BSEE
Oil Spill Preparedness Division
Response Research Branch

Suzanne Chang
February 26, 2019

“To promote safety, protect the environment and conserve resources offshore through vigorous regulatory oversight and enforcement.”
BSEE Oil Spill Preparedness Division

Overview

- BSEE’s Oil Spill Response Research Program Highlights
- Two Recent Projects
 - Remote Sensing (MARINE SCOUT - BSEE OSRR #1013)
 - Mechanical Recovery (Oil Thickness Sensor - #1078)
- Webpage Navigation
BSEE Oil Spill Preparedness Division
Oil Spill Response Research (OSRR)

Detection
Containment
Treatment
Recovery and Cleanup
Improving Methods
Advancing Technologies
Ohmsett Facility
BSEE OSRR - Remote Sensing
Enhanced Oil Spill Detection Sensors in Low-light Environments

BSEE OSRR #1013

- U.S. Army Research Development and Engineering Command (RDECOM)
- PI: Mark Walters
- Completion: April 2018

MARINE SCOUT - Mapping and Reconnaissance Imager, Night-Enhanced, for Sensing of Contaminants, Oil, and Unseen Threats
BSEE OSRR - Remote Sensing
Enhanced Oil Spill Detection Sensors in Low-light Environments
BSEE OSRR - Remote Sensing
Enhanced Oil Spill Detection Sensors in Low-light Environments

28 April 2017 2 AM

28 April 2017 7 AM

28 April 2017 11 AM

28 April 2017 6 PM
BSEE OSRR - Remote Sensing
Enhanced Oil Spill Detection Sensors in Low-light Environments

Oil Temperatures over 24-hours

Data contained in the red circles are at thermal cross over and not used
BSEE OSRR - Remote Sensing
Enhanced Oil Spill Detection Sensors in Low-light Environments

Daytime

Weather Station Outputs
- Solar Radiation (638 W/m²)
- Air Temperature (16.7°C)
- Water Temperature (15.9°C)
- Wind Speed (1.0 m/s)
- 28 April 2017 (10 AM)

Nighttime

Weather Station Outputs
- Air Temperature (12.6°C)
- Water Temperature (15.8°C)
- Wind Speed (0.7 m/s)
- Relative Humidity (99%)
- 28 April 2017 (2 AM)
BSEE OSRR - Remote Sensing
Enhanced Oil Spill Detection Sensors in Low-light Environments

User Output Screen
Output layered on Google Earth Image
BSEE OSRR – Mechanical Recovery
Development of an Oil Thickness Sensor

BSEE OSRR #1078
- American University of Beirut
- PI: Dr. Imad Elhajj
- Completion: March 2018

Sensor Prototype
Concern: Fouling Causing Erroneous Readings

- Oleophobic coatings
- Vibration mechanism
- Multiple “smart” algorithms to process data
- Protruding pins to mitigate fouling
BSEE OSRR – Mechanical Recovery
Development of an Oil Thickness Sensor

Ohmsett Tests:
• Static and dynamic dipping tests
• Drag tests and Skimmer in Waves
BSEE OSRR – Mechanical Recovery

Development of an Oil Thickness Sensor

<table>
<thead>
<tr>
<th>ID</th>
<th>Start Time</th>
<th>End Time</th>
<th>Actual Thick. (mm)</th>
<th>Avg. Meas. Thick. (mm)</th>
<th>Std Dev</th>
<th>Sample Size</th>
<th>Sample Duration</th>
<th>Absolute Error (mm)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09:58:28</td>
<td>10:03:33</td>
<td>25.4</td>
<td>25.8</td>
<td>5.5</td>
<td>14</td>
<td>05:05</td>
<td>0.44</td>
<td>Calm</td>
</tr>
<tr>
<td>2</td>
<td>10:11:22</td>
<td>10:16:56</td>
<td>25.4</td>
<td>3.0</td>
<td>0</td>
<td>32</td>
<td>05:34</td>
<td>-</td>
<td>Sensor dunk into water</td>
</tr>
<tr>
<td>3</td>
<td>10:31:22</td>
<td>10:43:30</td>
<td>38.1</td>
<td>34.6</td>
<td>12.8</td>
<td>69</td>
<td>12:08</td>
<td>3.5</td>
<td>Valid Measures</td>
</tr>
</tbody>
</table>
Development of an Oil Thickness Sensor

Future Work - Phase II underway

- Fouling remains a source of error (heavy oils and splashing)
- Use cases and operational considerations
- Enhance sensor resolution
- Address other limitations that appeared during the testing
Questions or Comments?
“To promote safety, protect the environment and conserve resources offshore through vigorous regulatory oversight and enforcement.”