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on long-distance migration, but many species migrate 
short distances. Migration along steep elevation gradients, 
for example, is common in insects (Gutierrez and Wilson 
2014), birds (Boyle et al. 2010), bats (McGuire and Boyle 
2013) and ungulates (Albon and Langvatn 1992). Vertical 
migration of aquatic taxa is also common, but occurs on a 
daily rather than an annual cycle (e.g. zooplankton, Lampert 
1989; fish, Beamish 1966; sea turtles, James et al. 2006; and 
sharks, Sims et  al. 2006). Despite similarities, definitions 
of migration have remained inconsistent making migra-
tory behavior difficult to compare across populations or taxa 
(Dingle 2006). Many studies rely on ad hoc classifications 
that are impossible to generalize or extend. The study of 
animal migration would benefit from a consistent definition 
that allows comparison across taxa while still accommodat-
ing species-specific differences in behavior.

Since its introduction, the model-driven approach of 
Bunnefeld et  al. (2011; hereafter ‘Bunnefeld et  al.’) has 
received increasing attention as a promising alternative to 
ad hoc classification. This method relies on net squared 
displacement (NSD), a metric based in movement theory, 
which measures the square of the straight-line distance 
between an animal’s starting point and each subsequent 
location (Turchin 1998). To determine which movement 
behavior is best supported, researchers fit a family of a priori 
non-linear models, each representing a different behavior, 
to NSD data and then compare these models using Akaike 
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Animal movement plays a central role in ecology, linking 
the discipline’s twin concerns: distribution and abundance 
(Van Moorter et  al. 2016). Recent improvements in ani-
mal-tracking technology have allowed researchers to moni-
tor the movements of an increasingly diverse array of taxa 
in unprecedented detail, spurring near exponential growth 
in the use of global positioning system (GPS) transmitters 
and opening new avenues for research (Kays et al. 2015). 
The open source platform MOVEBANK, for example, now 
hosts 249 million locations from over 522 species in over 
2000 individual studies (Kranstauber et  al. 2011, < www.
movebank.org/ >). This influx of data on animal movement 
has brought migration to the fore as an area of research 
interest and conservation concern (Wilcove and Wikelski 
2008). Migration is taxonomically pervasive, found in every 
major vertebrate and many invertebrate groups (Milner-
Gulland et  al. 2011). Furthermore, migratory species are 
often extremely abundant exerting a strong influence on 
ecosystem processes and biodiversity (Bauer and Hoye 
2014). Unfortunately, migratory species currently face 
global declines that remain poorly understood (Wilcove and 
Wikelski 2008).

Studying migration first requires identifying migra-
tory behavior, but defining migration remains challenging 
(Dingle and Drake 2007). Migratory behavior is broadly 
understood as a strategy for exploiting spatial resources 
that vary cyclically with time. Most research has focused 
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information criteria (AIC, Burnham and Anderson 2002, 
Bunnefeld et al.). The structure of these models gives each 
parameter a biological meaning (e.g. the distance, duration 
and timing of migratory movement), allowing easy com-
parison and interpretation. Although most applications have 
focused on terrestrial mammals, this approach has been suc-
cessfully applied to a variety of other taxa including reptiles, 
birds and fish (Blake et al. 2013, Nielsen et al. 2014, Beatty 
et al. 2015).

Nonetheless, model-driven methods for movement 
classification remain underused. The approach has been 
hampered by several technical challenges, largely the result 
of imperfect correspondence between mathematical mod-
els and animal behavior. Bunnefeld et al. noted bias against 
classifying resident behavior even in simplified simulations. 
This may be explained in part by seasonal home-range expan-
sion, which is common among species living in seasonal 
environments (Wiktander et al. 2001) and creates temporal 
changes in the variation in NSD, which can easily be mis-
identified as migratory or dispersal movements. NSD models 
can also be sensitive to starting location because the calcula-
tion of all NSD values depends on the initial point (Naidoo 
et al. 2012). Recent work by Singh et al. (2016) focused on 
quantifying this sensitivity in Swedish moose Alces alces but 
the authors’ approach is data intensive, requiring a mini-
mum of two years of continuous location data, and has yet 
to be applied to another study system. Additionally, NSD 
models are insensitive to the short distances that characterize 
many animal migrations. Consequently, researchers often 
resort to ad-hoc reclassification (Mysterud et  al. 2011, 
Naidoo et  al. 2012), reducing the putative benefits of a 
standardized model-driven approach. Finally, this method is 
computationally complex, making it challenging to imple-
ment, especially for large datasets and populations with 
flexible migratory behavior.

Here, we introduce the ‘migrateR’ package for the R 
statistical environment (R Core Team) to 1) provide a 
quantitative and biologically-defensible basis for reduc-
ing misclassification of resident behavior; 2) quantify and 
address the sensitivity of existing NSD models to starting 
location; and 3) adapt NSD models to extend model-driven 
classification to elevational movement – a common form 
of short-distance migration. In addition to including these 
improvements, ‘migrateR’ makes model-driven movement 
analysis more accessible by automating these methods and 
providing graphical tools to assist model evaluation. We 
include an example analysis, below, which we divide into two 
parts, first illustrating migrateR’s workflow and second com-
paring the performance of models fit to NSD, relative NSD 
(defined below) and elevation data from two ungulates: a 
long-distance migrant, elk Cervus elaphus, and an elevational 
migrant, federally-endangered Sierra Nevada bighorn sheep 
(Ovis canadensis sierrae). We include a supplementary script 
which fully reproduces our analysis of elk (Supplementary 
material Appendix 1; all data available in migrateR), while 
illustrating the code required to analyze bighorn data (a 
subset of which can be found in migrateR) in text. Further 
worked examples and a more thorough discussion of inputs 
can be found in the package’s vignette. The full migrateR 
package is available on GitHub (< https://github.com/
dbspitz/migrateR >).

Methods

Adapted NSD models

Following Bunnefeld et  al. we used five a priori statistical 
models each representing a different behavior (Fig. 1).  
To classify the movement behavior of an animal-year of 

Figure 1. Conceptual illustration of net squared displacement (NSD) and elevation-based model families. The a priori model set fit to NSD 
covers a wider range of movement behaviors, than does the elevation model set. Elevation models shown illustrate downward movement, 
but can also accommodate upward migration (i.e. models can also appear as rotated 180 degrees around the x axis). See text for explanation 
of differences between models.
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location data, we identified the best-supported behavior 
by comparing the fit of these a priori models using AIC 
(Burnham and Anderson 2002). Our first improvement 
to the methods of Bunnefeld et  al. was to rearrange their 
notation to directly estimate the duration of migratory-
range occupancy. This estimate is useful because it provides 
a consistent quantitative basis for excluding exploratory 
out-and-back movements from classification as migra-
tory behavior. Many researchers have defined a minimum 
time of occupancy as a criterion of migratory behavior, e.g.  
individuals needed to spend  21 d on a separate seasonal 
range to be defined as a migrant (Cagnacci et al. 2011, Spitz 
2015, Eggeman et  al. 2016). Our models allow this addi-
tional criterion to be included either as an a priori restric-
tion on model fit or, as previously, as an a priori decision 
rule implemented after model fitting. Directly estimating 
migratory-range occupancy required us to omit a direct 
estimate of the timing of return migration (q2; Bunnefeld 
et al.), which can instead be calculated as a derived parameter 
(q2  q 2 * ϕ1  2 * ϕ2  r, see the theta2 function, 
below). Our NSD models are otherwise equivalent to those 
used by Bunnefeld et al. (and their improvement by Börger and 
Fryxell 2012, noted below). Thus our modified NSD model of 
migration (solid blue line in Fig. 1) was the double sigmoid:
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where d represents the distance separating seasonal ranges, 
t is time from start, q is the midpoint of departing move-
ment, ϕ is the time required to complete 1/2 to 3/4 of the 
migration (quantifying the duration of movement) and r 
is the length of time spent on the migratory range. Where 
included, subscripts differentiate estimates for return move-
ments. Similarly we represent mixed migration (Fig. 1 dashed 
green line) with:

NSD
exp

t
exp

t
=

+ −





+
+ + + + −





δ
θ

ϕ

δ ζ
θ ϕ ϕ ρ

ϕ
1 1 2 2 2

2

*
* *  (2)

which includes the addition of z allowing the distance 
traveled between ranges to vary by season (i.e. represent-
ing migration in which the individual doesn’t return to the 
original range). Including z improves model convergence, 
but requires us to omit the d2 parameter (representing the 
distance traveled during return movement) included by 
Bunnefeld et  al. This parameter can be derived from our 
model as d2  d * z (see the delta2 function, below).

We represented dispersal (Fig. 1 dotted purple line) with 
a single sigmoid (i.e. movement with no return):
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where parameters are interpreted identically as in the migrant 
model, but q represents the midpoint of dispersal rather 
than migration (Bunnefeld et al.). Following improvements 
made by Börger and Fryxell (2012) we represented residency 
(Fig. 1 dashed red line) as:
NSD exp t= − ( )[ ]γ κ* *1 	 (4)

where g represents the mean NSD of locations in an indi-
vidual’s range and k is the logarithm of the rate constant 
(quantifying the initial period of increase required for NSD 
to reach g; Börger and Fryxell 2012). Finally, we represented 
nomadic behavior (dashed yellow line in Fig. 1) with the 
linear model:
NSD t=β * 	 (5)
where b is a constant and linearly increasing NSD represents 
the expectation under diffusion-based movement (Turchin 
1998).

Adapted elevation models

NSD models only include spatial information from the 
two horizontal dimensions of a Cartesian plane. In many 
species, however, migratory movements follow a third ver-
tical dimension. Therefore, we modified three movement 
models to replace NSD with vertical distance (hereafter 
‘elevation’; Fig. 1). We chose elevation rather than difference 
in elevation so that, in contrast to NSD models, our eleva-
tion models would be insensitive to an individual’s initial 
position. We omitted nomad and mixed-migrant models 
because expectations for these behaviors with respect to 
elevation are unclear. Thus we represent migration (Fig. 1 
solid blue line) with the double sigmoid:
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where g represents the mean value for the starting range, now 
based on elevation rather than NSD. The interpretation of 
all remaining parameters is identical to our NSD models, 
except that d represents vertical distance rather than NSD. 
Additionally, to allow analysis of incomplete animal-years 
of data, we also included a ‘one way’ model (analogous to 
the NSD disperser model, Eq. 3) to quantify unidirectional 
elevation movements. This one-way model (Fig. 1 dotted 
purple line; hereafter ‘disperser’) was parameterized as the 
single sigmoid:
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with parameters interpreted as above. Finally, we represented 
residency (Fig. 1 dashed red line) with the horizontal linear 
model:
elevation = γ 	 (8)

Sensitivity to start date

We developed and automated a method for applying 
model selection criteria to test for and reduce sensitiv-
ity of NSD models to start date. An implicit assumption 
of the NSD method is that the starting point from which 
NSD is calculated occurs within an individual’s starting 
range (Bunnefeld et  al.). Many migrants, however, make 
exploratory movements either outside of their home range 
or between seasonal home ranges prior to migration (e.g. 
visiting a winter range during summer or fall). This behavior 
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The elk dataset includes 23 animal-years of data from adult 
female elk in Alberta, Canada collected from 23 individuals 
between 2003–2005 (the complete dataset, i.e. before sub-
sampling, is available online at doi: 10.5441/001/1.k8s2g5v7; 
Hebblewhite and Merrill 2016). The dataset bighorn, a 
subset of the larger dataset used in our comparative example, 
below, includes four-animal years of data (2007–2011) from 
a single Sierra Nevada bighorn sheep female (we have limited 
the Sierra bighorn data included due to the species’ Federally-
endangered status and have offset bighorn coordinates by a 
constant to mask their location). Thus the analysis of elk we 
provide below can be reproduced using a script we include 
as Supplementary material Appendix 1 and for purposes of 
comparison we also include results from the full dataset from 
which bighorn was drawn. The in-text example code we 
provide below to illustrate our workflow relies primarily on 
bighorn, whose small size makes it more convenient to 
readers inclined to reproduce these examples while reading.

Example: workflow

Functions in migrateR can be divided by task into three cate-
gories: fitting models, checking model fit, and extracting the 
resulting parameter estimates (Table 1). Before using these 
function, however, the user must first decide on an appropri-
ate model family. When possible, we recommend that this 
choice be made a priori and be based on available informa-
tion concerning a species’ migratory behavior and/or the 
motivation(s) underlying the analysis. While migration may 
involve both long-distance movement and changes in eleva-
tion, this need not be the case. Even when movements do 
include both long distances and changes in elevation, these 
transitions are unlikely to occur synchronously. Thus, even 
where either NSD or elevation models could be appropriate, 
they are likely to offer distinct characterizations of migratory 
behavior. In most cases, however, we expect that one model 
will more clearly match a species’ ecology (i.e. either NSD/
rNSD or elevation data will show a clearer pattern; regret-
tably, because NSD/rNSD models and elevation models rely 
on different underlying data, their fit can not be compared 
directly using AIC). The strength and nature of inference 
will depend on the chosen model family’s correspondence to 
data and as such this step warrants careful consideration.

We fit NSD, rNSD and elevation models using the 
mvmtClass function in the package migrateR. This func-
tion takes animal movement trajectories (i.e. an object of 
class ‘ltraj’ containing one or more movement bursts) as 
input (with spatial coordinates, timestamp and, optionally, 
elevation values, for each location; Calenge 2006) and out-
puts movement models fit separately to each burst of location 
data. To store these results efficiency, migrateR introduces 
the ‘mvmts’ and ‘mvmt’ classes. A ‘mvmts’ object is a named 
list with one element of class ‘mvmt’ for each burst analyzed. 
These ‘mvmt’ objects each contain any models successfully fit 
to data from that burst, the data used to fit these models (e.g. 
t and NSD, rNSD or elevation, Eq. 1–8) and other infor-
mation pertaining to the call to mvmtClass”. (MigrateR 
also introduces novel methods, supporting the application 
of several common R functions to ‘mvmt(s)’ class objects, 
which we describe below.) Finally, like many functions in 

may be especially common among short-distance migrants 
and can confuse the classification of animal movement. 
Our approach is based on the calculation of what we term 
Relative Net Squared Displacement (rNSD), the net squared 
displacement relative to a chosen reference point (i.e. other 
than the starting location; NSD is equivalent to rNSD when 
the first point is used as the reference). rNSD can thus be 
directly compared to NSD as both terms are in the same 
units (km2) and are calculated from identical location data. 
We then test for sensitivity to start date by calculating rNSD 
across a range of dates, fitting NSD models to the rNSD 
from each of these dates, comparing the minimum AIC 
across dates and choosing the reference date that results in 
the top model with the lowest overall AIC score. Relying on 
the best-supported rNSD should relax the need for assump-
tions about the first location, thereby improving model fit 
and ensuring a more stable and consistent classification of 
individual migration behavior. Divergence between rNSD 
and NSD thus suggest sensitivity of NSD models to start-
ing location and indicate potentially problematic cases that 
may warrant further examination. We illustrate the resulting 
changes in classification and parameter estimates between 
rNSD and NSD models in our examples below.

Data requirements

The functions in migrateR are designed to capitalize on the 
animal movement trajectories (objects of class ‘ltraj’) intro-
duced in the popular adehabitat packages (Calenge 2006). 
Multiple trajectories, for example from different individu-
als, called ‘bursts’, can be stored together in a single object 
with each burst including spatial coordinates, timestamp 
and, optionally, other values associated with each location 
(elevation models can not be fit unless elevation values are 
included as an ‘infolocs’ field titled ‘elev’). For assistance in 
organizing data in this format, please refer to the very thor-
ough adehabitat documentation (Calenge 2006).

Even with migrateR, fitting movement models can be 
difficult and users will benefit from first taking the time 
to carefully organize their data. For best results we recom-
mend separating bursts by animal and study year such that 
each burst is less than or equal to a year in length. If indi-
viduals make more than one migratory movement annually, 
dividing these movements into shorter separate bursts can 
improve model fit. Nonetheless, fitting movement models 
to trajectories shorter than a year or with gaps in data can be 
difficult and will often require a closer attention to starting 
parameter estimates and constraints. When possible we also 
recommend defining study years such that migratory and 
other movements are contained within single bursts (i.e. all 
movements are unlikely to either begin before a burst’s first 
or end after a burst’s last location). Where previous research 
on a species’ movement behavior is available, this may be 
accomplished a priori, but in other cases experimentation 
may be necessary to arrive at a definition of migratory year 
that minimizes segmentation of movement events. Finally, 
following Bunnefeld et  al. we recommend subsampling 
(‘thinning’) each burst to one point/day.

MigrateR includes two example datasets that illustrate 
our recommendations for data formatting and organization. 
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optional ‘rloc’ argument in mvmtClass to fit models to 
rNSD for these locations:

bhs.rlocs <- findrloc(bighorn, stdt =  
“10-31”)
bhs.rnsd <- mvmtClass(bighorn, rloc = bhs.
rlocs$rloc, stdt = ”10-31”)

The range of reference locations considered can be changed 
(from locations within the first 15 d) using findrloc’s 
optional argument ‘max.rloc’. There are two cases to be 
made against increasing the number of reference locations 
to include all points in a burst: first, such increases have a 
multiplicative effect on runtime (e.g. approximately 2 s to fit 
NSD models to all 23 bursts in elk and approximately 30 
seconds to find the best supported reference date for each of 
these bursts using ‘max.rloc’s’ default value of 15; runtimes 
calculated from a machine running a 2.7 GHz intel core i7 
with 8Gb RAM) and second, including a reference date that 
overlaps a dispersal movement will compromises the fit of 
the disperser model (in these cases the best supported refer-
ence date will be the midpoint of dispersal movement; the 
first burst in elk provides a good example of this). Thus, in 
some cases it may be appropriate to specify a narrower range 
of possible reference location to ensure that the range of 
candidate reference locations precedes any movement event 
included in the burst. While we recommend the default of 
15 d as a starting point appropriate to most datasets, choos-
ing an appropriate range of possible reference locations 
ultimately depends on the definition of study year and on a 
species’ ecology.

To fit models, mvmtClass relies on starting parameter 
estimates and restrictions provided by the pEst function. 
This function can be used to manually specify starting values 
or restrict the range of terms included in movement models. 
Running pEst() returns a ‘data.frame’ containing default 
values. The missing values in this ‘data.frame’ are filled 
dynamically by mvmtClass. By default, pEst specifies 
that migration can’t occur before the first location observed 

migrateR, mvmtClass relies on default inputs to facili-
tate its use. Users can instead choose to specify these inputs 
manually. Where possible, we include explanation of these 
inputs with our in-text examples. For further details and 
sample code we recommend consulting the package vignette 
(’vignette(migrateR)’).

NSD models based on Cartesian (x, y) coordinates are 
fit by default, but if elevation values are included, elevation 
models can be fit instead by setting the optional argument 
fam = “elev”. To fit both NSD and elevation models to 
the example dataset bighorn, we used the commands:

bighorn.nsd <- mvmtClass(bighorn, stdt =  
”10-31”)
bighorn.elev <- mvmtClass(bighorn, fam =  
“elev”, stdt = “10-31”)

The ‘stdt’ argument (formatted as ‘month-day’) ensures that 
estimates of migratory timing are comparable by defining a 
start date from which these estimates (i.e. q and q2, whose 
units are decimal days) are calculated. If a start date is not 
specified, the date of the first location in each burst will 
be substituted with the result that q estimates may not be 
directly comparable among bursts. If all bursts begin on the 
same calendar day and time, this argument becomes super-
fluous.

Fitting rNSD models also depends on the mvmtClass 
function, but first requires finding the best-supported refer-
ence location using the function findrloc. This function 
calculates rNSD for each location included in the first 15 d 
of the burst, then fits NSD models to NSD and the rNSD 
calculated relative to each of these locations, compares the 
results using AIC and returns a ‘data.frame’ including the 
record number of the reference location that results in the 
top model with the lowest overall AIC. Thus findrloc 
can be used to test for sensitivity to starting location, but 
does not itself output movement models. To fit models to 
the best-supported rNSD we first used findrloc to find 
the best supported reference locations and then used the 

Table 1. Contents of migrateR arranged by task and approximate order of workflow. Names followed by asterisks indicate preexisting R func-
tions, for which migrateR includes novel methods. Examples illustrating the application of these functions are included in text, the supple-
mentary script and the packages’ vignette. See migrateR’s help documentation and vignette for further details.

Name Description

Example datasets
bighorn 4 animal-years of location data, divided by study year, from a single adult female Sierra bighorn sheep
elk 23 animal-years of location data, divided by study year, from 23 adult female elk

Fitting models
mvmtClass Fits suite of NSD, rNSD or elevation models to location data
findrloc Finds the best supported reference location for rNSD (required to fit rNSD models)
pEst Organizes starting parameter estimates and constraints as required by mvmtClass
refine Attempts to improve model fit using new starting parameter estimates and constraints

Checking model fit
fullmvmt Checks whether models were successfully fit
topmvmt Identifies the best-supported movement model for each burst
print* Organizes output from mvmtClass
summary* Summarizes output from mvmtClass (called by print)
plot* Plots movement models and the data used to fit them

Extracting estimates
mvmt2df Organizes parameter estimates from a list of (top) models
mvmt2dt Estimates start and end time for movement events (e.g. migration) from chosen model
theta2 Derives timing estimates for return movement (q2) from ‘migrant’ or ‘mixed-migrant’ models
delta2 Derives distance estimates of return movement (d2) from ‘mixed-migrant’ models
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lower AIC. Note that both combinations of constraints are 
needed to fit all models; relying only on the second set of con-
straints, i.e. mvmtClass(bighorn, fam = “elev”, 
p.est = p.est2, stdt = “10-31”), will also result 
in omitted models (instead omitting ‘disperser’ models for 
the second and third bursts). Because the output of refine 
is equivalent to that of mvmtClass, it can be fed back 
into refine to iteratively test for improvements in model 
fit. The greater the variety of behaviors included in a data-
set, the greater the number of iterations likely necessary to 
fit all models. Plotting a burst often provides valuable clues 
towards specifying parameter constraints and starting values 
that will improve model fit (particularly in choosing appro-
priate starting values for the timing of movement, q).

Once models are fit, the top model for each trajectory 
can be easily identified using the function topmvmt, which 
compares AIC values by burst to determine which move-
ment models received the greatest support. We determined 
the best-supported movement models using, e.g.:

top.bhs.elev2 <- topmvmt(bhs.elev2)

which provides a list of named models. We then extracted 
the classifications using

table(names(top.bhs.elev2))

which returns a table featuring the number of bursts classi-
fied as belonging to each movement strategy. The topmvmt 
function also includes several optional arguments that can 
be used to restrict how a top model is selected, for example 
by allowing categorical exclusion of a model (e.g. ‘nomad’) 
or excluding models whose parameters fail to meet a min-
imum threshold (i.e. for distance traveled, d, or length of 
migratory-range occupancy, r). Further worked examples 
illustrating these options and their application are included 
in the vignette.

In addition to new functions, migrateR also includes 
novel methods that increase the utility of several func-
tions already familiar to R users. The default classifica-
tions, described above, are also output by summary, 
shown whenever a ‘mvmt(s)’ class object is printed (e.g.  
‘summary(bhs.elev2)’ or simply ‘bhs.elev2’). 
Furthermore, ‘mvmt(s)‘ class objects can easily be inspected 
visually using the function plot. ‘Mvmt’ objects will plot 
directly, while ‘mvmts’ objects introduce a prompt between 
each burst to allow easy cycling through multiple plots. Thus, 
plot(bhs.elev2[[1]]) returns a single plot (the first 
burst, Fig. 2B), while plot(bhs.elev2) introduces a 
series of prompts allowing the sequential plotting of each 
bust in ‘bhs.elev2’. Figure 2 and 3 are direct outputs of this 
function. Note that while the x-axis for these plots is held 
constant, the range of the y-axis will vary by burst unless a 
consistent y range is specified using plot’s ‘ylim’ argument 
(e.g. Fig. 3). Models are listed in the legend in order of AIC 
(lowest to highest), but caninstead be shown alphabetically 
by setting the optional argument ranked = FALSE.

We strongly recommend that all models be examined 
visually. Model-driven movement classification is subject 
to a common criticism of AIC-based model selection; a top 
model will always be identified even when all models inad-
equately represent the data (Burnham and Anderson 2002). 

(q  0) and restricts the duration of migratory movements 
(1  ϕ  21 d; total duration of migration ∼ 4 ϕ, approx-
imately 4 to 84 d). Users can change these defaults using 
mvmtClass’ ‘p.est’ argument (we provide an example of 
these changes below). Adjusting restrictions on q is especially 
important if the first location in a burst falls between the 
beginning and end of a migratory or dispersal movement 
(i.e. if a burst depicts a movement that began before its first 
point). Where possible, we recommend choosing the start 
of the study year to avoid this complication. Increasing ϕ 
increases the flexibility of migrant, mixed migrant and dis-
perser models, but may lead to over-smoothing. Highly 
restrictive parameter constraints, on the other hand, can pre-
vent some models from converging. We therefore generally 
recommend applying such a priori constraints as decision 
rules following model fit (e.g. vertical movement by bighorn 
sheep must be a minimum of 500 m – |d|  500 – to qual-
ify as a migration). Poor choice of starting values can also 
impede model convergence.

Any models that fail to converge are considered unsuc-
cessful and are therefore omitted from mvmtClass’ out-
put. If models are omitted, mvmtClass issues a warning 
indicating the unsuccessful models and the bursts to which 
they belong. Missing models can also be identified by testing 
output from mvmtClass with the fullmvmt func-
tion. This function can return a variety of information about 
missing models, depending on which value is selected for 
the ‘out’ argument. Thus applying fullmvmt to the eleva-
tion models we fit to bighorn reveals that the complete 
suite of models was successfully fit to three of the four bursts 
(‘fullmvmt(bhs.elev)’), that the remaining bursts 
is missing a single model (‘fullmvmt(bhs.elev, 
out = ”numer”)’), and that the missing model is ‘migrant’ 
(‘fullmvmt(bhs.elev, out = ”name”)’).

Most problems with model fitting are a result of poor 
correspondence between bursts and parameter constraints  
or starting values. For datasets containing variable behavior, 
like elk and bighorn, a single set of parameter estimates 
may be insufficient for fitting all models and multiple sets 
may be required. A related but distinct problem is that poorly 
chosen starting values or constraints don’t always cause con-
vergence failure, but can instead force mvmtClass to 
fit suboptimal models. The refine function provides an 
answers to both of these challenges. This function requires 
two arguments, output from mvmtClass and a new set 
of starting parameter values and constraints (supplied by 
pEst), attempts to refit each model using the new con-
straints, and compares these models to the original results, 
keeping only the single model of each type with the lowest 
AIC. So, for example, running

p.est2 <- pEst(u.d = 0)
bhs.elev2 <- refine(bhs.elev, p.est =  
p.est2)

adds a new constraint (an upper limit on migratory distance, 
d), forcing all migrant models to represent downward move-
ment (i.e. d  0), and returns a ‘mvmts’ class object which 
differs from the input (‘bhs.elev’) by adding a previously 
omitted migration model to the second burst and replacing 
the migrant model in the third burst with a new model with 
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For some analyses, quantitative definition of movement 
behavior may be more important than movement clas-
sification. MigrateR has four functions that help either to 
extract or derive these estimates. The mvmt2df function 
takes a list of movement models as its argument, as output 
by topmvmt, and returns a list containing a ‘data.frame’ 
of parameter estimates for each type of movement model 
included in the input. Thus

Thus even the best supported model may represent a poor 
choice. Visual comparison remains an important tool for 
identifying this problem and is therefore key to applying 
this method critically (Mysterud et al. 2011; Fig. 2, Fig. 3). 
If all models fit the data poorly, it may be worth revisiting 
earlier steps in the analysis (e.g. definition of the study year, 
choice of model family) to see if changes can improve the 
correspondence between models and data.

Figure 2. Illustration of differences in the model-driven characterization of movement by net squared displacement (NSD), relative NSD 
(rNSD; reference location  11) and elevation methods for Sierra Nevada bighorn sheep Ovis canadensis sierrae. NSD data show no clear 
pattern and rNSD data display a temporal shift in variance (beginning around 1 July) that advantages the most complex model (mixed 
migration). Elevation values from the same location data show a comparatively regular pattern. Consequently, the elevation models follow 
these data more closely. Although all three methods classified the movement as migratory (or mixed-migratory), their characterizations of 
migratory behavior differed in every characteristic we considered. Estimation of the period of winter-range residency, for example, varied 
from nearly 11 months (A) to less than one (B), but there were also large differences in the speed and timing of departing and returning 
movements.
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that our models omit (d2 and q2, respectively). For example, 
delta2(bhs.rnsd) returns a ‘data.frame’ including d2 
estimates and standard errors for every burst in ‘bhs.rnsd’ 
with a ‘mixed migrant’ model. Because q2 can be derived from 
both ‘migrant’ and ‘mixed migrant’ models, theta2 has 
an additional argument, ‘mod’ specifying the desired model 
(either ‘migrant’ – the default – or ‘mixmig’). For example, 
theta2(bhs.rnsd, mod = “mixmig”) returns esti-

top.bhs.nsd <- topmvmt(bhs.nsd)
mvmt2df(top.bhs.nsd)

returns a list of two ‘data.frames’, containing parameter esti-
mates for ‘mixed migrant’ models (‘mixmig’), and ‘nomad’, 
respectively. The delta2 and theta2 functions both take 
‘mvmt(s)’ objects as input and can be used to derive estimates 
and standard errors for the parameters from Bunnefeld et al. 

Figure 3. Illustration of differences in the model-driven characterization of movement by net squared displacement (NSD), relative NSD 
(rNSD; reference location  4) and elevation methods for elk Cervus elaphus. Our rNSD method reduces the influence of outlying points, 
thus improving correspondence between the location data and the model receiving the greatest support. All NSD models show a relatively 
poor fit to summer, fall and early winter locations (A). In contrast, rNSD models more closely fit the data with the top rNSD model 
showing a concerted out-and-back movement in late June/early July (B). The elevation model (C) provides comparatively little information, 
indicating a fairly constant elevation interrupted by a slight upward movement ( 150 m) August–November. (After running section I and 
II of the supplementary script, these plots can be reproduced using ‘plot(nsd[[6]], ylim  c(0, 300)’, ‘plot(rnsd[[6]], ylim  c(0, 300)’ and 
‘plot(elev[[6]])’.)
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comparison we considered migrant and mixed-migrant clas-
sification as equivalent (i.e. both strategies represent a type 
of migratory behavior).

Our results reveal novel differences in the effect of analytic 
approach on the classification and quantification of move-
ment behavior. Classification by NSD, rNSD and elevation 
models differed for bighorn sheep and elk. NSD and rNSD 
classifications disagreed for 15% of bighorn and 8.7% of elk 
animal-years (95% confidence intervals 0.084–0.243 and 
0.015–0.295, respectively; Table 2). Classification by NSD 
and elevation differed in 12.5% of animal-years for bighorn 
sheep (95% confidence interval: 0.067–0.218; Table 3)  
and 8.7% of elk animal-years (95% confidence interval: 
0.015–0.295).

For animal years that were classified as ‘migrant’ by more 
than one method we found large differences in parameter 
estimates between NSD and rNSD and between NSD and 

mates for all ‘mixed migrant’ models in ‘bhs.rnsd’. Finally, 
the mvmt2dt function estimates the times at which move-
ments begin and end (as opposed to their midpoints, q and/
or q2). The argument ‘p’, the percent of the total movement 
distance (d), defines the thresholds used to calculate these 
dates. Start and end dates are calculated as the time at which 
model predictions reach p * d and (1 – p) * d, respectively. 
Like theta2, mvmt2dt has the ‘mod’ argument, which 
specifies the model from which values should be calcu-
lated. Thus setting mvmt2dt(bhs.elev2, p = 0.1, 
mod = “disperser”) returns a list of the start and  
end of movement from all ‘dispersal’ models in ‘bhs.rnsd’ 
(i.e. the time at which these movements are 10 and 90% 
complete). These dates are returned in two forms, decimal 
day (‘dday’, calculated either from a burst’s first location or 
from ‘stdt’ if previously specified) and as a date formatted as 
POSIXct.

Example: comparing elk and bighorn sheep

To illustrate the performance of NSD, rNSD and elevation 
models, we compare the fit of these models to data from two 
ungulates, a long distance migrant, elk and an elevational 
migrant, Sierra bighorn. We classified movement behav-
ior for 23 animal years of elk location data from Alberta, 
Canada (each animal year from a different individual; all  
data included in migrateR, see help documentation for 
elk), and 88 animal-years of location data collected from 
65 female Sierra Nevada bighorn sheep (of which a small 
illustrative subset of n  4 animal years is included in 
migrateR, see help documentation for bighorn) in three 
ways, based on: 1) NSD; 2) rNSD; 3) elevation. After com-
paring classification of animal-years across these methods, 
whenever NSD classification agreed with either rNSD- or 
elevation-based classification in identifying migratory behav-
ior, we also calculated differences in the absolute value of 
estimates of timing parameters. We calculated summary 
statistics for these differences and tested for directional dif-
ferences using paired t-tests (Bolker 2008). For purposes of 

Table 2. Comparison of classification using NSD and rNSD approaches. Results shown are for n  88 Sierra Nevada bighorn sheep Ovis 
canadensis sierrae; A) and n  23 elk Cervus elaphus; B). We show the classifications we regard as consistent in bold. Elk show fewer 
differences in classification (B, 2 of 23) than do bighorn sheep (A, 13 of 88).

rNSD
A) Bighorn disperser migrant mixed migrant nomad resident total

disperser 0 0 3 1 0 4
migrant 0 1 3 0 0 4

NSD mixed migrant 0 0 70 1 2 73
nomad 0 0 4 0 0 4
resident 0 0 1 1 1 3
total 0 1 81 3 3 88

rNSD
B) Elk disperser migrant mixed migrant nomad resident total

disperser 1 0 0 1 0 2
migrant 0 8 1 0 0 9

NSD mixed migrant 0 0 11 0 1 12
nomad 0 0 0 0 0 0
resident 0 0 0 0 0 0
total 1 8 12 1 1 23

Table 3. Comparison of classification between NSD and elevation 
models. Results shown are for n  88 Sierra Nevada bighorn sheep 
Ovis canadensis sierrae; A) and n  23 elk Cervus elaphus; B). The 
cells we consider as representing consistent classification among 
methods are shown in bold. As with the comparison to rNSD, elk 
show fewer differences in classification (B, 2 of 23) than do bighorn 
(A, 11 of 88).

Elevation
A) Bighorn disperser migrant resident total

disperser 0 4 0 4
migrant 0 4 0 4

NSD mixed migrant 1 72 0 73
nomad 0 4 0 4
resident 0 3 0 3
total 1 87 0 88

Elevation
B) Elk disperser migrant resident total

disperser 1 1 0 2
migrant 0 9 0 9

NSD mixed migrant 0 12 0 12
nomad 0 0 0 0
resident 0 0 0 0
total 1 22 0 23
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and understand the mechanisms that generate these 
behaviors.

Our examples illustrate migrateR’s ability to allay three 
common problems with previous model-driven approaches 
of classifying and quantifying movement behavior. First, 
our re-parameterization of movement models to directly 
estimate the length of an individual’s occupancy (r) on the 
migratory range provides a simple quantitative and biologi-
cally-meaningful basis for constraining definitions of migra-
tion, thus reducing the misclassification of resident behavior. 
Second, rNSD provides an efficient means of identifying and 
reducing NSD-based models’ sensitivity to starting location. 
Third, our elevation-based models illustrate how alternative 
model families can complement existing NSD-based models, 
allowing characterization of migratory behavior that would 
remain invisible to NSD modeling alone. Through these 
improvements, migrateR provides a framework for repeat-
able workflow that will increase the success and transparency 
with which future studies classify movement behavior.

The case studies we provide comparing the application 
of these methods to data from elk and bighorn sheep also 
illustrate the variability in animal migration within and 
between species. These comparisons highlight variation in 
the classification and quantification of migratory behavior 
between different approaches that has not previously been 
directly acknowledged. For example, in the original work, 
Bunnefeld et al. claimed that migratory classifications in their 
dataset were insensitive to starting location, a conclusion our 

elevation models (Table 4; Fig. 2; Fig. 3). We found large 
mean differences in the estimates from models fit to NSD 
and rNSD as well as between NSD and elevation models. 
NSD and elevation models also showed consistent direc-
tional differences, with NSD models estimating earlier 
dates of migration and shorter return movements (Table 4). 
Finally, elevation models for bighorn sheep also estimated 
shorter departing movements and longer migratory-range 
occupancy (by approximately three weeks) compared to 
NSD models (Table 4). Thus, even where these methods 
agreed in their classification, they differed in their character-
ization of migratory movement.

Discussion

By making NSD-, rNSD- and elevation-based meth-
ods more accessible through migrateR we hope to foster  
the further refinement of methods for the classification  
and quantification of migratory behavior and encour-
age further comparison across populations and taxa. The 
approach we propose highlights current ambiguity in the 
treatment of migratory behavior, but also provides promis-
ing avenues for further improvement. Increasing the cor-
respondence between movement models and location data 
reduces need for ad-hoc corrections and thereby increases 
the rigor with which animal movement can be classified 
and quantified thus enhancing our ability to identify  

Table 4. Comparison of the differences between NSD-, rNSD- and elevation-based characterizations of migratory behavior. Here we include 
only animal-years that were classified by both methods as either ‘migrant’ or ‘mixed-migrant’. Results are shown for n  88 Sierra Nevada 
bighorn sheep Ovis canadensis sierrae; and n  23 elk Cervus elaphus.  The mean difference and it’s standard deviation were calculated by 
subtracting the absolute value of either rNSD or elevation-based estimates from their NSD counterparts. Directional differences are shown 
as the mean of NSD estimates minus the mean of rNSD or elevation estimates, such that negative values indicate that the NSD model’s esti-
mate was smaller than that of the model to which it was being compared. Our analysis failed to find evidence of directional differences in 
estimates between NSD and rNSD models, with the single exception of the duration of returning movements in bighorn sheep (ϕ2). We did, 
however, find directional differences between NSD- and elevation-based estimates for the timing of migration (q), although support for this 
difference was weaker in bighorn sheep. We also found directional differences between elevation and NSD model estimates of the duration 
of migratory movements for bighorn sheep (ϕ and ϕ2) and returning elk (ϕ2). Finally, for bighorn we found a directional difference in the 
duration of migratory-range occupancy (r). All units are in days.

A) NSD vs rNSD Mean difference SD Directional difference

Bighorn sheep
Migratory-range occupancy (r) 20.5 42.26 3.02 (p  0.58, DF  73)
Timing of migration (q) 18.73 44.91 –1.29 (p  0.82, DF  73)
Duration of departure (ϕ) 3.31 5.56 0.69 (p  0.36, DF  73)
Duration of return (ϕ2) 2.44 5.35 1.25 (p  0.06, DF  73)

Elk
Migratory-range occupancy (r) 8.73 24.97 –0.82 (p  0.89, DF  19)
Timing of migration (q) 14.98 37.94 1.15 (p  0.9, DF  19)
Duration of departure (ϕ) 2.86 6.79 –0.72 (p  0.67, DF  19)
Duration of return (ϕ2) 1.42 3.97 –0.39 (p  0.68, DF  19)

B) NDS vs Elevation Mean difference SD Directional difference

Bighorn sheep
Migratory-range occupancy (r) 54.79 57.50 –12.61 (p  0.1635, DF  76)
Timing of migration (q) 55.05 70.92 –21.91 (p  0.0306, DF  76)
Duration of departure (ϕ) 5.76 6.47 2.79 (p  0.0038, DF  76)
Duration of return (ϕ2) 7.97 7.16 –5.99 (p  0.0001, DF  76)

Elk
Migratory-range occupancy (r) 42.19 40.52 8.34 (p  0.5219, DF  20)
Timing of migration (q) 30.35 42.15 –26.93 (p  0.0118, DF  20)
Duration of departure (ϕ) 6.99 8.19 0.64 (p  0.7896, DF  20)
Duration of return (ϕ2) 6.99 7.13 –5.46 (p  0.0075, DF  20)
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results clearly contradict. This sensitivity may be system- or 
species-specific, offering an explanation of why our results 
differ from those of previous authors primarily focused on 
moose (Bunnefeld et  al., Singh et  al. 2016). The shared 
framework migrateR provides encourages the development 
of model-driven classification methods by facilitating the 
further comparison of differences between approaches and 
species.

There will always be cases where appropriate classifica-
tion of an animal’s movement remains unclear. Although it 
may be tempting to adjudicate these conflicts with simu-
lations (e.g. Bunnefeld et al.), simulating movement data 
presupposes precisely the underlying mechanisms we are 
seeking to identify and understand. Instead, investigating 
the differences among classification methods – facilitated 
by our approach – may provide valuable clues to the eco-
logical drivers underlying this behavior and thus prove a 
more productive route (Cagnacci et al. 2016). To conserve 
migration we must first develop a fuller understanding of 
the causes and consequences of migratory behavior (Bolger 
et al. 2008).

MigrateR is free and open source, available under ver-
sion 2 of the GNU general public license. All source code 
can be found on GitHub (<   https://github.com/dbspitz/
migrateR >). This R package will be useful to ecologists ana-
lyzing animal location data and is timely in providing tools 
tailored to the challenges attendant on the growing volume 
and taxonomic diversity of GPS datasets.

To cite migrateR or acknowledge its use, cite this Software 
note as follows, substituting the version of the application 
that you used for ‘version 0’:

Spitz, D., Hebblewhite, M. and Stephenson, T. 2016. ‘MigrateR’: 
extending model-driven methods for classifying and quantifying 
animal movement behavior. – Ecography 40: 788–799  
(ver. 0).
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