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EXECUTIVE SUMMARY 

The U.S. Coast Guard Research and Development Center (RDC) undertook a Research and Development 

(R&D) effort to identify and further develop and test systems that can detect and characterize oil plumes in 

the water column.  An earlier report summarized the results of Phase I (Concept Design) of the effort, in 

which remote sensing technology developers were solicited to configure and describe systems that were at 

least at the proof-of-concept stage of development that could potentially address this need (Fitzpatrick and 

Tebeau, 2013).  This report summarizes Phase II, in which two technologies from Phase I were chosen for 

prototype development and testing at the Ohmsett facility in New Jersey.  This effort is part of the overall 

R&D effort to advance response technology for various types of submerged oil spills.  This subtask 

addressing entrained oil is similar in scope and objective to an earlier effort to detect, identify, and 

characterize oil resting on the bottom (Hansen et al., 2009). 

Conducting the prototype tests required simulating submerged oil plume conditions in the Ohmsett facility 

test tank.  Prior to conducting these tests, Ohmsett personnel developed the capability to create oil plumes of 

particle size and distribution range that closely replicate that of an actual release scenario, including 

chemically and physically dispersed oil.  They developed an oil delivery system that could create plumes 

with two types of oil (Anadarko Crude and diesel fuel) with, and without, dispersant.  In the small tank 

where the oil delivery system was developed, the oil particles remained suspended in the water column for 

up to twenty minutes.  Unfortunately, this ability to maintain a suspended plume of oil was not repeatable to 

the same degree in the large tank. 

Replicating an actual release scenario in the large Ohmsett tank presented a significant challenge for 

additional reasons.  Unlike the ocean, a tank is a restricted environment where acoustic and optical signals 

can be reflected and distorted by the walls and bottom of the tank, as well as the equipment placed in the 

tank to conduct the tests.  The relatively shallow depth of the Ohmsett tank makes it difficult to simulate 

submerged spills.  Strong winds in the north and south directions can affect the shape of the submerged 

plume, making it difficult to assess with the sensors.  Also, important oceanic phenomena such as density 

stratification and naturally occurring particulate matter, which will affect the performance of sensors in the 

ocean, are not present in a tank environment.  The test procedures, however, included measures to account 

for and minimize the effects of these differences. 

One system tested, developed by NORBIT US Ltd., addressed the detection of hydrocarbons using the 

backscatter from acoustic signals from a Wide Band Multibeam Sonar (WBMS).  NORBIT demonstrated 

the ability to detect both types of oil, with, and without, dispersant at short distances.  Long range tests were 

also conducted; however, the high reverberation from tank boundaries, as mentioned above, rendered those 

tests inconclusive.  Regardless, this system shows promise for detecting plumes from a distance and should 

be tested in the field.  A field test would yield more beneficial results since the sensor would not be affected 

by the reflectivity of the tank walls. 

The second system, developed by WET Labs and named Wide-angle-scattering Inversion to Detect Oil in 

Water (WINDOW), uses the reflection and refraction of light by suspended oil droplets to determine the 

volume concentration of the entrained oil.  Phase II work has demonstrated the feasibility of developing a 

compact, inexpensive, multi-angle scattering instrument with an automated inversion algorithm and intuitive 

smart phone display that detects oil droplets in water.  This system shows promise for mapping plumes and 

should be tested in the field with a towed vehicle that is able to cover large areas.  
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The stated objective of the RDC project is to identify and further develop and test a system that can detect 

and characterize oil that is entrained and dispersed in the water column.  Both systems have demonstrated 

the qualitative ability to detect and/or map oil suspended in the water column with high levels of confidence 

and provide the data quickly and efficiently.  However, the quantitative evaluation of the systems’ abilities 

to characterize the oil plume was not possible at the Ohmsett facility for the reasons given above.  

Therefore, the RDC recognizes that both systems need further testing to determine their ultimate utility for 

oil spill response, and has recommended to both venders that they conduct further testing of their systems in 

the field. 

Recommendations to further develop and improve Ohmsett’s ability to conduct submerged oil tests include: 

 Determination of oil properties and particle size necessary for neutral buoyancy in calm water.   

 Further investigation on oil/nozzle combinations to generate neutrally buoyant particles. 

 Investigation into additional procedures to confirm particle size distribution and concentration 

during testing.    
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1 INTRODUCTION 

The Deepwater Horizon oil spill in the Gulf of Mexico revealed several glaring technological gaps in 

responding to oil spill disasters.  One of the challenging issues was determining the size and location of 

subsurface plumes and making timely decisions to prevent significant ecological damages.  While some 

advances were made during the Deepwater Horizon incident for tracking underwater plumes, a robust, 

quick, and efficient technology for scanning and sampling the water column to determine the extent of an oil 

plume and characterize the oil in the plume (oil type, concentration, droplet size, and physical properties) is 

needed.  The technology would need to provide data in real-time and be presented in an easily 

comprehensible format to enable a more efficient monitoring of the submerged plume and possible initiation 

of countermeasures and recovery.   

Most oil spills occur over a shorter period of time and closer to shore than the Deepwater Horizon oil spill.  

Often there is a very short timeframe for decision-making to protect the environment and critical 

infrastructure by closing water-intakes and fisheries, and booming sensitive wildlife areas and important 

commercial facilities located along the shore and on rivers.  In addition, initiating dispersant application or 

oil recovery operations is time sensitive.  Challenges in detecting oil within the water column include poor 

visibility, difficulty in tracking oil movements in fast-moving currents, and not being able to discover very 

low levels of oil or dispersed oil at all depths.  Current subsurface oil sensing technologies are tailored for 

detecting oil at a single location and must be moved along numerous transects over a period of time to 

accurately map contamination both horizontally and vertically.  Often the configuration and location of an 

oil plume will have changed by the time the data from the surveys are processed and disseminated. 

1.1 Objective 

To address this technology gap, the USCG Research and Development Center (RDC) undertook a Research 

and Development (R&D) effort to identify and further  develop and test  a system that can detect and 

characterize oil that is entrained and dispersed in the water column.  During Phase I (Concept Design) of the 

effort, remote sensing technology developers were solicited through a Broad Agency Announcement (BAA) 

to configure and describe systems that were at least at the proof-of-concept stage of development that could 

potentially address the remote sensing of oil in the water column.  Two vendors responded describing and 

proposing a total of three systems for further development in three separate reports (summarized in 

Fitzpatrick and Tebeau, 2013).   

This report summarizes the results of Phase II (Development and Testing of Detection Prototypes), which 

involves further development, refinement, and integration of the technology components in a field-

deployable configuration, and testing two prototypes in a simulated oil spill environment at Ohmsett, the 

National Oil Spill Response Research and Renewable Energy Test Facility.  This effort is a part of a larger 

effort in the R&D program to develop countermeasures against submerged oil spills.   

1.2 Background 

The Oil Pollution Act of 1990 (OPA 90) requires that Federal agencies conduct a coordinated research 

program, in cooperation with academic institutions and private industry, to improve the nation’s capability 

to detect, monitor, and conduct countermeasures, cleanup, and remediation operations to respond to 

accidental oil spills.  Responding to oil spills on the surface of the water is often a difficult task with 

mechanical recovery rates generally averaging about 20 percent or less of the oil spilled.  Responding to 
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spills of submerged oil is far more complex due to the problems associated with operating in an underwater 

environment where oil is spreading and dispersing in three dimensions, visibility is limited, deploying divers 

is dangerous, and recovery equipment must be far more robust and complex than that used on the surface.  

However, a number of recent spills involving heavier oils that sink below the surface, as well as the 

subsurface oil encountered in the Deepwater Horizon spill, underscore the need for improving technology 

for subsurface oil spill response.   

Oil in the Water Column 

The term submerged oil generally refers to any oil that is not floating on the surface.  In an oil spill 

involving submerged oil, three location scenarios are possible: 

 Overwashed:  thicker oil that is floating near the water surface but is covered by a layer of water due 

to wave action.  This can obscure the oil slick from visual monitoring and remote sensing at the 

surface. 

 Suspended:  oil globules or droplets that are neutrally buoyant at depth and move in the water 

column under the influence of currents. 

 Sunken:  oil that is negatively buoyant and rests on the bottom of the water body.  (Detection 

technologies for sunken oil were addressed in a previous USCG RDC study and reported in Hansen 

et. al, 2009). 

Spilled oil can be suspended in the water column in a number of ways, which can be considered in roughly 

three distinct scenarios.  The physical and chemical properties of oil resulting from these three scenarios can 

be very different and change with time.  Submerged oil can come from a number of sources: 

 Heavy oils from a surface spill that tend to sink under certain conditions, and is generally called 

submerged oil while it is in the water column and sunken oil when it reached the sea bottom. 

 Oil rising to the surface from a subsea release. 

 Fine droplets of oil resulting from chemical dispersants being applied to either a surface spill or 

subsea release or due to natural dispersion.  

As described by the National Academy of Sciences (1999), Michel (2006), and Fingas (2011), each of the 

above scenarios presents its own challenges depending on the location and condition of the oil.  This is 

particularly true when attempting to detect, identify, and characterize oil that is suspended in the water 

column.  Physically capturing oil samples using rope and net snares towed through the water column has 

been employed in several spills, but is labor intensive and provides only a general indication of the amount 

of oil, geographical location, and depth.  Some advances with sensors were made during the Deepwater 

Horizon incident response.  However, a system for quickly and efficiently detecting and mapping a 

submerged oil plume is still needed. 

1.3 Approach 

1.3.1 Contracting Approach 

The RDC developed specifications and released a BAA in November 2011 calling for a two-phased 

approach to developing and testing a technology to detect oil within the water column.  The scope of the 

BAA included Phase I (Concept Design) and an option for Phase II (Prototype Development and Testing).  
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The RDC received eight responses (from seven vendors) to the BAA.  It chose three ideas for Phase I proof-

of-concept description and preliminary testing.  These included: 

 NORBIT Wide Band Multibeam Sonar (WBMS) 

 Western Environmental Technology Laboratories Inc. (WET Labs) Fluorescent IN-situ Detection 

System for OIL (FINDS OIL) 

 WET Labs Wide-angle-scattering Inversion to Detect Oil in Water (WINDOW) 

Based on the Phase I reports, the RDC chose two of these technologies for Phase II prototype testing at the 

Ohmsett facility: WBMS and WINDOW. 

1.3.2 Performance/Capability Requirements 

The BAA specifications required the contractor to develop a design concept for a prototype oil detection 

system.  The BAA specified that this system be able to detect, identify, and characterize commonly spilled 

light oils (diesel), crude oils, and heavy oils, such as Bunker C oil, that may be temporarily suspended in the 

water column.  The system must also have the ability to quickly process and plot the data and relay the 

information in an easily interpretable format to allow spill responders to make timely key decisions 

regarding mitigation and countermeasures. 

The BAA further specified that the design concept demonstrate as many of the following capabilities as 

possible (listed in approximate order of importance): 

1. Provides results in near real time (less than 1 hour); 

2. Calibrates easily for different oils; 

3. Detects oil at depths up to 200 feet (ft) (~ 61 meters (m)); 

4. Works in currents or tow speeds up to 5 knots (partial test); 

5. Reports minimal false alarms (partial test); 

6. Allows smooth data flow from field to command center; 

7. Detects dispersed crude oil at levels of 0.5 parts per billion (ppb) or lower; 

8. Sweeps an area of water column 3 ft by 3 ft (0.9 m by 0.9 m); 

9. Provides digital readout or measured values and digitally logs field data; 

10. Is field rugged (partial test); 

11. Is portable; 

12. Is compatible with fresh and salt water; 

13. Determines droplet size, density (specific gravity) and/or kinematic viscosity; 

14. Adapts to various depths (deep vs. shallow); 

15. Operates from vessel in variety of conditions; 

16. Deploys quickly and easily; 

17. Measures dissolved oxygen (DO); and 

18. Grabs water samples for further laboratory testing.  

Note:  Items in italics (3, 6, 12, 14, 15, and 17) cannot be tested at Ohmsett.   
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1.4 Phase I Summary 

The systems proposed and evaluated in Phase I included one acoustic system and two optical systems.  The 

acoustic system, developed by NORBIT US Ltd., addresses the detection of hydrocarbons using the 

backscatter from acoustic signals from a Wide Band Multibeam Sonar (WBMS) at a nominal operating 

frequency of 400 kilohertz (kHz).  The ultra wide band-width (160 hertz (Hz)) allows for detection of a 

wide range of particles (e.g., air bubbles or oil droplets) in the water column.  It is relatively lightweight and 

compact and has moderate power consumption (uses 25W but can be operated in a power save mode down 

to 10W).  Its ability to detect plumes of both fresh water in a seawater environment and dispersed oil was 

tested during the proof-of-concept phase.  In both cases the system identified an acoustic anomaly 

associated with the entrained substance.  Further development was suggested to resolve false positives in 

detection by improving software to conclusively identify oil in real-time without subjective analysis of 

imagery by the operator.  The system was deemed ready for follow-on testing at the Ohmsett facility despite 

concerns regarding interference caused by acoustic reflections from the bottom and walls of the tank.  

The first optical system, developed by WET Labs and named the Fluorescent IN-situ Detection System for 

OIL (FINDS OIL), uses flow-through fluorometric measurements as a primary means of detection and 

fluorescent backscatter to identify and characterize petroleum hydrocarbons encountered by the instrument.  

The detection occurs when seawater is passed through a fluorometer and its fluorescence intensity is 

measured at various wavelengths to identify the type and concentration of petroleum hydrocarbon 

encountered.  The drawback with this approach is the limited volume sampled and the uncertainty as to how 

extensive the hydrocarbon contamination may be in the section of water column the instrument is sampling.  

With respect to testing at the Ohmsett facility, the developers expressed concern about maintaining 

consistency of oil concentration and distribution in a test plume in the Ohmsett tank, and suggested that a 

smaller test tank where replication of conditions was more achievable might be better suited for testing 

hydrocarbon detection and characterization capabilities.  They also suggested that tests of deployability and 

maneuverability were better addressed in open water testing.  As a result, this system was not chosen for 

testing at Ohmsett. 

A second optical system, also by WET Labs and named Wide-angle-scattering Inversion to Detect Oil in 

Water (WINDOW), uses the reflection and refraction of light by suspended oil droplets to determine the 

mass and volume concentration, droplet size, and density of the entrained oil.  The wide-angle light 

scattering technique is best suited to detecting and characterizing spherical particles such as air bubbles or 

oil droplets.   As the scattering signatures of oil droplets are collected, they are run through an inversion 

algorithm to determine their oil droplet size distribution, density, and viscosity.  The information on the 

extent and properties of the mapped oil plume is disseminated in the form of jpeg images through a wireless 

network.  Preliminary proof-of-concept testing in the lab showed the system is capable of detecting 

suspended oil droplets and quantifying their concentration, size distribution, and density.  There was some 

concern with respect to the system’s ability to detect and characterize oil that may be aggregated with other 

marine materials (hence becoming non-spherical in shape and exhibiting unexpected scattering signatures).  

Suggested development activities in preparation for Phase II included inversion algorithm enhancement. 
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2 PHASE II PLANNING 

The primary objective of the Phase II testing was to determine if the WBMS and WINDOW instruments 

could detect oil suspended in the water column.  In order to do this, Ohmsett personnel needed to develop 

the capability to create oil plumes within the water column that remain neutrally buoyant for an extended 

period of time.  Section 2.1 describes this effort.  Ohmsett personnel then created test plans specifically 

designed for each of the two instruments.  This effort is discussed in Section 2.2.   

2.1 Ohmsett Oil Delivery System Development 

Research and development of new technologies requires not only the development of the technology itself, 

but also development of appropriate test apparatus and methods.  Since oil in the water column research is 

in its infancy, the initial phase of the Ohmsett testing was dedicated to performing experiments for choosing 

appropriate oils, developing methods to create neutrally buoyant oil plumes, and quantifying their droplet 

sizes and distributions.  The oil delivery system design process and results are summarized here.  More 

details can be found in APPENDIX A, including the oil droplet sizes and distributions corresponding to a 

range of nozzle orifices, pressures, oil types, and times of release. 

The requirement for the oil delivery system was to create oil plumes of particle size and distribution range 

that closely replicate that of an actual release scenario, including chemically and physically dispersed oil.  

Ohmsett personnel worked with the RDC and the Bureau of Safety and Environmental Enforcement (BSEE) 

to define the test parameters and fully develop the oil delivery system.   

Initial design of the oil delivery system incorporated baseline parameters used during earlier subsea 

dispersant research at Ohmsett.  It also included engineering estimates to identify the ranges of operational 

pressures and nozzle orifice diameters to create minute oil droplets underwater.  According to the literature 

(Lewis, 2004), the nominal diameter necessary for oil droplets to remain neutrally buoyant under moderate 

sea conditions is approximately 70 microns (μm), depending on physical parameters such as oil and water 

densities, water salinity, and temperature.   

Ohmsett personnel quantified oil droplet size distributions for various pressures, nozzle sizes, and oils.  Oil 

droplet size, distribution and concentration measurements were obtained using a Sequoia LISST-100X 

particle size analyzer.  Figure 1 shows the small scale test tank used for these experiments.  The tank 

measured 4’x 4’x 8’ with a 1000 gallon capacity and was filled with fresh salt water from the Ohmsett main 

test basin for each experiment.  Based on these experiments, researchers concluded that using the smallest 

available orifice nozzle (0.016 inch) and highest available pressure (140-150 pounds per square inch (psi) 

range) provided the most desirable droplet size distribution.  An example plume is shown in Figure 2. 

Preliminary testing also investigated: 

 Resulting plume characteristics with two consistent and available oil types for subsequent testing in 

their natural and dispersant treated forms: diesel and Anadarko Crude. 

 The feasibility of successfully releasing usable oil plumes with the chosen oil types. 

 The level of difficulty in creating, tracking, and monitoring reproducible oil plumes. 

 Resulting oil droplet size distributions and concentrations for a matrix of controlled variables 

including nozzle type/size, nozzle orientation, oil discharge pressures, time of discharge, and 

dispersant dosing as appropriate. 

 Development of the final oil spill/plume delivery system and use of multiple nozzles (see Figure 3). 
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Figure 1.  Oil delivery system test tank. 

 

Figure 2.  Example plume in small test tank. 

 

Figure 3.  Oil dispensing system. 
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2.2 Test Planning 

Ohmsett/Government personnel developed a draft test plan and provided it to the vendors to review.  The 

plan described the system and methodology for the release of oil plumes into the test basin, incorporating 

the results of the development phase described above.  In addition to expected oil plume droplet size 

distribution, the proposed test matrices included test parameters such as sensor distance from plume, 

advancing speeds, surface conditions, equipment locations, and oil types. 

Ohmsett personnel contacted each equipment vendor to discuss the functionality, mounting, and support 

needed for system testing.  Plans were developed based on specific vendor requirements related to plume 

parameters and locations.  Each vendor’s test set-up was different due to the difference in detection 

approach: acoustic vs. optical.  The WBMS (acoustic) system collects data remotely from outside the plume 

while the WINDOW (optical) system collects data from within an oil plume.  See APPENDIX B for more 

details about the test plans and procedures. 

2.2.1 Test Setup 

Figure 3 above showed the oil dispensing system developed for these tests.  Test oil is pressurized using an 

OMNI PULSAFEEDER DC4D metering pump, with a Blacoh CTS 1020B-5 pulsation damping device 

used to smooth the pressure pulses.  The pressurized oil flows through 0.25 inch (6.4 millimeter (mm)) 

reinforced rubber hose.  A Grifco BPM 050 P back pressure valve is used to regulate line pressure upstream 

of the spray nozzles, forcing oil through Spraying Systems Co. nozzles.  The spray nozzles are attached to 

an electrically actuated solenoid valve.  When a remotely operated switch energizes the valve, oil flows 

through the nozzles creating a submerged oil plume in the test tank (Figure 4).  Based on preliminary testing 

at Ohmsett using diesel and Anadarko Crude, three (3) Spraying Systems Co. 1/4 NN-0.6 (0.016 inch 

orifice) nozzles were recommended for this test series, with the metering pump adjusted to provide an oil 

pressure of 140-150 psi (965-1034 kilopascal (kPa)).  During actual tests, varying configurations of nozzle 

quantities and sizes were explored to create plumes with varying droplet size distributions and 

concentrations. 

 

Figure 4.  Creating an oil plume in the large tank. 



  

Detection of Oil in Water Column, Final Report: Detection Prototype Tests 
 

8 
UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public 

July 2014 

 

During the tests, the pumping system was staged on the main bridge.  A quick-release vertical shaft was 

used to support the nozzles, allowing the nozzles to be set at virtually any depth in the tank.  During 

preliminary testing, the submerged oil plume slowly rose despite the small (< 70 μm) droplet size.  Further 

testing in Ohmsett’s main test tank confirmed the deeper the nozzles were set, the longer it took for the 

plume to rise to the surface.  Thus the Ohmsett staff recommended that the nozzles be set near the bottom of 

the tank, approximately 7.3 ft (2.24 m) below the water surface, to maximize the amount of time the plume 

would be suspended in the water column.   

The nozzle support shaft was mounted to a trolley that rides on a rail on the north side of the main bridge 

(see Figure 5).  As the main bridge is able to move north or south, and the trolley can move east or west, the 

nozzles could be readily positioned at any position in the tank.   

         

Figure 5.  Trolley on Ohmsett main bridge. 

2.2.2 Test Procedure 

As mentioned earlier, the two prototype detection systems selected for testing represent two distinct 

detection technologies: 

 Acoustics (sonar) (i.e., NORBIT WBMS), which collects data at various distances from the plume. 

 Scattering of light (i.e., WET Labs WINDOW), which collects data while transiting through the 

plume. 

The basic test plan called for each contractor to collect data in relatively clean tank water (background data), 

followed by Ohmsett’s staff creating a suspended oil plume, and the contractor acquiring additional data to 

determine if their equipment can detect the plume.  As the water in the test basin is relatively quiescent 

compared to the ocean, small oil droplets created in the test basin tend to rise faster than they would in a 

more turbulent environment.  Initially, the test procedure was similar for both contractors, but the time the 

oil remained suspended in the water column, on the order of minutes, required adjusting the test method so 

that each contractor would have sufficient time to acquire data.  Details of the planned and actual test 

procedures can be found in APPENDIX B. 
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The tests conducted in Ohmsett’s main test basin used two different oils, diesel and Anadarko Crude, to 

create oil plumes suspended in the water column.  Tests were also conducted to determine if the instruments 

could detect diesel and Anadarko Crude plumes that were pretreated with COREXIT 9500 dispersant.  The 

treated oil plumes provided a higher concentration of smaller droplet sizes below 70 μm. Ohmsett personnel 

used a Sequoia Laser In Situ Scattering and Transmissometry (LISST) 100X off-the-shelf particle size 

analyzer to measure the experimental plume characteristics.  The LISST measures the particle concentration 

within the water that passes through its optical chamber; thereby providing results from a relatively small 

point location (see Figure 6– from the LISST User’s Manual).  This instrument was also used during the 

preliminary droplet size analysis and the development of the oil delivery system.  However, some studies 

show the LISST may be unreliable for measuring concentrations under 20 parts per million (ppm) or over 

500 ppm (Panetta et al., 2013).  Some of the plumes apparently had concentrations well outside these levels.   

 

Figure 6.  Diagram of LISST sensor. 

3 PHASE II TESTING 

3.1 NORBIT Wide Band Multibeam Acoustic Sensor 

Acoustic detection methods rely on the different acoustic properties of oil compared to those of water because 

of the different densities and hence, sound speeds of the materials.  NORBIT utilizes the Wide Band 

Multibeam Sonar (WBMS) as an acoustic sensor to provide three-dimensional (3D) topology of the oil plume.   

3.1.1 System Description/Overview 

The WBMS platform incorporates modern components and extensively uses Field-Programmable Gate 

Array (FPGA) as well as Digital Signal Processor (DSP) technology to maximize the flexibility of the 

system.  The WBMS is specifically designed as an ultra wide band (160 kHz band width) system operating 

at a nominal frequency of 400 kHz.  It has a circular array topography, ensuring more uniform beam 

opening angles across the coverage area. The fundamental acoustic resolution is less than 1 degree.  It is a 

very compact unit, with moderate power consumption.  The sonar has integrated processing capabilities so 

that water column scattering profiles can be generated in the sonar head itself.  The system is designed to be 

readily deployable on a towed vehicle, remotely operated vehicle (ROV), or Autonomous Underwater 

Vehicle (AUV). 
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3.1.2 Components 

The WBMS platform has a very simple design, with the sonar transducers and processors integrated in a 

single unit (see Figure 7).  This makes it easy to adapt the sonar to various platforms, as some signal 

processing can be done in the sonar itself, although access to time series data storage is required.  Access to 

time series data can be accomplished either by storage of the data locally in the system or in the platform 

carrying the sonar or, if possible, topside on a computer. 

 

Figure 7.  WBMS sonar. 

3.1.3 Summary of Phase I Efforts 

During Phase I, NORBIT performed two main tests, one in Norway and one in New Jersey (Ohmsett 

facility).  At the test in Norway, fresh water was fed into seawater through a hose and the sonar monitored 

the fresh water as it mixed into the sea water.  The test demonstrated the sonar's capabilities to differentiate 

between two fluids with relatively small impedance differences associated with the different densities. 

The test at the Ohmsett facility was conducted with an oil company testing the effects of dispersant on oil.  

The WBMS sonar was mounted in the middle of the water column and was able to detect the oil plumes as 

they were broken into smaller particles as a result of the dispersants being applied to the oil on the surface.   

The main problem with testing any type of sonar system is to find a tank that reduces or eliminates the 

reverberation of sound off of the sides and bottom that impact the tests.  Since only relatively small tanks 

are capable of being used with oil, the ranges between the sonar and targets is usually relatively small, on 

the order of 3-6 feet (1-2 m).  The results of any laboratory measurements may not be directly applied to 

further distances using theory alone and additional testing would be useful during an actual spill. 

3.1.4 Phase II Test Planning 

The purpose of the Phase II test was to determine the ability of the WBMS to detect oil suspended in the 

water column, including boundaries of the detection capabilities from a concentration as well as range 

perspective.  An optimum setup for the WBMS would be open calm sea, or in a very big test tank, where 

the test would not be limited by walls/bottom.  A depth of about 70 ft (21 m) would be required to be able to 
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perform the test without surface reflections.  That would allow other interferences to be eliminated and pure 

data on oil obtained.  This set-up was obviously not possible at Ohmsett but was approximated as closely as 

possible.  Figure 8 provides a sketch of the ideal suggested test-setup for Phase II testing at the Ohmsett 

facility as proposed by NORBIT (Eriksen, et al., 2014). 

 

Figure 8.  Proposed test set-up for WBMS Phase II. 

NORBIT recommended the tests include the following steps (Eriksen, 2013): 

 Plume is released mid-water column.  NORBIT personnel will use the nozzle to align sonar during 

the plume creation phase. 

 Nozzle and equipment used for the release should be removed from the tank immediately after oil 

release in order to avoid any acoustic reflections from the equipment.   

 Sonar will then record data as the plume is suspended and rises to the surface, utilizing a rotator to 

keep the sonar pointing in the right direction as well as creating the 3D raw dataset.  The rotator can 

be controlled from the sonar survey computer or directed by the user.  The raw data files will contain 

the angular information (rotator position). 

 The bridge can be moved during testing in order to measure different distances to the plume for the 

same release.  Suggested distances are approximately 6.5 ft, 16.5 ft, 33 ft, 66 ft, and 98 ft (2 m, 5 m, 

10 m, 20 m, and 30 m).  

3.1.5 Test Overview 

NORBIT utilized the WBMS as an acoustic sensor to provide both two-dimensional (2D) and 3D topology 

of the oil plume (see Figure 9).  The sonars were mounted on a rotator to enable sweeping across the oil plume. 

The rotator was fixed to a pole mounted on the bridge.  The pole was long enough to move vertically from 

water surface to just above tank bottom, making it possible to scan the full water column.  The sonar was 

connected to a survey computer and powered from the bridge. 
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Figure 9.  WBMS system with two sonars (left) and anechoic mat (right). 

The sonars and nozzles for oil injection were mounted on the same side of the main bridge. Figure  10 shows the 

typical WBMS set-up with the underwater camera stalk on the left, the spray manifold stalk on the trolley in the 

center, and the WBMS sensor mounted to the main bridge tow point on the right. 

 

Figure 10.  Typical WBMS set-up. 

The tests were conducted between 9 and 13 December 2013.  Test variables included: 

 Type of oil – two types of oil were tested:  diesel and Anadarko Crude, both with and without the 

dispersant COREXIT 9500 with a dispersant to oil ratio (DOR) of 1:20.   

 Nozzle – two types of nozzles were used (0.016 and 0.020 inch), known to produce the same size of 

oil droplets with slightly different concentration.  They were used mostly in triplet configuration. 

 Distance between sonar and nozzles (range: 3 to ~ 38 ft (1 to ~ 11.5 m)). 

 Depth of sonar – the nominal depths used were 1 ft, 2 ft, and 7 ft (~ 0.3 m, 0.6 m, and 2.1 m) below 

the waterline. 

 Orientation of sonar – the horizontal WMBS was used most of the time.  For shorter distances, e.g. 

Test #60, the vertical forward-looking sonar (FLS) was used for visualization purposes. 

 Height/depth of nozzles (1 or 2 ft (0.3 or 0.6 m)) from the bottom. 

 Orientation of nozzles – facing towards the sonar or at right angles to it. 

 Duration of oil release – originally 3 minutes, later changed to 30 seconds. 

WBMS 

Spray 

manifold 

Camera 
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Figure 11 shows an example of a 30-second test plume.  Notice the top of the plume has already reached the 

surface at this point in time where the oil injection is about to be stopped and the injection hardware 

removed.  The positions of the sonar and nozzles were changed several times so the location of the plume 

was in a quieter spot in the tank.  For example, Figure 12 shows a quiet area between the sonar (at bottom) 

and the return of the sonar reflections from the tank bottom, tank sides or water surface. 

 

Figure 11.  Example 30-sec test plume. 

 

Figure 12.  Example of automatic detection results. 

3.1.6 Test Results 

The WBMS test results are summarized in Table 1.  There are two types of detection reported from WBMS 

testing:  automatic detection and supervised (or manual) detection.   NORBIT put significant effort into 

developing algorithms for automatic detection.   
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Table 1.  Summary of WBMS results. 

Oil type, nozzle configuration  
(#xsize (inch)) and spill duration   

 Test no.   
Spill 

range 
(m) 

 Automatic 
detection duration 

[sec]  
N/A – not performed  
N/D – no Detection   

 Supervised 
detection duration 

after spill stops [sec]  
N/A – not performed  
N/D – no Detection   

Diesel, 3x0.016, 3 min   

 3    2    60    120   

 4, 5, 6    4    N/A    300   

 3b  5    N/A    N/D   

Diesel, 3x0.020, 3 min   

 14    1    60    360   

 13    2.5    20    60   

 9    5    N/D    5   

 8    7    N/D    1   

Diesel, 3x0.020, 30 sec   

 51    1    N/A    70   

 49    5    N/A    60   

 50    11    N/A    30   

 Anadarko, 3x0.016, 3 min   
 20    3    30    30   

 21    6    N/D    N/D   

Diesel + dispersant, 3x0.016, 3 min   

 23, 24, 32    2    N/A    120   

 26, 27    6    N/A    60   

 30    7.5    N/A    60   

 28    8    N/D    N/D   

Diesel + dispersant, 3x0.020, 30 sec   

 57    1    N/A    65   

 58    6    N/A    300   

 61    11    N/A    180   

Anadarko + dispersant, x0.020, 3 min    37, 38    2    N/A    20   

Anadarko + dispersant, x0.020, 30 sec, 
nozzle change   

 41    2    N/A    180   

 42    5    N/A    40   

 43    7    N/A    10   

 44    9    N/A    20   

 47    12    N/A    60   

N/A – automatic detection not performed in the real time. The data is recorded so further analysis is possible if 
needed.  

N/D – no automatic detection due to high reverberation levels during the tests 

 

A modified approach was used in order to make the detections less prone to “random” movements.  The 

general system utilizes an adaptive background mixture model for real-time tracking to detect subtle 

movements in images, which can further be used in high level analysis on anomalies in sub-sea scans.  The 

output of such a system is a measure on whether oil is present in the scans and issues an alarm if that is the 

case.  Figure 12 above shows an example of automatic detection results from Test #17 (Ohmsett test #229) 

with pure diesel.  The red marks indicate oil. 
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NORBIT attempted to define a minimum concentration level for the detections listed in Table 1 but it was 

based on data collected for a couple of runs of the LISST after the sonar equipment had been removed from 

the tank.  The inconsistency of the shape of the plumes due to the specific environmental conditions does 

not permit the comparison of these data.  Analysis of these data combined with Panetta et al. (2013) may 

provide some correlation in the future. 

The result for a single scan does not give enough information about whether an oil plume is present within it 

or not.  However, results from consecutive scans can give information on whether a spill has occurred.  The 

second stage of detections is the off-line automatic detection, where data acquired in the real-time automatic 

detection mode is reanalyzed to better define the extent of the plume and focus in on the area of interest.  

This stage of detection is used to feed successive information to a classification algorithm, which uses other 

information like scattering strength, morphology, and statistical distribution to produce a 3D morphology of 

the plume.  Manual detection involves the operator viewing the sonar image on a computer screen (see 

Figure 13).  It is possible the sonar may be detecting part of the plume that cannot be seen by a naked eye.  

So when the sonar operators were looking back and forth between the video camera output and the sonar 

data, the results may not always match. 

 

Figure 13.  WBMS computer user interface. 

Figure 14 shows underwater snapshots from test #32 (Ohmsett test #233) – diesel with dispersant.  The 

sonar was set at a range of 2 m from the plume, scanning vertically.  The sonar has an anechoic mat attached 

to reduce acoustic reverberation and reduce the level of the bottom-bounced acoustic returns.  Figure 15 

shows the manual detection results before (left) and after (right) the plume was released.  Figure 16 shows 

the 3D visualization of the plume.  
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Figure 14.  Release of diesel with dispersant, sonar and nozzles 2 ft from bottom. 

   

Figure 15.  WBMS test #32/233 before (left) and after (right) plume was discharged. 
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Figure 16.  WBMS test #32/233 3D visualization. 

NORBIT dedicated one test (#55/255) to calibrate the system to output absolute sound level in order to 

estimate detection range.  They concluded the system can detect everything above the volume scattering 

strength of the water, and the margin above which the plume can be detected will depend on the additional 

parameters for the detection algorithm, like the morphology of the plume.  As with any detection algorithm, 

the more information that is available for it, the better job it can do. 

As mentioned at the end of Phase I, testing acoustical devices in tanks not setup for this greatly complicates  

data collection.  Most of the time for this test was spent trying to place the nozzles in a good position with 

respect to the sonar so that the plume’s location was in a quieter area.  NORBIT stated that extrapolation of 

results on the short range data shows that relatively large plumes (10-13 ft (3-4 m) diameter) can be detected 

up to 300 ft (~ 90 m) range from the sonar.  This range is however limited when the plume is smaller or 

strong acoustic scatterers are in close proximity to the plume. 

3.1.7 Further Development 

NORBIT reports conducting several meetings with industry representatives to discuss implementation of 

this technology on various platforms.  It has been determined  that the best platform  for implementation 

would be an AUV or ROV, or alternatively an active movable towed platform, providing the ability to move 

the sonar in the water column, and thereby getting closer to the plumes. 

3.1.7.1 Needs for Full-scale Development 

Based on the tests performed some future work is recommended.  The most important improvement seems 

to be a steerable projector which will avoid the use of a mechanical rotator.  There are several advantages of 

using the electronic steerable projector rather than the mechanical steering.  The obvious advantage is the 

ability to sweep the space in front of the sonar in just seconds.  Also the installation will be lighter and more 

robust.  Further work on automated detection of plumes utilizing 3D information is recommended as well.  
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3.1.7.2 Activities Needed to Complete Design 

NORBIT reports the steerable projector development is nearly finished.  From the Phase II tests it seems the 

steerable projector will provide significant enhancement for the detection process and the robustness of the 

detection system.  It will allow the system to build the 3D morphology of the plume and improve the 

probability of detection.  It will also lower the probability of false alarm by examining the morphology. 

NORBIT also reports the detection algorithm is under advance development.  The improvements are made 

continuously as more and more data are available to the NORBIT team.  The detection algorithm is 

developed incorporating several layers of intelligence.  When finished, it may be possible to integrate the 

algorithm into the sonar head similarly to the bottom detection algorithm used in the bathymetry version of 

this system. 

3.2 WET Labs WINDOW 

3.2.1 System Description/Overview 

The WET Labs WINDOW design is a compact, multi-angle scattering instrument that measures refracted 

and reflected light off suspended particles to determine the droplet size distribution based on the distinct 

scattering angles.  The system is designed to use an automated inversion algorithm to quantify the size 

distribution and abundance of oil droplets in water and determine the refractive index of the oil to derive 

density and viscosity.  

Particles that are most readily detected and quantified with this technique are those that are nearly spherical, 

namely bubbles and oil droplets, because such particles produce spherical lensing effects characterized by 

distinct and unique constructive and deconstructive interference patterns in angular scattering.  When 

superimposed on smooth, regularly shaped scattering functions from naturally occurring background 

particle populations, these unique scattering functions can be readily discriminated and then used to derive 

particle size, plume dimensions, and density of the suspended oil droplets.  

3.2.2 Components 

The sensing system consists of an in-water sensing package and a surface deck unit with laptop PC and 

integrated Global Positioning System (GPS).  The system can be powered by 110 volts alternating current 

(VAC) power, or a deep cycle 12 volts direct current (VDC) battery can be used if VAC power is not 

available.  

Data in the form of mapped oil properties are transmitted wirelessly through a cellular network PC and are 

thus made available to all interested parties with cellular access.  The sensor system is deployable by hand 

or from a compact, portable hoist system, or on a towed platform, allowing profiling from small boats. 

The sensor suite for the oil detection system (Figure 17) consists of:  

 Three ECO-VSF (volume scattering function) sensors, each measuring optical scattering at three 

angles (nine total scattering measurements with angular resolution of 60 to 160 degrees in 10 degree 

increments); each sensor head has an automated rotating wiper to keep the optical windows clean.  

 SeaBird Electronics SBE 49 conductivity, depth, and temperature (CTD) sensor.  

 SeaBird Electronics SBE 43 membrane dissolved oxygen (DO) sensor. 
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The ECO-VSF sensors are soda can sized and employ inexpensive light-emitting diode (LED) sources and 

silicon diode detectors.  The sensing heads, including optics and electronics, are completely potted with 

epoxy, so that the sensors are extremely robust to demanding field use. 

 

Figure 17.  WINDOW sensor suite. 

The data handler (WET Labs DH4) is in the middle of the sensors and the power conversion module is 

located in the center above the sensors and data processor, with cable attached.  The cage is 27 in X 12 in X 

8 in (0.68 m X 0.3 m X 0.2 m). 

The sampling rate for all sensors is 1 Hz.  Accessory ports are available for additional sensors such as oil-in-

water fluorometers.  A robust deck controller unit in a waterproof case connects to the sensor package via a 

sea cable providing data and power conductors.  Isolated battery power and data acquisition with no sea 

cable are also an option where the data are downloaded after acquisition. 

The deck unit has an integrated GPS unit or can receive ship GPS input.  The deck unit laptop PC (see 

Figure 18) provides the operator software interface, providing a digital, real-time readout. 

3.2.3 Summary of Phase I Efforts 

The primary objective of Phase I lab testing was to quantify the accuracy and sensitivity of the system for 

detecting droplets of different oils in natural seawater.  Three sets of experiments were carried out with 

droplets suspended in purified salt water, so that the droplets themselves were the primary scattering 

component.  Oils of low, medium, and high refractive index were separately, vigorously mixed in solution 

for each experiment.  Following these experiments, another set of experiments was carried out using the 

same dispersed oils, but with a background of purified salt water containing a broad size distribution of 

suspended sediments collected from Narragansett Bay. 

ECO-VSF 

CTD 

DO 

DH4 
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Figure 18.  WINDOW deck unit. 

Through Phase I testing, the method and inversion algorithm proved capable of quantifying droplet size 

distributions and density with reasonable accuracy (within several percent), verified with ancillary 

measurements from holographic imaging.  Phase I testing included the natural condition of the droplets 

suspended within a complex mixture of naturally occurring aquatic particles with broad size range. 

Further development activities in preparation for Phase II would focus on inversion algorithm enhancement.  

There was also some concern with respect to the system’s ability to detect and characterize oil that may be 

aggregated with other marine materials (hence becoming non-spherical in shape and exhibiting unexpected 

scattering signatures). 

3.2.4 Phase II Test Planning 

Before the Phase II test, there were several discussions between WET Labs and Government personnel to 

design the test experiments.  Several simulations of oil dispersal were carried out by WET Labs to aid these 

discussions, results of which are presented in their Prototype Testing Recommendations (Twardoswki, 

2013).  Recommended validation methods are also discussed in that document.   

Based on the simulations, the ECO-VSF sensors were re-tuned to decrease the sensitivity for detecting very 

low concentrations of oil.  This is expected to avoid saturation (i.e., allow detection) for very high 

concentrations, and help to avoid background interference from residual suspended oil from previous tests. 

3.2.5 Test Overview 

The WINDOW system was tested at Ohmsett between 2 and 5 December, 2013.  In general, there were four 

different test scenarios: 

 Stationary – the instrument package was above the oil spray manifold and positioned to sample the 

plumes as they rose, expanded, and dissipated. 
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 Transect – the defined plume was created then the main bridge and instrumentation package 

traveled north and south repeatedly through the plume.  The instruments started in clean water (out 

of the plume), traveled through the plume until they reached clean water again then changed 

direction.  The process was repeated until the plume concentration diminished (the instruments 

reached their lower detection limits). 

 Mapping – a 30 ft (~ 9.2 m) long plume was created across the test basin in the east-to-west 

direction.  While continually dispensing oil, the trolley nozzle manifold was guided at a constant rate 

along the trolley rail.  Once the plume was created, the WINDOW system intersected the plume near 

the east end of the plume traveling north.  Once in clean water, the instruments were jogged toward 

the west 5 ft (~ 1.5 m) then traveled south intersecting the plume.  The instruments were guided back 

and forth along the bridge so that they repeatedly encountered the plume.  A minimum of five 

transects were performed (then repeated). 

 High Speed Tow – the instruments were towed at speeds up to 3.5 knots (kts) while passing through 

a plume.  

For most of the tests, the top of the WINDOW sensor package was suspended about 1.5 ft (0.46 m) below 

the air-water interface using the bridge platform crane, stabilized with guy wires.  The Ohmsett LISST 

device was attached horizontally to the side of the WET Labs package (Figure 19).   

 

Figure 19.  LISST attached to WINDOW sensor cage. 

Oil was injected under pressure using the custom Ohmsett oil delivery system with nozzles positioned about 

8 inches (~ 0.2 m) from the bottom of the tank.  After a plume of oil was injected, the bridge platform was 

held stationary or moved back and forth through the plume depending on the requirements of the 

experiment.  Figure 20 shows the typical experimental set-up.  
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Figure 20.  Example experimental set-up for WINDOW. 

Prior to each oil release, a background measurement was taken at the starting point to later be subtracted 

from the sensor measurement to calculate the detected concentration of oil.  To begin each experiment, oil 

was injected by Ohmsett’s oil delivery system.  For most experiments, the oil release was at a single 

stationary point, approximately 25 ft (7.6 m) from the west tank wall.  For two experiments (#113 and 

#116), the oil was released as a horizontal plume approximately 30 ft (9.1 m) long, beginning approximately 

25 ft from the west tank wall, then moving along the bridge towards the east tank wall.  At the conclusion of 

the release, the bridge moved in a north-south direction at 0.20 kts intersecting the plume until the 

WINDOW system and LISST device reached their lower detection limits.  The bridge was then reversed, re-

transitting the entire plume through the original starting point until the sensors once again reached their 

lower detection limit.  These transects were continued until the plume had dispersed beyond detection limits 

(no oil detected).   

During some of the experiments (#108, #109, #110, #111, and #114), the sensor package was raised 

approximately 6 inches (0.15 m) to remain within the oil plume as observed visually from the surface.  For 

the last three of these experiments, the sensor package was moved laterally about 3.3 ft (1 m) after the first 

pass, so that the “hole” in the oil plume created by drawing in clean water behind the system with the first 

pass was not resampled.  Additionally, one experiment (#117) began with a stationary vertical profile of the 

entire tank water column, followed by north- south (N-S) transects at an approximate depth of 2 ft (0.6 m).  

Table 2 shows the WINDOW test matrix. 
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Table 2.  WINDOW test matrix. 

OIL TYPE 
(DATE) 

TIME  TEST # 
NOZZLE CONFIG 
QTY/SIZE (inch) 

VOLUME OF 
OIL 

DISPENSED 
(gallon(s)) 

DISPENSE 
RATE 

(gallons per 
hour (gph)) 

OIL SPRAY 
DURATION 

(min) 
SCENARIO 

Diesel 
(12/2/2013) 

11:22 am 101 3/0.016 0.168 3.35 3.0 Stationary 

1:22 pm 102 3/0.016 0.117 2.33 3.0 Stationary:  (1 of 3 nozzles clogged) 

1:56 pm 103 3/0.016 0.185 3.7 3.0 Transect 

2:23 pm 104 3/0.016 0.201 4.02 3.0 Transect 

2:50 pm 105 3/0.016 0.168 3.35 3.0 Transect 

Anadarko 
(12/3/2013) 

9:59 am 106 3/0.016 0.168 3.35 3.0 Transect 

10:33 am 107 3/0.016 N/A N/A N/A Aborted – clogged nozzles 

11:05 am 108 3/0.016 0.201 4.02 3.0 Transect 

11:25 am 109 3/0.016 0.201 4.02 3.0 Transect 

Anadarko 
w/dispersant 
(12/3 & 12/4) 

1:35 pm 110 3/0.016 0.201 4.02 3.0 Transect 

2:20 pm 111 3/0.016 0.168 3.35 3.0 Transect 

10:17 am 113 5/0.16 0.436 4.36 6.0 Mapping 

Diesel 
w/dispersant 
(12/4 & 12/5) 

12:46 pm 114 5/0.16 0.201 4.02 3.0 Transect 

1:23 pm 115 5/0.16 0.134 2.68 3.0 Transect 

2:11 pm 116 5/0.16 0.369 3.4 6.5 Transect 

9:31 am 117 
2/0.016, 2/0.020, 
1/0.028, 1/0.042 

0.771 24.99 1.9 Transects  

11:25 am 118 N/A N/A N/A N/A High speed tow 

11:35 am 119 N/A N/A N/A N/A High speed tow 

11:50 am 120 
2/0.016, 2/0.020, 
1/0.028, 1/0.042 

1.005 24.12 2.5 High speed tow 
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3.2.6 Test Results 

As described earlier, two types of oils were tested, with and without dispersant:  diesel and Anadarko Crude.  

Different nozzle orifices were used to generate oil droplets with varying size distributions.  Concurrent 

measurements of oil droplet size distributions with the Sequoia LISST were made by Ohmsett personnel, 

and WET Labs personnel collected discrete grab samples for particle size analysis with a bench top digital 

holographic microscope set up in the cabin on the moving bridge over the tank.  However, comparisons of 

the oil droplet sizes as measured by the different instruments were inconclusive. 

The following plots show example WINDOW results.  These plots show the measured oil concentration as a 

function of time as the experiment progressed.  For stationary experiments (e.g., Figure 21), these graphs 

show the concentration of the initial oil plume and rapid dispersion as the plume drifted by the sensor and 

away from the release point.  For transect experiments (e.g., Figure 22), the first peak is the initial release 

point, followed by repeated transects through the dispersing plume.  Direction reversals occurred during the 

low concentration periods between larger peaks.  

 

Figure 21.  Example oil concentration plot for stationary experiments. 

 

Figure 22.  Example oil concentration plot for transect experiments. 
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One experiment (#117) consisted of a vertical profile of the water column, followed by N-S transects.  The 

sensor package was located at the bottom of the tank during the initial oil release (Figure 23), then raised to 

the surface, lowered to the bottom, and raised to the surface again.  Standard N-S transects were then 

repeated until a low oil concentration was detected.  This was done to determine the vertical plume 

resolution capabilities.  Some evidence of decreasing oil concentration with decreasing depth was seen 

(Figure 24), but the value of these results is limited by the small spatial and temporal range of the sample.  

This test could have yielded more significant results if there was a greater opportunity for the oil plume to 

achieve relative stability after the initial release; and if vertical profiles were taken at multiple locations 

within the plume, showing the oil concentration over a larger section of the plume. 

 

Figure 23.  Photo showing instrument at bottom of tank during oil release. 

 

Figure 24.  Oil concentration plot for Test #117 – vertical profile. 
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Comparing results for releases of oil with and without dispersant showed that, as expected, releases with 

dispersant remained suspended in the water column in higher concentrations for longer time periods than 

releases with pure oil.  For a release of Anadarko Crude without dispersant, the initial peak was very high 

(Figure 25).  Subsequent transects showed sequentially lower concentrations with a broadening peak, 

indicating rapid dispersion away from the initial release point, including rapid vertical migration towards the 

surface due to buoyancy.  Comparing to a similar release of Anadarko mixed with chemical dispersant, after 

the initial peak subsided, further transects showed slower rates of concentration declines as the oil droplets 

stabilized with dispersant remaining in the water column (Figure 26).  Persistence in the water column is 

associated with decreased buoyancy from the dispersant coating, but also results from a smaller average size 

of the coated oil droplets. 

 

Figure 25.  Pure Anadarko Crude. 

 

Figure 26.  Anadarko Crude with dispersant. 
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3.2.6.1 Mapping 

Test #113 involved mapping the plume.  As described earlier, a 30-ft long plume was created across the test 

basin in the east-to-west direction.  While continually dispensing, the trolley nozzle manifold was guided at 

a constant rate along the trolley rail.  Once the plume was created, the WINDOW instruments intersected 

the plume near the east end of the plume traveling north.  Once in clean water, the instruments were jogged 

toward the west 5 ft. then traveled south intersecting the plume.   A total of five N-S transects were 

performed (then repeated).  Figure 27 shows a conceptual representation of what the transects looked like in 

relation to the plume.  Figure 28 shows the resulting oil concentration plot.  And attempt was made to test a 

mapping function at Ohmsett but proved difficult due to “GPS wander.”  This process should be tested using 

a larger area in the field.  It could conceivably be used in the field to map the areal extent of an oil plume.   

 

Figure 27.  Test #113 conceptual mapping transects. 

 

Figure 28.  Test #113 oil concentration as a function of time. 



  

Detection of Oil in Water Column, Final Report: Detection Prototype Tests 
 

28 
UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public 

July 2014 

 

3.2.7 Further Development 

The next step is to conduct a field test in a towed configuration.  The design of the case housing the sensors 

can be improved to allow for faster tow speeds.  WET Labs envisions a commercially-transitioned sensor 

system with a single integrated unit making the measurements at all the required angles, instead of three 

individual sensors interfaced via cables to a data handling device. 

4 SUMMARY OF PHASE II TEST RESULTS 

4.1 General 

Ohmsett developed the capability to release submerged oil plumes within the water column using an oil 

delivery system.  The intention was for the plumes to remain neutrally buoyant for an extended period of 

time.  Preliminary test runs with different types of oil led to the conclusions that straight Anadarko Crude 

and diesel (no dispersant added to each) atomized the best due to their low viscosity nature.  During the 

preliminary test runs in the small tank, the duration of spraying was three minutes after which the water/oil 

was mixed for three minutes to equally distribute the dispersed oil within the water column.  Under these 

conditions, the droplet concentration from the release of Anadarko Crude was fairly stable for up to twenty 

minutes (Figure 29).  The expectation was that this would translate to the large tank as well. 

 

Figure 29.  Anadarko Crude particle size distribution vs. concentration in small tank using the LISST 

instrument. 

Unfortunately, this was not the case.  The reality was that for a 3-minute release, the majority of the straight 

Anadarko Crude and diesel plumes began reaching the water surface before the test could commence.  

Unlike the preliminary test runs that took place in the small tank, it was not possible to stir the plume in the 

large tank to keep the oil droplets suspended in the water column.  Figure 30 is an example of how quickly 

the plume changed in the large tank over time.  The plot shows the LISST measurements of particle 

concentration as a function of droplet size and time for test #106 in which straight Anadarko Crude was 

used – a very different result from the small test tank.  This rate of attenuation made it very difficult for the 

sensors to detect and map the plumes in the water column.  See APPENDIX D for results of other plume 

70 m 
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releases in the large tank with LISST.  It is noted that although plumes of oil mixed with COREXIT 9500 

remain in the water column for a longer period of time, the concentration continues to attenuate over time. 

 

Figure 30.  LISST droplet size concentration measurement from WINDOW Test #106. 

Attempts were made to use the LISST to confirm what the other instruments were sensing and reporting.  

However, this proved to be almost impossible to achieve.  In the case of the WBMS tests, the LISST runs 

were made after the WBMS runs were finished.  From the plots in APPENDIX D, it can be shown that each 

plume release was not exactly the same as the previous release due to a number of possible factors.  

Possibilities include variations in the degree of clogging during each release or changes in the wind speed 

on the water surface from one test to the next, affecting the direction and range of the plume.  Since it is 

impractical to drain the large tank, clean the walls, and refill it for each experiment, it was assumed that the 

submerged oil plume from a test experiment would make its way to the north end of the tank.  In theory, this 

occurs because the filter pump in the north end of the tank allows the water to slowly move from south to 

north.  However it may be possible that some oil droplets continued to linger in the water column from the 

last test to contaminate the next.  Even though the LISST showed a reading of almost zero presence of oil, 

the fact remains that it captures only a small area of the water column and thus may have not detected the 

presence of oil droplets in other areas of the test region.   

2.3 minutes later 

5.8 minutes later 

4.3 minutes later 

3.3 minutes later 
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For the WINDOW tests, the LISST was attached to the WINDOW sensor cage and took measurements at 

the same time.  Despite this placement, the instruments produced very different results.  For example, Figure 

31 shows the LISST droplet size concentration measurement from WINDOW Test #109.  Figure 32 shows 

the WINDOW droplet size concentration calculation from the same test.   

 

Figure 31.  LISST droplet size concentration measurement from WINDOW Test #109. 

 

Figure 32.  WINDOW droplet size concentration from Test #109. 

70 m 

~ 70 m 

11:29:44 
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To compare the data, the time of 11:29:44 from the LISST plot is used against the WINDOW concentration 

data during the time of 11:29:43 (light blue line – highest on graph).  Considering both peaks, it appears that 

the LISST instrument shows a concentration peak at approximately 104 microns whereas the ECO sensors 

show that the concentration peaks occur over the range of 7 to 10 microns and 30 to 60 microns.  The large 

differences in the peak concentrations indicate that the two instruments measured the plume differently. 

It is unclear to the RDC what the primary factors are for the differences in results between the two sensors.  

Most results produced from the Ohmsett trials are similar to that of Test #109 where the concentration peaks 

identified by LISST and ECO sensors are different.  Video evidence for some oil releases suggests that the 

LISST may have been fouled prior to commencing a transect test.  Since the transecting did not start until 

the end of the 3-minute oil release, the plume sometimes would reach the LISST prior to the start of a test 

experiment.  The ECO sensors should be unaffected by this pre-test plume contact since they had automated 

rotating wipers that kept the optical windows clean.  Additionally, the faces of the ECO sensors are set 

approximately 6 inches behind the LISST’s detection area so the sensors were not exactly measuring the 

same plane of the cross section of the plume.  Some videos show the ECO sensors remained outside of the 

plume while the LISST was in contact with it before the test would commence.  This means the LISST may 

have been fouled and thus the results do not lend confidence in that the characteristics of the plumes were 

validated.  Although the exact nature of the plume could not be validated, the LISST did indeed show a 

large difference in the measurements between the background and in the center of the plume, indicating that 

oil was indeed present in the water column. 

WINDOW Test #115 showed the most similar results between the two sensors (Figure 33 and Figure 34).  

The time of 13:29:38 from the LISST plot is used to compare against the WINDOW concentration data 

during the time of 13:29:46 (dark blue line, overshadowed by the light green line).  From the LISST plot, 

the concentration peak appears to cover droplet sizes of 16 to 20 microns.  The ECO sensors show that the 

concentration peak occurs over the range of 10 to 20 microns. 

A video clip of Test #115 shows the plume rising slowly to the surface in a relatively vertical direction, 

keeping the bulk of the plume well away from the sensors.  The first transect shows very similar results 

between the LISST and ECO sensors, which leads to the possibility that if both sensors are cleaned 

thoroughly before an experiment and placed in clean water without exposure to oil prior to a test run, then 

the submerged oil plume could be validated using the LISST.  The submerged oil releases in the water 

column provide a new dimension of testing for Ohmsett.  Consequently there are lessons to be learned to 

properly validate the characteristics of a subsurface oil plume.  However, other aspects of the sensor 

equipment were able to be tested in the large tank with success.  
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Figure 33.  LISST droplet size concentration measurement from WINDOW Test #115. 

  

Figure 34.  WINDOW droplet size concentration from Test #115. 

13:29:38 
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4.2 NORBIT WBMS 

Results from the trials showed that oil plumes could be detected reliably up to about a 40-ft (12-m) range 

with low but unknown concentrations.  All test cases showed that the oil droplets rose relatively quickly to 

the surface so the plumes were dispersed within minutes.  The detection range was limited by the very 

strong reflections from the tank boundaries; however, the estimated range for detection shows the system 

should be capable of detecting large leaks (270 ft
2
 (25 m

2
) cross-section) up to 295 ft (90 m) of range for 

these type of plumes.  It also appears that the sonar can differentiate the general shape of the plume and 

obtain some information inside the plume but the actual concentration limits and particle sizes are not clear 

due to the lack of correlated information. 

The 2D and 3D visualizations have shown a good potential for automation.  Currently the mechanical 

movements of the sonar transducer have been used for proof-of-concept but electronic beam sweeping is 

highly recommended. 

4.3 WET Labs WINDOW 

Phase II work has demonstrated the feasibility of developing a compact, inexpensive, multi-angle scattering 

instrument with an automated inversion algorithm and intuitive smart phone display that quantifies the size 

distribution and determines the refractive index of the oil to readily derive density and viscosity. 

All measurements with a static sensor package suspended above an injected plume of diesel or Anadarko 

showed a substantial hydrocarbon signal (typically 5-15 ppm concentration) during the duration of the oil 

release.  After the period of oil release, a precipitous drop off in concentration was observed, although oil 

could still be detected for several minutes.  Measured concentration levels were consistent with levels 

expected from the simulations. 

Transecting through released plumes showed oil at the general location of the initial release, as expected.  

Distributions of plumes generally showed spiking variability instead of smooth Gaussian profiles because 

the package itself induced substantial mixing and patchiness of the oil plume with every pass, although 

when care was taken to not pass through the same location, plume distributions in many cases showed such 

smooth Gaussian features.  Gaussian plume distributions are an expectation of diffusion dominated 

dispersion, as shown in the simulations. 

4.4 Requirements Matrix  

Table 3 summarizes how each system meets the BAA requirements as tested at Ohmsett, listed in order of 

importance.   

1. Provides results in near real time (less than 1 hour); 

2. Calibrates easily for different oils; 

4. Works in currents or tow speeds up to 5 knots (partial test); 

5. Reports minimal false alarms; 

7. Detects dispersed crude oil at levels of 0.5 ppb or lower; 

8. Sweeps an area of water column 3 ft by 3 ft (0.9 m by 0.9 m); 

9. Provides digital readout or measured values and digitally logs field data; 

10. Is field rugged (partial test); 
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11. Is portable; 

13. Determines droplet size, density (specific gravity) and/or kinematic viscosity; 

16. Deploys quickly and easily; and 

18. Grabs water samples for further laboratory testing.  

Table 3. Requirements matrix for Ohmsett. 

Capability WBMS WINDOW 

1.  Provides results in near real 
time (less than 1 hour) 

In setups with full bandwidth to the surface it 
will be real time data, in situations with sensor 
storage, data must be retrieved and 
processed. 

Results were provided in < 1 
min.  

2.  Calibrates easily for 
different oils 

No calibration is needed other than a 
secondary verification of the oil. 

Standard factory calibration to 
absolute VSF units once per 
year. 

4.  Works in currents or tow 
speeds up to 5 knots 

Acoustic processing will not be affected by 
currents up to 5 kt. 

Yes (3.5 kt at Ohmsett; >5 kt 
previously). 

5.  Reports minimal false 
alarms 

A verification of the plume is needed and the 
false alarm should be zero.  If the acoustic 
tool is used without verification there will 
naturally be a risk of detecting other 
substances with different impedances. 

No evidence of reports of false 
positives or false negatives 
during Ohmsett testing  

7.  Detects dispersed oil at 
levels of 0.5 ppb or lower 

The sensor will be able to detect dispersed 
crude oil, during tests the sensor appeared to 
detect below 20 ppm, and probably 0.5 ppb is 
not realistic. 

Detection range was about 80 
ppb to 80 ppm  

8.  Sweeps an area of water 
column 3 ft by 3 ft 

Multibeam technology can sweep a 
significantly bigger area; tens of meters are 
realistic if there are dispersed oil plumes. 

Sample volume is on the order 
of mL, but towing the sensors 
provided 3D resolution of oil 
concentrations throughout the 
water column  

9.  Provides digital readout or 
measured values and 
digitally logs field data 

Yes Yes 

10.  Is field rugged Yes Yes 

11.  Is portable Yes Yes 

13.  Determine droplet size, 
density (specific gravity) 
and/or kinematic viscosity 

Inconclusive due to facility limitations. 
Inconclusive due to facility 
limitations. 

16.  Deploys quickly and easily 

NORBIT sonar is very compact and designed 
for easy and quick deployment; actual 
deployment time will vary depending on the 
platform. 

Yes 

18.  Grabs water samples for 
further laboratory testing 

No 

Collected samples using 
hydrophilic tubing; the sensor 
system itself does not collect 
discrete samples.  
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Tablee 4 summarizes the requirements that need additional testing beyond Ohmsett, some of which were 

addressed in Phase I: 

3. Detects oil at depths up to 200 ft (~ 61 m); 

6. Allows smooth data flow from field to command center; 

12. Compatible with fresh and salt water; 

14. Adapts to various depths (deep vs. shallow); 

15. Operates from vessel in variety of conditions; and 

17. Measures dissolved oxygen (DO).  

Table 4.  Field requirements. 

Capability WBMS WINDOW 

3.  Detects oil at depths up to 
200 ft 

No limitations; performance depends 
on the reflectivity from the plume. 

Yes but not addressed at Ohmsett. 

6.  Allows smooth data flow from 
field to command center 

Not addressed at Ohmsett. Yes but not addressed at Ohmsett. 

12.  Compatible with fresh and salt 
water 

Yes, small calibration if specific 
acoustic levels are required.  This was 
not addressed at Ohmsett. 

Yes but not addressed at Ohmsett. 

14.  Adapts to various depths 
(deep vs. shallow) 

No difference from an acoustic 
standpoint. 

Yes but not addressed at Ohmsett. 

15.  Operates from vessel in 
variety of conditions 

Sonar operates in a variety of weather 
conditions. It is clearly an advantage to 
have the sonar mounted on a platform 
which is as stable as possible. 

Not addressed.  There are no 
foreseen limitations in terms of 
environmental conditions from a 
vessel. 

17.  Measures dissolved oxygen No 
Yes, sensor mounted at Ohmsett 
but data not reviewed. 

 

5 RECOMMENDATIONS 

5.1 NORBIT WBMS  

The NORBIT WBMS system uses a well-developed, commercially available technology that has been used 

in various marine applications.  Because the system scans the water column with multiple beams of different 

frequencies, the detection of a range of acoustic anomalies is possible.  The system can survey a wide area 

of the water column although the exact concentrations are not known.  Some of these plumes may have 

concentrations below 10 ppm. 

The primary disadvantage of the system is the inability to conclusively discriminate petroleum 

hydrocarbons from other materials which may have a similar acoustic signature.  The system may be able to 

detect oil in the water column, but positive identification and characterization may be difficult, especially if 

the oil disperses as individual droplets or is interspersed with silt or sand.  More work is needed to be able to 

determine oil concentration and physical properties.  In addition, acoustic profiling at multiple frequencies 

generates a large amount of data which must be stored and processed.  This may limit real-time availability 

of data and imagery to support rapid decision-making.  Finally, computer-automated interpretation and 

mapping of acoustic imagery is challenging, and real-time interpretation currently requires subjective 

analysis by a trained operator. 



  

Detection of Oil in Water Column, Final Report: Detection Prototype Tests 
 

36 
UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public 

July 2014 

 

This system shows promise for detecting plumes from a distance and should be tested in the field.  A field 

test would yield more beneficial results since the sensor would not be hampered by the reflectivity of the 

tank walls. 

5.2 WET Labs WINDOW 

As described in Table 3, the WINDOW prototype was able to meet most test requirements and effectively 

proved that the sensor was able to detect the presence of oil with minimal false alarms.  It was noted that the 

prototype did not pick up the presence of oil when positioned in the tank without the oil plume (“clean” 

water) before and after a transect through the oil plume.  Although the volumetric concentration data is 

shown instantaneously, processing raw data with the algorithm to characterize the plume takes time but can 

feasibly be performed in less than one hour. 

Even though the instrument takes point source measurements, it still has rapid profiling capability that can 

take enough data points to create a detailed map, which was partially shown at Ohmsett.  However, the GPS 

wander combined with the small size of the facility makes it unfeasible to create an accurate map of the 

submerged oil plume.  The prototype still shows promise for mapping plumes over large areas and should be 

tested in the field with a fully furnished towed vehicle. 

The prototype developed by WET Labs WINDOW team is portable, robust, and can operate in a variety of 

environmental conditions.  It is able to determine the presence of oil and characterize the submerged oil 

plume although its accuracy could not be proven at Ohmsett.  Its ability to capture screenshots of the 

developed map and send to smartphone users in JPEG format would be valuable to oil spill responders in 

being able to act quickly and efficiently.  The RDC recommends that this prototype be further tested in the 

field with naturally occurring organic matter.  The algorithm would need to be challenged with aggregated 

oils or particles mixed with oil in a fully towed package.  The surveying would need to be timed to 

determine its quickness in determining the presence of oil and characterizing it as well.  Its ability to 

disseminate information to the command center smoothly from the field should be explored as well. 

5.3 Ohmsett 

It is recommended that Ohmsett’s ability to create oil plumes within the water column that remain neutrally 

buoyant for an extended period is enhanced.  There are a number of improvements that could be explored 

including: 

 Determining what particle size is necessary for neutral buoyancy in calm water.  The research 

suggesting particles < 70 m would be neutrally buoyant assumed moderate seas (Lewis, 2004).  

However, Fingas (2013) suggests that particles greater than 50 m would rise quickly to the surface 

whereas smaller droplets of 20 m or less remain stable in the water column for short periods of 

time. 

 Introducing a wave condition to the testing because it is possible that the 70 m droplet size may be 

neutrally buoyant when energy is present. 

 Investigating the benefits of testing while a plume is continually being dispensed from the oil 

delivery system. 
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 Investigating the effects of using higher nozzle pressures with higher viscosity oils to potentially 

replicate plumes released from offshore wells.  

 Finding an oil/nozzle combination that creates particles that remain suspended longer. 

 Passing the LISST through the plume and determine the general disturbance using a sonar. 

 Investigating additional procedures for confirming particle size distribution and plume shape during 

tests.  If LISST is used for this, it would mean ensuring that both devices are registering information 

from the same part of the plume.  A method to analyze still photographs of the visual part of the 

plume and document the size in all three dimensions could be helpful.  Other methods may include a 

submersible holographic microscope and turbidity measurements. 

5.4 Summary 
The nominal objective of this RDC project was to identify, further develop, and test systems that can detect 

and characterize oil that is entrained and dispersed in the water column.  Both prototypes have demonstrated 

the qualitative ability to detect and/or map oil suspended in the water column.  Refer to Table 3 and Table 4 

for details about the prototypes meeting most of the test requirements.  The WBMS and WINDOW 

prototypes show promises in their abilities to quickly determine the presence of oil and relay the information 

to responders.  In turn, they can make timely decisions to mitigate the impact of the submerged oil on the 

surrounding environment and infrastructure.  There is further work to be done on both prototypes to test 

their abilities in field conditions as described above. 

The Ohmsett staff developed an oil delivery system that was used for the first time at the facility with this 

oil in the water column project.  It allowed the prototypes to demonstrate their abilities and enabled RDC to 

determine whether or not the diverse test requirements were met and thus suitable for field use.  As well as 

the oil delivery system worked, there were many lessons learned.  The biggest lesson was that the procedure 

in order to validate the oil plumes’ characteristics to the best of Ohmsett’s ability should be improved.  It 

was difficult to ascertain with confidence that every oil plume created was repeatable.  This prevented a 

quantitative evaluation of the prototypes’ abilities to characterize the oil plume.  Thus the BAA requirement 

number 13, which is determine the droplet size, density (specific gravity) and/or kinematic viscosity, could 

not be proven. 

Some preliminary recommendations include taking samples of different areas of an oil plume and using a 

holographic microscope (not used in this project) to determine its characteristics.  Every measure should be 

made to prevent the clogging of nozzles to ensure that every oil plume release is repeatable.  Prior to a 

transect, the instruments should be kept well away from the oil plume, which does not always travel 

vertically after a release due to water movements in the tank.   Another recommendation is to explore other 

oil types since straight Anadarko Crude and diesel (without the addition of COREXIT 9500) rose to the 

surface too quickly after a 3-minute release to allow for a proper evaluation of the oil plume’s 

characteristics.  Additionally, higher pump pressure should be explored to create smaller droplet sizes.  

Should a rigorous, proven test procedure be followed where it is ensured that every oil release is repeatable, 

the Ohmsett staff and other researchers may be confident that the data from the LISST or results from the 

holographic microscope can be used as a reference when comparing data from other new oil detection 

systems. 
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The oil delivery system itself was a newly developed capability for Ohmsett and it had its own challenges, 

and further work should be done to improve its capabilities.  Despite some difficulties, there are many 

opportunities to improve on experimenting with oil in the water column at the Ohmsett facility.  Even so, it 

is concluded that all instruments, including the LISST, were able to detect the presence of oil (straight 

Anadarko Crude, straight diesel, Anadarko Crude with COREXIT 9500, and diesel with COREXIT 9500) in 

the water column.  For all test runs, the sensors collected background data prior to entering an oil plume to 

show the differences between the readings in “clean” water and oil plumes.  Overall, the tests were a success 

in terms of verifying the detection systems’ abilities to determine the presence of oil with high levels of 

confidence and provide the data quickly and efficiently.  The prototypes were lightweight, robust, and 

deployed quickly and easily.  It is recommended that both prototypes be further developed and tested in the 

field. 
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APPENDIX A. SUSPENDED OIL DELIVERY SYSTEM DEVELOPMENT 

A.1 Objective 

The primary goal of this effort was to develop the capability to create oil plumes within the water column 

that remain neutrally buoyant for an extended period of time.  Plumes were to be created using two types of 

oils in their raw state and with the addition of dispersant.  Essential components necessary to achieve this 

goal were an oil delivery system and a means of accurately measuring plume characteristics.  The first step 

was to design and fabricate an oil delivery system capable of providing varying pressures and flows to 

orifice nozzles underwater.  The LISST 100X sensor was chosen to measure experimental plume 

characteristics.  This Appendix summarizes the testing process used to develop the oil delivery system at 

Ohmsett.  For complete details see MAR, Inc. (2013a). 

A.2 Background 

Research into designing the oil delivery system revealed that there is limited information available related to 

equipment and methods to create controlled oil plume releases underwater.  Initial design of the oil delivery 

system considered a combination of baseline parameters used during a previous subsea dispersant research 

project at Ohmsett and engineering estimates to identify the ranges of operational pressures and nozzle 

orifice sizes to create minute oil droplets underwater. 

A.3 Description of Oil Delivery System  

A primary component of the oil delivery system is the nozzle.  Controllable parameters include nozzle type 

and orifice diameter.  For this design, an “atomizing” type nozzle was chosen with orifice sizes ranging 

from 0.016 inches to 0.086 inches.  Delivering oils to the nozzle required a pump capable of achieving high 

pressures at low flow rates.  These operating parameters are best met by industrial metering pumps.  These 

pumps are typically used in process applications to inject low doses of an agent into a pressurized fluid 

stream.  The pump selected for this application was capable of providing a constant pressure of 150 psi at 

any flow rate up to 1.4 gallons per minute (gpm).  Figure A-1 shows the schematic drawing for the oil 

delivery system design.  Other components included: 

 Pulsation damper: Double diaphragm pumps create a pulsating action. The pulsation damper absorbs 

the surges of energy and provides the desired constant pressure in the lines.  

 Inline filter: This component is used prior to testing to pre-filter the test oil to remove particulate 

5 μm and above to prevent clogging of the nozzle.  

 Back pressure regulator: This component regulates the pressure on a manifold line at the end of the 

run to provide constant controllable/adjustable pressure within the oil distribution line feeding the 

nozzle.  

 Solenoid valves: These valves are normally closed valves which require power to activate to the 

open position. The plumbing arrangement with two solenoid valves simulated the configuration of a 

three-way valve. With the pump running, this configuration provided a means of establishing an 

initial flow and backpressure through a recirculation loop and instantaneous switching to discharge 

and off again.  
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 Check valves: The check valves located close to the discharge nozzle ensure oil present in the 

unused line does not leak back through the nozzle and into the test area.  

 Pressure relief valve: The pressure relief valve was added as a safety device and set for 150 psi. In 

the event of a deadheaded line, this device provided a route for the pumped fluid to return to the 

reservoir.  

 Liquid filled pressure gauge: Provided system pressure readings within the supply line during bypass 

and discharge through the nozzle.  

 

Figure A-1.  Oil delivery system schematic. 

(Based on MAR, Inc., 2013a) 

The components of the oil delivery system were assembled on a fiberglass pallet which served as a rugged 

level platform and a convenient means of relocating the system by forklift, shown in Figure A-2.  

Electrically, the pump was wired as 110 volts and controlled by an on/off switch at the pump.  Additionally 

the electric solenoid valves (2) were powered by a 24-volt power supply and wired through a single pole 

double throw switch simulating the function of a three-way valve.  This feature was incorporated into the 

design allowing the pump to circulate the oil in a bypass mode and then provide instantaneous dispensing of 

oil at high pressure through the nozzle.   
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Figure A-2.  Oil delivery pump system. 

A.4 Test Setup 

The test area for the oil delivery system was comprised of three major components:  the oil delivery system, 

a small-scale test tank, and the particle size analyzer.  The tank was a modular structurally supported steel 

tank with a fiber reinforced polypropylene liner measuring 4 ft (1.2 m) high x 4 ft (1.2 m) wide x 8 ft (2.4 

m) long (capacity of one thousand gallons) (see Figure A-3). 

 

Figure A-3.  Modular tank with nozzle apparatus in place. 

Water used for testing was pumped directly from the Ohmsett main tank, with a water depth of 3.5 ft 

(1.1 m) throughout testing.  Each test began with clean water.  Between tests the tank walls were cleaned to 

remove residual oils.  Some continuation tests were performed in which the initial water and oil droplets 

remained and spraying times were added to increase the overall concentrations being measured.  

Also shown in Figure A-3 are the brackets used for the mounting and placement of the oil spraying nozzle. 

Brackets were constructed of 80/20 Inc. aluminum beams and allowed for easy adjustment.  The position of 

the nozzle was documented relative to the waterline and distance from the face of the particle size analyzer.  
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The initial location of the LISST was 1.3 ft (0.4 m) below waterline and 2.5 ft (0.76 m) from the spray 

nozzle.  The depth of the spray nozzle was 2.1 ft (0.64 m) from the waterline and remained there for the 

entire experiment.  

Figure A-4 shows the bracket assembly constructed and used to mount and handle the particle size analyzer.  

The two vertical members provided a means of easy adjustment to varying depths below the waterline.  Not 

shown in the figure, the vertical members were attached to a cross member which was connected to an 

overhead hoist.  The hoist provided a means of placing and removing the particle size analyzer into the test 

area.  Removal was required to perform a thorough cleaning of the analyzer lenses and to obtain a “clean” 

background prior to each test.  

 

Figure A-4.  LISST particle size analyzer in its support frame. 

A.5 Test Methodology  

A.5.1 Approach  

The process of injecting fluids (oil) at high pressures underwater to obtain a specific range of droplet size 

distributions is a unique area of study.  From historic dispersant testing, it is known that oil droplets 

approximately 70 μm and less tend to remain neutrally buoyant in moderate seas, depending on physical 

parameters such as oil and water densities and temperature.  In general, adding dispersant to the oil creates 

droplets of much smaller diameters given the same jetting parameters.  Selection of nozzles with 

corresponding pressures, varying viscosities, and resulting droplet sizes with oil are not available within 

manufacturers’ performance specifications.  Typical specifications available provide results for the spraying 

of water into air.  To achieve the objective of creating an oil plume, a trial and error approach was taken.  A 

range of possible nozzles were selected allowing for numerous combinations of pressures and orifice sizes. 

A total of seven nozzles were obtained to explore their ability to atomize the oil into sub-70 μm droplets.  

The sizes from largest to smallest were: 

 -26 (0.086 inch orifice),  

 -18 (0.076 inch),  

 -10 (0.064 inch),  

 -6 (0.042 inch),  
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 -2 (0.028 inch),  

 -1 (0.020 inch) and  

 -0.60 (0.016 inch).  

Within the modular test tank, oil was dispensed through the selected nozzle at predetermined pressures to 

create the test plume.  Oil droplet size distribution and concentration measurements were obtained using the 

LISST particle size analyzer.  Figure A-5 shows the LISST attached to a mounting frame and suspended 

from an overhead hoist used to install and remove the instrument from the tank.   

 

Figure A-5.  LISST suspended from hoist. 

Prior to placing the nozzle apparatus into the test tank, the pump and back pressure regulator were adjusted 

to operate at the desired pressure.  Once adjusted, the flow from the nozzle was captured into a graduated 

cylinder and timed to quantify flow rates.  Figure A-6 shows the relative positioning of the LISST and spray 

nozzle at the beginning of a test. 

 

Figure A-6.  Test plume being created. 
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A.5.2 Test Procedure  

The procedure employed during experiments evolved slightly based on observations and measurements 

obtained.  The test sequence is described below.  

 Pre-set pump and back pressure regulator to “test” pressure.  

 Operate oil delivery system in bypass mode.  

 Start LISST data collection file.  Allow approximately 10 seconds collecting initial background of 

water.  

 Switch oil delivery system on for predetermined duration (durations varied).  

 Stop oil delivery system.  

 Stir/homogenize droplets within tank (time of mixing varied based on observations).  

 Collect LISST data for 20 minutes (times varied).  

 End files. Remove LISST for cleaning. Evacuate tank water, clean tank, and replenish.  

A.5.3 Test Fluids Properties  

Table A-1 contains the property analysis of the test oils and water used during the experiment.  

Table  A-1.  Test oils properties. 

Sample 
Description 

Sample #   
Viscosity @ Temp 

(g/cm @ 
o
C)   

ρ @ Temp (g/ml 
@ 

o
C)   

Surface 
Tension 

(dynes/cm)   

Interfacial 
Tension 

(dynes/cm)   

 HYDROCAL    556-01   
 194.4-16.2    0.9054   

 35.5    21.6   
 40-10

 o
C    22.7

 o
C   

 DIESEL    556-02   
 6.8-17.3    0.84   

 32.6    22.7   
 40-10

 o
C    22.7

 o
C   

 DIESEL/  
COREXIT9500 

(DOR 1:5)   

 556-03   
 12.6-16.9    0.85   

 30    22.3   
 40-10

 o
C    22.7

 o
C   

 NORTHSTAR    556-04   
 10.8-17.4    0.85   

 29.7    21.4   
 40-10

 o
C    22.9

 o
C   

 NORTHSTAR/  
COREXIT9500 

(DOR 1:20)   

 556-05   
 12.9-16.3    0.8647   

 29.7    21   
 40-10

 o
C    22.7

 o
C   

 NORTHSTAR/  
COREXIT9500 

(DOR 1:5)   

 556-06   
 12.5-17.8    0.87   

 29.3    20.7   
 40-10

 o
C    22.8

 o
C   

 ANADARKO    556-07   
 27.7-33.0    0.91   

 33    4.7   
 40-10

 o
C    23.0

 o
C   

 ANADARKO/  
COREXIT9500 

(DOR 1:20)   

 556-08   
 11.3-20.3    0.91   

 32.7    4.5   
 40-10

 o
C    22.9

 o
C   

 TEST BASIN 
WATER   

556W-01  61.1    1.0205 @ 20.9 
o
C  30.8  38.8   
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A.6 Experimental Results  

A.6.1 Test Matrix  

Main Table 6 defines the matrix of tests performed and the key parameters used during each test.  Tank 

water was replenished between tests with Ohmsett basin water unless noted otherwise.  

A.6.2 Description of Results  

The objectives of this experiment were two-fold:  (1) develop an oil delivery system capable of creating oil 

plumes within the water column and (2) identify two different oils in which droplet sizes can be created 

sufficiently small to remain neutrally buoyant for an extended period of time.   

Table A-2. Delivery system test matrix. 

Test 
#   

Nozzle 
Size  

(inch)  

Line 
Pressure 

(psi)   
Oil Type   

Visc. 
(centi

-
poise

)   

Discharg
e Flow 
Rate 

(gpm)   

Notes   

1 0.042 95 Diesel --- ---- 
Dry run – operate oil delivery system to 

adjust/ confirm functionality (fresh 
water)   

2 0.042 120 Diesel ~7.5 0.18 

Discharged nozzle into graduated 
cylinder to determine flow rate.  

Determined other flow rates prior to 
individual tests   

3 0.042 120 Diesel ~7.5 0.18 First test — spray duration = 24.2 sec   

4 0.042 140 Diesel 8.6 0.19 Spray duration = 26.2 sec   

5 0.042 140 Diesel 8.6 0.19 
Continued test 4 to increase oil droplet 

concentration. 
Spray duration = 2.0 min   

6 N/A N/A Diesel 8.6 N/A 
Measured oil droplet sizes and 

concentration from test 5, 18 hrs 
after test   

7 0.042 100 Diesel ~15.0 0.17 Spray duration = 30.3 sec   

8 0.028 100 Diesel ~15.0 0.06 Spray duration = 60 sec   

9 0.028 140 Diesel ~15.0 0.07 Spray duration = 29.9 sec   

10 0.020 140 Diesel ~18 0.040 Spray duration = 60 sec   

11 0.016 140 Diesel ~19 0.023 Spray duration = 120 sec   

12 0.016 140 Diesel ~19 0.023 
Continued test 11(same water) to 

increase oil droplet concentration. 
Spray duration = 2.0 min   

13 0.016 140 
Diesel/ 

COREXIT 
9500 (1:5) 

~17 0.023 
LISST lenses became fouled, 

inaccurate data.  
Spray duration = 2.0 min   

14 0.016 140 
Diesel/ 

COREXIT 
9500 (1:5) 

~20 0.023 
Continued test 13 (same water). 
Spray duration = 2.0 min (4 total)   
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Table A-2. Test matrix (cont.). 

Test 
#   

 Nozzle 
Size   

Line 
Pressure 

(psi)   
 Oil Type   

 Visc. 
(centi-
poise)   

Discharg
e Flow 
Rate 

(gpm)   

Notes   

15 0.016 140 
Diesel/ 

COREXIT 
9500 (1:5) 

~20 0.023 
Continued test 14 (same water), 

experimented with removing LISST 
attenuator, lens saturated.  

16 0.016 140 
Northstar 

Crude 
~21.5 0.043 Spray duration = 60 sec   

17 0.016 150 
Northstar/ 
COREXIT 
9500 (1:5) 

~23 0.048 Spray duration = 60 sec 

18 0.016 150 
Northstar/  
COREXIT 
9500 (1:5) 

~22 0.047 Spray duration = 60 sec 

19   0.016  140   
 Northstar/  
COREXIT 
9500 (1:5)   

 ~22    0.047   
Continued test 18 (same water). 
Spray duration = 60 sec T18; 60 sec T19 

(2.0 min total)  

20 0.016 150  Anadarko   ~33 0.045 Spray duration = 60 sec   

21 0.016 150  Anadarko   ~33 0.045 
Continued test 20 (same water) 
Spray duration = 60 sec T20; 60 sec T21 

(2.0 min total)  

22 0.016 150 
 Anadarko/  
COREXIT 

9500 (1:20)   
~22 0.045 Spray duration = 60 sec   

23 0.016 145 
 Anadarko/  
COREXIT 

9500 (1:20)   
~22 0.045 

Continued test 22 (same water) 
Spray duration = 60 sec T22; 60 sec T23 

(2.0 min total)  

24 0.016 140 
 Anadarko/  
COREXIT 

9500 (1:20)   
~15 0.045 

Performed in basin, video and photo 
documentation only.  

Spray duration = 30 sec  

25 0.016 140 
 Anadarko/  
COREXIT 

9500 (1:20)   
~16 0.045 

Performed in basin, video and photo 
documentation only.  

Spray duration = 30 sec  

26 0.016 140  Diesel   ~19 0.023 
Performed in basin, video and photo 

documentation only.  
Spray duration = 30 sec  

27 0.016 140  Diesel   ~19 0.023 
Repeat of test 12, longer spray duration 

of 180 sec, fresh water   

27a 0.016 N/A  Diesel   ~19 N/A 
Measured concentration and droplet 

sizes after 30 minutes at different 
depths to determine stratification   

28 0.016 145  Diesel   ~19 0.023 
Repeat of test 12, longer spray of 180 

sec, well mixed immediately after 
spraying   

28a N/A N/A  Diesel   ~19 N/A 
Measured concentration and droplet 

sizes after 25 minutes at different 
depths to determine stratification   
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A.6.2.1 Oil Delivery System  

When constructing the oil delivery system there were a few necessary features incorporated into the design 

to provide the capabilities to accomplish the task.  Below is a description of features that were significant, as 

well as their purpose and how they functioned.  

 Three–way simulated valve:  This electrical switch operated feature allowed for the pump to be 

operating in a bypass mode with flow under backpressure at the immediate area of the nozzle. When 

activated it provided immediate discharge at the nozzle with required line pressure.  This operated 

flawlessly and eliminated pressure ramp up and thereby dispensed oil at test pressures.  

 Backpressure regulator:  This feature provided backpressure in the return line and was found to 

provide the range of pressures as desired, as well as sensitivity and ease of adjustment.  

 Inline filter loop:  Although no problems were encountered with particles clogging the nozzles, upon 

a redesign it would be recommended to install a supply tank to pre-filter the oils prior to testing and 

then transfer the fluid to the pump source tank.  

 Double diaphragm pump:  As specified and claimed by the manufacturer, the pump provided 150 psi 

at varying flow rates.  

 Pulsation damper: The pulsation damper proved effective in stabilizing the line pressure and 

minimizing pulsation.  

The overall performance of the oil delivery system was as expected and no problems were encountered 

during the test series.  The system was operated in a range of 95 to 150 psi, the maximum pressure 

capability of the pump. 

A.6.2.2 Oil Droplet Size Distributions  

The following is a chronology of the testing performed and descriptions of the method employed for 

measurements using the LISST.  Typically, oil droplet characteristic measurements were obtained over an 

extended time frame to quantify changes of droplet size distribution with respect to time.  A discussion of 

observations and subsequent changes to either the test method or setup is included.   Graphs are included for 

the two oils selected.  Graphs from all tests are included in MAR, Inc. (2013a). 

The initial testing began with a 0.042 inch nozzle.  The first oil used was pure diesel sprayed through the 

nozzle at pressures of 100, 120, and 140 psi.  It should be noted that at this point in time, the optimum 

spraying duration time had not been determined.  For the three tests shown, 3, 5 and 7, the spray durations 

were 24 sec, 120 sec and 30 sec.  This variation affects the total concentration values but not the droplet size 

distribution.  Figure A-7 presents the comparison of each pressure in terms of concentration versus droplet 

size distribution.  Figure A-8 shows the percentage of droplets by size for each pressure after twenty 

minutes.  Although the data do not indicate significant differences, based on the cumulative concentration 

graph, the 140 psi spray did produce a higher percentage of smaller droplets of 53.5 m and less.  
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Figure A-7.  Diesel droplet size distribution comparison (0.042 inch nozzle). 

(100, 120, and 140 psi) 

 

Figure A-8.  Diesel percentage vs. droplet size comparison (0.042 inch nozzle). 

(after 20 minutes @ 100, 120, and 140 psi) 

Two experiments were performed using a 0.028 inch nozzle with diesel oil.  Spraying at 100 psi appeared to 

create a larger concentration in the 2.72 m (and most likely lower) to the 5.27 m range, but also created a 

larger concentration of droplets above 70 m.  The distribution results between 100 and 140 psi provided 

support to move forward using the higher pressure.  

The next two smaller nozzles, a 0.020 inch and a 0.016 inch, were used to spray diesel oil at 140 psi.  

Figure A-9 illustrates the concentration versus droplet size distribution.  The curves indicate that the 

0.016 inch nozzle created a minimal amount of droplets in the range of 74.5 μm and larger.  Also shown, the 

0.020 inch nozzle did create a relatively larger volume of droplets in the 74.5 to 200 μm range where 

the 0.016 inch droplet distribution was 104 μm and smaller.  
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Figure A-9.  Comparison of 0.020 vs. 0.016 inch nozzles with diesel. 

(140 psi after 20 minutes) 

Based on these preliminary experiments, where pressures were varied and nozzle sizes were explored, 

researchers concluded that using the smallest orifice nozzle and highest pressure provided the most desirable 

droplet size distribution.  Although larger nozzles and lower pressures did create small droplets, these 

parameters tended to yield a wider band of droplets into the larger than 70μm range.  

For subsequent tests in which oil type comparisons were performed, the 0.016 inch nozzle and spraying 

pressures in the 140-150 psi range were used.  Figure A-10 shows the oil droplet size distribution for diesel 

over a 20 minute time frame.  The duration of spraying was three minutes after which the water/oil was 

mixed for three minutes to equally distribute the dispersed oil within the water column.  Concentrations for 

droplets sizes at approximately 50 μm and below appeared to remain relatively consistent whereas above 

50 μm there appeared to be changing concentrations.  Figure A-11 illustrates the percent by droplet size 

sprayed at 100 and 140 psi within the water column after 20 minutes.  The effect of adding dispersant at a 

DOR of 1:5 was explored and the resulting droplet distribution is shown in Figure A-12. 

 

Figure A-10.  Particle size distribution vs. concentration for diesel with 0.016 inch nozzle @ 140 psi. 



  

Detection of Oil in Water Column, Final Report: Detection Prototype Tests 
 

A-12 
UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public 

July 2014 

 

 

Figure A-11.  Cumulative concentration after 20 minutes for diesel, 0.016 inch nozzle @100 & 140 psi. 

 

Figure A-12.  Particle size distribution vs. concentration for diesel with dispersant. 

(0.016 inch nozzle@140 psi and DOR 1:5) 

A significant portion of the diesel plume was comprised of very small droplets with a low overall 

concentration in the range of 20 - 70 μm as in the untreated diesel graph.  The water appeared “milky,” a 

known indication of very small dispersed droplets (see Figure A-13). 
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Figure A-13.  Diesel dispersed. 

Use of a second oil was explored to create a plume with different initial properties.  The next oil tried was 

Hydrocal 300, an Ohmsett stock test oil.  It was quickly determined during preliminary flow measurements 

that the nozzle and pressure combination was inadequate to atomize the oil in air and therefore would not be 

successful.  It was apparent that the viscosity was too high (200 centipoise (cP) at 20 
o
C) and would require 

higher pressures.  The next alternative oil chosen was Northstar Crude.  Its viscosity was approximately 

15 cP at 20 
o
C with a density of 0.91.  The resulting distribution was unique in that there are two distinct 

ranges in which droplets formed.  A significant portion of oil surfaced during the spraying; apparently the 

droplets measured after 20 minutes were still in the water column.   

Using the same nozzle and line pressure, the effects of adding COREXIT 9500 at a DOR of 1:5 to the 

Northstar Crude were explored.  Of interest is the fact that concentrations of formed droplets did not change 

over the 20-minute time frame.  Although small droplets formed, a significant portion of oil surfaced 

immediately after being sprayed.  Since a large fraction of oil surfaced, Northstar Crude was eliminated as 

an option for use in the large tank. 

Anadarko Crude was tested next for possible use.  Figures A-14 and A-15 illustrate the droplet size 

distribution and the percentage versus droplet size of Anadarko Crude using the 0.016 inch nozzle sprayed 

at 150 psi. 

 

Figure A-14.  Anadarko Crude particle size distribution vs. concentration. 
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Figure-a A-15.  Anadarko Crude concentration vs. droplet size. 

Anadarko Crude was also evaluated after being treated with COREXIT 9500 with a DOR of 1:20.  As 

shown in Figure A-16, the Anadarko Crude oil droplet size distribution is primarily at 70 μm and below.  

These results provided the narrowest range of droplets size all below the targeted 70 μm and less.  

 

Figure A-16.  Particle size distribution vs. concentration, Anadarko Crude with dispersant. 

An attempt was made to determine if stratification of oil droplets was occurring during the experiments 

which would not have been visible to the eye.  Following test number 28 (diesel, 0.016 inch nozzle at 

145 psi), an additional data set was recorded with the LISST in which the depth of the sensor was 

incrementally positioned from seven inches below surface to the bottom to the test tank.  Figure A-17 shows 

the droplet size comparison based on depth 40 minutes after the test start.  The graph shows a slight drop off 

in concentration of the larger particles and consistent concentrations at approximately 20 μm and less. 
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Figure A-17.  Diesel particle size distribution vs. concentration, depth comparison. 

Also interesting to note is the oil droplets above the targeted 70 μm range that were still present 
at the 40 minute mark. 

A.7 Conclusions and Recommendations 

Based on these preliminary experiments, where pressures were varied and nozzle sizes were explored, 

researchers concluded that using the smallest orifice nozzle and highest available pressure provided the most 

desirable droplet size distribution.  For subsequent tests in which oil type comparisons were performed, the 

0.016 inch nozzle and spraying pressures in the 140-150 psi range was used.   

Concerning the selection of oils for use in the subsequent testing, based on the objectives to identify two oil 

types for use to create plumes in their raw form and treated with dispersant, diesel and Anadarko Crude 

produced the most desirable oil droplet distributions.   

Related to further work in this area, the available combination of orifice sizes and pressures were found to 

produce oil droplet size distributions in the realm desired to meet the test objectives; however, investigating 

the effects of higher pressures with higher viscosity oils would be beneficial to potentially replicate plumes 

released from offshore wells.  

When performing lab sized experiments as in this effort, alternative and redundant measurement techniques 

may be beneficial to explore.  Such methods may include a submersible holographic microscope and 

turbidity measurements. 
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APPENDIX B. TEST PROCEDURES 

B.1 Planned Procedures 

Ohmsett personnel created a preliminary test plan for each contractor to collect data in relatively clean tank 

water (background data), followed by Ohmsett’s staff creating a suspended oil plume and the contractor 

acquiring additional data to determine if their equipment could detect the plume. 

The test plan was modified to reflect the fact that the two systems acquire data differently.  In general, the 

NORBIT system collects data at various distances outside the plume while the WET Labs system collects 

data while transiting through the plume. 

As the water in the test basin is relatively quiescent compared to the ocean, small oil droplets created in the 

test basin tend to rise faster than they would in a more turbulent environment.  Initially, the test procedure 

was identical for both contractors, but the time the oil was expected to remain suspended in the water 

column, on the order of minutes, required adjusting the test method so that each contractor would have 

sufficient time to acquire data. 

B.1.1 NORBIT 

The information in this section is from USCG internal references Eriksen (2013) and MAR, Inc. (2013b). 

Optimum Test Scenario 

NORBIT equipment uses the reflections of sound to gather information of objects under water.  Generally 

speaking, harder objects generate a stronger return signal than softer objects.  This information is used to 

determine the type of object.  For this particular test the object, i.e. oil, is an object with characteristics very 

close to that of water.  So in order to detect and characterize oil as the purpose of this test, it is very 

important that other strong reflectors are not present within the acoustic field.  Generally the boundaries, 

e.g., the seabed and/or the sea surface, are the limiting factors for successful detection.  In particular with 

the very low reflectivity targets as an oil plume, the reverberation from the seabed is significantly higher 

than that of a volumetric low concentration plume.     

An optimum setup for NORBIT would be open calm sea, or in a very big test tank, where the test would not 

be limited by walls/bottom.  That way all other interferences could be eliminated and pure data on oil 

obtained.  As the objective of this project is detection of oil plumes near those boundaries (e.g., bottom/ 

surface) it is optimal to have as a realistic bottom reverberation as possible. 

Planned Equipment Setup 

The plan is for the WBMS sonar with rotator to be mounted on a pole which will be affixed to the bridge.  

The pole will be long enough to move vertically from water surface to just above tank bottom, making it 

possible to scan the full water column.  Mid-column scan is the primary setup, as a secondary test setup the 

sonar can be placed in the water surface and angled downwards looking at the plume as it rises to the 

surface.  Sonar will be connected to survey computer and will be powered from the bridge.  Figure B-1 

shows the recommended test set-up. 
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Figure-a B-1.  WBMS recommended test set-up. 

Planned Procedure 

The WBMS acquires data from outside the plume.  For this test series, the plan is to create discrete plumes 

in the tank and allow NORBIT to collect data at different distances from the plume:  approximately 6, 16, 

33, 66, and 98 ft (2 m, 5 m, 10 m, 20 m, and 30 m).  As the plumes dissipate over time, it is unlikely that 

data from all the distances will be acquired from the same plume due to the time it takes to move the main 

bridge into position and for NORBIT to acquire data.  While NORBIT will use the nozzle assembly support 

shaft as a target to initially aim their sonar prior to the release of oil, they requested that the oil spray nozzle 

assembly be removed from the water after creating the plume so it does not interfere with their data. 

Prior to the start of the test, the main bridge will be positioned near the north end of the tank, yet allow an 

additional 98 ft (30 m) of north travel during the test.  The spray nozzles will be deployed in the tank 23 ft 

(7 m) off the west wall, at a depth that will be determined during NORBIT’s preliminary/practice runs, but 

likely near the bottom at a depth of ~ 7.3 ft (2.24 m).  Pressurized oil will flow to the spray nozzles for 

30 seconds to 3 minutes, depending on the results of NORBIT’s preliminary/practice runs.  NORBIT 

requested starting with higher oil concentrations (longer durations) and finishing with lower concentrations 

(shorter duration).  At the end of the time, flow to the nozzles will cease, the nozzle assembly will be pulled 

from the water using the main bridge crane and the main bridge will move north until the WBMS is the 

correct distance from the plume.  NORBIT requested starting with the closest distance.  When NORBIT has 

gathered sufficient data at that position, the main bridge will move to the next position (2 m to 5 m, 5 m to 

10 m, etc.) and NORBIT will again collect data.  This will continue until NORBIT has acquired data at each 

position or until the plume has dispersed and is no longer detectable by NORBIT’s equipment. 
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The main bridge will reset to the same north/south position as before, but the nozzles will be deployed in the 

tank 7 m off the east wall.  Staggering the plumes will minimize the suspended oil from one test interfering 

with subsequent tests.  The next test will repeat the process described above.   

Once the data have been collected, the test will be repeated twice (three tests total) for each oil.  Once the 

sequence is complete, it will be repeated for the next oil in the matrix.  See Table B-1 for the proposed test 

matrix. 

Table-a B-1.  WBMS proposed test matrix. 

Day Run Oil Dispersant 
Nozzle 

size (inch) 
Pres Duration Surface Notes 

Mon 1-6 Diesel No 0.016 140psi 3 min calm 
Setup & 
preliminary 
(practice) runs 

Mon 7 Diesel No 0.016 140 psi 3 min calm Discrete plumes 

Tues 8 Diesel No 0.016 140 psi 3 min calm Discrete plumes 

Tues 9 Diesel No 0.016 140 psi 3 min calm Discrete plumes 

Tues 10 Anadarko No 0.016 140 psi 3 min calm Discrete plumes 

Wed 11 Anadarko No 0.016 140 psi 3 min calm Discrete plumes 

Wed 12 Anadarko No 0.016 140 psi 3 min calm Discrete plumes 

Wed 13 Anadarko 9500 0.016 140 psi 3 min calm Discrete plumes 

Thurs 14 Anadarko 9500 0.016 140 psi 3 min calm Discrete plumes 

Thurs 15 Anadarko 9500 0.016 140 psi 3 min calm Discrete plumes 

Thurs 16 Diesel 9500 0.016 140 psi 3 min calm Discrete plumes 

Fri 17 Diesel 9500 0.016 140 psi 3 min calm Discrete plumes 

Fri 18 Diesel 9500 0.016 140 psi 3 min calm Discrete plumes 

Fri 19 tbd tbd Variable Variable Variable calm Optional tests 

Fri n/a n/a n/a n/a n/a n/a n/a Derig and decon 

 

If time permits, an optional test may be conducted.  For this test, either a small stream of oil, or individual 

drops of oil, will be released near the bottom of the tank to simulate an underwater pipe that is leaking.  To 

dispense the oil, the nozzle manifold will be disconnected from the support shaft and the nozzles will be 

replaced with threaded plugs.  One of the plugs will be not fully tightened (approximately one turn past 

hand tight in preliminary tests) to allow pressurized oil to seep past the threads, enter the water column and 

rise.  The spacing between the oil drops is changed by varying the oil pressure.  The manifold assembly will 

be deployed into the tank and rest on the bottom of the tank.  The oil supply lines will be paid out along the 

bottom of the tank towards the walkway so they do not interfere with NORBIT’s data acquisition.  The 

support stalk will be temporarily positioned just over the manifold assembly on the bottom of the tank so 

NORBIT can pre-aim their sonar.  NORBIT will position their instrument approximately 6 ft (2 m) away 

from the oil supply manifold.  Once NORBIT’s instrument is aimed, the support stalk will be lifted from the 

water as in earlier tests.  The oil line will be pressurized; trace quantities of oil will seep past the plug 

threads, into the water column and rise.  NORBIT will attempt to detect either individual drops and/or a 

small stream of oil.  If they are successful, NORBIT”s instrument will be relocated to a distance 5m from 

the oil supply manifold and the test will be repeated.  The instrument will be moved farther from the oil to 

determine the maximum distance the instrument can detect the oil. 

NORBIT also requested a test of their vertically oriented instrument, which would either look up at a plume 

from underneath, or down at a plume.  If time permits, these may be attempted.  To maximize the time the 

plume remains suspended, and minimize interference between the plume, the oil dispensing nozzles and the 
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WBMS, only oil with dispersant will be used and it will be dispensed for a short burst, on the order of 5-10 

seconds. 

To provide a soft bottom and minimize bottom sonar reflection, an 8 ft x 8 ft (2.5 m x 2.5 m) aluminum tray 

filled with sand may be positioned on the bottom of the tank.  The spray nozzles would be positioned on top 

of the sand, with the oil lines arranged as in the oil stream test.  NORBIT’s equipment would be positioned 

directly above the sand tray and acquire data before, during, and after the release of oil.  It is likely the 

WBMS will become engulfed by the plume.  If possible, the scenario will be repeated, but this time the 

WBMS will be moved into position below the plume after it the plume is created and has risen sufficiently. 

Droplet and Plume Sizes 

The understanding was that the Anadarko Crude and diesel oils were chosen for their ability to stay 

suspended in the water column for about 2 minutes before moving to the surface.  This would provide a time 

long enough time for NORBIT to record test data.  NORBIT will only need a timespan of seconds to record 

data, but longer time gives the ability to record more data, or move the trolley while recording. 

Plume size is not very important but NORBIT suggested the plume to be bigger than one square foot. 

Concentration should be varied from test to test, starting with the higher concentration.  Concentration has 

been discussed with OHMSETT and further tests will provide a more specific suggestion before the tests 

starts. 

Advantages of Testing at Ohmsett  

 An important advantage of testing at Ohmsett is the ability to fairly easily, and in a short time, 

perform several tests, and by that gather a good amount of data. 

 Conditions are known, i.e., we will know the flow direction, temperatures, waves etc., and all tests 

can be performed in a very similar matter, which is important for test comparison. 

 Tests can be recreated if needed and oil concentrations can easily be changed; i.e., we can learn as 

we go and change or perform extra tests if needed. 

 Droplet sizes can be generated in a reliable manner with known variation of sizes. 

 Different oil types can be tested relatively easily. 

Disadvantages of Testing at Ohmsett 

 One important disadvantage is the enclosed space the test tank provides.  Reflections from side walls 

and/or bottom/surface disturb measurements.  This particularly becomes a problem when testing at 

longer distances, and will be a limiting factor for how far away from the oil tests can be performed. 

 The amount, type, and duration of contamination of the tank is unknown.  It is known that 

microspheres in hybrid dispersants stay in the water column for a very long time.   

 There is no natural “false” alarm generation possible in Ohmsett, e.g., fish, plankton, or other 

contaminations that would be present in the real scenarios 

Test Description 

The plan is for the plume to be released mid-water column, and the nozzle and equipment used for the 

release to be removed from the tank immediately after oil release in order to avoid any acoustic reflections 
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from the equipment.  It is expected that removing the equipment should only take about 10 seconds.  

NORBIT will use the nozzle to align sonar during the plume creation phase. 

Sonar will then record data as the plume is suspended and rises to the surface (or drops to the seafloor), 

utilizing the rotator to keep the sonar pointing in the right direction as well as creating the 3D raw dataset. 

The rotator can be controlled from the sonar survey computer, directly in the user interface of the sonar.  

The raw data files will have the angular information. 

The bridge can be moved during testing in order to measure different distances to the plume during the same 

release.  NORBIT suggests that the first test be performed at a short distance with the highest concentration; 

this will provide a reference point for future tests.  Following each test, equipment should be moved against 

the flow direction in order to test in clear water for every new plume release. 

Comments on Proposed Test Schedule 

NORBIT suggests that day 2 is used to focus on range test with various plume sizes.  Test to be performed 

with diesel and Anadarko.  It is desirable to establish a good understanding of the detectability of different 

volumes of oil at different ranges.  Investigations of different droplet size distributions in the plumes 

generated would be desirable; hopefully some of those tests can be conducted already day 1.  Tests with 

auto detection and false alarm will be incorporated during day 2 and 3. 

NORBIT suggests testing with dispersants is done with ranges from almost full dispersion to no dispersion, 

to cover the range. We suggest dispersant is added to the oil as it reaches the surface to see the effect of the 

dispersant when the oil enters the oil column again. 

It might also be beneficial to test dispersant alone to observe the effect of dispersant being applied to the 

surface.  It is anticipated that waves influences the detectability of the plumes, this can be investigated as 

well during these tests. The first days could be focused on “free” field tests and then later tests with surface 

movements can be added. 

B.1.2 WET Labs 

The information in this section is from USCG internal references MAR, Inc. (2013b), Twardoswki (2013), 

and Twardoswki and Zhang (2014). 

Pre-test Simulations 

Simulations were carried out to assess the factors determining initial oil concentrations and the temporal-

spatial dispersion of oil over time.  Full discussion of the simulations can be found in Twardoswki (2013).  

Conclusions from the simulation results are as follows:  

 For a 6 minute total time of release for the entire E-W slab of oil, 7.5 gal total oil release is optimal, 

as the peak initial concentration at the first measurement time would be approximately 22.5 ppm, 

very near the saturation point for the scattering sensors.  

 Residual dispersed oil in the tank will be a problem for all releases after the first release due to 

dispersion of the oil in the tank and the slow velocity of water movement down the tank. For the 

second release ~ 328 ft (100 m) from the south end of the tank, 5 hours after release of the plume 

~ 328 ft (100 m)  from the N end of the tank, background oil concentrations will be near the 
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detection limit at the site of release, but north of that location will be detectable background oil. As 

oil continues to disperse, substantial residual is expected the following day (up to 1 ppm). The 

background can be resolved before a subsequent release of oil, but the background will continue to 

disperse, so that concentration gradients will not be static.  

Equipment Set-up 

As the main bridge will be moved during the test, WET Labs will setup their equipment on the main bridge.  

110V, 220V, and 480V electrical power is available to them, as is a wireless internet connection should they 

need to upload/download data or software.  For most of the tests, the top of the WINDOW package will be 

suspended about 1.5 ft (0.46 m) below the air-water interface using the bridge platform crane, stabilized 

with guy wires.  The Ohmsett LISST device will be attached horizontally to the side of the WINDOW 

package.   

Planned Procedure 

Prior to the release of oil, the WINDOW will transit the entire length of the tank to acquire background 

levels.  Following this run, a 33 ft (~10 m) long oil plume will be created that is oriented west to east.  WET 

Labs has requested a 66 ft (~20 m) long plume (nearly the width of the tank) to aid in their modeling the 

plume.  During WINDOW preliminary/practice runs, a 66 ft (20 m) plume may be created and compared 

with a 33 ft (~10 m) plume.  At that time, USCG RDC representatives will determine which plume to use.   

To create the plume, the spray nozzle assembly will be fastened to a trolley on the north edge of the main 

bridge.  The spray nozzles will be set at a certain depth in the tank, likely near the bottom of the tank at a 

depth of ~ 7.3 ft (2.24 m).  The trolley will be staged near the west wall of the tank, with the bridge 

stationary while the plume is created.  As soon as oil flow begins, the trolley will be manually pulled from 

west to east while oil flowing through the submerged nozzles continues.  After transiting ~ 33 ft (10 m), oil 

flow to the nozzles will cease while the trolley continues east as far as possible and is staged out of the way. 

With an oil plume approximately 33 ft (10 m) long, oriented west to east, the main bridge will transit north 

approximately 16 ft (5 m) until it is over visually clean water.  WINDOW, which is mounted in a cage, will 

be lowered into the water on the northwest side of the main bridge, using the main bridge crane, to a depth 

selected by WET Labs’ personnel.  The main bridge will transit south at a speed chosen by WET Labs and 

their instruments will acquire data as it is towed through the plume.  Transiting will continue south until the 

instruments are in visually clean water.  The main bridge will come to a stop and standby while WET Labs 

personnel process and save the data. 

Only one data pass through a section of the plume will be made because instrumentation moving through 

the plume disturbs the plume.  After each pass, the instrumentation will be moved to allow it to pass through 

an undisturbed portion of the plume.  As the first pass is performed near the west wall, the crane boom will 

be extended to move the instrumentation east approximately 8 ft (2.5 m).  Once WET Labs is ready for 

another run, the main bridge will transit from south to north, again going from visually clean water, through 

the plume, and into clean water.  The runs will continue until the entire plume has been sampled, at 

approximately 8 ft (2.5 m) intervals, or until the plume has dissipated and is no longer detected by 

WINDOW.  WET Labs may also draw water samples, examine the sample using a WET Labs’ supplied 

bench top holographic microscope, and compare the results with their other data. 
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Once the data have been collected, the test will be repeated twice (three tests total) for each oil.  Once the 

sequence is complete, it will be repeated for the next oil in the matrix (Table B-2).  If time permits, a 

stationary plume will be created.  The nozzles will be positioned near the bottom of the tank, likely at a 

depth of 7.3 ft (2.24 m).  With the trolley and main bridge stationary, oil will flow through the nozzles for 

3 minutes.  When the oil flow stops, the main bridge will travel away from the plume into clear water so the 

nozzle assemble can be moved out of the way so that it does not disturb the plume.  WINDOW will be 

deployed into visually clean water and, using the main bridge, will transit through the plume to map it. 

Table-a B-2.  WINDOW proposed test matrix. 

Day Run Oil Dispersant Nozzle 
size (inch) 

Pres Duration Surface Notes 

Mon 1-3 Diesel No 0.016 140 psi 3 min calm 
Setup & 
preliminary 
(practice) runs 

Mon 4 Diesel No 0.016 140 psi 3 min calm West-East plume 

Mon 5 Diesel No 0.016 140 psi 3 min calm West-East plume 

Tues 6 Diesel No 0.016 140 psi 3 min calm West-East plume 

Tues 7 Anadarko No 0.016 140 psi 3 min calm West-East plume 

Tues 8 Anadarko No 0.016 140 psi 3 min calm West-East plume 

Wed 9 Anadarko No 0.016 140 psi 3 min calm West-East plume 

Wed 10 Anadarko No 0.016 140 psi 3 min calm West-East plume 

Wed 11 Anadarko 9500 0.016 140 psi 3 min calm West-East plume 

Thurs 12 Anadarko 9500 0.016 140 psi 3 min calm West-East plume 

Thurs 13 Diesel 9500 0.016 140 psi 3 min calm West-East plume 

Thurs 14 Diesel 9500 0.016 140 psi 3 min calm West-East plume 

Fri 15 Diesel 9500 0.016 140 psi 3 min calm West-East plume 

Fri 16 tbd tbd 0.016 140 psi 3 min calm Stationary plume 

Fri n/a n/a n/a n/a n/a n/a n/a Derig and decon 

 

Testing Recommendations  

Simulations show background oil in the tank will be present after the first release and will build up through 

the week based on the slow N-S velocity of water advection.  Background measurements should be taken 

before each oil release, but the background concentration gradients will not be static, as they will continue 

to diffuse.  Furthermore, the Ohmsett test plan starts with diesel, then Anadarko, then Anadarko plus 

dispersant, and then diesel plus dispersant, so that the final diesel plus dispersant test will include a residual 

mixture of oils from all the previous tests.  While this plan has interesting aspects, as WET Labs’ 

measurement and inversion algorithm should be able to individually discriminate the size distributions of 

each type of oil droplets in the mixture, these residual oils could significantly complicate the primary goal of 

retrieving the concentration, size distribution, and density of the oil that was just released as accurately as 

possible. 

WET Labs’ simulations assumed all oil droplets were neutrally buoyant and conservatively mixed as a 

passive tracer.  Oil droplets will have some buoyancy component, and there thus may be less oil over time 

than modeled as oil may collect at the surface.  Coatings of dispersant and/or particulate material on the 

droplets dampen buoyancy, providing conditions more closely aligned with simulations.  For oil droplets 

with appreciable buoyancy, large droplets rise faster than small droplets, so that size distributions can be 

expected to markedly change over time, providing a challenging test for our measurement and inversion 
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technique.  Furthermore, any oil reaching the surface will not be included in the total oil volume estimate, 

compromising the validation method.  

From the results of the simulation, WET Labs recommended 7.5 gal of oil be released at a constant rate 

across the entire E-W distance of the tank in approximately 6 minutes, requiring a 75 gph release rate.  This 

would provide optimal initial concentrations for the first set of measurements of about 23 ppm.  These 

parameters are not specified in Ohmsett’s test plan.  The plan does state that the oil will be dispersed across 

a 33 ft (~10 m) E-W distance instead of the full 66 ft (~20 m) width of the tank.  WET Labs requests the 66 

ft (~20 m) because interpolation and modeling of the oil plumes will be significantly easier if the release is 

equivalent over the full width of the tank. 

With respect to the validation method, the LISST provides an estimate of the size distribution for all 

particles, not just the oil droplets, so that resultant size distributions are useful as an upper bound for the 

suspensions of oil droplets.  WET Labs has also found persistent problems with fouling of the optical 

windows of the LISST, limiting its use as a validation method.    

B.2 Actual Procedures  

B.2.1 NORBIT 

The typical test for NORBIT’s WBMS was performed in the following manner (MAR, 2013c): 

 The distance from the sonar to the spray nozzle was predetermined and the spacing adjusted between 

each stalk (center to center of spray nozzle and sonar stalk).  Distances are documented within the 

Ohmsett test log. 

 The type of oil for use was loaded into the pump skid reservoir.  An initial and final reservoir depth 

was recorded to quantify the volume dispensed.  Analysis of the oil properties was performed and is 

provided within the analysis section of the Ohmsett test log. 

 The plume was created by dispensing the test oil for a specific amount of time at a specified depth 

below waterline.  Times varied based on the desired plume size. 

 NORBIT operated their sonar, viewed the plumes real-time, and captured the corresponding data 

(typically stationary). 

 Post-test, the Ohmsett main bridge was typically repositioned to a new area in the test basin to avoid 

a contaminated water column background. 

A total of sixty-nine tests were performed, sixty-five in which the sonar instrument recorded data and four in 

which LISST data was collected for plume property data comparison (tests #266-269).  The following 

parameters were varied for the series of tests performed:   

 The number of nozzles and orifice size was decided and installed in the spray manifold prior to 

each test.  The variation in orifice size and number of nozzles used allowed for varying oil droplet 

distributions and concentrations. 

 Two oil types were used: diesel and Anadarko Crude.  Each was used straight and after being 

premixed with COREXIT 9500 dispersant at a DOR of 1:20. 

 The distance from sonar to plume was varied from zero to 36 ft (11 m). 
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 The operational depth of the sonar ranged from near the test basin floor (approximately 7.5 ft 

(2.3 m) below the waterline) to one foot (0.3 m) below the surface.  The majority of the tests were 

performed at the 2-ft (0.6-m) depth. 

 Depth of plume creation – plumes were created primarily at two depths:  7.3 ft (2.2 m) and 4 ft 

(1.2 m) below the waterline. 

Additional information provided on Ohmsett’s data log spreadsheet includes:  volume dispensed, flow rate 

through nozzles, Ohmsett test number, nozzle configuration, oil type, date and time of day, and notes 

describing the test. 

Oil plume property data was collected using the LISST 100X for diesel oil, with COREXIT 9500 dispersant 

and without.  The plume was created using 3x0.020 inch nozzles and dispensing for one minute.  The LISST 

was then slowly passed through the plume at 0.2 kts repeatedly until the oil concentration diminished.  

Three forms of photo-video information were recorded:  still photos, underwater video, and video from the 

test basin observation windows.  Table B-3 gives the WBMS actual test matrix from Eriksen, et al. (2014). 

Table-a B-3.  WBMS actual test matrix. 

Test 

No 
Activity Notes 

2013 Dec 09, preparation of the sonar mount, initial testing 

1 
Preparation of the sonar mount. 

Mounting of the two sonars on the rotator. 

Decision was made to mount the sonar and the plume 
dispenser on the same bridge. 

2 

Update FW in both sonars to the: 

82004-devel68.rbf  

82004-devel68.rbf.md5 

uImage-228_2013-12-06_09-51-11.gz  

uImage-228_2013-12-06_09-51-11.gz.md5 

WBMSSetup_10191.77.635.9d22cbd.msi 

The FW has been changed later. 

 
Preliminary testing of the frequency response of 
the Diesel oil 

Wrong sonar setting, results not conclusive. 

2013 Dec 10, Oil Type Diesel, Nozzle 3x-0.6, discharge rate 0.2 l/min 

Sonar mid water depth 

3 
13_55_52, Range: 2m, 

3min spill 

Plume detected, 

Real-time detection: Throughout the spill and 1 minute after 
stop spill. Occasional detections for the next 2 min.  

Manual detection: Throughout the spill and 4minutes after 
stop spill 

4 

14_13_18, Range: 4m, 

Similar experiments: 
5,6,7 3min spill 

Real-time detection: N/A 

Manual detection: Throughout the spill and .5 minute after 
stop spill 

3b) 02_07_36, Range: 5m No Plume detected 

2013 Dec 10, Oil Type Diesel, Nozzle 3x-1 

Sonar mid water depth 

14 16_35_37, Range: 1m 

Real-time detection: Throughout the spill and 1minute after 
stop spill. 

Manual detection: Throughout the spill and 6minutes after 
stop spill. The reminisce of the leakage from pipe is 
observed as well. 



  

Detection of Oil in Water Column, Final Report: Detection Prototype Tests 
 

B-10 
UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public 

July 2014 

 

Table-a B-4.  WBMS actual test matrix (cont.). 

Test 

No 
Activity Notes 

13 16_25_55, Range: 2.5m, narrow beam 

Real-time detection: Throughout the 3 min spill and 20sec 
after stop spill. 

Manual detection: Throughout the spill and 1 minute after 
stop spill. 

11 16_14_44, Range: 2.5m, wide beam Plume detected, automatic detection OK. 

9 15_56_18, Range: 5m 
Real-time detection: Not suitable for automatic real-time 

detection. 

Manual detection: barely detected. 

8 15_45_29, Range: 7m 

Real-time detection: Not suitable for automatic real- 

time detection. 

Manual detection: barely detected. 

2013 Dec 10, Oil Type Diesel, Nozzle 1x-0.6, discharge rate 0.06 l/min 

Sonar mid water depth, Nozzle at 1ft from the bottom 

17 17_17_08, Range:1m, 5 sec discharge 
@100psi 

Plume detected, automatic detection OK. 

2013 Dec 10, Oil Type Anadarko, Nozzle 3x-0.6, discharge rate 0.2 l/min 

Sonar mid water depth @4ft, Nozzle at 2ft from the bottom 

20 19_21_16, Range: 3m, 

Real-time detection: Throughout the spill and at least 30 
sec after stop spill. 

Manual detection: Throughout the spill and 30 sec after 
stop spill (file ends). 

21 19_35_58, Range: 6m No detection due to strong reverberations. 

2013 Dec 11, Oil Type Diesel with Dispersant, Nozzle 3x-0.6, discharge rate 0.2 l/min 

Sonar at 2ft from bottom, applying shading to the sonar and anechoic mat, Nozzle at 2ft from the 
bottom Rotator fixed, positive pitch looking up toward the surface 

Firmware in Sonar: 82004-devel68.rbf, 82004-devel68.rbf.md5, uImage-226_2013-12-05_12-34-33.gz, uImage-
226_2013-12-05_12-34-33.gz.md5 

23 14_53_36, Range: 2m, 3min spill 

Plume detected, automatic detection OK. 

Manual detection: Throughout the spill and 180 sec after 
stop spill. 

Automatic detection: TBD, estimated to 2min after spill 

24 
15_14_14, Range: 2m, scanning vertically,  

3min spill 

Plume detected, automatic detection OK 

Manual detection: Throughout the spill and 90 sec after 
stop spill 

Automatic detection: TBD, estimated to 1min after spill. 

32 19_18_17, Range: 2m, scanning vertically 
Automatic detection and 3D visualization 

Manual detection: Throughout the spill and 120 sec after 
stop spill 

26 
15_36_14, Range: 6m, scanning vertically,  

3min spill 

Nozzles moved out of the way after spill, Plume detected. 

Manual detection: Throughout the spill and 180 sec after 
stop spill. 

Automatic detection: TBD, estimated to 1min after spill. 

Not so clear detection, possibility for false alarm during 
automatic detection. 
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Table-a B-5.  WBMS actual test matrix (cont.). 

Test 

No 
Activity Notes 

27 15_56_20, Range: 6m, static 

Plume detected, automatic detection OK. 

Manual detection: Throughout the spill and 60 sec after 
stop spill. 

Automatic detection: TBD, estimated difficult to detect. 

Not so clear detection, possibility for false alarm during 
automatic detection. 

30 16_54_04, Range: 7.5m, scanning vertically 

Some plume detected but it is believed that there are two 
phenomena creating two plumes, one with actual small 
droplets as expected and one resulting from a leakage 
from the pipe with high reflectivity and large droplets. 

That should be verified with the camera view. 

It is noticeable that at small pitch of e.g. 3deg. the plume 
has a distinct stripy character and appears in place where 
the nozzle has been. For larger pitch, e.g. 8 and looking 
into the surface the plume has less reflectivity and more 
cloudy character. 

Manual detection: Throughout the spill and 60 sec after 
stop spill. 

Not so clear detection, possibility for false alarm during 
automatic detection. 

28 16_19_39, Range: 8m, scanning vertically No detection. 

2013 Dec 12, Oil Type Anadarko with Dispersant, Nozzle 3x-1, discharge rate 0.3 l/min 

Sonar position has changed to 6ft from bottom, Nozzles at 2ft from the bottom but changed orientation of the 
manifold toward the sonar. 

Positive pitch looking up toward the surface 

37 
2013-12-12-15_47_27 

Range: 2m, scanning vertically, 3 min 

Manual detection: Throughout the spill and 20 sec 

after stop spill 

38 

2013-12-12-15_59_55 

Range: 2m, scanning vertically 
Moving nozzle out after spill, 3 
min. 

Manual detection: Throughout the spill and 40 sec 

after stop spill 

39 

2013-12-12-16_07_23 

Range: 2m 

Stationary, 3min spill – tilting manually similar 
test: 40, 30 sec. spill 

Real-time detection: Not performed due to manual tilting. 

Manual detection: Throughout the spill and 3 min after stop 
spill. 

For test 40 and 30sec spill similar result. 

Nozzles changed orientation of the manifold 90 deg parallel to the sonar, i.e. nozzles face sonar. 

41 

2013-12-12-16_54_11 

Range: 2m 

30sec spill 

Real-time detection: Throughout the spill and 1 min 

after the spill. 

Manual detection: Throughout the spill and 2 min after stop 
spill. 
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Table-a B-6.  WBMS actual test matrix (cont.). 

Test 

No 
Activity Notes 

42 

2013-12-12-17_01_13 

Range: 5m 

30 sec spill 

Real-time detection: Not performed. Plausible due tostrong 
signal and observed effect. 3D detection off line - pending 

Manual detection: Throughout the spill and 40sec after stop 
spill. 

Important NOTE: a clear proof for existence of the pipe 
reminiscence seen in previous tests. The real plume is 
separate phenomena than a leakage plume from the 
pipe. 

43 

2013-12-12-17_08_49 

Range: 7m 

30 sec spill 

Manual detection: Throughout the spill and 10sec after stop 
spill. 

Again, the two plumes are clearly visible: one generated by 
the nozzle and one by a leakage from the pipe. 

44 

2013-12-12-17_14_52 - background 

2013-12-12-17_16_32 – plume 

Range: 9m 

30 sec spill 

Manual detection: Throughout the spill and 20sec after stop 
spill. 

Two plumes visible, actual and leakage. 

47 

2013-12-12-17_37_30 - background 

2013-12-12-17_38_02 - plume 

Range: 12m 

30 sec spill 

Manual detection: Throughout the spill and 1min after stop 
spill. 

Two plumes visible, actual and leakage. 

3D visualization - pending 

2013 Dec 12, Oil Type Diesel alone, Nozzle 3x-1, discharge rate 0.3 l/min 

Sonar at 6 ft from bottom, Nozzles at 2ft from the bottom facing the sonar. 

Positive pitch looking up toward the surface 

51 

2013-12-12-19_42_45 

Range: 
1m 30 
sec. 
Spill 

Similar test: 52 

Manual detection: Throughout the spill and 1 min 10 sec 
after stop spill. 

Plume development visualization. 

55 

2013-12-12-21_10_07 

Range: 
1m 30 
sec. 
Spill 

Low bandwidth test for BSS purposes. 

55 

2013-12-12-21_19_40 

Range: 
1m 30 
sec. 
Spill 

Low bandwidth test for BSS purposes. AutoGain 

10kHz sweep. 

54 

Range:1m 

Frequency sweep 
test TP2 data 

High bandwidth data has been collected for further analysis 
of the frequency response of the plume. 

49 

2013-12-12-19_24_08, 

Range: 
5m 30 
sec. 
spill 

Manual detection: Throughout the spill and 1-2min after 
stop spill. 

3D visualization very clear and distinct. 
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Table-a B-7.  WBMS actual test matrix (cont.). 

Test 

No 
Activity Notes 

50 

2013-12-12-19_33_18 

Range: 
11m 
30 
sec. 
spill 

Manual detection: Throughout the spill and 30sec after stop 
spill. 

3D visualization very clear and distinct. 

2013 Dec 13, Oil Type Diesel with Dispersant, Nozzle 3x-1, discharge rate 0.3l/min 

Sonar 6ft from bottom, Nozzles at 2ft from the bottom facing the sonar. 

Positive pitch looking up toward the surface 

57 

2013-12-13-14_20_42 

Range: 
1m 30 
sec. 
Spill 

Manual detection: Throughout the spill and 1 min 5 sec 
after stop spill. 

Plume development visualization pending 

58 

2013-12-13-14_34_36 

Range: 
6m 30 
sec. 
Spill 

Manual detection: Throughout the spill and 3min after stop 
spill. 

Plume development visualization showing development 
and detection of 2x2m plume over 3min period 

60 
Range: 6m 

30 sec. Spill, FLS test 

Using bathy after FLS shows the plume was visible 6 min 
after stop spill. 

61 

2013-12-13-15_02_35 

Range: 
11m 
30 
sec. 
Spill 

Manual detection: Throughout the spill and 3 min after stop 
spill. 

Plume development visualization showing development 
and detection of 3x3m plume over 3 min period. 

64 
2013-12-13-16_04_35 

Range: 11:50m 

Long-range tests are not conclusive due to large 
reverberations and multipath in the tank. 

B.2.2  WET Labs 

In general, there were four different test scenarios (MAR, 2013c): 

 Stationary – the instrument package was above the oil spray manifold and positioned to sample the 

plumes as they rose, expanded, and dissipated. 

 Transect – the defined plume was created then the main bridge and instrumentation package 

traveled north and south repeatedly through the plume.  The instruments started in clean water (out 

of the plume), traveled through the plume until it reached clean water again then changed direction.  

The process was repeated until the plume concentration diminished. 

 Mapping – a 30 ft (~ 9.2 m) long plume was created across the test basin in the east-to-west 

direction.  While continually dispensing, the trolley nozzle manifold was guided at a constant rate 

along the trolley rail. Once the plume was created, the WINDOW instruments intersected the plume 

near the east end of the plume traveling north.  Once in clean water, the instruments were jogged 

toward the west 5 ft (~ 1.5 m) then traveled south intersecting the plume.  A minimum of five 

transects were performed. 
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 High Speed Tow – the instruments were towed at speeds up to 3.5 kts while passing through a 

plume.  

The parameters for each test are provided on the Ohmsett data log spreadsheet.  The information includes:  

the date and time, Ohmsett test number, nozzle configuration, oil type, dispensing rate, and volume 

dispensed.  Three forms of photo-video information were recorded:  still photos, underwater video, and 

video from the test basin observation windows.   

Table B-4 gives the WINDOW actual test matrix from Twardoswki and Zhang (2014). 
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Table-a B-8.  WINDOW actual test matrix. 

 



  

Detection of Oil in Water Column, Final Report: Detection Prototype Tests 
 

B-16 
 UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public 

July 2014 

 

 

Table B-4.  WINDOW actual test matrix (cont.). 
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APPENDIX C. ADDITIONAL RESULTS DISCUSSION 

C.1 NORBIT  

In addition to the results discussed in the body of the report, NORBIT conducted other calculations that 

could not be verified due to the limitations of the experimental set-up.   

Concentration Measurements 

Since one of the government requirements was to detect dispersed oil at levels of 0.5 ppb or lower, NORBIT 

tried to develop a way to measure the concentration of the plume over time using LISST.  They conducted 

four tests with the LISST for this purpose.  Unfortunately, during most of the scans the instrument was 

outside the main volume of the plume (see Figure C-1 for an example occurrence). 

 

Figure-a C-1.  Example of LISST taking measurements outside the plume. 

Example rough LISST results are shown in Figure C-2 for Test #266, diesel with dispersant (normalized 

results can be found in APPENDIX D).  The increasing “Row” numbers indicate increasing times (see 

Table C-1).  Assuming speed of 0.18 kts (0.1 m/s) and the time stamp in the data files, NORBIT derived the 

total concentration over the traveled distance as shown in Figure C-3. 

They tried to calculate the ppm using the shape and dimensions of the plume and the volume of oil released.  

There was a big discrepancy between these numbers and LISST so they used the LISST number of 

~ 100 ppm average concentration 30 seconds after the spill and estimated minimal detections based on that.  

Table C-2 shows the ppm estimates added to their summary results (shown in Table 1 in the body of the 

report). 

Plume 

LISST 



  

Detection of Oil in Water Column, Final Report: Detection Prototype Tests 
 

C-2 
UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public 

July 2014 

 

 

Figure-a C-2.  LISST results for diesel with dispersant (Test #266). 

Table-a C-1.  Legend for Test #266 LISST results 

Row number Time from start (in minutes) 

102 0.0 

126 0.5 

171 1.5 

218 3.0 

284 4.5 

402 7.5 

530 10.5 

 

 

Figure C-1.  Concentration vs distance for diesel with dispersant. 
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Table-a C-2.  Summary of WBMS results (with ppm estimate). 

Oil type, nozzle 
configuration  

(#xsize (inch)) and 
spill duration   

 Test no.   
Spill 

range 
(m) 

 Automatic 
detection duration 

[sec]  
N/A – not performed  
N/D – no Detection   

 Supervised 
detection duration 

after spill stops [sec]  
N/A – not performed  
N/D – no Detection   

 Estimated 
minimal 

concentration 
for detection 

[parts per 
million (ppm)]   

Diesel, 3x0.016, 3 min   

 3    2    60    120    20   

 4, 5, 6    4    N/A    300    10   

 3b  5    N/A    N/D     

Diesel, 3x0.020, 3 min   

 14    1    60    360    10   

 13    2.5    20    60    80   

 9    5    N/D    5    160   

 8    7    N/D    1    160   

Diesel, 3x0.020, 30 
sec   

 51    1    N/A    70    80   

 49    5    N/A    60    80   

 50    11    N/A    30    100   

 Anadarko, 3x0.016,   
3 min   

 20    3    30    30    100   

 21    6    N/D    N/D     

Diesel + dispersant, 
3x0.016,  3 min   

 23, 24, 32    2    N/A    120    20   

 26, 27    6    N/A    60    80   

 30    7.5    N/A    60    80   

 28    8    N/D    N/D     

Diesel + dispersant,  
3x0.020, 30 sec   

 57    1    N/A    65    80   

 58    6    N/A    300    10   

 61    11    N/A    180    20   

Anadarko + 
dispersant, 
3x0.020, 
3 min   

 37, 38    2    N/A    20    120   

Anadarko + 
dispersant, 
3x0.020,  
30 sec, nozzle 
change   

 41    2    N/A    180    20   

 42    5    N/A    40    70   

 43    7    N/A    10    150   

 44    9    N/A    20    120   

 47    12    N/A    60    80   

 

The summary of the plume detection listed in Table C-2 is graphically represented in Figures C-4 (without 

dispersant) and C-5 (with dispersant).  According to NORBIT, the detection capabilities outlined here 

should be treated with some reservations.  The detection conditions changed throughout the test; the sonar 

and nozzles were repositioned several times to compensate for the strong multipathing in the tank and find a 

suitable location.     
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Figure C-2.  WBMS detection with no dispersant. 

 

Figure C-3.  WBMS detection with dispersant. 

Frequency Response of the Plume 

In order to determine droplet sizes, NORBIT tried to look for resonances in the backscatter from the plume.  

The theory for whether oil droplets will have any resonance phenomena is split, and they assumed that any 

resonance is only possible if there is gas involved.  Even if there are no resonances in the droplets, 

interference phenomena may occur due to the distance between the droplets, combining that information 

with the backscattering strength could give an indication of the droplet size. 

There were several attempts to investigate this theory.  The frequency analysis at the chosen frequencies do 

not show any significant resonances or other nonlinear effects.  This may indicate either that such 

phenomena do not occur or that the selection of frequencies did not correspond to the resonant frequencies 

of the droplets.  Results were somewhat inconclusive, but droplet sized distribution is not expected to be 

possible with a system operating in this frequency band.   

Table C-3 gives NORBIT’s report of their compliance with the BAA requirements. 
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Table-a C-3.  NORBIT requirements matrix. 

Capability WBMS 

1.  Provides results in near real time 
(less than 1 hour) 

In setups with full bandwidth to the surface it will be real time data, in 
situations with storage on e.g. gliders data must be retrieved and 
processed. During trials real time detection of plumes were conducted, 
also automatic detection of plumes were observed in real time. All 3D 
visualizations were done in post processing, further work to improve 
automatic detection utilizing 3D information is still pending 
implementation and was not shown in real time. 

2.  Calibrates easily for different oils 
No calibration is needed other than a secondary verification of the oil 
as the sonar is an indirect attenuation, density measurement.  Minimal 
difference between different oil types were observed during the trials. 

3.  Detects oil at depths up to 200 
feet 

No limitations, the technology will work from surface to 4000 m water 
depth, performance depends on the reflectivity from the plume. 

4.  Works in currents or tow speeds 
up to 5 knots 

Acoustic processing will not be affected by currents up to 5 kt. 

5.  Reports minimal false alarms 

A verification of the plume is needed and the false alarm should be 0, if 
the acoustic tool is used without verification there will naturally be a 
risk of detecting other substances with different impedances.  The BAA 
calls for a volumetric measurement, single fish targets should not 
particularly affect it, and typically fish schools have different reflectivity 
over time (When fish turns), which a plume does not have. Significant 
experience with 3D processing have been gained and hardware is in 
production to achieve a good classification/alarm generation with 
minimal false alarms. Still the high probability plumes must we verified 
by a point sensor, but it is expected that many of the typical false alarm 
scatters in the water column can be successfully rejected utilizing 
acoustic means. 

6.  Allows smooth data flow from 
field to command center 

Full data from several sensors have been demonstrated over a single 
100MB/S link so many systems will be possible with conventional 
technologies 

7.  Detects dispersed oil at levels of 
0.5 ppb or lower 

The sensor will be able to detect dispersed crude oil, during test we 
successfully detected 20 ppm; probably 0.5 ppb is not realistic.  
Further test on various concentrations is needed in order to clarify this. 
Significant uncertainty on concentration levels were observed during 
the test period. Typically oil will tend to collect in bigger balls and start 
to mix into the ocean layers. Therefore the results will to some extend 
depend on when, in the dispersant cycle, the sonar visualized the 
water volume. 

8.  Sweeps an area of water column 
3 ft by 3 ft 

Multibeam technology can sweep a significantly bigger area; tens of 
meters are realistic.  If there are dispersed oil plumes, it is anticipated 
that plumes can be detected in up to 50-100m from the sensor 
depending of size and composition. Small droplets will naturally be 
detectable at much shorter ranges. 

9.  Provides digital readout or 
measured values and digitally logs 
field data 

Visualization on the user interface is done so it is geometrical corrected 
thus a user gets fast visualization of the plume structure directly on the 
screen. Automatic detection have been shown directly in the user 
interface. All raw data can be stored for further analysis and data 
representation e.g. 3D visualization 

10.  Is field rugged 
The system is designed as a field rugged system for general offshore 
utilization, system have successfully been integrated on many different 
platforms. 
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Table C-3.  NORBIT requirements matrix (cont.). 

Capability WBMS 

11.  Is portable 

One of the main advantages of this system is its portability; wet end 
weighs less than 2 kg. Battery operation from a battery box of less than 
4kg for a workday. Wireless transfer of data to computer or storage in 
head or battery box 

12.  Compatible with fresh and salt 
water 

Designed for both fresh and salt water 

13.  Determine droplet size, density 
(specific gravity) and/or 
kinematic viscosity 

At close ranges the droplet can be characterized (Within the 3 feet), at 
longer ranges with many small droplets (Down to a few mm) the 
average backscatter will be measured not the individual droplets. When 
droplets gets significantly smaller than the wavelength (Approximately 
4mm) the test results in this report shows we cannot reliably determine 
droplet sizes. Further work is needed in order to answer if this is 
possible at all, probably a much wider frequency is need in order to 
determine the very small droplet sizes tested during this project 

14.  Adapts to various depths (deep 
vs. shallow) 

No difference from an acoustic standpoint 

15.  Operates from vessel in variety 
of conditions 

Sonar operates in a variety of weather conditions, it is clearly an 
advantage to have the sonar mounted on a platform which is as stable 
as possible e.g. AUV or ROV's. Norbit have solutions to correct for 
vessel introduced motion, this is currently not tested with the oil 
detection functionality but is certainly technical feasible. 

16.  Deploys quickly and easily 
NORBIT sonar is very compact and designed for easy and quick 
deployment; actual deployment time will vary depending on the 
platform. 

C.2 WET Labs 

Validation Methods 

Several forms of possible validation were attempted for the Ohmsett tests.  Plume characteristic data were 

recorded using Ohmsett’s Sequoia LISST 100X multi-parameter system for in-situ observations of particle 

size distribution and volume concentration.  It also recorded the optical transmission, pressure, and 

temperature.  Ohmsett personnel provided raw LISST data as well as graphs.  The LISST sampling window 

was located approximately 8 inches (0.2 m) from the WET Labs sensors, oriented horizontally and attached 

to the same structural frame through the series of tests.     

In addition to the LISSST instrument used by Ohmsett, WET Labs employed a bench top digital 

holographic microscope (Figure C-6, left) for validating undisturbed oil droplet size distributions and 

concentrations using image particle analysis techniques such as watershedding and thresholding.  The 

MATLAB Image Analysis toolbox was used for this processing.  A 2-D representation of a holographic 

image of an oil droplet suspension is shown in Figure C-12, right.  This image is constructed by combining 

several hundred imaged planes within the 3-D holographic image.  Image analysis software automatically 

provides sizes, particle contrast (related to particle density), and aspect ratio for every particle imaged.  

Image width is about 120 m.  Oil particles are nominally spherical with aspect ratio 1, so that their specific 

distributions may be approximated even when mixed within a complex aquatic particle assemblage, as the 

vast majority of naturally occurring particles are nonspherical.  Several images can be averaged to obtain 

excellent counting statistics, even for relatively large particles (>100 m).  
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Figure-a C-6. Digital holographic microscope and sample image. 

Additional Results 

In addition to the concentration plots discussed in the body of the report, WET Labs also produced:  

 Density plots showing the volume scattering function at 60 degrees measured by the sensor (blue 

line) and the calculated density (green and red lines) (see Figure C-7). The green line is the raw 

calculation of density, based on every sensor data point. The red line shows the results of a running 

10-point median filter applied to the green line to smooth statistically insignificant spiking and allow 

for a more meaningful result. 

 Volume concentration (particle volume in L, per L sample volume, per m size bin) and number 

size distribution (PSD; particle number, per m
-3

 sample volume, per m size bin), calculated through 

the inversion technique at specific times corresponding to the large blue points in the volume 

scattering function (see Figure C-8). 

 Number size distribution (for some of the experiments) analyzed by the digital holographic 

microscope (DHM) of the discrete water sample taken after the oil release (see Figure C-9). 

Derived densities for diesel and Anadarko Crude were consistently around 0.83 kg/L and 0.87 kg/L, 

respectively, consistent with published values.  In some cases inversion results were not entirely consistent 

with expectations or similar experiments, which may be an indication of air bubbles or some other 

confounding factor.  In some cases towards the end of the testing, when residual background oil was present 

from previous experiments, densities would switch between the two different types.  While a background 

measurement was made at the starting location, this did not resolve the edges of the experimental area, 

including instances where the current plume mixed with previous releases within the tank.  This resulted in 

measurements of different co-occurring oil masses with different respective concentrations and densities.  

Volume concentration distributions of oil droplets typically peaked in the range of 20 to 100 m, but in 

some cases bimodal distributions were observed with an additional subfraction of relatively small droplets 

peaking around 7-8 m.  Number size distributions, also known as particle size distributions (PSDs), 

typically peaked in the 5-10 m range.  These distributions were in general agreement with distributions 

collected with the DHM.  Note that like the LISST, DHM distributions represent all particles, not just oil 

droplets, so that continued increases in PSDs with decreasing particle size is common, as these particles are 

naturally abundant in very high concentrations and can readily pass through filtration systems.  Note also 

that the unit conversion between the DHM PSDs and the PSDs obtained from scattering inversions is 10
6
. 
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In some cases, PSDs seemed to shift to smaller droplets over time, likely reflecting that larger, more 

buoyant droplets were rising to the surface at a faster rate. In other cases, however, PSDs seemed to shift to 

larger droplets over time, which may be an indication of droplet coalescence over time and/or droplets 

scavenging other particulate material from the water column. 

 

Figure-a C-7.  Example volume scattering function and derived oil density for WINDOW transect 

experiments. 

 

Figure-a C-8.  Example volume concentration and number size distributions at chosen times. 

(corresponding with the large blue points in Figure C-7). 



  

Detection of Oil in Water Column, Final Report: Detection Prototype Tests 
 

C-9 
UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public 

July 2014 

 

 

Figure-a C-9.  Example of number size distribution analyzed with the DHM system. 

The last measurement taken (Figure C-10) showed a strong signal pulse traversing through the plume at a 

speed of 3.5 knots. This was the fastest speed attempted during the testing because there was concern about 

the stability of the package suspended with wires and about the cabling on the package, which can be 

vulnerable to failure if exposed to substantial stress from passing water. 

 

Figure-a C-10.  Oil concentration as a function of time for high-speed run.  

The ability to demonstrate other capabilities developed for WINDOW such as spatial mapping of plumes in 

Google Earth through distributed kmz files was relatively limited.  Figure C-11 shows an example of these 

results.  The study area in the tank was small enough that the wander on the GPS, up to 33 ft (10 m), 

provided significant bias error in the maps.  In some cases where the platform moved significantly, mapping 

was more useful (Figure C-12).  Table C-4 gives WET Labs’ report of their compliance with the BAA 

requirements. 
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Figure-a C-11.  Mapped oil concentration in Google Earth with GPS wander.  

 

Figure-a C-12.  Mapped oil concentration in Google Earth when measurements covered significant  

portions of the tank. 



  

Detection of Oil in Water Column, Final Report: Detection Prototype Tests 
 

C-11 
UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public 

July 2014 

 

Table-a C-4.  WET Labs requirements matrix. 

Capability WBMS 

1.  Provides results in near 
real time (less than 1 hour) 

Results were provided in < 1 min  

2.  Calibrates easily for 
different oils 

 The only calibration that is required is standard factory calibration to 
absolute volume scattering function units (m

-1
 sr

-1
, where “sr” is the SI 

unit for steradian) once per year. 

 Calibration of 530 nm ECOs has shown to be stable within 2% over all 
natural environmental conditions (0-40 

o
C) for 1 year. 

 No on-site calibration is needed – a background measurement in 
unpolluted water is desirable for implementing the “background 
subtraction” inversion method  

 Sensors can be retuned for different oil detection sensitivity during 
annual factory calibration. 

3.  Works in currents or tow 
speeds up to 5 knots 

 Sensors have been towed at speeds greater than 5 knots previously.  

 Sensors were towed at up to 3.5 knots at Ohmsett with no adverse 
effects to data quality. 

4.  Reports minimal false 
alarms 

 Inversion algorithm keys off unique angular scattering shapes 
associated with spherical oil droplets that are not present in particle 
types seen in natural waters; this makes the algorithm very sensitive 
and uniquely specific to the presence of oil droplets.  

 There was no evidence of reports of false positives or false negatives 
during Ohmsett testing. 

5.  Detects dispersed crude 
oil  

 After gain modifications to the scattering sensors for the Ohmsett 
experiment, our detection range was about 80 ppb to 80 ppm; 
detection range and sensitivity are both a function of gain settings, 
which can be tuned for specific applications  

 The detection limit of the ECO can be enhanced to at least 5 ppb and 
perhaps as low as 1 ppb simply by increasing the gain of the detector, 
which has been done in the past for measurements in very clear 
oceanic environments  
o Note that increasing gain results in a decreased ability to resolve 

high concentrations of oil (greater than about 50 ppm) because 
sensor saturation will occur at lower concentrations. 

o One possibility would be to use combinations of sensors with 
different gains or a gain switch to resolve a wider dynamic range 

6.  Sweeps an area of water 
column 3 ft by 3 ft 

 Sample volume is on the order of mL, but towing the sensors provided 
3D resolution of oil concentrations throughout the water column  

 Vertical variability in hydrography is typically 1-2 orders of magnitude 
greater than horizontal variability in the coastal ocean, so that 
extrapolation of a point measurement to 3 ft in the horizontal dimension 
may be assumed with excellent accuracy.  

7.  Provides digital readout or 
measured values and 
digitally logs field data 

Digital results were demonstrated with readouts and maps in the operator 
GUI as well as maps disseminated to interested parties via smart phone or 
similar wireless devices. 

8.  Is field rugged 

 Ruggedness of ECO sensors and other sensors in the proposed 
system have already been proven through field work for more than a 
decade and was also demonstrated at Ohmsett.  

 The ECO is remarkably robust, with a fully potted head, 2-3 percent 
drift per year, and no apparent environmental sensitivity in the 
temperature range of 0-40 oC.  
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Table C-4.  WET Labs requirements matrix (cont.). 

Capability WBMS 

9.  Is portable 

 Ohmsett demonstration showed the in-water sensor package is < 20 
lbs and field deployable by a single operator.  

 The preferred commercial embodiment of the sensor package is a 
completely integrated sensor system with no individual sensor cables; 
such a sensor would be even more compact.  

10.  Determines droplet size, 
density (specific gravity) 
and/or kinematic viscosity 

 Droplet size quantification with 1-
with better than 2 percent accuracy, was demonstrated in lab work.  

 At Ohmsett, droplet size distributions from the in-water sensor were 
consistent with size distributions measured with a bench top digital 
holographic microscope, even though the samples for bench top 
analysis were discretely collected.  

 At Ohmsett, derived oil densities were consistent with published 
values.  

 With estimates of mass concentration and density, oil recovery 
capability amounts for different recovery systems may be computed.  

11.  Deploys quickly and 
easily 

Already proven with proposed technology; demonstrated at Ohmsett. 

12.  Grabs water samples for 
further laboratory testing 

We collected samples for laboratory holographic imaging validation using 
hydrophilic tubing; the sensor system itself does not collect discrete samples. 
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APPENDIX D. LISST NORMALIZED GRAPHS 

This is the collection of all the LISST normalized plots created by the Ohmsett team.  They show what the 

instruments measured in the submerged oil plume at certain times.  Generally, it is noted that the 

concentration significantly attenuates within a few minutes.  Tests #266 to #269 capture oil plumes released 

during NORBIT’s test trials while Tests #103 to #117 represent oil plumes released during WET Lab 

WINDOW’s test trials. 

 

Figure-a D-1.  WBMS Test #266 average particle size distribution. 
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Figure-a D-2.  WBMS Test #267 average particle size distribution. 

 

Figure-a D-3.  WBMS Test #268 average particle size distribution. 
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Figure-a D-4.  WBMS Test #269 average particle size distribution. 

 

Figure-a D-5.  WINDOW Test #103 average particle size distribution. 
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Figure-a D-6.  WINDOW Test #104 average particle size distribution. 

 

Figure-a D-7.  WINDOW Test #105 average particle size distribution. 
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Figure-a D-8.  WINDOW Test #106 average particle size distribution. 

 

Figure-a D-9.  WINDOW Test #108 average particle size distribution. 
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Figure-a D-10.  WINDOW Test #109 average particle size distribution. 

 

Figure-a D-11.  WINDOW Test #110 average particle size distribution. 
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Figure-a D-12.  WINDOW Test #111 average particle size distribution. 

 

Figure-a D-13.  WINDOW Test #113 average particle size distribution. 



  

Detection of Oil in Water Column, Final Report: Detection Prototype Tests 
 

D-8 
UNCLAS//Public | CG-926 RDC | M. Fitzpatrick, et al.| Public 

July 2014 

 

 

Figure-a D-14.  WINDOW Test #114 average particle size distribution. 

 

Figure-a D-15.  WINDOW Test #115 average particle size distribution. 
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Figure-a D-16.  WINDOW Test #116 average particle size distribution. 

 

Figure-a D-17.  WINDOW Test #117 average particle size distribution. 
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