are between 3,000 and 15,000, with most native villages situated on natural levees on the edges of the eastern Delta, typically containing around 200 residents in each.

Prior to European settlement, large areas of the Delta were subject to seasonal flooding, and nearly 60 percent was submerged by daily tides, occasionally flooding it entirely during "spring" tides. (A spring tide refers to the 'springing forth' of the tide during new and full moons, while the term "king tide" describes an especially high spring tide. When king tides coincide with extreme storms or floods, water levels rise significantly).

During historic tidal cycles, water within the interior Delta remained primarily fresh, although most of the Delta was a tidal wetland. Early explorers reported saltwater intrusion during the summer months in some years.¹² The historical Delta contained a massive network of small distributary or "capillary-like" channels with natural levees that created floodplains, marshes, and riparian forests and served as an extensive fluvial-tidal interface (Figure 3.1 below). The upland edges of transition zones from the wetlands were composed of alkali seasonal wetlands, grassland, oak savannas, and oak woodlands. Gently sloping sand mounds around the marshes provided high-tide refugia for terrestrial species.³

The San Francisco Estuary, and in particular the Delta, once supported an extraordinary diversity and abundance of endemic, resident, and migratory wildlife within a wide array of native animal and plant communities.³ Before European arrival, the Delta teemed with birds and wildlife such as tule elk, deer, and California grizzly bear.⁷ Few traces of the early Native American culture, diversity of wildlife, and rich plant communities remain in the Delta today.

Scientists, resource managers, and residents all recognize that we cannot return to the historic Delta conditions. Indeed the Delta no longer functions as an estuarine delta, distributing water and sediment from rivers and ocean tides across wetlands, floodplains, and riparian forests.³ Instead, the Delta now comprises a system of confined

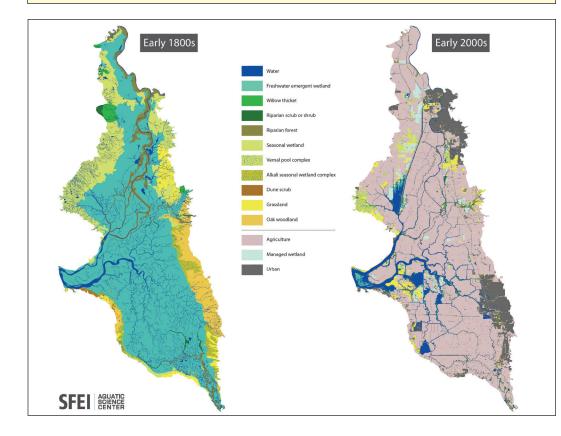


Figure 3.1: Delta waterways historically (left) and current (right). Historical channels depict "capillary-like" distributary channel networks, now largely missing. Aqua green (left) depicts wetlands; pink (right) depicts agricultural landscapes.⁶ Source: SFEI channels and levees, engineered by people to protect their communities and agricultural land from flooding, and to convey water where humans want it to go (Figure 3.1, p.80). Fresh water entering the Delta from rivers and watersheds is used to irrigate

"Before modern development, almost half of California's coastal wetlands were found in the Sacramento-San Joaquin Delta. The Delta supported the state's most abundant salmon runs, the Pacific Flyway, and endemic species ranging from the Delta smelt to the Delta tule pea. In the region's Mediterranean climate, the Delta's year round freshwater marshes were an oasis of productivity during the long dry season. Until reclamation, the Delta stored vast amounts of carbon in its peat soils."¹⁷

DELTA HISTORICAL ECOLOGY, SAN FRANCISCO ESTUARY INSTITUTE

Tule pea. Photo: Amber Manfree

in-Delta agricultural fields or diverted by the state and federal water projects for delivery to farms and municipalities in the San Francisco Bay Area, the San Joaquin Valley, the Central Coast, and southern California. Depending on the time of year, some of the fresh water is allowed to stay in the Delta, mix with ocean tides, and flow out to San Francisco Bay to meet water quality standards and endangered species requirements.¹³ The remaining Delta hydrograph fluctuates much less than it did historically, as dams upstream store and manage freshwater releases into the system.

Beginning in the mid-1800s, mining, reclamation, agricultural practices, and urbanization by European immigrants

dramatically changed the Delta landscape and function.^{3,7} Agriculture has been the mainstay of economic life and culture in the Delta since then. According to the 2012 *Economic Sustainability Plan for the Sacramento-San Joaquin River Delta*, close to 80 percent of all farmland in the Delta is classified as prime farmland, with annual economic value of approximately \$702 million from crop-based agricultural operations and \$93 million from animal production.¹⁴

Delta ecosystems, and their historic ecological and biophysical processes, were altered significantly to support this agricultural growth over the past 160 years. Agricultural practices and urbanization cleared forests and stripped natural levees of vegetation.7 Land reclamation and flood protection activities drained wetlands, constructed riprapped levees, straightened meandering channels, eliminated small distributary channels and extended blind channels so they connected with others. In the process, they also converted vast and fertile floodplains and riparian woodlands into cultivated fields.³ As a result, the ability of Delta ecosystems to support native California fish, wildlife, and plant species and communities is now severely degraded or absent entirely.^{1,12,15,16}

The Delta ecosystem, which now encompasses agricultural lands, remnant marshes, riparian habitats and aquatic habitats, has continued to decline since reclamation.¹⁷ While much of the land continues to serve viable and productive agricultural enterprises today, portions are slowly subsiding or degrading due to oxidation and wind erosion of peat soils. Remnant wetlands and riparian zones, meanwhile, are also subsiding or eroding. Many are now functionally disconnected from the estuary, dominated by

nonnative invasive species, and damaged by pollution, diminishing their habitat quality for native species and their resilience to climate change and other anthropogenic impacts.^{18,19,20,21,22,23,24} Some habitats are so degraded that a number of California native and Delta endemic species are in serious decline or almost extinct.

The loss of these valuable ecosystem services and native species isn't just felt in the accounting of numbers of small fish and nesting birds; it is also a loss in terms of the recreational and environmental quality of human habitat; not to mention the flood safety provided by natural buffers and healthy woodlands and wetlands. All subsided islands in the Delta — whether habitat for humans, crops or wildlife — are dependent upon levees increasingly vulnerable to seismic events and sea level rise.^{25,26} As the conditions continue to change, future Delta ecosystems will not resemble historical or contemporary ones.

Resilient Delta

Landscapes

The central challenge for Delta conservation is to create and maintain resilient "landscapes that support desired ecological functions while retaining the overall agricultural character and water-supply service of the region."26,27 Landscape-scale conservation differs from more piecemeal, smaller-scale approaches to conservation focused on the restoration or enhancement of particular sites or parcels. Planning on a landscape scale integrates consideration of ecological factors such as large-scale connectivity, biodiversity, and resilience to climate change with consideration of other factors such as local economies, agriculture, ecotourism, geographic diversity, and the health and social benefits of the environment to humans.28 As such, landscape scale conservation planning is both ambitious and rewarding for all, given a consistent commitment to embracing the complexities.

The Delta Conservation Framework provides landscape-level guidance by offering strategies for conservation based on the latest insights from scientific and historical ecology investigations conducted by the San Francisco Estuary Institute with support from the California Department of Fish and Wildlife.^{5,17}

These investigations highlight the importance of processes, diverse ecosystems, connectivity, and scale.

Processes

Thriving wildlife populations depend on functional ecosystems where biological and physical processes, or groups of processes, link different elements together. Ecological processes are dynamic, not static, and occur over large landscapes. These processes sustain habitats, food supplies, species, and many other components of the Delta ecosystem. Examples include the energy transfer in food webs (a biotic process) or the daily exchange of tides that supports these food webs (an abiotic process). These natural ecological processes don't stop at property lines,

though they may be altered or deflected by fences, levees, and other barriers to landscape connection. On working landscapes, such as farm fields, the same biological processes of nutrient cycling, plant growth and decomposition, as well as wildlife movement, still occur, along with physical processes such as erosion and water filtration. On working landscapes there is more human intervention in these processes, however.

To maximize benefits for native species, landscape-scale conservation planning must support, for example: fluvial processes along streams, functional channels, river corridors, and tidal floodplains to benefit resident and anadromous fish; tidal marsh processes linking intertidal, open water, and transition zone areas to benefit marsh wildlife and the aquatic food web; and other processes that connect terrestrial habitats, wildlife-friendly agricultural zones, and managed wetlands to benefit migratory birds and other wildlife species.

Ecosystem Types

The Delta is composed of a mosaic of interconnected types of aquatic, terrestrial, transitional, and agricultural ecosystems. Improving the function of these ecosystems will benefit not only wildlife species, but also provide water quality, pollination, open space, flood protection, and other services to humans.^{2,29,30,31}

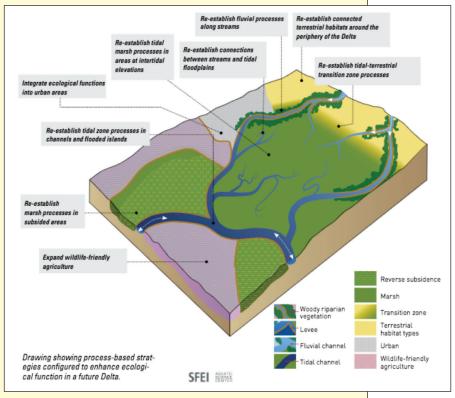


Figure 3.2: Future Delta model. Source: A Delta Renewed, SFEI

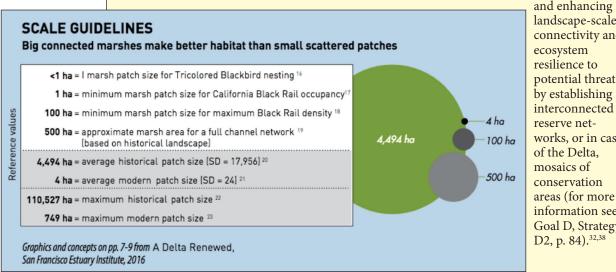
83

The Delta's diverse ecosystems can be divided into a number of basic categories. The vegetation, wildlife, and natural communities in each of these ecosystems are characterized by their location in the Delta landscape. In terrestrial and upland areas woodland and grassland ecosystems can be found, along with farms and cities. In riparian zones along creeks and rivers, willow thickets and floodplain ecosystems still occur. In aquatic and intertidal areas, freshwater and salt water influences lead to a variety of ecosystems, ranging from freshwater ponds to tidal channels to salt marshes. Finally, the transitional areas between natural areas and developed land uses support ecosystems at the edge of marshes, floodplains, levees, and hedgerows. For a full description of Delta ecosystems see Guide to Delta Ecosystems, Table 3.1, pp. 102-105.

Connectivity

Planning for conservation, and habitat and process connectivity at larger scales, requires consideration of the fact that wildlife, water, sediment and other components of a healthy ecosystem move around. When conditions become inhospitable, species move into new habitats. When conditions become extreme, such as during a large rain and flood event, and there is no contiguous place to retreat, species may be permanently displaced. As the Delta continues to develop, and as sea levels rise, fewer and fewer connections and pathways for migration, transition and adaptation will remain.

Today, fragmentation and habitat loss already threaten the movement of organisms and their genes.³² For example, the giant garter snake requires uplands for hibernation and cover³³ and wetlands for foraging and


reproduction, and a disconnect between these two critical habitats can reduce species viability. The giant garter snake is just one example of many species that may suffer from reduced connectivity between habitats and across larger landscapes.

Any disruption of the size and quality of available habitat, wildlife movement among habitats, and seasonal migration patterns can lead to detrimental effects on populations and species, including decreased carrying capacity, loss of genetic variation, and ultimately species extinction.^{3,25,29} While these dynamics generally apply to all wildlife species, they may serve as stronger stressors on special status species present in the Delta.33,34 Small populations are more sensitive to isolation and reduced genetic diversity may affect their long-term fitness.35,36,37

Landscape Scale

A landscape-scale approach to conservation planning offers the opportunity to strike a balance between implementing many smaller, widely spaced projects and fewer, larger, and less spatially distributed conservation projects. The main questions are where and how to reestablish the dynamic natural processes and diverse connected ecosystems. The recommended approach is to create an appropriate configuration of ecosystem types at the landscape scale (see Figures 3.2 and 3.3). Restoring a diversity of interconnected ecosystem components provides insurance in the form of resiliency and redundancy across the Delta landscape.3,31 Associated monitoring and adaptive management will allow tracking of whether restored processes and ecosystem functions remain resilient over time.3,31

Many current conservation efforts acknowledge the importance of protecting

landscape-scale connectivity and ecosystem resilience to potential threats by establishing interconnected reserve networks, or in case of the Delta, mosaics of conservation areas (for more information see Goal D, Strategy D2, p. 84).32,38

Framework in Depth: Goal D

Conserve Ecosystem Function and Processes

The Delta Conservation Framework's overarching goal for improving ecosystem function (Goal D) is founded on a landscape-scale approach.⁵ The goal's associated strategies are intended to serve as starting points for restoring ecosystem function over the next 30 years, and to occur within the context of "Delta as an evolving place." Many of the strategies associated with Goal D are also consistent with climate adaptation strategies that have been identified for biodiversity and habitat.4,39 and with efforts to address long term challenges such as invasive species, pollution, and maintenance the vast Delta levee system.^{40,41} In order to find long-term solutions, alternative future scenarios considering evolving human land uses, different levels of flood protection, a changing climate, and other ecosystem pressures need to be evaluated going forward (see Section VI).

Ecosystem Processes

Strategy D1 under Goal D focuses on recovering and restoring ecological processes to improve Delta ecosystem function. To achieve this, the Framework recommends that planning partnerships and project proponents consider the latest insights from a series of historical ecology investigations conducted by the San Francisco Estuary Institute with support from the California Department of Fish and Wildlife and regional agencies. These investigations focus on the status of Delta ecosystems now in relation to their historical condition. They also provide a big-picture perspective on how to reestablish a landscape that functions well for people and native wildlife.^{2,3,32} The most recent report from this series, A Delta Renewed, provides tools and on-the-ground strategies for reestablishing desired ecological functions in different regions of the Delta.⁵

The Delta Conservation Framework recommends that any new region-specific targets align with parameters described in A Delta Renewed. They should also take into consideration of existing regional targets (such as the habitat conservation plans presented in Table 3.2, p. 86) and broader targets, such as those outlined in the 2017 Central Valley Flood Protection Plan Conservation Strategy (CVFPP) described on p.31.33

Landscape Connectivity and **Resilience**

Strategy D2 under Goal D focuses on protecting ecosystems to improve connectivity and resiliency.

To maximize functional connectivity and resilience (see Key Terms p. 78), the Framework recommends that regional conservation partnerships conduct technical analyses to identify potential ecosystem types that would persist over the long term in the region and prioritize available opportunities to protect them. In any of the conservation opportunity areas, region-specific targets could be developed based on an assessment of ecological opportunities, existing land uses, and existing plans. These then should also integrate, where possible, with broader-scale plans that pertain to the surrounding landscape, such as the 2017 CVFPP mentioned above, or other relevant planning or regulatory documents (see Guide pp. 30-37).

In doing so, two primary approaches to promote connectivity should be employed: 1) protecting areas that facilitate movement and 2) restoring connectivity across areas that impede movement (e.g., by removing a fence, aquatic barrier, or building a wildlife-friendly highway underpass).⁴² A mosaic of interconnected ecosystem types, including wildlife-friendly agricultural lands and managed ecosystems, will maximize the adaptive capacity of wildlife populations at various scales.42 A highly connected landscape is crucial for facilitating species movement and accommodating distribution shifts in response to climate change.⁴² In some contexts, those undertaking conservation planning should also recognize that the subtidal aquatic system in the Delta could be viewed as overly connected. Historic meandering channels, and residence time diversity that benefit native fish species were much reduced through land reclamation and channelization activities.

One historic and current ecosystem process is flooding, and in this photo the Yolo Bypass - historic Sacramento River floodplain - absorbs high waters (2017) on multi-objective pastures and farm fields. Photo: Carson Jeffres

GOAL D

Conserve Delta ecosystems and their ecological processes and functions to benefit society and wildlife, and to enhance resilience to climate change.

STRATEGY D1

Restore, enhance, and manage ecosystem processes and habitats Delta-wide to improve function and life history support for native and migratory wildlife and to build ecological resilience.

- Align ecosystem conservation initiatives with A Delta Renewed strategies to restore tidal marsh processes at intertidal elevations; marsh processes in subsided areas; tidal zone processes in channels and flooded islands; connections between streams and tidal floodplains; fluvial processes along streams; tidal-terrestrial transition zone processes; connected terrestrial habitats; expanded wildlife friendly agriculture; and ecological functions in urban areas.
- Align enhancement of ecosystem processes with Regional Conservation Investment Strategies.

STRATEGY D2

Conduct technical analyses within groups such as regional conservation partnerships to coordinate, identify, and prioritize available geographic areas for conservation and climate adaptation.

- Protect and restore transition zones with the potential for providing landscape connectivity and ecosystem resiliency.
- Protect areas in regional landscapes most vulnerable to climate change.
- Identify opportunity areas to support climate-vulnerable species.
- Support the development and initiation of projects that improve migration and movement corridors for species to improve the connectivity of populations at multiple scales.

STRATEGY D3

Create conditions conducive to maintaining or improving the distribution and abundance of native Delta species, and to meeting the goals of existing habitat and species recovery plans.

- Consider Habitat Conservation
 Plans and Natural Community
 Conservation Plans.
- Support Regional Conservation Investment Strategies.
- Consult the multi-agency
 Sacramento Valley Salmon
 Resiliency Strategy and Delta
 Smelt Resiliency Strategy.
- Consider California's State Wildlife Action Plan.

Goal D continued next page

DELTA CONSERVATION FRAMEWORK

FRAMEWORK IN DEPTH: GOAL D CONTINUED

STRATEGY D4	STRATEGY D5	STRATEGY D6
Support a thriving aquatic food web in the Delta through conservation actions, scientific investiga- tions, and existing man- agement initiatives.	 Support and coordinate proactive approaches for the early detection, rapid response, and long-term control and management of harmful invasive species. Reduce negative impacts on ecosystem function, special status species, Delta communities, and ecosystem resilience. Use existing resources such as Delta County Weed Management Areas and California State Parks and Recreation Division of Boating and Waterways programs when possible. 	 Balance human use of conservation areas with protection of sensitive Delta wildlife. Reduce adverse effects of human disturbance. Consider existing or develop new public access plans and land management plans. Support increased law enforcement and public safety on conservation lands.
Table 3.1		
Current Conservation Planning Documents	Related DCF Conserv Opportunity Region	
Suisun Marsh Plan	Suisun Marsh	

Current Conservation Planning Documents	Related DCF Conservation Opportunity Regions
Suisun Marsh Plan	Suisun Marsh
East Contra Costa County HCP/NCCP	West Delta
South Sacramento HCP	North Delta
San Joaquin County Multi-Species Habitat Conservation and Open Space Plan (SJMSCP)	South Delta
Solano Multispecies HCP (MSHCP)	Yolo Bypass; Cache Slough Complex
Yolo HCP/NCCP; Yolo RCIS	Yolo Bypass; North Delta

Native tree assemblage in the Delta. Photo: Amber Manfree

Special Status Species

Strategy D3 under Goal D focuses on improving Delta conditions for special status species. The Delta Conservation Framework suggests that individual conservation projects should address existing recommendations in species recovery plans, federal and state conservation plans (HCP and NCCP respectively), and Regional Conservation Investment Strategies (RCIS). HCPs and NCCPs provide endangered species take authorizations and associated mitigation for development projects. Most HCPs and NCCPs overlapping the Delta have a strong link to agricultural preservation, striking a balance between natural resource conservation and economic sustainability in the region. The Delta Conservation Framework defers to the conservation targets outlined in the HCPs and NCCPs available or under development in Delta counties or priorities set in the Yolo County RCIS (Table 3.1 opposite).

California State Wildlife Action Plan

This 2015 plan (SWAP) is an ecoregion-based strategic conservation plan developed by the California Department of Fish and Wildlife.³ The document provides a blueprint for actions necessary to sustain the integrity of California ecosystems, for their intrinsic values and as natural resources and heritages. The SWAP highlights the Delta as part of the Bay Delta Conservation unit, within the Bay Delta and Central Coast Province. The conservation target ecosystems for the Bay Delta Conservation unit are freshwater marsh, including non-tidal freshwater emergent wetlands; salt marsh, including saline emergent wetlands and tidal freshwater wetlands in the Delta; and American Southwest riparian forest and woodland, which includes the Valley Foothill Riparian natural community in the Delta. The SWAP highlights the pressures in the Delta that make it a prime region for conservation. (See also Guide p. 30).

Swainson's hawk. Photo: Rick Lewis

The various descriptions of conservation opportunity regions in this Framework include short overviews of ongoing HCPs, NCCPs, and RCISs relative to each specific portion of the Delta (see also Guide pp.33-34). Regional conservation partnership efforts should integrate targets and goals of these plans or strategies into their conservation planning efforts.

The Delta Conservation Framework recommends that efforts to meet or exceed recovery goals for special status species should also consider improving the long-term resiliency and

adaptive capacity of ecosystems and wildlife populations to habitat loss, climate shifts, exotic species invasions, and other pressures.^{43,44,45} As mentioned before, several special status species including giant garter snake, greater sandhill crane, tricolored blackbird, and Swainson's hawk benefit from agriculture in the Delta (see Species Recovery Briefs, Appendix 5). Continued conservation and agricultural land stewardship will require a common appreciation among stakeholders for how crop selection and management to support special status species will affect agricultural productivity, and how growing stressors such as sea level rise or salinity intrusion will affect both agriculture and wildlife.

Food Webs

Strategy D4 under Goal D focuses on supporting the Delta's aquatic food web.

Primary production is an essential ecosystem process that may limit the quality and quantity of food available for invertebrates, fish, and other secondary consumers, including species of special concern. An inventory of organic-carbon sources - which included phytoplankton, detritus, and aquatic weeds — revealed that the Delta is currently a low productivity ecosystem, yet it is unclear whether this was always the case.46,47,48 A recent research study tested the hypothesis that "the Delta has been transformed from a high-productivity ecosystem largely dependent upon marsh-based production to a low-productivity ecosystem dependent upon production of aquatic plants and algae."47,47,48 Such studies linking changes in primary production over time with reductions in the extent of tidal marshes and associated marsh channel networks have generated a renewed appreciation for the importance of primary productivity in the Delta aquatic food web.

Large-scale conversion of tidal marsh to agriculture has altered the Delta's current capacity to produce food for native biota and support species of concern. The Delta Conservation Framework recommends that estimates of differences between historic and modern primary production be used to shape targets and evaluation metrics,^{46,47,48} assess the progress of individual conservation projects, and gauge the trajectory of ecological recovery. Of particular relevance to the Framework are recent investigations highlighting the importance of landscape configuration in determining levels of primary production in the Delta. These investigations demonstrate that interactions between terrestrial and aquatic food webs vary across the current landscape.46,47,48

FRAMEWORK IN DEPTH: GOAL D CONTINUED

The Delta Conservation Framework also supports development of the Tidal Wetland Monitoring Framework for the Upper San Francisco Estuary (see p. 115). This monitoring initiative seeks to evaluate the potential benefits of tidal wetland restoration to aquatic food webs and at risk Delta fish species.49

Resiliency Strategies for Fish

Two native fish species now declining in the Delta are the subject of resiliency strategies that inform the Delta **Conservation Framework.**

The Delta Smelt Resiliency Strategy is a science-based document prepared by the State of California to voluntarily address both immediate and near-term needs of Delta smelt. The Strategy aims to promote smelt resiliency to drought conditions, as well as to future variations in habitat conditions.⁴³ The Strategy relies on the Interagency Ecological Program's Management, Analysis, and Synthesis Team ("MAST") report and conceptual models⁴⁴ that suggest actions designed to benefit Delta smelt. These will be implemented within the next few years to address predation, turbidity, and food availability and guality.⁴⁶ These management actions include:

- Aquatic weed control
- North Delta food web adaptive management projects
- Outflow augmentation
- Reoperation of the Suisun Marsh salinity control gates
- · Sediment supplementation in the low salinity zone
- Spawning habitat augmentation
- Roaring River distribution system food production
- Coordinating managed wetland flood and drain operations in Suisun Marsh

With the additional information provided by these investigations and monitoring results, the Delta Conservation Framework can give priority to those conservation actions most likely to improve ecosystem primary production and better track the course and progress of Delta ecosystem recovery at the base of the food chain.

- Adjusting fish salvage operations during summer and fall storm water discharge management,
- Rio Vista Research Station and Fish Technology Center
- Near-term Delta smelt habitat restoration
- Franks Tract restoration feasibility study

The Sacramento Valley Salmon Resiliency Strategy promotes actions that address specific life-stage stressors and contribute to the achievement of overall viability of Sacramento Valley salmonids. The Strategy outlines habitat restoration and management actions necessary to improve the immediate and long-term resiliency of Sacramento Valley salmonid species.⁴⁵ For each proposed action, the Strategy lays out objectives, linkages to conceptual models that are consistent with existing priorities, estimated costs, funding sources, and timing. Recommended actions relevant to the Delta include:

- Improve Yolo Bypass adult fish passage
- Increase juvenile salmonid access to Yolo Bypass, and increase duration and frequency of Yolo Bypass floodplain inundation
- Construct a permanent Georgiana Slough nonphysical barrier
- Restore tidal habitat in the Delta

Delta smelt. Photo: Joel Sartore/ The Photo Ark/ National Geographic Collection

80

Research by UC Davis and USDA continues to evaluate the best mix of surfacants and herbicides, and the best spray volumes, for optimizing control of the water hyacinth infestation in the Delta (test plots *pictured*). For conservation planning purposes, the impacts of control (spraying and *mechanical removal)* on the ecosystem have to be balanced with the impacts of infestation on navigation, algal blooms, and predation on native species. In a novel ecosystem *like the Delta, trade* offs are not always black and white which is why conservation partner*ships are so important* to decisionmaking. Photo courtesy: UC Davis

Invasive Species

Strategy D5 under Goal D focuses on controlling invasive species area-wide through coordinated partnership efforts. Such coordination has the potential to reduce their spread throughout Delta waterways, farmlands, and Delta conservation lands, lowering management costs over the long term. Both terrestrial and invasive aquatic plant species are a widespread problem in the Delta and can have multiple adverse effects on native wildlife, recreation, and local agriculture and businesses.

Aquatic weeds – spread through water – are the most difficult to control. Over the last decade, floating and submerged aquatic plant species – water hyacinth, water primrose, Brazilian waterweed, and giant reed – have spread dramatically within the Delta. This spread has steadily reduced the quality of habitat for native species, hampered recreation and navigation, increased mosquito habitat, and impeded the flow of water (increasing the cost of pumping). It has also increased the need for pesticides and decreased water quality.^{50,51,52,53,54}

The Delta Conservation Framework supports the Delta Region Areawide Aquatic Weed Project, which informs state aquatic invasive species programs under State Parks' Division of Boating and Waterways (DBW). These efforts control floating and submerged invasive aquatic vegetation in the Delta except inside State Water Project facilities, where the Department of Water Resources has jurisdiction and manages weeds.

On land, terrestrial weeds and invasive plant species have enjoyed long and careful management on the part of both private landowners and farmers, and local agricultural and conservation districts. The Delta Conservation Framework supports the DWR Agricultural Lands Stewardship (ALS) Workgroup's suggested strategies for both terrestrial and aquatic weeds, including prioritizing weeds and other pests for area-wide control, and reinvigorating county Weed Management Areas (WMAs). Led by the County Agricultural Commissioner or local Resource Conservation District, WMAs are local stakeholder groups with strategic plans focusing on invasive species control and management, both aquatic and terrestrial. The WMAs that overlap the Delta are Alameda-Contra Costa, Sacramento, Northern San Joaquin Valley, Solano, and Yolo.

Sustaining current control efforts by DBW, and a revival of WMAs, will help keep the focus of Delta conservation projects on the invasive species challenge, and emphasize the value of early detection and rapid response both on public and private lands and waterways. Once identified, invasive species populations, particularly those outlined in the Delta smelt and salmon resiliency strategies,^{43,45} could be prioritized by the WMAs for coordinated area-wide control or eradication, offering multiple benefits of reduced environmental impacts, nuisance, and cost and reduced threat to ecosystem function, special status species, and Delta community interests. Changing climatic conditions may favor or accelerate the spread of certain invasive plant species. Early detection and eradication can help to reduce existing ecosystem stressors and increase overall resilience to change.

Public Access

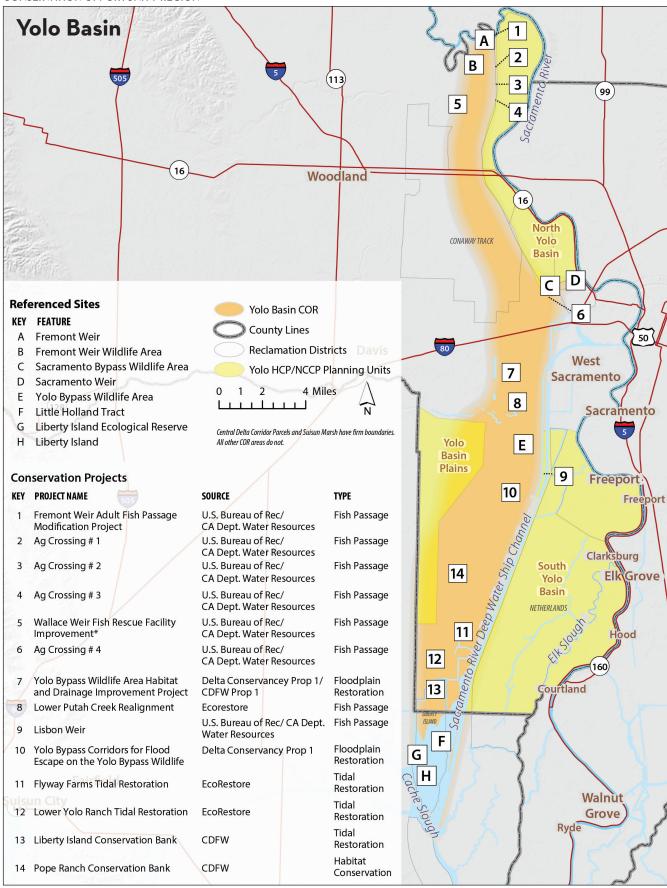
Strategy D6 under Goal D focuses on optimizing the use of conservation areas for both people and wildlife. In the Delta, public access to open space is a mainstay of Delta life, with its long history of hunting, fishing, boating, recreation use, and tourism. These kinds of recreational activities have long been considered compatible with species protection. An increasing body of research demonstrates, however, that outdoor recreation even non-consumptive activities like bird watching and hiking (as compared to hunting and fishing) — can negatively impact plant and animal communities.^{55,56,57,58,59} This is particularly the case in the absence of buffers or exclusion zones to mitigate potential negative effects. As a result, public access is not always recommended in conservation and restoration designs.

The *Delta Conservation Framework* recognizes the importance of balancing tradeoffs between desired restoration outcomes and human use. In addition to many recognized human health and economic benefits of outdoor recreation,⁶⁰ access to open space also encourages public support for land and wildlife conservation.⁶¹ Despite public awareness and support for conservation in general, California still has the greatest number of listed species threatened by recreation in the U.S.⁵⁵ Land and wildlife managers in the Delta, as elsewhere, must seek solutions for balancing the benefits of outdoor recreation for human visitors with the potentially negative effects on species and ecosystems. Signage, informational kiosks, and clearly developed nature trails or boardwalks can reduce visitor impacts on sensitive wildlife and their habitat.

The *Delta Conservation Framework* suggests careful consideration of where to allow and how to best regulate and enforce public access in relation to protecting wildlife needs. The Framework also suggests consideration by regional planning partnerships as they evaluate potential conservation scenarios in their area, and at the entire Delta landscape scale.

CDFW cannabis patrol, human and canine, in the Delta. Photo: CDFW

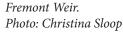
A Big Canvas for Multi-Benefit Conservation - Yolo Bypass, Cache Slough and the North Delta Arc


When it really rains and the Sacramento River swells, it spreads out into its former floodplain in the Yolo Bypass. These vast flats off Highway 80 between Davis and Sacramento provide essential flood protection for the City of Sacramento and surrounding towns; here local farmers have learned to live with these somewhat infrequent flood events and plan their crops and pastures accordingly. In addition to rice, safflower, and tomatoes, this floodable farmscape also grows salmon fry and fish food when wet. For decades now local landowners, several counties, and myriad government agencies have been working in partnerships at many levels to make the most of the bypass as a multi-use landscape for flood protection, fish and bird habitat, and agriculture. Linked with major fish and habitat restoration efforts in Cache Slough and Suisun Marsh to the south, Yolo County and the

bypass are at the heart of big ideas, high hopes, and hard work to improve conditions in the Delta.

These Yolo-Cache partnerships and initiatives reflect Delta Conservation Framework goals for forwardthinking regional partnerships and strategies. The Framework also highlights the Yolo Bypass and Cache Slough as two of seven "conservation opportunity regions" where a critical mass of natural landscapes, public lands, potential conservation opportunities, conservation-minded people, and existing partnerships occur in one place. The Framework seeks to support such regions and partnerships in strategic conservation planning. Together these regions will one day add up to a healthier Delta both for people and wildlife.

DELTA CONSERVATION FRAMEWOR


CONSERVATION OPPORTUNITY REGION

Regional Setting

Constructed about 100 years ago, the 59,000-acre Yolo Bypass is a complex mosaic of agricultural fields and managed wetlands located within the historic 89,000-acre Yolo Basin. Primarily a flood protection area, the bypass reduces the risk of flooding in the Sacramento region through a system of weirs that connect to the Sacramento River to the north (Fremont Weir) and to the east (Sacramento Weir). Fremont Weir overtopped in approximately 70 percent of flood seasons between 1934 and 2012, augmenting flows from western tributaries.¹ In addition to these freshwater outflows, there is a significant tidal influence in the lower Yolo Bypass south of Interstate 80.

The portion of the Yolo Bypass north of Interstate 80 and North Yolo Basin is largely owned by a few private landowners, and also includes two state wildlife areas containing unmanaged grassland and riparian forest. These areas provide wetland values when their weirs overtop. Several thousand acres just north of the Union Pacific Railroad tracks are in private ownership but are managed wetlands protected by federal easements. The southern Yolo Bypass (south of Interstate 80)

Yolo-Cache At A Glance

- Size: Yolo: 59,000 acres Cache: 53,000 acres
- Location: Northwestern Delta in Solano and Yolo counties
- **Elevation range:** Yolo:10 feet below to 36 feet above sea level Cache:10 below to 45 above sea level
- Zoning:

Yolo: 60 – 65 percent agriculture; 35 – 45 percent public lands Cache: 80-92 percent agriculture; 15-20 percent public lands

- Other primary land uses: flood protection, wildlife habitat, water supply, recreation, duck clubs (Yolo), scientific research
- Natural communities:

Yolo: Managed wetland, tidal wetland, freshwater emergent wetland, vernal pools, seasonal floodplain, grasslands, valley foothill riparian, alkali prairie

Cache: Seasonal wetlands, vernal pools, seasonal floodplain, tidal perennial aquatic, grasslands, valley foothill riparian

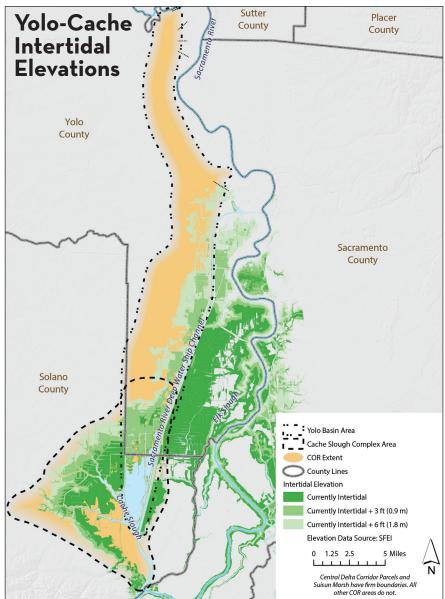
- Urban population: 0
- Rural population: Yolo: 40-45 Cache: 600-650
- **Recreational opportunities:** Wildlife observation, boating, fishing, hunting, interpretive services, as well as proposed hiking, picnicking, paddling (Cache)
- Sampling of Listed Species: Delta smelt, longfin smelt, Chinook salmon, Central Valley steelhead, green sturgeon, giant garter snake, Swainson's hawk, tricolored blackbird, least Bell's vireo, bank swallow, Solano grass, Colusa grass, Conservancy fairy shrimp; vernal pool fairy shrimp, vernal pool tadpole shrimp, California black rail, western burrowing owl, and western yellow-billed cuckoo.

includes the state's 16,800-acre Yolo Bypass Wildlife Area (YBWA). It also includes thousands of acres of privately owned wetlands that are managed as duck clubs, many protected by state or federal wetland conservation easements. A large giant garter snake mitigation bank lies just south of the YBWA.

The bypass ultimately drains into the Cache Slough complex. Cache Slough in turn drains into the Sacramento River and San Francisco Estuary. Low-lying grasslands and seasonal wetland/vernal pool complexes separate the Cache Slough complex from the

CONSERVATION OPPORTUNITY REGION CONTINUE

northeast corner of Suisun Marsh. Primary land uses include grazing, local and regional flood protection, terrestrial and aquatic wildlife habitat, and water supply for local agriculture and regional municipal and industrial needs, including the North Bay Aqueduct. Agriculture is the primary land use in the Cache Slough region and relies both on water rights and soils suitable to support a range of agricultural land uses, as well as on protection from the tides and floods influencing the Yolo Bypass, Sacramento River, and local watersheds.


Planning History

The Yolo-Cache region is emerging as a test case

for how to effectively manage a variety of land uses in combination, such as flood protection, agriculture, recreation, education, and habitat for fish, migratory birds,² and other wildlife. The Yolo Bypass has been the focus of public agency planning efforts around sensitive species and habitat restoration over the past two decades, as has Cache Slough. 3,4,5,6,7,8,9,10,11,12, ^{13,14} Both regions are now at the intersection of many public and private interests and efforts to discuss and vet implementation of state- and federally- led initiatives in the context of local land uses. Ensuring sustained cross-communication among the varied partnerships is a critical element for achieving multiple benefits in the region (see also Section II and Guide p. 73 for details on each).

Opportunities for Conservation and Potential Solutions

The Yolo Basin and Bypass offer notable conservation value for wildlife species associated with floodplains, managed wetlands, seasonal and semi-permanent wetlands, tidal wetlands, grasslands, pasture, and riparian zones, and for a number of special status species.³ Fish and wildlife include resident and anadromous fish native to the Delta, amphibians and reptiles, as well as resident and migratory birds, including shorebirds, neo-tropical migrants, waterfowl, raptors, and wading birds. There are thousands of acres of existing conservation easements and a wildlife area owned by

Map: CDFW, 2018

Primary Yolo-Cache Partnerships

- The Yolo Bypass Cache Slough Partnership (BCSP) is focused on flood risk reduction, ecosystem restoration, and local sustainability. The partnership provides a framework and arena for dialogue for the planning and management of the Yolo Bypass and Cache Slough. Made up of 15 local, state, and federal agencies, the partnership's purpose is to improve executive-level interagency coordination. This policy-level partnership was formed via a 2016 Memorandum of Understanding⁶ that emphasizes the importance of achieving across-the-board improvements in habitat, flood protection, agricultural sustainability, recreation, and other public values. This foundational acknowledgement and high-level support has set the stage for developing trust among stakeholders. One new potential focal point for the partnership is the development of a road map for collective, multi-benefit, integrated water management in the region.
- The Yolo Bypass Working Group (YBWG), coordinated by the Yolo Basin Foundation, offers an example of local "grassroots" collaboration. Established in 1998, the group is a forum for about 40 stakeholders representing a wide range of interests in managing the multiple uses of the Yolo Bypass. This forum has been particularly helpful in vetting flood plain modeling tools, and assessing the impacts of various projects on agriculture and wetland management. Over the years, stakeholders have participated in discussions and problem solving related to the development of the Central Valley Flood Protection Plan, the Regional Corridor Management Framework, the Yolo Bypass Wildlife Area Land Management Plan, the Central Valley Joint Venture Implementation Plans, and proposed fish passage and flood plain enhancement projects under the Bay Delta Conservation Plan and California EcoRestore, among many topics. The group has also shared information on federal and state habitat easement programs and recent methyl-mercury studies, and provided input on infrastructure and drainage projects.

Regional Corridor Management Framework (CMF) is a coalition of local reclamation districts, counties, and flood protection agencies that developed the framework as a vision for the integration of local, state, and federal interests in the Yolo-Cache region.⁷ Established in 2015, the CMF continues to guide local agency participation in the BCSP and other forums.

The Cache Slough Restoration Planning Partnership (CSRPP) a regionally focused effort including the Delta Conservancy, state agencies, local RCDs, reclamation districts and counties, and consultants such as the San Francisco Estuary Institute and Flow West. Outreach added Delta farmers, landowners, and residents to the partnership. The partnership⁸ examined opportunities to develop a broader regional conservation strategy for the Cache Slough complex. Building on the California EcoRestore⁹ and Department of Fish and Wildlife's Fish Restoration Program, ¹⁰ the aim of the first phase was to develop a locally supportable vision and strategic planning approach that reduces potential conflicts between land uses, and recognizes opportunities for a landscape-level integrated approach to conservation that includes ecosystem processes, multiple habitat types, and species.

Current Yolo-Cache State and Federally Led Planning Efforts

California EcoRestore. The Department of Water Resources and the US Bureau of Reclamation are pursuing the enhancement of up to 17,000 acres of floodplain habitat and restoration of 8,000 acres of tidal habitat in the Yolo Bypass and Suisun Marsh, consistent with a 2008 USFWS Biological Opinion and a 2009 NMFS Biological Opinion.¹¹ California EcoRestore is focused on benefitting native fish species through provision of increased juvenile rearing habitat, enhanced adult fish passage, and improvement of primary production. This includes priority projects like the realignment of the Lower Putah Creek and is consistent the 2012 *Yolo Bypass Salmonid Habitat Restoration and Fish Passage Implementation Plan* (see p. 36).

- Central Valley Flood Protection Plan (CVFPP). The 2017 CVFPP Conservation Strategy¹² includes continued analysis of floodplain restoration opportunities. This analysis offers decision diagrams to identify and prioritize potential locations for: 1) modifying floodplain topography (specifically, lowering floodplain topography through targeted excavation) and 2) relocating levees (specifically, constructing setback levees). Yolo Bypass levee setbacks and weir extensions are central to the state strategy for increasing flood system resiliency.
- Sacramento River General Reevaluation Report. Working in partnership with the California Department of Water Resources (DWR), the US Army Corps of Engineers is developing this planning vehicle to secure Congressional approval for significant improvements to the Yolo Bypass and Sacramento River.
- Central Valley Joint Venture Implementation Plan. This plan is part of an international effort to manage and restore migratory bird populations along the North American flyways. This plan has specific objectives for wetlands and riparian habitat in each of the Joint Venture planning regions associated with the Sacramento River. The goals for the Yolo Basin are based on sustaining current rice growing operations, and sustaining and improving managed wetlands (see p. 70).
- Cache Slough Complex Conservation
 Assessment. DWR completed Volume 1 of the
 assessment in 2016 in collaboration with the
 California Department of Fish and Wildlife Fish
 Restoration Program (FRP).¹³ The assessment
 evaluates the potential for restoring the Cache
 Slough complex as part the FRP. It also provides
 information on current and historic conditions in
 order to generate a regional landscape conceptual
 model for conservation of tidal habitats to support
 the recovery of Delta smelt. Volume 2 will present
 restoration strategies and assess compatibility
 with other regional plans.

Yolo Bypass. Photo: Christina Sloop

CONSERVATION OPPORTUNITY REGION CON

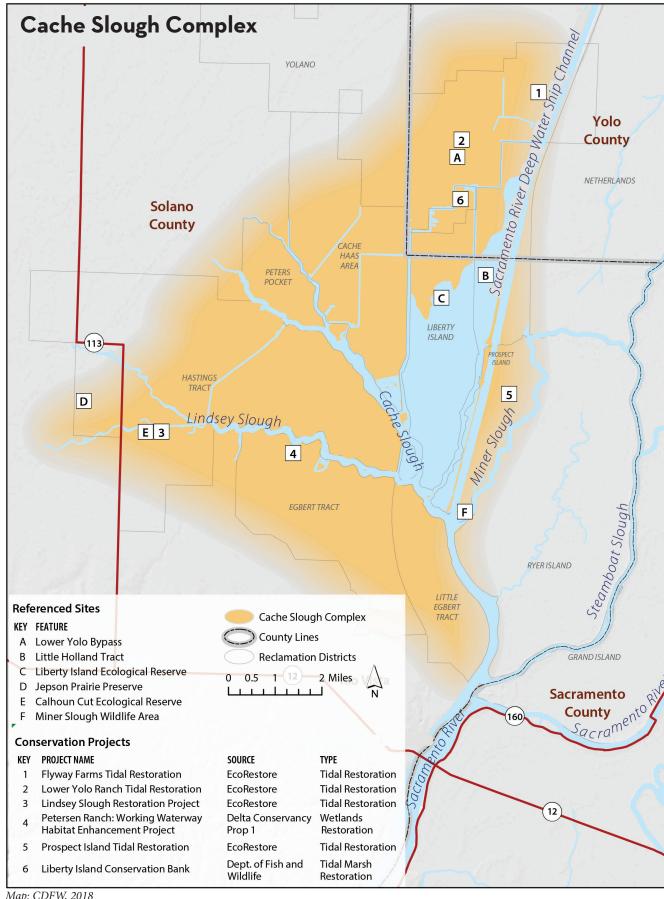
the California Department of Fish and Wildlife in place within the Yolo Bypass that protect habitat managed to benefit these fish and wildlife species.

Just downstream, the Cache Slough complex offers notable conservation value for species associated with tidal wetlands, seasonal wetlands (including vernal pools), and grasslands in and around the Delta.15 The complex has been established as the only known Delta site supporting year-round populations of endangered Delta smelt, and provides spawning and rearing habitat for populations migrating from the San Francisco Estuary's low salinity zone.16,17 Moreover, undeveloped lowland grasslands and ranch land span the short distance between the Cache Slough complex and Suisun Marsh to the west. Altogether these offer an ecological corridor for movement of wildlife and provide sea level rise accommodation space over the long-term.¹⁸

Major planned and existing conservation projects in the Yolo-Cache complex are listed in the sidebar. Additional conservation opportunities follow.

REFERENCING EXISTING REGIONAL HABITAT PLANNING

The Yolo Habitat Conservation Plan/Natural Community Conservation Plan (HCP/NCCP)19 is a countywide conservation plan coordinated by the Yolo Habitat Conservancy. The plan addresses Endangered Species Act permits and associated mitigation for infrastructure (e.g. roads and bridges) and development activities (e.g. agricultural facilities, housing, and commercial buildings) identified for construction over the next 50 years in Yolo County.²⁰ The Yolo HCP/NCCP will coordinate mitigation to maximize benefits and conserve habitat beyond required mitigation for 12 identified species. The plan has a strong link to agricultural preservation, and strikes a balance between natural resource conservation and economic growth in the region.


Major Yolo-Cache Planned or Existing Restoration Projects

- Lower Yolo Ranch tidal and floodplain restoration (1,480 acres)
- Liberty Island Conservation Bank (809 acres, tidal)
- North Delta Fish Conservation Bank (Liberty Island 809 acres, tidal)
- Yolo Bypass Salmonid Habitat Restoration and Fish Passage Project
- Fremont Weir Adult Fish Passage Modification Project
- Wildlife corridors for flood escape on the Yolo Bypass Wildlife Area (approximately four linear miles, 82 acres)
- Yolo Wildlife Area habitat and drainage project (approximately 2,617 acres)
- Putah Creek realignment project (approximately two channel miles of Lower Putah Creek in the Bypass to enhance fish passage)
- Yolo Bypass agricultural crossing fish passage improvements
- Lisbon Weir modification project
- Yolo Flyway Farms (359 acres of subtidal, intertidal, and seasonal wetlands)
- Lower Elkhorn levee setback project (approximately 7 miles of setback levee for floodplain enhancement)
- Prospect Island restoration project (1,617 acres tidal)
- Lindsey slough tidal restoration, completed 2015.
- Pope Ranch Garter snake mitigation bank
- Wallace Weir improvement project and fish collection facility (keeps adult salmon out of the Ridge Cut and Colusa Basin)

(see also maps pp. 92 & 97)

The Solano Multi-Species HCP is still in development, with a final administrative draft last updated in October 2012. This HCP will promote conservation of biodiversity and preservation of covered species and their habitats in relation to urban development, flood control, and infrastructure improvement activities.²¹ Federal- and state-listed fish species and other species of concern on lands within the Delta will be included in the HCP as covered species. Natural communities to be protected include grasslands and vernal pools, riparian and stream habitats, and marshes.

The Yolo Regional Conservation Investment Strategy/Local Conservation Plan (Yolo RCIS/ LCP)²² is a voluntary, landscape-scale conservation plan identifying conservation priorities to guide public and private conservation actions and investment. It will provide a blueprint for additional voluntary, non-regulatory conservation in Yolo County that addresses needs not covered in the Yolo HCP/NCCP.

CONSERVATION OPPORTUNITY REGION

Map: CDFW, 2018

CONSERVATION OPPORTUNITY REGION CONTINUE

NORTH DELTA ARC CONNECTIONS

Both the Yolo Bypass and Cache Slough fit into a "grand strategy" to create an interconnected series of habitats, mostly tidal, in this region as a result of its potential for biodiversity conservation and location at the southern end of the Yolo Bypass. Developed by the UC Center for Watershed Sciences, this strategy is referred to as the "North Delta Habitat Arc" and consists of a reconciled ecosystem strategy to create an arc of habitats connected by the flows of the Sacramento River.23 The Yolo Bypass is the upstream end of the arc, which continues through the Cache-Lindsey Slough-Liberty Island region (Cache-Slough complex), down the Sacramento River (including Twitchell and Sherman Islands), and into Suisun Marsh. Very few areas of the Delta offer these opportunities for significant habitat connectivity (for more information see p. 72).

FISH, FLOODPLAIN, AND MARSH HABITAT IMPROVEMENTS

The Northwest Delta around Yolo Bypass and Cache Slough offers unique opportunities to support native fish using landscape scale approaches and ecological processes. What's special about the Yolo Bypass region is the opportunity for floodplain habitat and shallows rich in food and shelter for young salmon and resident fish; what's special about Cache Slough is its proximity to the Yolo Bypass and the distributary channels

Copepod (p. Marinus), a favored fish food for young salmon and other natives. Photo: Vogt

of the lower Sacramento River. Cache Slough benefits from natural flood pulse flows, providing seasonal migration, spawning, and rearing habitats for adult and juvenile native and anadromous fish. The flood plains and distributary channels are primary sources for food web productivity during inundation and high flow events, and also bring winter sediment supply. The Cache Slough complex also hosts mineral soils that minimize land subsidence relative to the

more organic soil in other parts of the Delta. The gradual alluvial slopes of the surrounding uplands could accommodate sea level rise through lateral marsh expansion.²⁴ As the Cache Slough complex still contains natural drainage patterns, and connects to the Sacramento River, the area is widely regarded as prime location for restoration projects. Liberty Island (1998)²⁵ and Little Holland Tract (1982)— two very large, naturally restored islands—now support a mix of emergent tidal marsh, intertidal flats, and shallow-to-moderate-depth subtidal aquatic habitats. The Cache Slough complex is also adjacent to a biologically unique, broad, lowland grassland/vernal pool complex which connects to Suisun Marsh.

Potential Solutions to Recognized Challenges

In any Yolo-Cache complex conservation planning effort, tradeoffs must be considered. For example, floodplain related conservation goals to provide extended inundation to promote juvenile salmonid rearing habitat,²⁶ or tidal restoration related goals to improve the Geese over bypass near Sacramento. Photo: David Feliz Delta food web, have the potential to conflict with existing agricultural land uses, wetlands management, hunting, wildlife viewing, and education.^{27,28} Increased restoration activities may also create the need for mosquito control, and the potential for mercury contamination. Below are some potential solutions to some of these challenges:

WILDLIFE-FRIENDLY AGRICULTURE

Wildlife-friendly farming integrates conservation goals with agriculture to benefit wildlife and conserve biodiversity. Wildlife-friendly agricultural practices in the Yolo Bypass include farming crops that benefit wildlife (such as rice, safflower, and irrigated pasture), and providing drainage ditches and hedgerows with habitat value. In the Yolo Bypass and Cache Slough region, like elsewhere in the Delta, agriculture has been a way of life for generations, however, and farmers and ranchers remain concerned about being displaced by conservation. As conservation projects are implemented and managed over the long term, it is essential to have early, clear, and consistent communication among all stakeholders (landowners, agencies, and NGOs), and to consider good neighbor practices such as those outlined by the Agricultural Lands Stewardship Working Group (see p. 75).29

INTEGRATED FLOOD MANAGEMENT

The Yolo Bypass is part of the regional integrated flood management system. It is important to recognize the critical role agriculture and managed wetlands play in maintaining an open floodway. During standard operations, farmers and wetland managers on the Yolo Bypass keep their fields clear (emergent vegetation at less than five percent of total cover). Without these efforts, the Yolo Bypass would eventually support large woody vegetation that would slow the flood flows. Long term-flood protection, levee maintenance, and agricultural operations can be linked to

conservation outcomes in other ways.30 For example, maintaining hedgerows at the margins of agricultural fields can increase their habitat value, and levees can be used to provide wildlife transition habitat. These potential links between flood control and conservation provide opportunities consistent with specific actions identified in the Central Valley Flood Protection Plan Conservation Strategy for the Yolo Bypass, and with the goals and objectives of California EcoRestore and the Sacramento River General Reevaluation Report. While Cache Slough does not provide the key flood protection role of Yolo Bypass, considering the two as part of one important Sacramento River drainage system offers further opportunities for integrating habitat conservation with flood protection.

LOW-IMPACT RECREATION

Several state-run areas within the Yolo Bypass provide public access for recreation and waterfowl hunting, including the Yolo Bypass Wildlife Area, and Fremont Weir and Sacramento Weir Wildlife Areas. The California State Parks Proposal for the Sacramento-San Joaquin Delta³¹ recognizes potential additional opportunities in this area for ecosystem restoration coupled with outdoor recreation (wildlife observation, boating, fishing access, and hunting), particularly in the southern end of the Yolo Bypass. The integration of floodplain conservation activities with

Hawks harvest rodents in tractor's wake. Photo: Dave Feliz

CONSERVATION OPPORTUNITY REGION CONTINU

current educational and recreational uses may provide additional opportunities. However, providing public access to restoration sites remains a general challenge in the Delta. Human activities — vehicles, litter, illegal hunting — can disturb wildlife and damage sensitive habitats.

Around Cache Slough, there are several private facilities set up for hunting waterfowl and other game birds, as well as public areas such as the Miner Slough Wildlife Area and Liberty Island Ecological Reserve that allow hunting and fishing. Barker Slough is on a list of locations for a new state park, where habitat restoration could be integrated with picnic sites, trails, kayak, canoe and other small paddle-craft facilities, and interpretive services. The expansion of recreation and related tourism, if integrated with conservation efforts, could increase both the economic value and the ecosystem services derived from the Delta.

CLIMATE CHANGE AND ADAPTATION OPPORTUNITIES

The Yolo-Cache region will be affected by climate change induced sea level rise within the next 30-100 years. Lands currently in the intertidal zones are projected to become subtidal.32 Rising water levels will alter and submerge current shorelines and nearby areas. In some areas sea level rise will mean that current agricultural land will be lost to increased salinity levels or inundation. Further, flood dynamics will likely change over the coming decades, with more frequent and extreme storm and rainfall events and associated flood pulses. Scenario planning will help evaluate forecasted impacts on ecosystems and species, and integrate these into the long-term planning and management picture. Regular re-evaluation of scenarios over time will allow land managers and planners to re-examine how earlier projections played out and to adapt to changes.

Yolo Bypass. Photo: Christina Sloop.

Looking Ahead

The Delta Conservation Framework supports further efforts to make the most of the Yolo-Cache conservation opportunity regions, existing planning foundations, and active partnerships. Efforts in both Yolo and Cache to date exhibit the cornerstones for successful conservation planning and implementation including establishing trust and inclusion among stakeholders, setting goals, agreeing on structure for

Several partnership efforts have focused on conservation and floodplain management issues in the Yolo Bypass-Cache Slough Complex. With sufficient and consistent communication, coordination, and an effective governance structure, these efforts could serve as an ongoing forum for successful long-term conservation in the Yolo Bypass-Cache Slough region and lead to the development of regional conservation strategies. This would afford landscape scale integration of the existing HCP/NCCP, RCIS/ LCP, and other Yolo Bypass and Cache Slough focused plans, tying them in with the *Delta Conservation Framework's* landscape scale and long-term goals and strategies.

A Yolo Bypass or Cache Slough regional conservation strategy could utilize scenario planning to develop strategies to ensure flood protection, improve ecological function, assist species recovery, integrate benefits for wildlife-friendly farming operations, and provide recreation at the local and landscape scales.

For Yolo, regular communication and coordination (between BCSP, CMF, and YBWG) as part of a Yolo Bypass regional conservation strategy effort would help balance

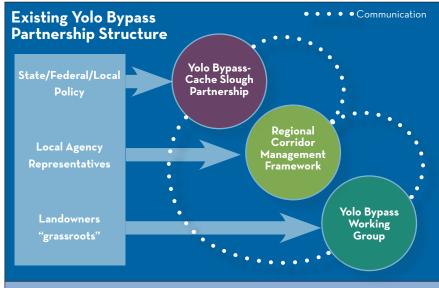


Figure 2.2

the interests of each group, consistent with *Delta Conservation Framework* Goal A. An RCS could also focus on developing multi-benefit conservation solutions consistent with Framework Goals C, D & E. The Cache Slough Restoration Planning Partnership, meanwhile, is also poised to develop priority projects that tie in with the *Delta Conservation Framework* overarching goals and strategies.

A Yolo Bypass-Cache Slough regional conservation strategy could present a unique opportunity to align with the North Delta Arc vision, as well as with *Delta Conservation Framework* Goals F and G. These Framework goals are aimed at addressing conservation-related permitting through a general regional permit approach, and developing short-and long-term funding via bond initiatives and other opportunities. A facilitated process for Yolo Bypass conservation related permitting would increase the efficiency of project implementation and continued management,

and help balance short and long term impacts and benefits.

QUICK LINKS

Yolo Bypass-Cache Slough Partnership www.dailydemocrat.com/2016/05/11/agencies-to-coordinate-flood-and-habitat-projects-in-yolo-bypass/

Yolo Bypass Wildlife Area www.wildlife.ca.gov/Lands/Places-to-Visit/Yolo-Bypass-WA

http://yolobasin.org/yolobypasswildlifearea/

For more detailed descriptions of these conservation opportunity regions, see Appendix 2.

Guide to Delta Ecosystems and Associated Habitat Types

This listing was developed through collaboration between the California Department of Fish and Wildlife, Delta Conservancy, and Delta Stewardship Council, with close alignment to the information presented in A Delta Transformed (Robinson, Safran et al. 2014) and A Delta Renewed (Robinson, Safran et al. 2016).

Table 3.1: Delta Habitats		
Upland / Terrestrial Ecosystem	Definition	Source
Grassland	Low herbaceous communities occupying well-drained soils and composed of native forbs and annual and perennial grasses and usually devoid of trees. Few to no vernal pools present.	Delta Transformed (p. 18)
Oak woodland/savanna	Oak dominated communities with sparse to dense cover (10-65 percent cover) and an herbaceous understory.	Delta Transformed (p. 18)
Stabilized interior dune vegetation	Vegetation dominated by shrub species with some locations also supporting live oaks on the more stabilized dunes with more well-developed soil profiles.	Delta Transformed (p. 18)
Agriculture - high intensity	Active agricultural lands in high-intensity crops such as fruit or nut orchards and/or vineyards.	Delta Transformed (p. 18) with added split between high/low intensity
Agriculture - low intensity	Active agricultural lands in low-intensity crops such as row crops, rice fields, alfalfa, or pasture.	Delta Transformed (p. 18) with added split between high/low intensity
Ruderal/nonnative	Areas dominated by nonnative vegetation and ruderal lands.	Delta Transformed (p. 18)
Urban	Urban remnant natural areas (greens, trees, and other features such as water-treat- ment wetlands).	Delta renewed (p. 78)

Riparian Ecosystem	Definition	Source
Valley foothill riparian	Mature riparian forest usually associated with a dense understory and mixed canopy, including sycamore, oaks, willows, and other trees. Historically occupied the supratidal natural levees of larger rivers that were occasionally flooded.	Delta Transformed (p. 18)
Willow riparian scrub- shrub	Riparian vegetation dominated by woody scrub or shrubs with few to no tall trees. This habitat type generally occupies long, relatively narrow corridors of lower natural levees along rivers and streams.	Delta Transformed (p. 18)
Willow thicket	Perennially wet, dominated by woody vegetation (e.g., willows). Emergent vegetation may be a significant component. Generally located at the "sinks" of major creeks or rivers as they exit alluvial fans into the valley floor.	Delta Transformed (p. 18)

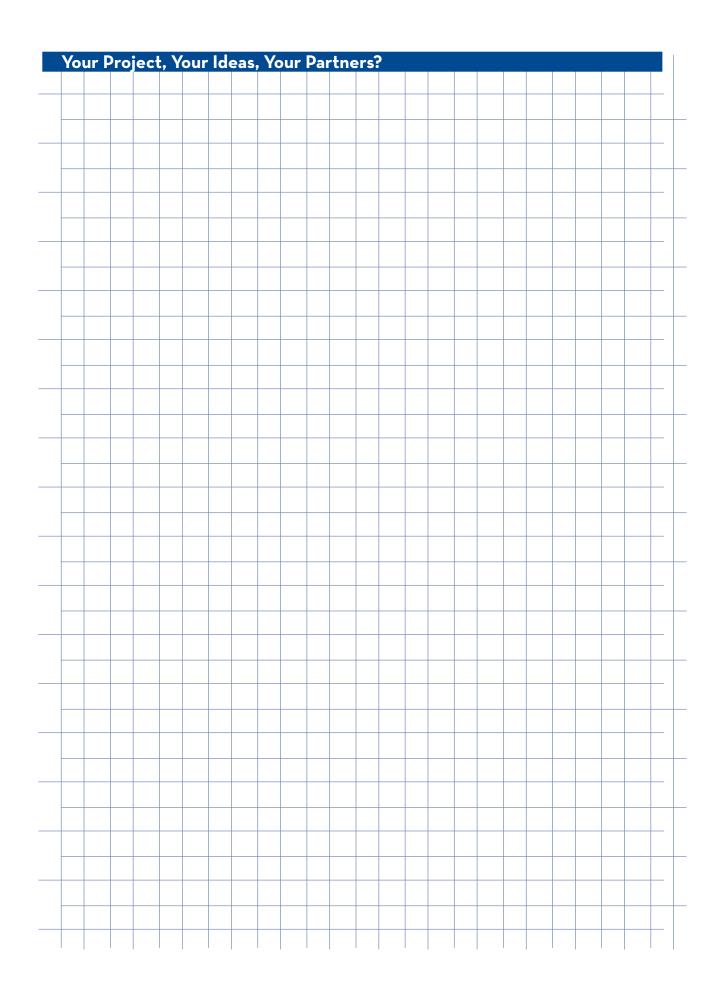
Aquatic - Perennial Wetland Ecosystem	Definition	Source
Freshwater emergent marsh/wetland - tidal	Perennially wet, high water table, dominated by emergent vegetation. Woody vegetation (e.g., willows) may be a significant component for some areas, particularly the western-central Delta. Wetted or inundated by spring tides at low river stages (approximating high tide levels).	Delta Transformed (p. 18)
Freshwater emergent wetland/marsh - nontidal	Temporarily to permanently flooded, permanently saturated, freshwater nontidal wetlands dominated by emergent vegetation. In the Delta, occupies upstream floodplain positions above tidal influence.	Delta Transformed (p. 18)
Saline emergent wetland (SEW)	Herbaceous-dominated: > 2 percent total cover by herbaceous species and < 10 percent total cover by tree or shrub species; limited to tidally-influenced portions of coastal regions. SEW cross-walks to CALVEG ¹ pickleweed-cordgrass and tule-cattail.	(CDFG 1988, Springer 1988)
Vernal pool complex	Area of seasonally flooded depressions, characterized by a relatively impermeable subsurface soil layer and distinctive vernal pool flora. These often comprise the upland edge of perennial wetlands.	Delta Transformed (p. 18)

Aquatic - Seasonal Wetland Ecosystem	Definition	Source
Alkali seasonal wetland complex	Temporarily or seasonally flooded, herbaceous, or scrub communities characterized by poorly-drained, clay-rich soils with a high residual salt content. These often comprise the upland edge of perennial wetlands.	Delta Transformed (p. 18)
Wet meadow and seasonal wetland	Temporarily or seasonally flooded, herbaceous communities characterized by poorly-drained, clay-rich soils. These often comprise the upland edge of perennial wetlands.	Delta Transformed (p. 18)
Managed wetland	Areas that are intentionally flooded and managed during specific seasonal periods, often for recreational uses such as duck clubs.	Delta Transformed (p. 18)

Aquatic - Open Water Ecosystem	Definition	Source
Fluvial - low order channel	Distributaries, overflow channels, side channels, swales. No influence of tides. These occupy nontidal floodplain environments or upland alluvial fans.	Delta Transformed (p. 18)
Fluvial - mainstem channel	Rivers or major creeks with no influence of tides.	Delta Transformed (p. 18)
Fluvial - shaded riverine aquatic	Aquatic edge habitat that is shaded by adjacent riparian vegetation.	(IAMIT 2017)
Fluvial - channel margin habitat	In-water habitat along the channel margin which generally ranges from perennial aquatic wetlands to floodplain and riparian habitats. This habitat type generally includes shaded riverine aquatic habitat at upper elevations. It is also referred to as fish-friendly levee habitat.	(IAMIT 2017)
Freshwater pond or lake	Permanently flooded depressions, largely devoid of emergent Palustrine vegetation. These occupy the lowest-elevation positions within wetlands.	Delta Transformed (p. 18)
Freshwater intermittent pond or lake	Seasonally or temporarily flooded depressions, largely devoid of emergent Palustrine vegetation. These are most frequently found in vernal pool complexes at the Delta margins and also in the nontidal floodplain environments.	Delta Transformed (p. 18)
Tidal - mainstem channel	Rivers, major creeks, or major sloughs forming Delta islands where water is understood to have ebb and flow in the channel at times of low river flow. These delineate the islands of the Delta.	Delta Transformed (p. 18)
Tidal - low order channel	Dendritic tidal channels (i.e., dead-end channels terminating within wetlands) where tides ebb and flow within the channel at times of low river flow.	Delta Transformed (p. 18)

Guide to Delta Ecosystems and Associated Habitat Types - CONTINUED

Overlapping/Transitional Ecosystem Categories/ Features	Definition	Source
Upland transitional corridors	The connected terrestrial ecosystems within and around the periphery of the Delta (e.g., to support wildlife movement and dispersal).	Delta Renewed (p. 70)
Marsh-terrestrial transition zone	"Marsh" includes both tidal and nontidal freshwater emergent wetland; the "marsh-terrestrial transition zone" was mapped wherever marsh polygons and terrestrial habitat type polygons were adjacent to one another; "terrestrial habitat types" include oak woodlands, seasonal wetlands, and riparian habitat, among others (i.e., everything other than marsh, open water, urban/barren, and agricultural/nonnative)	Delta Transformed (pp. 71-72)
Marsh to open-water edge	All areas mapped as open water and marsh, regardless of their tidal status, connectivity, or form. Seasonally and tidally inundated areas are not included within the area mapped as open water. Linear areas where the two habitat types were mapped as adjacent to one another are identified as the open water-marsh edge.	Delta Transformed (p. 44)
Floodplain	The area at low to mid elevations adjacent to and transitioning between fluvial, or riverine, and tidal areas, that is subject to flooding during periods of high discharge.	(IAMIT 2017)
Floodplain - seasonal short-term flooding	 Floodplain: The area at low to mid elevations adjacent to and transitioning between fluvial, or riverine, and tidal areas, that is subject to flooding during periods of high discharge. Seasonal short term flooding: Short-term fluvial inundation intermediate recurrence (~10 events per year) low duration (days to weeks per event) generally shallower than seasonal long-duration flooding 	(IAMIT 2017); Delta Transformed definitions for subtypes (pp. 38-39)
Floodplain - seasonal, long duration	 Floodplain: The area at low to mid elevations adjacent to and transitioning between fluvial, or riverine, and tidal areas, that is subject to flooding during periods of high discharge. Seasonal, long duration: Prolonged inundation from river overflow into flood basins low recurrence (~1 event per year) high duration (persists up to 6 months) generally deeper than seasonal short-term flooding 	(IAMIT 2017); Delta Transformed definitions for subtypes (pp. 38-39)
Floodplain - tidal inundation	 Floodplain: The area at low to mid elevations adjacent to and transitioning between fluvial, or riverine, and tidal areas, that is subject to flooding during periods of high discharge. Tidal inundation: Diurnal overflow of tidal sloughs into marshes high recurrence (twice daily) low duration (<6 hours per event) low depth ("wetted" up to 0.5 mile) 	(IAMIT 2017); Delta Transformed definitions for subtypes (pp. 38-39)
Floodplain - ponds, lakes, channels, and flooded islands	 Floodplain: The area at low to mid elevations adjacent to and transitioning between fluvial, or riverine, and tidal areas, that is subject to flooding during periods of high discharge. Ponds, lakes, channels, and flooded islands: Perennial open water features (with the exception of historical intermittent ponds and streams) recurrence not applicable (generally perennial features) high duration (generally perennial features) variable depth 	(IAMIT 2017); Delta Transformed definitions for subtypes (pp. 38-39)


105

Overlapping/Transitional Ecosystem Categories/Features	Definition	Source
Wildlife-friendly agriculture best management practices (BMPs)	Any activity carried out on agricultural lands that benefits wildlife. These wildlife-friendly activities may help protect or increase quantity and/or quality of habitat found in or adjacent to agricultural landscapes. Availability, quantity, and quality of crop and grain residue within the field and fence-line vegetation, pesticide application and management, water management, and timing of these activities affect the value agricultural lands provide for wildlife. Delta Renewed guidelines to benefit wildlife include six categories of BMPs, defined as "practices that support native wildlife on agricultural lands, including practices which manage fields as wetlands that wildlife can access (rice crops and flooded fields)."	(Burmester 2015); Delta Renewed (pp. 76-77, 117)
Wildlife-friendly agriculture BMPs - minimize water quality impacts from agriculture	BMPs that include reduced pesticide use, integrated pest management, settling basins, and buffer strips to filter runoff.	Delta Renewed wild- life-friendly agriculture (pp. 76-77, 117)
Wildlife-friendly agriculture BMPs - minimize water diversion impacts from agriculture	BMPs that could include adding fish screens to prevent entrainment, conservation measures to reduce volume of water diverted, or changing the location or timing of diversion to minimize impacts.	Delta Renewed wild- life-friendly agriculture (pp. 76-77, 117)
Wildlife-friendly agriculture BMPs - flexible and responsive management in agricultural areas	Managing different crops with potential to provide support for different wildlife species. For example, The Nature Conservancy's "pop-up habitats" divert water to farms when waterbird densities are high; or row crops and rice fields support waterbirds and fish, while hedgerows support terrestrial wildlife.	Delta Renewed wild- life-friendly agriculture (pp. 76-77, 117)
Wildlife-friendly agriculture BMPs - agricultural fields managed as seasonal wetland or floodplain	Agricultural practices that create seasonal or perennial wetlands that mimic the hydrology of historical wetlands. For example, rice fields provide long-duration floods and invertebrate-rich rearing habitats, which flood basins provided historically. Agricultural wetlands can support high densities of wintering and migrating waterbirds, as well as fish, and are critical to supporting these species in the absence of extensive natural wetlands. Agricultural wetlands support different species depending on crop type, flooding patterns, and post-harvest practices.	Delta Renewed wild- life-friendly agriculture (pp. 76-77, 117)
Wildlife-friendly agriculture BMPs - hedgerows and native vegeta- tion within/between agricultural fields	Patches of native vegetation within or between agricultural fields, whether remnants of historical habitats (e.g., oak trees, vernal pools) or linear features along the edge of fields (e.g., buffer strips, hedgerows), to provide habitat for native wildlife and easier movement through the landscape.	Delta Renewed wild- life-friendly agriculture (pp. 76-77, 117)
Wildlife-friendly agriculture BMPs - minimize distance from agricultural fields to nearby wildland areas	Species supported by wildlife-friendly agriculture that benefit from close proximity to appropriate wildland habitats.	Delta Renewed wild- life-friendly agriculture (pp. 76-77, 117)

1 The CALVEG ("Classification and Assessment with Landsat of Visible Ecological Groupings") system

QUICK LINKS

Landscape Connectivity, Meiklejohn, et al. 2009 www.wildlandsnetwork.org/sites/default/files/terminology%20 CLLC.pdf

