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Abstract
Aim: Maintaining biodiversity in the face of land use and climate change is a para‐
mount challenge, particularly when distributions of many species remain incom‐
pletely known. Emerging technologies help address this data deficiency by facilitating 
the collection of spatially explicit data for multiple species from multiple taxa. In this 
study, we combine acoustic and visual sensor surveys to inform conservation and 
land use planning in an area experiencing rapid climate and land use change.
Location: Mojave Desert, California, United States.
Methods: We deployed camera traps and acoustic detectors at 210 sites between 
March and July 2016. We identified photographic detections of mammals and acous‐
tic recordings of songbirds to the species level and used multispecies occupancy 
models to estimate and evaluate species' occupancy probabilities. We then extrapo‐
lated model results to the region and forecasted how projected climate and land use 
changes might affect species' occupancy probabilities in 50 years. Lastly, we identi‐
fied areas with high conservation value (i.e., high relative species richness) now and in 
50 years, and related the distributions of these areas to land use designations.
Results: We detected 15 mammal and 68 songbird species. At the community level, 
occupancy decreased with increasing temperatures and distances to woodlands. We 
forecasted that occupancy probabilities and areas with high conservation value would 
decline in 50 years due to projected increases in maximum temperatures and identified 
that up to 43%, 24% and 27% of land designated for renewable energy development, 
recreation and military activities, respectively, encompassed these high value areas.
Main conclusions: Cooler areas close to woodlands and water are of high conserva‐
tion value to mammals and songbirds in the Mojave. These areas will become increas‐
ingly limited with changing climate, however, making their protection from human 
disturbance imperative. We encourage continued use of visual and acoustic sensors 
across large spatial, temporal and taxonomic scales as tools to inform land use and 
wildlife conservation.
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1  | INTRODUC TION

Maintaining the world's tremendous diversity of life is a paramount 
and daunting challenge amid the land use and extractive activities of 
7.4 billion people and a rapidly changing climate (Bellard, Bertelsmeier, 
Leadley, Thuiller, & Courchamp, 2012; Jetz, Wilcove, & Dobson, 2007; 
Walther et al., 2002). Human actions, including the conversion, deg‐
radation and fragmentation of natural habitats, and the direct per‐
secution of wild vertebrates (e.g., retaliatory killings, subsistence 
hunting, or poaching) are placing unprecedented pressures on biodi‐
versity globally (Jetz et al., 2007; Newbold et al., 2015). Concurrently, 
human‐induced climate change is increasing the quantity and severity 
of environmental stressors such as drought, fire, or disease and insect 
outbreaks, and driving shifts in species' geographic ranges and com‐
munity structures (Bentz et al., 2010; Dale et al., 2001; IPCC, 2007; 
Seager et al., 2007; Walther et al., 2002). By many forecasts, without 
active management efforts, the effects of future land use and climate 
change on biodiversity will be immense (Barnosky et al., 2011).

Fine‐grain, species‐specific data collected across large spatial and 
temporal scales is vital to quantifying the pace of biodiversity change, 
to identifying large‐scale ecological stressors and to designing land 
use and conservation plans that effectively minimize negative im‐
pacts on vertebrate populations, (Bellard et al., 2012; Cameron, 
Cohen, & Morrison, 2012; Jetz, McPherson, & Guralnick, 2012; 
Pereira et al., 2013; Theobald et al., 2015). Further, without biodiver‐
sity data it is challenging for wildlife managers and land use planners 
to make proactive versus reactive decisions. Proactive decisions are 
those that if implemented, and if projected ecosystem changes are 
accurate, will benefit biodiversity in the future (e.g., conserving areas 
projected to be important movement corridors or climate refugia), 
whereas reactive decisions involve responding to impacts as or after 
they occur (Palmer et al., 2008). Despite the clear importance of em‐
pirical data for biodiversity conservation, the infrastructure required 
to collect and analyse comprehensive monitoring data is often lacking 
(Ahumada, Hurtado, & Lizcano, 2013; Schmeller et al., 2015).

New, emerging technologies are helping to address these data 
deficiencies by facilitating the collection of spatially explicit, land‐
scape‐level data for multiple species from multiple taxa. Arrays of 
fixed acoustic sensors, for example, can record bird, bat, anuran 
and insect taxa that emit species‐specific sounds (Aide et al., 2013; 
Blumstein et al., 2011). Visual sensors (i.e., camera traps), alterna‐
tively, use motion and heat‐sensing infrared technology to provide 
photographic detections for a diversity of mammal, bird and fish 
species (Rich et al., 2017; Steenweg et al., 2017). Both sensor types 
have greatly improved inferences on the population dynamics of rare 
or elusive species, and have enabled the quantification and evalua‐
tion of species distributions, community richness, temporal activity 
patterns, population trends and inter‐ and intraspecific interactions 
(Aide et al., 2013; Blumstein et al., 2011; Rich et al., 2017; Steenweg 
et al., 2017).

In this study, we explore the utility of combining acoustic and 
visual sensor surveys to inform land use planning and biodiversity 
management in a region experiencing rapid change, the Mojave 

Desert of California. The Mojave Desert is a 32.1 million acre area 
that falls within the North American desert complex, one of the five 
most biologically diverse wilderness areas in the world (Mittermeier 
et al., 2002). In addition to harbouring rich biodiversity, the Mojave 
Desert provides critical habitat for many threatened and endan‐
gered species (Flather, Knowles, & Kendall, 1998; Randall et al., 
2010). Similar to many other regions around the world, climate 
change and a multitude of human‐mediated land use pressures are 
threatening the Mojave Desert's diverse fauna (Gibson, Wilman, & 
Laurance, 2017; LaDochy, Medina, & Patzert, 2007; Leu, Hanser, & 
Knick, 2008; Lovich & Bainbridge, 1999; Seager et al., 2007). Mean 
annual temperatures have increased by over 2°C in the last 50 years 
while precipitation has decreased, causing the region to become 
increasingly hot and arid (LaDochy et al., 2007; Rapacciuolo et al., 
2014; Seager et al., 2007). Land use changes triggered by urbaniza‐
tion, military activities and recreation (e.g., off‐road vehicle use), al‐
ternatively, have resulted in widespread habitat loss, fragmentation 
and degradation in this region (Leu et al., 2008; Lovich & Bainbridge, 
1999). Further, the Mojave Desert is experiencing development 
pressures from the renewable energy sector as California increas‐
ingly invests in wind and solar energy production (Cameron et al., 
2012; Gibson et al., 2017; Hernandez, Hoffacker, Murphy‐Mariscal, 
Wu, & Allen, 2015). An understanding of species distributions and 
habitat requirements is needed to minimize the potentially adverse 
impacts of climate and land use pressures on biodiversity in this 
region.

We focused our survey approach in the Mojave Desert on 
songbird and mammal communities. The specific objectives of 
our study were threefold. Our first objective was to use data from 
acoustic and visual sensor surveys to model current occupancy 
probabilities for terrestrial mammal species weighing >0.5 kg and 
songbird species in the Mojave Desert. We expected that the 
spatial distributions of vertebrates would be most strongly influ‐
enced by topography, water availability, woodland habitat, urban 
development and climate (Epps, McCullough, Wehausen, Bleich, 
& Rechel, 2004; Jetz et al., 2007; Ordeñana et al., 2010; Walther 
et al., 2002). Our second objective was to use occupancy model 
outputs to identify areas with high conservation value for mammal 
and songbird communities, and to relate the distributions of these 
areas to five major land designations (i.e., areas designated for 
federal protection, conservation planning, recreation, military and 
energy development). Our final objective was to demonstrate how 
modelled occupancies and projected climate and land use changes 
can be integrated to predict species' occupancy probabilities and 
the availability/distribution of areas with high conservation value 
in 50 years. Ideally, through these steps, we can provide a better 
understanding of mammal and songbird populations in the Mojave 
Desert that can inform proactive land use and biodiversity man‐
agement strategies and the prioritization of conservation actions. 
Furthermore, as this is among the first studies to integrate acous‐
tic and visual sensor data, we hope this work provides a timely 
example of how emerging technologies can facilitate multispecies 
and multi‐taxa data collection.
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2  | METHODS

2.1 | Study area and design

The Mojave Desert ecoregion of California, as defined by the U.S. 
Department of Agriculture (USDA, 2016), is a 66,830  km2 area 
with elevations ranging from −83 to 2,414 m (x̄ = 796 m). The study 
area encompasses over 140 different vegetation communities 
with the predominant National Vegetation Classification (NVC) 
macrogroup being Mojave‐Sonoran semi‐desert scrub (e.g., Larrea 
tridentata and Ambrosia dumosa; Menke, Reyes, Glass, Johnson, & 
Reyes, 2013; USNVC, 2016). Other vegetation macrogroups in‐
cluded, for example, Great Basin‐intermountain dry shrub/grass‐
land (e.g., Yucca brevifolia), desert alkali‐saline marsh, playa, and 
shrubland (e.g., Atriplex spinifera), warm desert xeric‐riparian scrub 
(e.g., Senegalia greggii), and warm semi‐desert cliff, scree, and 
rock vegetation (e.g., Atriplex hymenelytra). The eastern border of 
our study area was the California state line, but we note that the 
Mojave Desert extends into Nevada, Arizona and the southwest 
corner of Utah.

We surveyed 210 sites across the California portion of the 
Mojave Desert region between March and July 2016 (Figure 1). We 
identified survey locations by first selecting a spatially balanced ran‐
dom sample of hexagons, stratified by vegetative community, from 
the USDA Forest Inventory and Analysis program's hexagon grid 
(hexagon radius is ~2.6 km). We then randomly selected 1–3 survey 
locations within each hexagon, which were spaced by 1–2 km and 
stratified by vegetative community. Survey sites covered a broad 
range of elevations, ranging from −75 m in Death Valley National 
Park to 1,630 m in the Mojave National Preserve (Appendix S1).

2.2 | Camera trap and acoustic recorder surveys

At each survey location, we deployed a PC900 camera trap (Reconyx) 
and a SM3‐BAT bioacoustic recorder with microphone (Wildlife 
Acoustics, Inc., hereafter termed ARU). We cable‐locked cameras and 
ARUs to securely placed T‐posts 1‐m and 2‐m above the ground, re‐
spectively; T‐posts were separated by at least 30 m. If T‐post mounting 
was not possible, we secured devices to a tree or other rigid vegetation.

Cameras were deployed for an average of 34 days (SD = 7.6) and 
baited during their initial deployment in an attempt to maximize de‐
tection probabilities (Karanth, Nichols, 2011). Our goal was to in‐
crease the probability of photographing mammals within the vicinity 
of the camera rather than attracting mammals from long distances. 
Thus, we used baits that were detectable at short distances includ‐
ing a 250 g salt lick, 100 ml of rolled oat–peanut butter mixture and 
150 g of fishy cat food. We programmed cameras to take three pho‐
tographs at each trigger event, with a delay of one second between 
trigger events. After the field season, we identified photographic 
detections to the species level, omitting photographs when this was 
not possible (e.g., blurry images).

We programmed ARUs to record three, 5‐min sessions on three 
consecutive days during the survey period. The first session was at 
30 min before sunrise, the second at sunrise and the third at 30 min 
after sunrise (Furnas & Callas, 2015). We had an expert in aural iden‐
tification of California desert birds review each 5‐min recording and 
identify bird species by song or call. To aid in bird identification, the 
expert examined spectrograms in Raven Pro software (v. 1.5; Cornell 
Lab of Ornithology Bioacoustics Research Program). We omitted re‐
cordings that could not be identified to the species level and, in an 

F I G U R E  1  Survey site locations in the 
Mojave Desert of California, 2016, and 
land designations across the region
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effort to ensure species were similar ecologically, we restricted our 
analysis to songbirds (i.e., species in the order Passeriformes; Barker, 
Cibois, Schikler, Feinstein, & Cracraft, 2004). The specialist also clas‐
sified the level of background noise (e.g., wind, rain, vehicle and air 
traffic) during each recording using an ordinal variable ranging from 
zero, indicating no noise, to four, indicating loud noise.

2.3 | Spatial covariates of occupancy and detection

We expected that slope, water availability, habitat heterogeneity, 
urban development and climate would influence wildlife distri‐
butions across the Mojave Desert. We used the 30‐m resolution 
National Elevation Dataset (USGS, 2016) to calculate and extract 
slope values for each sampling site location in ArcMAP 10.4.1 (ESRI). 
We used Global Surface Water Explorer (Pekel, Cottam, Gorelick, & 
Belward, 2016) to identify permanent and seasonal water sources, 
United States Geological Survey (USGS) land use data (Sleeter, 
Wilson, Sharygin, & Sherba, 2017) to identify urban development 
and California Department of Fish and Wildlife (CDFW) vegetation 
data (CDFW, 2017) to identify the NVC macrogroup “intermountain 
pinyon‐juniper woodlands.” We then measured the distances from 
each site to the nearest water source, developed area and pinyon‐
juniper woodland in ArcMap. We chose to estimate the distances 
to these environmental features, as compared to their coverage 
within a certain area surrounding the site (e.g., a 1‐ or 5‐km2 buffer), 
because we were examining a broad range of species with varying 
area requirements and our multispecies models required covariate 
values to be consistent across all species. We included pinyon‐ju‐
niper woodlands, specifically, because they provide an important 
form of vertical habitat heterogeneity in the Mojave Desert, but 
we note that other vegetation types and communities (e.g., Joshua 
trees—Y. brevifolia) were also likely important. Lastly, to represent 
climate, we used 30‐year (1981–2010), 270‐m resolution summary 
data from the 2014 California Basin Characterization Model (BCM; 
California Landscape Conservation Cooperative, 2014). We used 
this dataset to ensure the temporal and spatial resolution of our 
current climate values would be consistent with that of our pro‐
jected climate values. We extracted site‐specific values for mean 
annual precipitation (cm), maximum monthly temperature (°C) and 
climatic water deficit, which was a function of potential and actual 
evapotranspiration (Flint, Flint, Thorne, & Boynton, 2013).

The phenology of birds' vocal behaviours can change over the 
course of a breeding season (Furnas & McGrann, 2018) and mam‐
mals' movement and activity patterns may fluctuate based on en‐
vironmental factors and human activity (Ordiz, Sæbø, Kindberg, 
Swenson, & Støen, 2017). Thus, we expected that a species' prob‐
ability of being detected may vary based on human impact, time 
of year and temperature. To quantify human impact at each sam‐
pling site, we extracted values from the USGS human footprint 
model (USGS, 2016b), and to represent time of year, we included 
mean Julian day and its quadratic term. To represent temperature, 
we used 4‐km resolution daily temperature data from PRISM (Prism 
Climate Group 2018). Daily temperature and Julian day were highly 

correlated (r = 0.77). Thus we only retained Julian day for our anal‐
yses because Julian day had a stronger univariate effect size, and 
we did not want to confound differences in phenology with differ‐
ences in occupancy (Strebel, Kéry, Schaub, & Schmid, 2014). Lastly, 
for songbirds, we also included mean background noise, which can 
impede the audibility and identification of bird species.

2.4 | Multispecies occupancy models

We used multispecies hierarchical occupancy models to estimate the 
probability species i occurred within the area sampled by a camera trap 
or ARU during our survey period (i.e., occurrence; Dorazio & Royle, 
2005; Iknayan, Tingley, Furnas, & Beissinger, 2014). Multispecies 
models link species‐specific detection and occupancy using com‐
munity‐level hyper‐parameters which specify the mean response 
and variation among species within the community to a respective 
covariate (Kéry & Royle, 2008; Zipkin, Royle, Dawson, & Bates, 2010). 
Linking occurrence models for individual species within a hierarchi‐
cal model results in a more efficient use of data, increases precision 
in estimates of occupancy and allows for assessments of ecological 
variables at both the species level and community level (Kéry & Royle, 
2008; Iknayan et al., 2014; Zipkin DeWan, & Andrew Royle, 2009). 
Further, the models produce estimates of species richness (i.e., num‐
ber of species in the community and at each sampling location).

Occupancy models distinguish the true absence of a species 
from the non‐detection of a species (i.e., species present but not 
photographed/recorded) using spatially or temporally replicated 
survey data. For each sampling location, we treated each 24‐hr cam‐
era trapping period (n̄ = 34) and each 5‐min acoustic recording (n = 9) 
as a repeat survey at that particular site. For our camera trap model 
and for our ARU model, we specified the occurrence probability (ψ) 
for species i at site j as:

We did not include annual precipitation and climatic water deficit 
in our final model because they were highly correlated with maxi‐
mum monthly temperature (r > |0.8|)—the climatic variable that had 
the strongest influence on mammal and songbird occupancy in pre‐
liminary analyses. We also included human impact and Julian day 
and its quadratic term as covariates for detection in both models, 
with the addition of background noise in the ARU model. We linked 
species‐specific models using a mixed modelling approach where 
we assumed species‐specific parameters were random effects de‐
rived from a normally distributed, community‐level hyper‐parame‐
ter (Zipkin et al., 2010). Given we evaluated two occupancy models 
(i.e., one model for the camera trap data and one for the ARU data), 
we had separate community‐level parameters for mammals and for 
songbirds. We estimated posterior distributions of parameters using 
Markov Chain Monte Carlo implemented in JAGS (Plummer, 2011) 
through program R. We generated three chains of 50,000 iterations 

logit
(

�ij

)

=�0i+�1i (slope)j+�2i (distance to water)j

+�3i (distance to pinyon juniper)j+�4i (maximum temperature)j

+�5i (distance to developed area)j
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TA B L E  1  Mammal species photographed (a) and songbird species recorded (b) during camera trap and automated recorder surveys in 
the Mojave Desert of California in 2016, numbers of detections (n), projected estimates of occupancy across the region (ψ) and site‐level 
detection probabilities (p*)

(a)

Common name n ψ p* Common name n ψ p*

Coyote 204 0.37 0.93 Bighorn sheep 68 0.03 1.00

Opossum 2 0.01 0.89 Raccoon 3 0.01 0.95

Black‐tailed jackrabbit 1,090 0.70 1.00 Spotted skunk 7 0.04 0.40

Bobcat 107 0.20 0.83 Audubon's cottontail 485 0.22 1.00

Striped skunk 4 0.01 0.96 American badger 44 0.19 0.68

Mule deer 92 0.07 0.93 Grey fox 48 0.05 0.91

CA ground squirrel 1 0.01 0.64 Kit fox 370 0.41 0.98

Rock squirrel 10 0.01 0.94

(b)

Common name n ψ p* Common name n ψ p* Common name n ψ p*

Ash‐throated 
flycatcher

272 0.31 0.99 Cliff swallow 3 0.07 0.34 Ruby‐crowned 
kinglet

3 0.09 0.19

Barn swallow 1 0.04 0.30 Common raven 168 0.47 0.74 Rufous‐crowned 
sparrow

7 0.02 0.70

Black‐chinned 
sparrow

4 0.02 0.71 Common 
yellowthroat

25 0.02 1.00 Rock wren 147 0.19 0.93

Bell's sparrow 179 0.20 0.93 Crissal thrasher 53 0.12 0.67 Red‐winged 
blackbird

31 0.02 1.00

Bendire's thrasher 5 0.13 0.22 Dark‐eyed junco 1 0.03 0.41 Say's phoebe 63 0.13 0.90

Bell's vireo 5 0.01 0.94 Fox sparrow 3 0.05 0.33 Scott's oriole 41 0.11 0.81

Bewick's wren 80 0.10 0.97 Golden‐
crowned 
sparrow

1 0.03 0.41 Song sparrow 12 0.02 0.84

Blue‐grey 
gnatcatcher

25 0.06 0.81 Great‐tailed 
grackle

2 0.06 0.28 Spotted towhee 4 0.03 0.52

Brown‐headed 
cowbird

8 0.05 0.49 Hermit thrush 1 0.03 0.36 Verdin 72 0.11 0.96

Black‐headed 
grosbeak

2 0.06 0.33 House finch 149 0.26 0.95 Vesper sparrow 3 0.01 0.66

Blue grosbeak 10 0.01 1.00 Horned lark 352 0.42 0.95 White‐crowned 
sparrow

113 0.50 0.18

Black phoebe 1 0.03 0.42 House wren 1 0.03 0.50 Western 
kingbird

6 0.02 0.63

Brewer's blackbird 7 0.11 0.27 Juniper 
titmouse

1 0.03 0.41 Western 
meadowlark

1 0.03 0.39

Brewer's sparrow 27 0.11 0.23 LeConte's 
thrasher

68 0.19 0.81 Western 
scrub‐jay

24 0.04 0.97

Black‐tailed 
gnatcatcher

85 0.19 0.90 Loggerhead 
shrike

81 0.34 0.69 Western 
tanager

1 0.03 0.42

Black‐throated 
sparrow

636 0.56 1.00 Marsh wren 16 0.02 1.00 Western 
wood‐pewee

1 0.03 0.40

Bullock's oriole 8 0.05 0.52 Northern 
mockingbird

64 0.10 0.94 Wilson's warbler 5 0.06 0.39

Bushtit 13 0.04 0.81 Northern 
rough‐winged 
swallow

3 0.03 0.46 White‐throated 
swift

7 0.06 0.48

(Continues)
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thinned by 50 and used uninformative priors (model code presented 
in Appendix S2). We assessed model convergence using the Gelman‐
Rubin statistic, where values <1.1 indicated convergence (Gelman, 
Carlin, Stern, & Rubin, 2004).

To estimate and map species‐specific occupancy probabilities 
and mammal, songbird and overall (i.e., mammal and songbird) rich‐
ness, we extrapolated our model results to the entirety of California's 
Mojave Desert at a 1 km2 scale. We used these model‐based infer‐
ences, which rely on covariate associations, to help ensure that esti‐
mates of occupancy and richness were representative of the entire 
region and not just locations surveyed (Gregoire, 1998). To do this, 
we overlaid a 1 km2 grid and calculated covariate values at the centre 
point of each grid cell. During each iteration, the model produced 
intercept, community‐level beta and species‐specific beta estimates. 
We used these estimates and our covariate values to generate spe‐
cies‐ and grid‐specific occupancy probabilities during iteration x. We 
repeated this process for each model iteration and used these val‐
ues to generate probability distributions representing species and 
grid‐specific occupancy probabilities. Lastly, during each iteration 
we also summed occupancy values for mammal species, songbird 
species and all species to generate probability distributions repre‐
senting grid‐specific mammal, songbird and overall richness.

2.5 | Land designations and species richness

We used the Desert Renewable Energy Conservation Plan (DRECP, 
2016) to assign five land designations: federally protected areas, 
conservation planning areas, recreation management areas, military 
land and areas that are potential sites for renewable energy devel‐
opment. We classified federally protected areas (i.e., National Parks, 
Wilderness Areas, California Desert National Conservation Lands, 
and BLM Areas of Critical Environmental Concern) and conserva‐
tion planning areas (i.e., private lands and non‐federal public lands 
that are a conservation priority) as protected land. We classified 
recreation management areas, military land and potential develop‐
ment sites (i.e., areas identified as open to renewable energy devel‐
opment in the BLM's 2016 Record of Decision regarding the DRECP) 
as unprotected land. Next, for our estimates of mammal, songbird 

and overall richness, we partitioned high‐richness areas from low‐
richness areas using median richness values. Among the relative 
high‐richness areas, we quantified the per cent of these areas that 
fell within each land designation and within protected versus unpro‐
tected land.

2.6 | Occupancy and richness projections

To forecast modelled occupancy and richness estimates, we used 
2040–2069 temperature projections from the BCM (California 
Landscape Conservation Cooperative, 2014) and 2055 land use and 
land cover projections from USGS (Sleeter et al., 2017). The distribu‐
tions of pinyon‐juniper woodlands and free water will also likely change, 
but projections for these variables were not available. Consequently, 
we used their current values in our occupancy forecasts. For tem‐
perature, we overlaid three future scenarios for maximum monthly 
temperature under General Circulation Model (GCM) CMIP‐5 and rep‐
resentative concentration pathway (RCP) 2.6 (Appendix S3). We then 
calculated mean maximum temperature values under RCP2.6 for each 
270‐m pixel and extracted values for the centre point of each 1 km2 
grid cell. We repeated this process for future scenarios under RCP4.5 
(n = 2) and RCP8.5 (n = 5; Appendix S3). The selected RCPs include 
mitigation scenarios leading to very low (RCP2.6), medium (RCP4.5) 
and very high (RCP8.5) baseline emissions of greenhouse gases and 
air pollutants (see Van Vuuren et al., 2011 for details). For land use, we 
used the projection based on a mid‐level human population growth 
rate and remeasured distances to urban development.

To forecast occupancy probabilities and mammal, songbird and 
overall richness in 2040–2069, we replaced grid‐specific values for 
distance to developed area and temperature with their projected 
values. We then repeated the process described previously for gen‐
erating probability distributions representing species and grid‐spe‐
cific occupancy probabilities, and grid‐specific estimates of mammal, 
songbird and overall richness. Given we had three projected tem‐
perature values (i.e., from RCP2.6, 4.5, and 8.5), we also had three 
forecasted estimates of occupancy and richness. Lastly, using me‐
dian values from 2016, we mapped areas predicted to have high rich‐
ness in 2040–2069 under each of the future climate scenarios and 

(b)

Common name n ψ p* Common name n ψ p* Common name n ψ p*

Cactus wren 224 0.23 1.00 Oak titmouse 4 0.01 0.86 Yellow‐breasted 
chat

3 0.01 0.83

Cassin's kingbird 6 0.01 0.97 Orange‐
crowned 
warbler

6 0.03 0.54 Yellow warbler 10 0.02 0.79

Canyon wren 21 0.02 0.98 Phainopepla 17 0.13 0.41 Yellow‐headed 
blackbird

2 0.02 0.59

Cedar waxwing 1 0.03 0.45 Pinyon jay 2 0.01 0.66 Yellow‐rumped 
warbler

22 0.14 0.29

Chipping sparrow 1 0.03 0.42 Pine siskin 3 0.09 0.26

TA B L E  1   (Continued)
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determined the per cent of these areas that fell within each land use 
designation and within protected versus unprotected land.

3  | RESULTS

3.1 | Multispecies occupancy models

We photographed 15 mammalian species (>0.5 kg) during our 7,107 
camera trap nights and recorded 68 songbird species in our 1,899 5‐
min acoustic recordings (Table 1). Black‐tailed jackrabbit (Lepus cali‐
fornicus; ψ = 0.70), kit fox (Vulpes macrotis; ψ = 0.41), black‐throated 
sparrow (Amphispiza bilineata; ψ = 0.56) and white‐crowned spar‐
row (Zonotrichia leucophrys; ψ  =  0.50) had the highest estimated 
occupancies (Table 1; Figure 2). Many species, conversely, had low 
estimates of occupancy due to their limited numbers of detections 
(Table 1; Figure 2). Detection probabilities tended to have a quad‐
ratic relationship with Julian day for both the mammal community 
and the songbird community (Table 2; Appendix S4). Further, we 
were more likely to detect songbirds in areas with a large human 
footprint but low level of background noise (Table 2; Appendix 
S4). Mean richness estimates at sampling sites ranged from 1–10 
mammal species (x̄ = 2.3), 2–32 songbird species (x̄ = 6.8) and 4–62 
species overall (x̄  =  9.1). Grid‐specific estimates of mammal and 
songbird richness were highly correlated (r = 0.95) with modelled 
richness being greatest in the higher elevation regions, such as 
within the Mojave National Preserve on the eastern border of the 
state, for both taxonomic groups (Figure 3c,d).

Of the covariates we included in our models, maximum tempera‐
ture had the greatest influence on community‐level occupancy for 
both mammals and songbirds, with occupancy tending to decrease 
as maximum temperatures increased (Table 2). This negative re‐
lationship was also evident at the species level for 6 mammal and 
25 songbird species (Table 2; Appendix S4). The kit fox and black‐
tailed gnatcatcher (Polioptila melanura) were the only detected 
species more likely to occupy sites with relatively high maximum 
temperatures (Appendix S4). Community‐level occupancy was also 
influenced by proximity to pinyon‐juniper woodlands, with the occu‐
pancy of mammal and songbird species tending to increase closer to 
woodlands (Table 2). Songbirds like the Bewick's wren (Thryomanes 
bewickii) and Crissal thrasher (Toxostoma crissale), and mammal spe‐
cies like the bobcat (Lynx rufus) and mule deer (Odocoileus hemionus) 
also had strong, negative relationships with distance to pinyon‐ju‐
niper woodlands at the species level (Appendix S4). The species‐
specific influence of slope was variable, where species like the grey 
fox (Urocyon cinereoargenteus) and rock wren (Salpinctes obsoletus) 
were more likely to occupy steeper areas, while species like the coy‐
ote (Canis latrans) and horned lark (Eremophila alpestris) were more 
likely to occupy flatter areas (Table 2; Appendix S4). Distance to 
water had a stronger influence on the songbird community than the 
mammalian, with songbird occupancy tending to increase closer to 
natural water sources (Table 2; Appendix S4). Lastly, distance from 
a developed area had a weak influence at the community level on 
both mammals and songbirds, but had a strong negative influence 

on six songbird species (e.g., Bell's sparrow—Artemisiospiza belli) and 
a strong positive influence on two songbird species (e.g., Crissal 
thrasher; Table 2; Appendix S4).

3.2 | Land designations and species richness

The most prevalent land designation in the study region was federally 
protected areas (27,679 km2), followed by recreation management 
areas (10,775 km2), military land (9,908 km2), conservation planning 
areas (1,672 km2) and potential sites for renewable energy develop‐
ment (933 km2; Figure 1). Thus, more land was protected (58%) than 
unprotected. For each richness measure (i.e., mammals, songbirds 
and overall), over 50% of the area classified as having a high value 
(i.e., grid value > median value) fell within land currently designated 
as protected (Table 3). Among the specific land designations, feder‐
ally protected areas encompassed the greatest proportion of high‐
richness areas, followed by military lands (Table 3). Land designated 
for energy development encompassed 2% and 3% of high‐richness 
areas for mammals and songbirds, respectively (Table 3).

3.3 | Occupancy and richness projections

Maximum monthly temperatures in the study area were projected 
to increase by an average of 1.19, 2.35 and 2.98°C under RCP2.6, 
4.5 and 8.5 future scenarios, respectively, whereas mean distance to 
urban development was projected to decrease by just 254 m on av‐
erage. These forecasted changes, namely the increase in maximum 
temperature, resulted in decreased estimates of occupancy from 
2016 to 2040–2069 for most species (Figure 2; Appendix S5; exam‐
ple displayed in Figure 3a). Kit fox, ash‐throated flycatcher (Myiarchus 
cinerascens), black‐tailed gnatcatcher and verdin (Auriparus flaviceps) 
were among the limited number of species projected to increase in 
occupancy (Figures 2 and 3b; Appendix S5). We note, however, that 
projected occupancy estimates' 90% credible intervals overlapped 
current means for most species (Figure 2; Appendix S5). Some of the 
species that showed a statistically significant decline in projected 
occupancy included mule deer and black‐throated sparrow under 
all RCP scenarios, Audubon's cottontail (Sylvilagus audubonii), house 
finch (Haemorhous mexicanus), cactus wren (Campylorhynchus brun‐
neicapillus), Bell's sparrow, rock wren and Scott's oriole (Icterus pari‐
sorum) under RCP4.5 and 8.5 scenarios, and badger (Taxidea taxus), 
bobcat (L. rufus), Crissal thrasher and ash‐throated flycatcher under 
the RCP8.5 scenarios (Figure 2; Appendix S5). Regarding species 
richness, we again found that grid‐specific projections of mammal 
and songbird richness were highly correlated. We projected declines 
in overall species richness that ranged from an average of 2.5% 
under RCP2.6 to 19.8% under RCP8.5 (Figure 3).

For all richness measures and for all future temperature sce‐
narios, coverage of land designated as having high value decreased 
substantially across the Mojave Desert from 2016 to 2040–2069 
(Table 3). Similar to current modelled richness, the majority of these 
high value areas fell within land designated as protected, followed 
by recreation management areas (Table 3). Lastly, we projected 
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that 43% (337 km2), 20% (159 km2) and 14% (108 km2) of land des‐
ignated for renewable energy development, 27% (2,760  km2), 9% 
(884  km2) and 4% (409  km2) of land designated for military, and 
24% (2,709 km2), 14% (1,585 km2) and 10% (1,107 km2) of land des‐
ignated for recreation would be of high value to mammals and/or 
songbirds under RCP2.6, 4.5 and 8.5 future scenarios respectively 
km2 (Figure 4; Appendix S6).

4  | DISCUSSION

We used remote camera traps and ARUs to amass spatially explicit 
detection–non‐detection data and generate baseline estimates 
of occupancy for 15 mammal and 68 songbird species across the 
Mojave Desert in California. Such fine‐scale multi‐taxa data have 
been unavailable for this region, despite being vitally needed by 

F I G U R E  2  Mean estimated occupancy values, and 90% credible intervals, for mammal (a) and songbird (restricted to songbirds with 
occupancy estimates >0.05) (b) species across the Mojave Desert of California, 2016. We provide estimates for the current year, 2016, and 
forecast estimates for the years 2040–2069 using land use projections from the United States Geological Survey and maximum monthly 
temperatures projected under General Circulation Model CMIP‐5 and representative concentration pathways (RCP) 4.5 (see Appendix S5 for 
occupancy projections under RCP2.6 and RCP8.5 future scenarios)

(a)

(b)
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scientists, resource managers and policymakers to identify popula‐
tion trends, to effectively mitigate large‐scale ecological stressors 
and to make informed land use and wildlife management decisions 
(Ahumada et al., 2013; Pereira et al., 2013; Steenweg et al., 2017). 
This data deficiency, and the focus of previous monitoring efforts 
on a single species or several species of interest, may be attributed 
to technological, analytical and budgetary constraints. Recently, 
however, emerging technologies such as camera traps and ARUs, 
which are autonomously triggered to photograph a passing animal 
or record a vocalizing taxa, respectively, have made it possible to 
continuously collect information on a diversity of wildlife species 
with limited human presence (Aide et al., 2013; Blumstein et al., 
2011; Steenweg et al., 2017). Further, analytical advances, such as 
multispecies hierarchical occupancy models, have made it possible 
to account for observation error and to integrate data across spe‐
cies, thus permitting composite analyses of communities and indi‐
vidual species (Dorazio & Royle, 2005; Iknayan et al., 2014; Zipkin 
et al., 2010). These advances have opened the door to monitoring 
initiatives extending across greater taxonomic, spatial and temporal 
scales, and, in so doing, have increased our capacity for making in‐
formed land use planning and biodiversity management decisions.

Our estimates of mammal and songbird richness, both current and 
projected, were highly correlated (r > 0.9). These results suggest that 
mammals and songbirds are similarly distributed across the region 
and that areas designated as being important to the conservation of 
one taxonomic group will likely be important to the conservation of 
the other. Specifically, our research shows that when the manage‐
ment goal is to maximize mammal and songbird occupancy, areas 
with cooler temperatures that are close to pinyon‐juniper woodlands 
and a natural water source are of high conservation value in the 
Mojave Desert. We found mean maximum temperature negatively 
influenced the occupancy of mammal and songbird communities, 

as well as individual species (n = 25). These results highlight the im‐
portance of protecting areas that may act as climate refugia, such as 
higher elevations, shaded valleys and north facing slopes (Bachelet, 
Ferschweiler, Sheehan, & Strittholt, 2016; LaDochy et al., 2007; 
Rapacciuolo et al., 2014; Seager et al., 2007). High elevation areas 
(defined here as >1,500 m) encompassed only a small portion of the 
region, but given that elevation and species richness were positively 
correlated (r > 0.6), their protection may be of particular importance.

Mammal and bird communities were also more likely to occupy 
areas close to pinyon‐juniper woodlands. This positive association 
was likely because pinyon‐juniper woodlands provide vertical hab‐
itat heterogeneity and, in turn, increased availability of nest sites, 
food resources, cover and shade (MacArthur & MacArthur, 1961; 
McCain, 2009). Thus, like high elevations, pinyon‐juniper wood‐
lands may have high ecological value for mammals and birds in the 
region. We encourage future research to assess a broader array of 
vegetation communities as our analysis was limited to pinyon‐juniper 
woodlands. Vegetation like Joshua trees and Mojave yucca (Yucca 
schidigera), for example, may also influence species' occupancy as 
they too provide structural height diversity and vegetation complex‐
ity (Germano & Lawhead, 1986).

Lastly, the avian community was more likely to occupy areas 
close to natural water sources whereas for mammals, this relation‐
ship was weak. Water is a critical resource for vertebrate popula‐
tions, but in arid ecosystems like the Mojave Desert, many mammal 
species (e.g., kit fox and lagomorphs) have developed physiolog‐
ical and behavioural adaptations that minimize their need for free 
water (Golightly & Ohmart, 1984; Nagy, Shoemaker, & Costa, 1976). 
Further, mammals may be equally dependent on ephemeral water 
sources, which we were unable to account for in our analyses.

Projected increases in maximum temperatures, which averaged 
1.19–2.98°C across the three RCP scenarios, resulted in an overall 

TA B L E  2  Mean (x̄) and 90% credible interval estimates for the community‐level hyper‐parameters hypothesized to influence the 
probability of occupancy and detection of terrestrial mammal species and songbird species in the Mojave Desert of California, 2016, and the 
number of significant species‐specific responses (i.e., 90% CI did not overlap 0.0; Appendix S4)

Mammals Birds

Community Spp. Community Spp.

x̄ 90% CI + – x̄ 90% CI + –

Occupancy covariates

Dist. water −0.08 −0.315 to 0.123 0 0 −0.45 −0.686 to −0.239 4 12

Slope −0.15 −0.641 to 0.307 3 4 −0.23 −0.388 to −0.081 2 10

Max temp. −0.59 −1.067 to −0.107 1 6 −0.61 −0.814 to −0.416 1 25

Dist. develop 0.01 −0.198 to 0.203 0 0 −0.06 −0.217 to 0.083 2 6

Dist. woodland −0.33 −0.705 to −0.038 0 3 −0.31 −0.523 to −0.180 1 11

Detection covariates

Human footprint 0.14 −0.103 to 0.366 4 1 0.26 0.122–0.396 13 1

Julian day 0.72 0.250–1.172 0 3 1.74 1.153–2.373 66 0

Julian day2 −0.53 −0.972 to −0.062 0 5 −2.07 −2.687 to −1.454 0 61

Noise −0.17 −0.288 to −0.055 0 11
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F I G U R E  3  Modelled (a) Bell's Sparrow occupancy, (b) kit fox occupancy, (c) mammal richness and (d) songbird richness in the Mojave 
Desert of California in 2016, including 90% credible intervals (LCI = lower credible interval; UCI = upper credible interval), and projected 
occupancy in 2040–2069. We forecasted occupancy estimates using land use projections from United States Geological Survey and three 
scenarios for maximum monthly temperature in 2040–2069 under General Circulation Model CMIP‐5 and representative concentration 
pathways (RCP) 2.6, 4.5, and 8.5

(a)

(b)
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decline in our forecasted estimates of occupancy and richness from 
2016 to 2040–2069, as well as an overall decline in the coverage of 
areas with high conservation value (i.e., areas where richness value 
was greater than 2016 median value). As expected, forecasted 

declines were largest under the scenario with the highest baseline 
emission rates (i.e., RCP8.5; Van Vuuren et al., 2011). We note, how‐
ever, that confidence intervals for current and forecasted estimates 
often overlapped. Our results support the hypothesis that climate 

(c)

(d)

F I G U R E  3   (Continued)
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change poses a threat to biodiversity in the Mojave Desert (Bachelet 
et al., 2016; Serra‐Diaz et al., 2014; Walther et al., 2002). Thus, they 
also emphasize the need for land use and conservation planning that 
is informed by species‐specific empirical data and designed to in‐
crease the ability of native species to persist in the face of climate 
change (Cameron et al., 2012; Heller & Zavaleta, 2009). We evalu‐
ated the potential impacts of increasing temperatures and human de‐
velopment on species distributions, but we encourage managers and 

land use planners to simultaneously consider projected changes in 
precipitation, evapotranspiration, vegetation communities and free 
water, all of which have also been found to influence vertebrate dis‐
tributions in arid systems (Illán et al., 2014; McCreedy & van Riper, 
2014).

We found 14–43, 10–24 and 4%–27% of land currently desig‐
nated for renewable energy development, recreation and military 
activities, respectively, may be of high conservation value in the 

Mammal richness Avian richness Overall richness

Overall

% cover in Mojave

2016 49 49 49

RCP2.6 29 28 32

RCP4.5 15 16 16

RCP8.5 11 12 12

Protected

% federally protected

2016 51 50 50

RCP2.6 56 52 52

RCP4.5 64 58 59

RCP8.5 69 62 63

% CPA

2016 7 7 7

RCP2.6 7 9 5

RCP4.5 10 12 11

RCP8.5 10 13 13

Unprotected

% energy development

2016 2 3 3

RCP2.6 1 2 2

RCP4.5 1 2 2

RCP8.5 1 2 1

% recreation

2016 20 19 19

RCP2.6 19 18 22

RCP4.5 19 18 19

RCP8.5 17 17 18

% military

2016 20 21 21

RCP2.6 17 18 18

RCP4.5 6 10 10

RCP8.5 3 6 5

Note: Among the “high” richness areas, we present the per cent that falls within protected (i.e., fed‐
erally protected and conservation planning areas—CPA) and unprotected (i.e., renewable energy 
development sites, recreation management areas, and military) land designations in 2016 and in 
2040–2069. We forecasted occupancy and richness estimates using land use change projections 
from the United States Geological Survey and three scenarios for maximum monthly temperature 
in 2040–2069 under General Circulation Model CMIP‐5 and representative concentration path‐
ways (RCP) 2.6, 4.5, and 8.5.

TA B L E  3  Per cent cover of “high” (i.e., 
value > median) richness areas in 2016 
and in 2040–2069 in the Mojave Desert 
of California, where 2016 estimates of 
median mammal, songbird and overall 
richness were 2.13, 5.94 and 8.08, 
respectively
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future. The Bureau of Land Management designated ~1,000 km2 of 
land as open to renewable energy development (DRECP, 2016). Our 
results suggest that a minimum of 57% of this land may strike the 
balance of being suitable for renewable energy development while 
minimizing adverse impacts on biodiversity. Development in the re‐
maining area, however, could negatively influence the persistence of 
mammal and/or songbird communities and should be considered for 
protection. Renewable energy benefits the long‐term conservation 
of biodiversity by reducing climate change, but careful planning is 
required to ensure that future strongholds for biodiversity are not 
destroyed (Cameron et al., 2012; Gibson et al., 2017). While renew‐
able energy development has garnered great attention in the Mojave 
Desert, it is equally, if not more important to account for pressures 
from recreational activities as this land use encompasses roughly 11 
times the land area as energy development. For example, the Bureau 
of Land Management should consider limiting off‐highway vehicle 
(OHV) activity within the 24% of recreation management areas pro‐
jected to be of high conservation value under the RCP2.6 scenario in‐
cluding, for example, Shadow Valley, El Mirage and Castle Mountain. 
Recreational OHV use in California's desert southwest is increasing 
in popularity, likely to the detriment of flora and fauna (Cordell, Betz, 
Green, & Mou, 2005). Off‐highway vehicle activity has been found 
to directly kill native plants and animals, alter animal movements, re‐
duce reproductive and nesting success, compact soil, change water 

runoff patterns, and increase susceptibility to erosion (Barton & 
Holmes, 2007; Groom, McKinney, Ball, & Winchell, 2007; Lovich & 
Bainbridge, 1999). Given these negative impacts, restricting OHV 
use in areas projected to be of high conservation value in the future 
may be an important step towards minimizing conflicts between rec‐
reation interests and biodiversity conservation.

Despite sampling over 200 sites, the strength of our inferences 
was limited given our estimates' large 90% credible intervals, our 
single season of data and variability among the three future cli‐
mate scenarios. To convey this uncertainty, we presented spatial 
projections based on 5% mean and 95% credible interval estimates 
for 2016 and for each of the RCP scenarios. This deviates from the 
common approach used in conservation science of mapping spe‐
cies' current and future distributions, where maps tend to represent 
only mean values. We note that our analyses were also restricted 
to linear covariate relationships, apart from Julian day, and that we 
did not directly evaluate potential spatial autocorrelation among 
our sampling sites. The spatial covariates we used in our occupancy 
models likely mitigated the potential issue of spatial autocorrela‐
tion, but future studies may consider using spatial occupancy 
models and assessing covariate relationships in greater detail by in‐
cluding polynomial and interaction terms (Furnas, Landers, Callas, 
& Matthews, 2017; Johnson, Conn, Hooten, Ray, & Pond, 2013).

An additional limitation of our research is that we frame conser‐
vation value based exclusively on the richness of songbirds and me‐
dium‐ to large‐sized mammal species. While these taxonomic groups 
are important to biodiversity management, they represent only a sub‐
set of the Mojave Desert's faunal community. Managers and decision 
makers should expand beyond our species set and consider an array 
of ecological traits when determining a land parcel's conservation 
value. These include, for example, distributions of threatened and en‐
dangered species for which camera traps or ARUs may not be the ap‐
propriate sampling method (e.g., small‐bodied species or species with 
limited vocalizations), protected area status, water source availability 
(e.g., rivers, seeps, springs), existing human infrastructure or occur‐
rences of other flora and fauna (Hernandez et al., 2015; Randall et al., 
2010). A final limitation of our study is that we do not address habitat 
fragmentation. Converting portions of the Mojave Desert into human‐
altered landscapes will create a matrix of habitat ranging from suitable 
to unsuitable and from permeable to impermeable (Leu et al., 2008). 
This fragmentation of wild desert landscapes will benefit some species 
but negatively influence others and should be considered during the 
decision‐making process (Leu et al., 2008; Rodríguez‐Estrella, 2007).

Climate change and anthropogenic pressures on ecosystems are 
accelerating within the Mojave Desert, as they are globally (Gibson et 
al., 2017; LaDochy et al., 2007; Leu et al., 2008; Lovich & Bainbridge, 
1999; Seager et al., 2007). The result is declining biodiversity with rare 
species becoming rarer, geographic ranges shrinking and species be‐
coming locally extinct (Randall et al., 2010; Sauer et al., 2017). Our 
research demonstrates the capacity of visual and acoustic sensors for 
collecting site‐ and species‐specific data across large spatial scales that, 
in turn, can be used to detect biodiversity changes, to address large‐
scale ecological stressors and to inform proactive land management 

F I G U R E  4  Land designated for renewable energy development, 
recreation and military activities in the Mojave Desert of California. 
We identify unprotected lands projected to be of high value to 
mammals, songbirds, or both mammals and songbirds in 2040–2069 
(i.e., estimated mammal richness >2.13, songbird richness >5.94) 
and label land parcels that encompassed a large proportion of this 
high value habitat. We projected richness estimates using land use 
projections from United States Geological Survey and projected 
maximum monthly temperatures under General Circulation Model 
CMIP‐5 and representative concentration pathways (RCP) 4.5 (see 
Appendix S6 for maps created using RCP2.6 and RCP8.5 future 
scenarios)
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(Blumstein et al., 2011; Cameron et al., 2012; Northrup & Wittemyer, 
2013; Steenweg et al., 2017). Without this real‐time empirical data on 
vertebrate populations, managers, researchers and policymakers are 
limited in their ability to design effective and efficient conservation 
plans. We encourage practitioners to extend beyond our snapshot 
in time to elucidate trends in species occupancy and richness, and to 
track, improve and adapt policies and management actions aimed at 
addressing the loss of vertebrate populations. As monitoring initia‐
tives grow in taxonomic, spatial and temporal scope, so will our ability 
to surmount the tremendous challenge of maintaining and conserving 
biodiversity.
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