The California Fish and Wildlife Journal is published quarterly by the California Department of Fish and Wildlife. It is a journal devoted to the conservation and understanding of the flora and fauna of California and surrounding areas. If its contents are reproduced elsewhere, the authors and the California Department of Fish and Wildlife would appreciate being acknowledged.

Please direct correspondence to:
Ange Darnell Baker
Editor-in-Chief
California Fish and Wildlife
Angela.Baker@wildlife.ca.gov

Inquiries regarding the reprinting of articles and publishing in future issues can be directed to the Subscription Manager via email at publications@wildlife.ca.gov.

Alternate communication format is available upon request. If reasonable accommodation is needed, call 916-322-8911 or the California Relay (Telephone) Service for the deaf or hearing-impaired from TDD phones at 800-735-2929.
Contents

Notes from the Editor
ANGE DARNELL BAKER ... 6

Notes on reproduction of the Sierra Nevada yellow-legged frog from California
STEPHEN R. GOLDBERG... 7

Planning shoreline infrastructure projects at Redondo Beach, California to
avoid impacting a Giant Sea Bass nursery site
MICHAEL C. COUFFER.. 11

San Francisco Estuary mysid abundance in the fall, and the potential for
competitive advantage of Hyperacanthomysis longirostris over Neomysis mercedis
MICHELLLE AVILA AND ROSEMARY HARTMAN 19

Occurrences of Steelhead Trout (Oncorhynchus mykiss) in southern California,
1994-2018
ROSI DAGIT, MICHAEL T. BOOTH, MAURICIO GOMEZ,
TIMOTHY HOWEY, STEVE HOWARD, SCOTT D. LEWIS,
SANDRA JACOBSON, MARY LARSON, DANA MCCANNE,
AND TIMOTHY H. ROBINSON... 39

Reported vessel strike as a source of mortality of White Sturgeon in
San Francisco Bay
NICHOLAS J. DEMETRAS, BRENNAN A. HELWIG, AND
ALEXANDER S. MCHURON.. 59

A retrospective look at mountain lion populations in California (1906-2018)
JUSTIN A. DELLINGER AND STEVEN G. TORRES............................. 66

Book Review—Wildlife Ecology and Management in Mexico 86

Information for authors.. 88
Notes from the Editor

Our first issue of 2020 is an exciting one—we are debuting our new title and redesigned cover! The issue is also exciting because of the number of articles included; for the past several years, the Journal has averaged about three articles per issue. However, due to some outreach efforts for the Journal last year, we have substantially increased our submissions, which means more articles in each issue—seven in this one—a trend that we hope to continue!

Our editorial team continues to grow as needed for the increased level of submissions to the Journal. Kristin Denryter is the Coordinator for the Elk and Pronghorn Antelope Program in CDFW’s Wildlife Branch in Sacramento. Before joining CDFW, she earned a BS in Biology from Madonna University, an MS in Biology from Northern Michigan University, and a PhD at the University of Northern British Columbia. Kristin’s research has focused on foraging, nutrition, and energetics of ungulates, including woodland caribou in Canada and Sierra Nevada bighorn sheep in the Eastern Sierra of California, but she also has collaborated on projects involving mule deer, elk, and moose. In addition to her regular work duties and research, Kristin currently serves as Chair of the Nutritional Ecology Working Group in The Wildlife Society. We are happy to have Kristin join our talented team of Associate Editors!

Other exciting news—the first three of the Journal’s Special Issues will be coming out this year! We have explored the topics of the impacts of fire, cannabis, and human recreation on fish and wildlife resources. Look for those in spring and summer of this year. We will also be asking for submissions for additional special issues later this year—including one on CESA-listed species. If you would like to find out more about our Special Issues, please see our webpage: https://www.wildlife.ca.gov/Publications/Journal/Special-Issues.

Ange Darnell Baker, PhD
Editor-in-Chief
California Fish and Wildlife Journal
Notes on reproduction of the Sierra Nevada yellow-legged frog from California

STEPHEN R. GOLDBERG*

Whittier College, Department of Biology, Whittier, CA 90608, USA

*Corresponding Author: sgoldberg@whittier.edu

Key words: atresia, oocytes, Rana sierrae, Sierra Nevada yellow-legged frog, spawning, spermiogenesis

Sierra Nevada yellow-legged frog (Rana sierrae Camp, 1917) is known from the northern and central Sierra Nevada of California (Vredenburg et al. 2007) where it frequents elevations of ca. 2,500-3,500 m (Dodd 2013). It is mainly diurnal and breeds between late May to July (Stebbins and McGinnis 2012). It is listed as threatened by the California Fish and Game Commission under the California Endangered Species Act (CNDDB 2019), endangered by the U.S. Fish and Wildlife Service (ECOS 2019) and imperiled by NatureServe Explorer (2019). The reproductive biology of a species is an important part of its natural history and such information is crucial in conservation plans (see Bury 2006). In this paper I add information on reproduction of R. sierrae from a histological examination of gonadal tissues. The use of museum collections for obtaining reproductive data avoids euthanizing specimens and obviates the need for a collecting permit by state and federal authorities.

A sample of 32 R. sierrae from California collected 1948 to 1972 (Appendix) consisting of 6 adult males (mean snout-vent length, SVL = 60.3 mm ± 3.3 SD, range = 54–63 mm), 22 adult females (mean SVL = 70.0 mm ± 7.1 SD, range = 60–86 mm), 1 unsexed subadult (SVL = 38 mm) and 3 subadult females (SVLs 46, 50, 58 mm) from the herpetology collection of the Natural History Museum of Los Angeles County (LACM), Los Angeles, California, USA was examined. I examined frogs from Madera and Mono counties (Clade 2) and Inyo and Mariposa counties (Clade 3) as designated by Vredenburg et al. (2007). I tested for differences between adult male and female SVLs using an unpaired t-test (Instat, vers. 3.0b, Graphpad Software, San Diego, CA, USA).

A small incision was made in the lower part of the abdomen, and the left testis was removed from males and a piece of the left ovary from females. I embedded gonads in paraffin, and sections were cut at 5 µm and stained with Harris hematoxylin followed by eosin counterstain (Presnell and Schreibman 1997). Histology slides were deposited at LACM.

The testicular morphology of R. sierrae is similar to that of previously studied anurans as detailed in Ogierska and Bartmanska (2009a). Within the seminiferous tubules, spermatogenesis occurs in cysts which are closed until the late spermatid stage is reached; cysts then open and differentiating sperm reach the lumina of the seminiferous tubules (Ogielska and Bartmanska 2009a). A ring of germinal cysts is located on the inner periphery of each
All 6 *R. sierrae* males in my sample were undergoing spermiogenesis. By month these were: June (N = 1), July (N = 1), August (N = 4). The smallest mature male *R. sierrae* (spermiogenesis) measured 54 mm SVL and was from June (LACM 13565).

The mean SVL of *R. sierrae* females was significantly larger than that of males (*t* = 3.2, df = 26, *P* = 0.004). The ovaries of *R. sierrae* are typical of other anurans in being paired organs lying on the ventral sides of the kidneys. In adults the ovaries are filled with diplotene oocytes in various stages of development (Ogielska and Bartmanska 2009b). Mature oocytes are filled with yolk droplets; the surrounding layer of follicular cells is thinly stretched. Monthly stages in the ovarian cycle of *R. sierrae* are in Table 1. Two stages were present (1) “Ready to spawn” in which mature oocytes predominated; (2) “Not in spawning condition” in which previtellogenic oocytes predominated. There were nine females in the “not in spawning condition” in Table 1. Two of them, LACM 91271 (June) and LACM 67392 (July) contained early diplotene oocytes and partial yolk filled oocytes. The yolkng oocytes in these two females were similar to Secondary Growth Stage 5 “progressive accumulation of yolk platelets” as reported by Uribe Aranzábal (2011). It is not known when or if these two females would have reached spawning condition. The smallest mature female (LACM 13568) measured 63 mm SVL, was from July, and contained mature yolk-filled oocytes. Three slightly smaller nonreproductive females, two of which measured 60 mm in SVL (LACM 13603, 13610) and a third LACM 67392, (SVL = 62 mm), the only one to contain partially yolking oocytes (see above), were arbitrarily considered as adults. Three yet smaller nonreproductive females (LACM 13613, 13614, 1741) SVLs = 46, 58, 50 mm, respectively, were considered to be subadults. One smaller unsexed *R. sierrae*, (LACM 13572, 38 SVL mm) was also considered as a subadult. I cannot speculate as to when any of these small *R. sierrae* would have attained adult size.

Atretic follicles were observed in 13 of 22 (59%) of my mature female sample. Atresia is a widespread process occurring in the ovaries of all vertebrates (Uribe Aranzábal 2009). It is common in the amphibian ovary (Saidapur 1978) and is the spontaneous digestion of a diplotene oocyte by its own hypertrophied and phagocytic granulosa cells which invade the follicle and eventually degenerate after accumulating dark pigment (Ogielska and Bartmanska 2009b). See Saidapur and Nadkarni (1973) and Ogielska et al. (2010) for a detailed description of stages of atresia in the frog ovary. Atresia plays an important role in fecundity by influencing numbers of ovulated oocytes (Uribe Aranzábal 2011).

In conclusion, my data on females indicates *R. sierrae* is in spawning condition during July and August. Whether *R. sierrae* females complete spawning in late summer or enter hibernation while containing mature oocytes warrants additional study.

ACKNOWLEDGMENT

I thank G. B. Pauly (LACM) for permission to examine the *R. sierrae*.

LITERATURE CITED

Submitted 1 July 2019
Accepted 28 August 2019
Associate Editor was L. Patterson
APPENDIX

Thirty–two *R. sierra* from California (by county) examined from the herpetology collection of the Natural History Museum of Los Angeles County (LACM), Los Angeles, California, USA.

Inyo: LACM 67391–67393; **Madera**: 1966–1973, 13568, 13572, 26707, 91271, 91272; **Mariposa**: LACM 13599–13606, 13609–13614; **Mono**: 1741, 13565.

<table>
<thead>
<tr>
<th>Month</th>
<th>N</th>
<th>Ready to spawn</th>
<th>Not in spawning condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>June</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>July</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>August</td>
<td>16</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 1. Two monthly stages in the spawning cycle of 22 adult female *R. sierra* from California.
Planning shoreline infrastructure projects at Redondo Beach, California to avoid impacting a Giant Sea Bass nursery site

MICHAEL C. COUFFER*

Grey Owl Biological Consulting, Orange County, California

Present address: 716 Marguerite Avenue, Corona del Mar, California 92625, USA

*Corresponding Author: mikecouffer@gmail.com

Key Words: Beach rehabilitation, giant sea bass, nursery site, Stereolepis gigas

Adult Giant Sea Bass (Stereolepis gigas) (GSB) are the largest bony fish inhabiting California’s near-shore habitats (Love 2011). They were historically recorded at over 250 kg (551 lbs) (Domeier 2001) and have been dated to live up to 76 years of age (Hawk and Allen 2014). House et al. (2016) measured a fish by laser rangefinder at 2.75 m (9 ft) total length and estimated its weight at 381 kg (839 lbs). They range from Humboldt Bay, California to Oaxaca, Mexico, including the Gulf of California (Kells et al. 2016). After a population crash in the early 1900s, they were listed by the International Union for the Conservation of Nature (IUCN) as a Critically-Endangered species (Musick et al. 2000; Cornish 2004), and were also prohibited from intentional take in California by fishermen.

While regulatory protection of adult GSB is important, protecting their young from take is also necessary in order to manage the species throughout its entire life cycle. Until recently, almost nothing was known about the habitat preferences and behavior of the young-of-the-year (YOY) of GSB so resource regulatory agencies had little information on which to base recommendations for avoidance or minimization of take during the planning and implementation of shoreline infrastructure construction or maintenance projects. This document provides information on the occupation of GSB nursery sites and makes recommendations for avoiding or minimizing GSB take during beach sand replenishment, harbor dredging, substantial pier or jetty maintenance, or other near-shore construction and maintenance projects planned within and near GSB nursery sites.

The YOY of GSB spend just under a month as floating eggs and planktonic larvae before settling (Benseman and Allen 2018). After planktonic settlement, YOY of GSB of total lengths between 10 and 80 mm (3/8 in to 3 ¼ in) have been found to occupy habitat between 2 and 38 m (7 to 125 ft) in depth (Couffer and Benseman 2015; Couffer 2017; Benseman and Allen 2018). YOY of GSB at this size range occupy wide expanses of open sand or sandy-mud habitat away from rocks, jetties, piers, debris, and other hard structures that often hold predators large enough to eat them at this vulnerable stage (Couffer and Benseman 2015; Couffer 2017; Benseman and Allen 2018; Benseman et al. in press).
Benseman and Allen (2018) found that newly-settled young were most abundant over soft-bottomed habitat at depths from 2 to 18 m (6 to 60 ft) within 300 m (984 ft) of the heads of submarine canyons that began close to shore, and that density fell precipitously at distances beyond 500 m (1,640 ft) from the heads of submarine canyons. Locations found to support the YOY of GSB included Redondo Beach at the southern end of Santa Monica Bay in Los Angeles County, the shallows surrounding Newport Pier and Big Corona del Mar State Beach in the City of Newport Beach in Orange County, and La Jolla Shores in San Diego County. To date, no focused surveys for the YOY of GSB have been conducted in Mexico. No significant submarine canyons that closely approach sandy shorelines exist along the Pacific coast of the Baja California peninsula until one rounds the tip of the peninsula. The topic of nursery sites within the Mexican portion of the species’ range remains unexplored. Other locations within 2 km (1.2 mi) of California’s submarine canyons were surveyed to sample soft-bottomed habitat at equivalent depths that were not significantly influenced by the presence of canyons. The author assisted with this field work and coordinated trained observer and photo-verified YOY of GSB detection reports from citizen scientist divers who dived year-round and opportunistically located the YOY of GSB between 2015 and December 2019. It was rare for the YOY of GSB to be found outside of the few YOY of GSB nursery sites mentioned above. An 760 m (831 yd) stretch of habitat off Redondo Beach in Los Angeles County inshore from the Redondo Submarine Canyon was found to support the highest seasonal density of the YOY of GSB of any location known (Benseman and Allen 2018). The Redondo Beach Giant Sea Bass Nursery Site is located south of King Harbor between the Redondo Pier and Topaz Jetty (Figure 1).

Following the completion of field work for Benseman and Allen’s study, the author continued focused surveys within known and possible nursery sites during all appropriate seasons to date, amassing over 320 hours of focused YOY of GSB survey bottom time. The data collected at each YOY of GSB contact included color phase, overall length, bottom time to contact, initial behavior, depth, and temperature. Specific fish locations were determined by surfacing over each YOY of GSB for a few seconds and describing an object that was directly onshore. After the dive, a GPS was used to record coordinates at the waterline below that object, and the depth of the fish recorded during the dive was used to locate the fish directly offshore from these coordinates on a 1-foot contour chart (Figure 1). Figure 1 includes the color phase, depth, and specific location of all YOY of GSB that the author has detected within the Redondo Beach Nursery Site to date.

At least one YOY of GSB was detected within a nursery site during every month of the year except April and June. November produced the highest number of detections (n = 63), followed by September (n = 45) and December (n = 40). The collated dates of 210 YOY of GSB detections showed that GSB nursery sites were primarily occupied from August to the end of December.

The California Environmental Quality Act (CEQA) provides a regulatory framework for the identification and consideration of native species’ nursery sites that might be negatively impacted by construction or maintenance projects requiring state permits. The Redondo Beach Nursery Site lies outside of all protected marine habitat and is subject to potential disturbance from periodic shoreline and infrastructure maintenance projects. King Harbor requires occasional dredging to keep channels open, and periodic activities are needed to maintain Redondo’s pier, jetties and harbor channels. Man-made and natural sand transport barriers and coastal processes cause sand to erode from this stretch of coastline that is not
Benseman and Allen (2018) found that newly-settled young were most abundant over soft-bottomed habitat at depths from 2 to 18 m (6 to 60 ft) within 300 m (984 ft) of the heads of submarine canyons that began close to shore, and that density fell precipitously at distances beyond 500 m (1,640 ft) from the heads of submarine canyons. Locations found to support the YOY of GSB included Redondo Beach at the southern end of Santa Monica Bay in Los Angeles County, the shallows surrounding Newport Pier and Big Corona del Mar State Beach in the City of Newport Beach in Orange County, and La Jolla Shores in San Diego County. To date, no focused surveys for the YOY of GSB have been conducted in Mexico. No significant submarine canyons that closely approach sandy shorelines exist along the Pacific coast of the Baja California peninsula until one rounds the tip of the peninsula. The topic of nursery sites within the Mexican portion of the species' range remains unexplored. Other locations within 2 km (1.2 mi) of California's submarine canyons were surveyed to sample soft-bottomed habitat at equivalent depths that were not significantly influenced by the presence of canyons. The author assisted with this field work and coordinated trained observer and photo-verified YOY of GSB detection reports from citizen scientist divers who dived year-round and opportunistically located the YOY of GSB between 2015 and December 2019. It was rare for the YOY of GSB to be found outside of the few YOY of GSB nursery sites mentioned above. An 760 m (831 yd) stretch of habitat off Redondo Beach in Los Angeles County inshore from the Redondo Submarine Canyon was found to support the highest seasonal density of the YOY of GSB of any location known (Benseman and Allen 2018). The Redondo Beach Giant Sea Bass Nursery Site is located south of King Harbor between the Redondo Pier and Topaz Jetty (Figure 1).

Following the completion of field work for Benseman and Allen’s study, the author continued focused surveys within known and possible nursery sites during all appropriate seasons to date, amassing over 320 hours of focused YOY of GSB survey bottom time. The data collected at each YOY of GSB contact included color phase, overall length, bottom time to contact, initial behavior, depth, and temperature. Specific fish locations were determined by surfacing over each YOY of GSB for a few seconds and describing an object that was directly onshore. After the dive, a GPS was used to record coordinates at the waterline below that object, and the depth of the fish recorded during the dive was used to locate the fish directly offshore from these coordinates on a 1-foot contour chart (Figure 1). Figure 1 includes the color phase, depth, and specific location of all YOY of GSB that the author has detected within the Redondo Beach Nursery Site to date.

At least one YOY of GSB was detected within a nursery site during every month of the year except April and June. November produced the highest number of detections (n = 63), followed by September (n = 45) and December (n = 40). The collated dates of 210 YOY of GSB detections showed that GSB nursery sites were primarily occupied from August to the end of December.

The California Environmental Quality Act (CEQA) provides a regulatory framework for the identification and consideration of native species’ nursery sites that might be negatively impacted by construction or maintenance projects requiring state permits. The Redondo Beach Nursery Site lies outside of all protected marine habitat and is subject to potential disturbance from periodic shoreline and infrastructure maintenance projects. King Harbor requires occasional dredging to keep channels open, and periodic activities are needed to maintain Redondo’s pier, jetties and harbor channels. Man-made and natural sand transport barriers and coastal processes cause sand to erode from this stretch of coastline that is not

![Figure 1. Young-of-the-year Giant Sea Bass detections within the Redondo Beach Nursery Site, CA, USA.](image-url)
replaced by natural processes. This beach must be artificially augmented by adding sand from other sources using barges or dump trucks.

No other nursery site is subject to as many potential habitat disturbance activities as the Redondo Beach Nursery Site. The La Jolla Shores Nursery Site in San Diego County is encapsulated by the Matlahuayl State Marine Reserve where take of all living marine resources is prohibited. Big Corona del Mar State Beach in Orange County is located immediately inside the northwestern boundary of the Crystal Cove State Marine Conservation Area. The shallows surrounding Newport Pier in Orange County lie outside of all protected marine habitat, and this area is not covered by specific restrictions on fishing or shoreline infrastructure projects. Newport Pier pilings are periodically scraped free of settling organisms and pilings are occasionally replaced, but no significant shoreline infrastructure projects have been undertaken within or adjacent to these nursery sites for many years.

A year prior to Ms. Benseman’s identification of GSB nursery sites, a roughly 40-day U.S. Army Corps of Engineers project barged approximately 146,304 m3 (160,000 yd3) of sand from Marina del Rey’s harbor to Redondo Beach (G. A. Fuderer, U.S. Army Corps. of Engineers, personal communication). Beginning the week of 6 August 2012, approximately 68,580 m3 (75,000 yd3) of sand were pumped from the barge onto the beach shore between Topaz Jetty and Redondo Pier, which is now known to be a GSB nursery site (Figure 2). Pumping sand onto the beach is not considered to have been detrimental to recruiting GSBs within the nursery site, however, approximately 77,724 m3 (85,000 yd3) of sand were deposited in 9 to 15 m (30 to 50 ft) of water off Topaz Jetty where it was planned to be stored for future sand replenishment projects. Because the deposition of sand into the waters above

![Image](image_url)

Figure 2. Beach sand replenishment between Topaz Jetty and Redondo Pier, CA, USA on 5 October 2012.
that nursery site coincided with YOY of GSB occupation, the timing of the replenishment project at this particular location could have had detrimental effects on recruiting GSB.

The planning and implementation phases of the 2012 Redondo Beach sand replenishment project were completed before Benseman began the first field study ever conducted of the YOY of GSB and identified the nursery sites, so the resource regulatory agencies would have been unaware of the importance of this stretch of beach for this Red-list Critically-Endangered species. It is possible that one or more of the following impacts may have resulted from depositing sediment onto the nursery site.

1) Sand dumped into 9 to 15 m (30 to 50 ft) of water on the nursery site could have displaced recently-settled YOY of GSB from their preferred habitat of algal fragments and small sand depressions where they hide from predators; unexpected displacement can expose their presence to predators. 2) Known prey species of the YOY of GSB such as mysid shrimps found within a meter of the bottom could have been buried or dispersed by falling sediment. If the horizontal and vertical distribution and/or density of mysid swarms was altered, the effectiveness of YOY of GSB feeding strategies upon them could have been reduced. 3) Project implementation fouled the sea floor with trash, and local divers organized several underwater cleanups to remove debris. The benefits of the underwater trash cleanup effort may have been offset by disturbance to the YOY of GSB occupying the nursery site by large numbers of divers working on the bottom from the surf line to recreational dive limits. 4) Large amounts of falling sediment could have fouled the gills of the YOY of GSB within the impact footprint. 5) Approximately 77,724 m3 (85,000 yd3) of sediment was “stored” in 9 to 15 m (30 to 50 ft) of water for future beach sand replenishment. However, large winter storm swells have altered the bottom topography to 30 m (100 ft) so any sand deposited at depths of 15 meters (30 ft) or less was probably redistributed by storms the following winter. Any attempted reacquisition of sand during the months when the nursery site supports the YOY of GSB could impact them.

The potential loss of the YOY of a Red-listed Critically Endangered fish species at the highest density nursery site for the species ever documented should be considered potentially significant. These potential impacts could have long-lasting impacts on the recruitment, population dynamics, and overall survival of GSB at this nursery site when it is most densely occupied.

After dispersal of the YOY of GSB from the nursery sites, strong winter storms can alter the topography of the nursery site bottom to a depth of at least 30 m (100 ft) before the next hatch of YOY of GSB arrives the following summer. Issues could arise if the habitat is altered when the YOY of GSB are present at the nursery sites. The Redondo Beach Nursery Site faces due west and is protected from the large south swells generated by summer storms by the Palos Verdes Peninsula which extends west to form the south-eastern rim of Santa Monica Bay. Therefore, the nursery site bottom is not significantly altered by swells for much of the period of YOY of GSB occupation.

Although the YOY of GSB have been found in California nursery sites during nearly every month of the year, these areas are very sparsely occupied for half of each year. It is recommended that beach sand replenishment and harbor dredging projects having the potential to affect nursery site bottom be implemented between 1 January and 15 July when the YOY of GSB nursery sites have been found to be the most sparsely occupied. Habitat disturbance should be avoided from 16 July through 31 December, when the majority of the YOY of GSB are arriving at and occupying the nursery sites.
Piping sand from a barge to the beach is not expected to impact the YOY of GSB; it is when a large volume of sand is deposited into the water above the nursery site that nursery site impacts could occur. Another method of sand augmentation used at Redondo Beach has been to deposit sand on the beach using dump trucks and spread the sand using rubber-tired equipment. During September of 2018, a survey for the YOY of GSB was conducted while equipment spread trucked-in sand across the beach during an incoming tide (Figure 3). Underwater survey transects to a minimum depth of 4 m (13 ft) found no visual difference in water quality between sections of the beach where sand piles were sloughing into the sea and beach sections where no sand had been deposited. No new articles of trash were observed since the previous survey. Even during a month when the nursery site was occupied by the YOY of GSB this appears to have been a successful method for replenishing the beach with sand while having no discernible impacts on the YOY of GSB. Annual coastal cleanup events along Redondo Beach that include groups of divers have been organized for many years. Some of these events coincide with months of high density of YOY of GSB off Redondo Beach. The ability to coordinate underwater cleanups with dry beach cleanups along the entire coastline offers benefits to the habitat and to ecologically-aware members of coastal communities, and this probably outweighs the potential of disturbance to some YOY of GSB from a single day of habitat disturbance at nursery sites by groups of divers. Scuba instructors also bring classes to train and practice beach diving techniques off Redondo Beach but these classes are not believed to significantly impact the YOY of GSB. Classes typically move in groups which are closely monitored by instructors. The divers make surface swims and drop as a group, limit their movements to a relatively small area on the bottom while being watched by an instructor, and then return to shore as a group. Students do not scatter about to disturb large areas of bottom.

Both publicly and privately-funded projects require permits from federal, state, and
local governmental agencies, and often require assessments of species that are considered to have special status by resource regulatory agencies. Special status species surveys conducted for resource agencies typically follow guidelines written for the agencies by specialists who have significant experience surveying for the species. Assessments and surveys must then be conducted by qualified biologists who must follow the agency-adopted guidelines in order for their reports to be accepted by the permitting agencies. These surveys are often coupled with biological monitoring in order to assure avoidance or minimization of disturbance to special status species prior to and during construction. Effective biological monitoring of a species assumes a biologist’s ability to locate individual animals within and surrounding an impact footprint in order to attempt to ascertain whether or not construction activities adversely affected those individuals. In the case of the YOY of GSB, not only would locating individuals on a daily or weekly basis be extremely difficult, but repeatedly relocating specific individuals requires close diver proximity to the fish and underwater photography of spot patterns which could increase the GSB’s level of disturbance and possibly cause indirect take by a predator. Also, finding no YOY of GSB within the impact footprint would not be proof of take by the project. Rather than attempt to monitor the possible effects of construction on the YOY of GSB, a more effective approach would be to schedule construction activities that could affect the nursery site for the period between January 1 and July 15. Working during this period would either avoid impacts due to YOY of GSB absence, or if a few individuals remained it would minimize impacts by avoiding the densest seasonal presence of the YOY of GSB. Habitat disturbance within the nursery site should be avoided from July 16 to December 31 in an area extending from the shoreline to a depth of 38 m (125 ft) from the Redondo Pier to Topaz Jetty.

If it would be difficult to adjust dredging or sand deposition schedules to coincide with the season of low YOY of GSB sensitivity, changing the location of deposition of dredged material to an area that does not border a nursery site is suggested. Dredge spoils deposited into the water north of King Harbor or south of Topaz Jetty should avoid impacting the YOY of GSB.

Scheduling future Redondo Beach sand replenishment and major shoreline infrastructure projects to be implemented between January 1 and July 15 would be expected to avoid or greatly minimize impacts to the YOY of GSB at this nursery site. The large majority of the YOY of GSB are absent or at a very low density at nursery sites during this period. It also appears that that clean sand placed on the beach by dump trucks or piped from barges and spread across the beach by rubber-tired equipment avoids or greatly minimizes impacts on GSB nursery sites at any time of year. However, no sand or sediment should be deposited into the water that could disturb the bottom at a GSB nursery site between July 16 and December 31.

ACKNOWLEDGMENTS

I might not have learned of the existence of GSB nursery sites were it not for the insights of Masters of Science student Stephanie A. Benseman working with her advisor Larry G. Allen of California State University at Northridge who discovered that GSB nursery sites existed and worked out how to find the often-cryptic YOY of GSB within them. Their preliminary work on the distribution and recruitment, and later, our observations of the behavior of young of Giant Sea Bass provided the basis to expand our understanding.
of the early development of this species and move from reporting baseline information to this practical management tool that could enhance the recovery of the species. I would like to thank Mark A. Pavelka of the U. S. Fish and Wildlife Service (ret.), Amber S. Oneal-Heredia, Chris Lowe of California State University at Long Beach, Sharon Kramer of H. T. Harvey and Associates, and Richard Ware of Coastal Resources Management for providing valuable editorial suggestions on manuscript drafts.

LITERATURE CITED

Love, M. S. 2011. Certainly more than you want to know about the fishes of the Pacific coast: a postmodern experience. Really Big Press, Santa Barbara, CA, USA.

Submitted 17 June 2019
Accepted 23 September 2019
Associate Editor was K. Lindke
San Francisco Estuary mysid abundance in the fall, and the potential for competitive advantage of *Hyperacanthomysis longirostris* over *Neomysis mercedis*

MICHELLE AVILA AND ROSEMARY HARTMAN*

California Department of Fish and Wildlife, Bay-Delta Region, 2109 Arch Airport Road, Suite 100, Stockton, CA 95206, USA

*Corresponding Author: Rosemary.Hartman@water.ca.gov

Historically, the native mysid *Neomysis mercedis* was a key source of food for fish in the San Francisco Estuary (SFE). Following the introductions of the over-bite clam and many invasive zooplankton species in the mid-1980s, populations of native zooplankton species plummeted, including *N. mercedis*. In July 1993, *Hyperacanthomysis longirostris*, an invasive mysid, was first documented in the SFE, and it quickly became the most abundant mysid in the upper estuary. Since 2011, the California Department of Fish and Wildlife has sampled mysid abundance throughout the upper SFE concurrently with their Fall Midwater Trawl, which targets juvenile Striped Bass. We analyzed data from these mysid trawls to investigate environmental correlates of *N. mercedis* and *H. longirostris* abundance. We found that *H. longirostris* was found at higher temperatures significantly more often than *N. mercedis*, and there was a trend towards greater frequency of *H. longirostris* at higher salinities. Increases in water temperature over time, coupled with *H. longirostris*’s smaller size at maturity and lower food needs may partially explain its success in the SFE.

Key Words: crustaceans, Delta Smelt, fish diets, invasive species, Longfin Smelt, Mysidacea, Sacramento, San Joaquin Delta, Striped Bass, temperature tolerance, zooplankton

Mysid shrimp (or opossum shrimp), are small aquatic crustaceans that form a critical link in the San Francisco Estuary (SFE) foodweb. There are seven species of mysids found in the upper SFE (Mecum 2007). Historically, the native mysid *Neomysis mercedis* was the dominant mysid species and served as a key source of food for fish species in the area. *N. mercedis* dominated the diets of Splittail (*Pogonichthys macrolepidotus*) (Daniels and Moyle 1983), Longfin Smelt (*Spirinchus thaleichthys*) (Feyrer et al. 2003), and young Striped Bass (*Morone saxatilis*) (Bryant and Arnold 2007). They were also once an important food item for juvenile and adult Delta Smelt (Moyle et al. 1992), though their abundance in smelt gut
contents has declined in recent years (Slater and Baxter 2014). In fall months, when overall zooplankton abundance decreases, *N. mercedis* was particularly important and comprised a significant portion of Longfin Smelt and Striped Bass diets (Feyrer et al. 2003). Following the introductions of the over-bite clam, *Potamocorbula amurensis*, and many zooplankton species in the late 1980s to early 1990s, populations of native zooplankton species plummeted, including *N. mercedis* (Winder and Jassby 2011). Competition with invasive clams and zooplankton for food, and predation by introduced fish and predatory invertebrates, created a massive shift in zooplankton species composition throughout the SFE (Kayfetz and Kimmerer 2017; Winder and Jassby, 2011). In July 1993, *Hyperacanthomysis longirostris* (formerly *Acanthomysis bowmani*) (Fukuoka and Murano 2005), an invasive mysid considered semi-endemic to the Ariake Sea in Japan (Suzuki et al. 2009) was first documented in the SFE, most likely introduced through ballast water (Modlin and Orsi 1997). It quickly spread and is currently the most abundant mysid in the region (Bryant and Arnold 2007; Hennessy and Enderlein 2013).

Despite the importance of mysids to the diets of many fish species (Feyrer et al. 2003; Bryant and Arnold 2007), there are knowledge gaps concerning mysid abundance, geographic distribution, and life history in the SFE. Much of the region was not sampled for mysids until recently, and few studies have examined the causes of mysid declines (though see Winder and Jassby 2011), or the shift in dominance of the mysid community from native to nonnative species. Even basic information on environmental correlates for dominant mysid species remain unstudied (though see Kimmerer 2002 for a discussion of flow effects on *N. mercedis*). There is also little information published on the life history of *H. longirostris*, despite it being the most commonly observed mysid in the region.

The California Department of Fish and Wildlife’s (CDFW) Zooplankton Study, part of the multi-agency Environmental Monitoring Program (EMP), began monthly mysid data collection in 1972, but the current sampling is limited (20 locations per month) and does not extend into habitats considered important for native fishes, such as upstream to the Cache Slough Complex, or the Sacramento River Deepwater Ship Channel (SDWSC) (Hennessy and Enderlein 2013). The Cache Slough Complex is currently the focus of large-scale restoration efforts, an attempt to improve habitat for many fish species (Department of Water Resources and Department of Fish and Wildlife 2015), so there is an interest in monitoring data on zooplankton availability.

EMP has documented peak abundances of mysids in spring and summer, with lower abundances in fall (Hennessy and Enderlein 2013), but due to the importance of food for juvenile fish in the fall for later survival (Brown et al. 2014), understanding drivers of mysid abundance during this time frame is key. The CDFW Fall Midwater Trawl survey (FMWT), added concurrent zooplankton sampling in 2008 to a subset of its long-term fish monitoring stations to address this lack of data. This paper seeks to describe the overall patterns of mysid abundance. We then answer several key questions regarding the most common taxa, *H. longirostris*, and the taxa that was historically most common, *N. mercedis*:

- What are the spatial and temporal patterns of mysid abundance in the upper SFE?
 - Was *H. longirostris* more abundant than other mysid species in the fall?
- Is *H. longirostris* out-competing the native mysid, *N. mercedis*?
 - How do water quality conditions correlate to abundance of *H. longirostris* and *N. mercedis* and are there differences between the two species?
 - How does size and fecundity differ between *H. longirostris* and *N. mercedis*?
METHODS

Sampling methods

The FMWT survey samples mysid shrimp monthly from September through December at 32 of the 122 fixed FMWT sampling stations (Figure 1). Stations were grouped into 8 geographic regions. Mysid shrimp are sampled using a 30 cm diameter, 505 µm mesh macro-zooplankton net attached to a metal frame. The net was 1.48 m long with a taper ending at the codend with a collecting jar. A flowmeter (model 2030R, General Oceanics, Miami, FL) was fitted in the mouth of the net to allow volume for the tow to be calculated. A 10-minute stepped oblique tow was conducted with the mysid net either immediately before or after the regular midwater trawl at each zooplankton sampling location. The sample was then preserved in a quart jar of 10% formaldehyde dyed with rose Bengal for later processing at the CDFW laboratory (Stockton, CA). Surface water temperature (in degrees C) and specific conductance (µS/cm) were measured using a handheld YSI meter (Yellow Springs Instruments Pro30; YSI Inc. Yellow Springs, OH). Values for specific conductance were converted to practical salinity units (psu) (Schemel 2001). Surface turbidity (in Nephelometric Turbidity Units, ntu) was measured using a portable turbidity meter (Hach 2100Q; Hach, Loveland, CO, USA).

Figure 1. Map of Fall Midwater Trawl zooplankton sampling locations in the upper San Francisco Estuary, CA by region (see legend for region titles).
In the laboratory, we decanted and rinsed samples in water where mysids were removed from detritus and preserved for later processing. Processing included identification of the seven species known to occur in the SFE, measurement, and classification of individuals as juvenile, adult male, and adult female (Figures 2, 3). Species identified were: *H. longirostris*, *N. kadiakensis*, *N. mercedis*, *Aliencanthomysis macropsis*, *Orientomysis aspera* (formerly *A. aspera* per Fukuoka and Murano), *O. hwanhaiensis* (formerly *A. hwanhaiensis* per Fukuoka and Murano), and *Deltamysis holmquistae*. Sample processing protocols did not allow staff to positively distinguish between *N. kadiakensis* and the very similar mysid *N. japonica*; for analysis, all are assumed to be *N. kadiakensis*. Sexual classification was based on elongated fourth pleopod in males and brood pouch/marsupium in females (Figures 2, 3). If these characteristics were not fully developed it was classified as juvenile. For a key to all seven taxa, see Mecum, 2007.

Figure 2. a) Adult male *N. mercedis*, highlighting elongated forth pleopod used for identification b) Adult female *N. mercedis*, highlighting brood pouch c) Juvenile *N. mercedis*. Grid squares are 1 mm x 1 mm. Specimens are artificially died pink for ease of enumeration.
In the laboratory, we decanted and rinsed samples in water where mysids were removed from detritus and preserved for later processing. Processing included identification of the seven species known to occur in the SFE, measurement, and classification of individuals as juvenile, adult male, and adult female (Figures 2, 3).

Species identified were: *H. longirostris*, *N. kadiakensis*, *N. mercedis*, *Alienacanthomysis macropsis*, *Orientomysis aspera* (formerly *A. aspera* per Fukuoka and Murano), *O. hwanhaiensis* (formerly *A. hwanhaiensis* per Fukuoka and Murano), and *Deltamysis holmquistae*. Sample processing protocols did not allow staff to positively distinguish between *N. kadiakensis* and the very similar mysid *N. japonica*; for analysis, all are assumed to be *N. kadiakensis*. Sexual classification was based on elongated fourth pleopod in males and brood pouch/marsupium in females (Figures 2, 3). If these characteristics were not fully developed it was classified as juvenile. For a key to all seven taxa, see Mecum, 2007.

![Figure 3](image)

Figure 3. a) Adult male *H. longirostris*, highlighting elongated forth pleopod used for identification b) Adult female *H. longirostris*, highlighting brood pouch c) Juvenile *H. longirostris*. Grid squares are 1 mm x 1 mm. Specimens are artificially died pink for ease of enumeration.

The first 100 non-gravid (male, juvenile, or non-gravid female) mysids of each species were measured to the nearest mm (rounded up) from the tip of the eyestalk to the base of the telson; any additional mysids were identified and enumerated. The first 30 gravid females of each species were also measured, and the remainder were enumerated. Laboratory staff counted the embryos of each gravid female and classified them based on their development as: eggs were classified as stage 1, comma shaped embryos as stage 2, and embryos with visible eyes as stage 3. In samples with more than 400 non-gravid or 100 gravid mysids of a single species, laboratory staff subsampled for that species using a grid tray and recorded the fraction of the total sample processed (F_{sub}). In the case of subsampling, the total catch (N) of a species and life stage was calculated as: $N = N_{sub} / F_{sub}$.
Analysis methods

To assess our first question on spatial and temporal distribution of mysids, we used FMWT mysid shrimp catch data from 2011 to 2016 (sampling was sporadic and not standardized until 2011). Catch per unit effort (CPUE) for each species (Sp) at each station (St) was calculated as:

\[CPUE_{SpSt} = \frac{N_{SpSt}}{V_{St}} \]

Where \(N = \) Catch and \(V = \) volume sampled. From the CPUE at each station, we created an index of abundance for each species to allow us to make comparisons across years and across regions. The species-specific regional abundance index (\(R \)) for each month was calculated as:

\[R_{Sp} = \text{mean}(CPUE_{SpSt}) \]

The overall species-specific monthly abundance index (\(I_{Sp} \)) was calculated as:

\[I_{Sp} = \text{mean}(R_{Sp}) \]

The regional abundance indices and overall abundance were then graphed to illustrate the difference in temporal and spatial distribution for the seven species of mysid caught by the FMWT.

To explore the potential for competitive interactions between \(H.\ longirostris \) and \(N.\ mercedis \), we examined their environmental correlates and life history patterns. To graphically display ranges of environmental parameters where these species were caught, we averaged CPUE (excluding trawls with zero catch) for surface water temperature, salinity, and turbidity. Environmental parameters were summarized for both species at intervals of 1°C for temperature, 1 psu for salinity, and 10 ntu for turbidity.

To test the statistical relationship between these environmental parameters and species’ presence, two zero-inflated negative binomial models were run on the CPUE of \(H.\ longirostris \) and \(N.\ mercedis \), using temperature, salinity, turbidity, as predictor variables. Predictor variables were centered and scaled by subtracting the mean and dividing by the variance to put all variables on a common scale. These analyses were conducted using the pscl package (Jackman et al. 2016) in R version 3.6.1 (R Project for Statistical Computing, 2019).

Mean lengths for each mysid sex and minimum and maximum size at maturity were calculated for \(H.\ longirostris \). A binomial generalized linear model was then used to calculate the maximum likelihood estimator of the median of the distribution, using the glm function in R. A two-factor ANOVA with a Tukey post-hoc test was used to compare size of each sex classification between \(H.\ longirostris \) and \(N.\ mercedis \).

Data on gravid \(H.\ longirostris \) were used to determine the mean number of embryos per female. Females with obviously damaged brood pouches were excluded, as well as those with less than three embryos (assumed to be damaged brood pouches). Fecundity of \(N.\ mercedis \) and other, less common, species was not examined due to an insufficient sample size of gravid females. Therefore, we compared data on \(H.\ longirostris \) fecundity to literature values of \(N.\ mercedis \) to explore whether differential fecundity might result in a competitive advantage.
RESULTS

Temporal trends

The historically common *N. mercedis* was rarely seen from 2011-2013, completely absent from catch in 2014 and through most of 2015, and much more common in 2016 (Figure 4), particularly in the Sacramento River and SDWSC (Figure 5). *H. longirostris* dominated catch numerically (Figure 4) in all but a few regions and months. *N. kadiakensis* was the second most abundant species caught. Three other species, the native *A. macropsis*, and the non-native *O. aspera* and *O. hwanhaiensis* appeared sporadically. *O. aspera* was present in 2013 through 2016 and *O. hwanhaiensis* in 2015 and 2016 (Figure 4). Only 5 specimens of *D. holmquistae* were found: 2 in 2013, 1 in 2015, and 2 in 2016. In general, overall mysid

![Figure 4. Monthly mean CPUE (catch per cubic meter) of the mysid species collected by Fall Midwater Trawl mysid sampling, 2011–2016, separated by species.](image)
abundance during the FMWT survey was highest in September and lowest in December (Figure 4), though this varied by species and by year, with *O. aspera*, *O. hwanhaiensis* and *D. holmquista* peaking later in the year.

Spatial Trends

H. longirostris was widespread in the FMWT study area across all years (Figure 5) and occurred in every region sampled. CPUE of *H. longirostris* was highest in the SDWSC, followed by the lower Sacramento River and Suisun Bay; CPUE was low in Cache Slough, the lower San Joaquin River, and the East Delta regions (Figure 5). *N. kadiakensis* occurred widely in regions of the Sacramento River downstream of the SDWSC and Cache Slough Complex and the East Delta in the San Joaquin River. *N. mercedis* occurred mainly in the SDWSC and Sacramento River. Other species were limited to downstream regions (Figure 5) generally associated with higher salinity.

Environmental correlates

FMWT mysid sampling collected *H. longirostris* across a wide range of environmental conditions, while ranges for *N. mercedis* were slightly narrower. *H. longirostris* abundance peaked at a higher temperature than *N. mercedis* (22-23 °C versus 20-21°C), and although *H. longirostris* did occur at temperatures as low as 8 °C, both frequency of occurrence and abundance of *H. longirostris* increased with higher temperatures (Table 1, Figure 6). In contrast, *N. mercedis* rarely occurred at <17°C or >21°C and showed a much lower relationship between abundance and temperature than *H. longirostris* (Table 1). Abundance of *H. longirostris* was significantly higher at low salinities (Table 1, Figure 7), but they were collected at the most saline sampling location, Carquinez Strait, and frequency of occurrence of *H. longirostris* had a slight positive relationship with salinity (Table 1). *N. mercedis* CPUE was concentrated around 0-1 psu with a second, smaller peak at 15-16 psu (Figure 7), though there was no significant relationship between presence and salinity (Table 1). No *N. mercedis* were collected at >17 psu. CPUE peaked at turbidities between 31-41 ntu for *H. longirostris* and 10-20 ntu for *N. mercedis* (Figure 5) and both species were common from 10-80 ntu. This relationship between abundance and turbidity was significant for *H. longirostris*, but not for *N. mercedis* (Table 1).

Size and fecundity

Size of adult *H. longirostris* was smaller for males than females (Tukey post-hoc p < 0.001, Figure 9). A binomial model of size at maturity predicted the median size of adult males to be 6.3 mm (SE = 1.03, p < 0.001), and adult females to be 9.2 mm (SE = 1.03, p < 0.001). The mean number of embryos per gravid female declined in later embryonic developmental stages, with stages 1 through 3 averaging 18.4, 11.7, and 7.7 embryos, respectively. The average size of *H. longirostris* was less than *N. mercedis* for adult males and females (Tukey post-hoc p < 0.0001, Figure 9). Juveniles were not significantly different in length (Tukey post-hoc p = 0.7293, Figure 9).
Spatial Trends

H. longirostris was widespread in the FMWT study area across all years (Figure 5) and occurred in every region sampled. CPUE of H. longirostris was highest in the SDWSC, followed by the lower Sacramento River and Suisun Bay; CPUE was low in Cache Slough, the lower San Joaquin River, and the East Delta regions (Figure 5).

N. kadiakensis occurred widely in regions of the Sacramento River downstream of the SDWSC and Cache Slough Complex and the East Delta in the San Joaquin River. N. mercedis occurred mainly in the SDWSC and Sacramento River. Other species were limited to downstream regions (Figure 5) generally associated with higher salinity.

Environmental correlates

FMWT mysid sampling collected H. longirostris across a wide range of environmental conditions, while ranges for N. mercedis were slightly narrower. H. longirostris abundance peaked at a higher temperature than N. mercedis (22-23 °C versus 20-21 °C), and although H. longirostris did occur at temperatures as low as 8 °C, both frequency of occurrence and abundance of H. longirostris increased with higher temperatures (Table 1, Figure 6). In contrast, N. mercedis rarely occurred at <17˚C or >21˚C and showed a much lower relationship between abundance and temperature than H. longirostris (Table 1). Abundance of H. longirostris was significantly higher at low salinities (Table 1, Figure 7), but they were collected at the most saline sampling location, Carquinez Strait, and frequency of occurrence of H. longirostris had a slight positive relationship with salinity (Table 1).

N. mercedis CPUE was concentrated around 0-1 psu with a second, smaller peak at 15-16 psu (Figure 7), though there was no significant relationship between presence and salinity (Table 1). No N. mercedis were collected at >17 psu. CPUE peaked at turbidities between 31-41 ntu for H. longirostris and 10-20 ntu for N. mercedis (Figure 5) and both species were common from 10-80 ntu. This relationship between abundance and turbidity was significant for H. longirostris, but not for N. mercedis (Table 1).

Size and fecundity

Size of adult H. longirostris was smaller for males than females (Tukey post-hoc p < 0.001, Figure 9). A binomial model of size at maturity predicted the median size of adult males to be 6.3 mm (SE = 1.03, p < 0.001), and adult females to be 9.2 mm (SE = 1.03, p < 0.001). The mean number of embryos per gravid female declined in later embryonic developmental stages, with stages 1 through 3 averaging 18.4, 11.7, and 7.7 embryos, respectively. The average size of H. longirostris was less than N. mercedis for adult males and females (Tukey post-hoc p < 0.0001, Figure 9). Juveniles were not significantly different in length (Tukey post-hoc p = 0.7293, Figure 9).

Figure 5. Regional mean CPUE (catch per cubic meter) of mysids collected by Fall Midwater Trawl mysid sampling, 2011–2016, with species differentiated by color. Note the differences in y-axes for the different regions.
Table 1. Count model coefficients (negative binomial with log link)

<table>
<thead>
<tr>
<th></th>
<th>N. mercedis</th>
<th></th>
<th></th>
<th></th>
<th>H. longirostris</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>SE</td>
<td>z-value</td>
<td>p-value</td>
<td>Estimate</td>
<td>SE</td>
<td>z-value</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>-2.020</td>
<td>0.123</td>
<td>-16.478</td>
<td><0.0001*</td>
<td>2.133</td>
<td>0.066</td>
<td>32.104</td>
</tr>
<tr>
<td>Temperature</td>
<td>-0.230</td>
<td>0.148</td>
<td>-1.551</td>
<td>0.121</td>
<td>0.386</td>
<td>0.065</td>
<td>5.963</td>
</tr>
<tr>
<td>Turbidity</td>
<td>0.079</td>
<td>0.095</td>
<td>0.833</td>
<td>0.405</td>
<td>0.468</td>
<td>0.105</td>
<td>4.466</td>
</tr>
<tr>
<td>Conductivity</td>
<td>-0.056</td>
<td>0.134</td>
<td>-0.419</td>
<td>0.675</td>
<td>-0.198</td>
<td>0.066</td>
<td>-2.996</td>
</tr>
<tr>
<td>Log(theta)</td>
<td>11.268</td>
<td>156.942</td>
<td>0.072</td>
<td>0.943</td>
<td>-0.776</td>
<td>0.059</td>
<td>-13.108</td>
</tr>
</tbody>
</table>

Table 1. Count model coefficients (binomial with logit link)

<table>
<thead>
<tr>
<th></th>
<th>N. mercedis</th>
<th></th>
<th></th>
<th></th>
<th>H. longirostris</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>SE</td>
<td>z-value</td>
<td>p-value</td>
<td>Estimate</td>
<td>SE</td>
<td>z-value</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>-7.223</td>
<td>3.936</td>
<td>-1.835</td>
<td>0.067</td>
<td>-22.685</td>
<td>5.956</td>
<td>-3.809</td>
</tr>
<tr>
<td>Temperature</td>
<td>-4.679</td>
<td>2.351</td>
<td>-1.990</td>
<td>0.047*</td>
<td>-0.492</td>
<td>0.206</td>
<td>-2.391</td>
</tr>
<tr>
<td>Turbidity</td>
<td>0.059</td>
<td>0.502</td>
<td>0.117</td>
<td>0.907</td>
<td>-4.115</td>
<td>1.214</td>
<td>-3.390</td>
</tr>
<tr>
<td>Conductivity</td>
<td>2.336</td>
<td>1.487</td>
<td>1.571</td>
<td>0.116</td>
<td>-26.858</td>
<td>8.107</td>
<td>-3.313</td>
</tr>
</tbody>
</table>
Figure 6. Mean CPUE (catch per cubic meter) (± 1 SE) for *N. mercedis* (top) and *H. longirostris* (bottom) by 1°C temperature intervals, from Fall Midwater Trawl mysid sampling, 2011–2016.

DISCUSSION

Among the mysid species, the invasive *H. longirostris* is by far the most abundant in the region of the upper estuary sampled by the FMWT. FMWT mysid data confirmed the dominance of *H. longirostris* both numerically and geographically over all other mysid species present. *H. longirostris* matured at a smaller size and possessed larger broods at size, which may result in shorter generation times and lower food requirements. *H. longirostris* was more common across a wider range of temperatures than *N. mercedis*. Some combina-
Figure 7. Mean CPUE (catch per cubic meter) (±1 SE) for *N. mercedis* (top) and *H. longirostris* (bottom) by 1 psu salinity intervals, from Fall Midwater Trawl mysid sampling, 2011–2016.

tion of these factors likely allows *H. longirostris* to out-compete *N. mercedis* in fall. The replacement of *N. mercedis* with *H. longirostris* may ultimately be detrimental to fish in the SFE, since work by Feyrer et al. (2003) suggests that *H. longirostris* may be a less favorable source of energy for fish due to its smaller size.

Given the continued low density of mysids caught in the FMWT, availability of *N. mercedis* as a food source for fish remains limited during the fall months (Figure 4). *H. longirostris* abundance was greater than all other species by several orders of magnitude (Figure 4). *N. kadiakensis*, a mysid similar in size to *N. mercedis*, was the second most
abundant collected after *H. longirostris*. Other mysid species were either found sporadically (*D. holmquistae*) or in low numbers (*O. aspera* and *O. hwanhaiensis*) and only collected in downstream regions suggesting that FMWT mysid stations sample a very limited portion of their geographic range in the SFE.

The collapse of mysid populations as a whole in the last few decades is likely related to food limitation (Orsi and Mecum 1996, Winder and Jassby 2011), but the FMWT mysid data may provide clues as to why *H. longirostris* dominates over the previously abundant *N. mercedis*. One possible factor is temperature tolerance, since our data show abundance of *H. longirostris* peaks at a higher temperature than *N. mercedis*. Laboratory experiments from the 1950s and 1970s showed a sharp decrease in *N. mercedis* survival at 22°C (Hair 1971), with one study determining the upper lethal temperature as 24.2°C to 25.5°C for specimens caught in the SFE (Hair 1971) and another citing 23.9°C for organisms from a British Columbia population (Wilson 1951). A laboratory rearing experiment using *N. mercedis* for toxicity testing employed an ideal temperature of 16-19°C and documented a slight increase in mortality corresponding with higher temperatures (Brandt et al 1993). Heubach (1969) noted a sharp decline in *N. mercedis* abundance in September 1965 and August 1966 when temperatures exceeded 22°C. Knutson and Orsi (1979) reported *N. mercedis* in the estuary at daytime temperatures as high as 25.6°C as long as dissolved oxygen levels remained saturated, but admitted that this was likely outside the ideal range for the species. In the FMWT mysid results, *N. mercedis* CPUE peaked at 20-21°C (Figure 6), although this may be driven by two specific tows in the lower Sacramento River in 2016. Without those two tows, the peak would be 18-19°C, and *N. mercedis* was not collected in FMWT mysid sampling at temperatures above 23.7°C.

There are no known laboratory temperature experiments on *H. longirostris*, so temperature data is limited to field observations. In FMWT mysid sampling, likelihood of *H. longirostris* presence increased with temperature, and CPUE was highest at 22-23°C, at the upper end of the thermal tolerance for *N. mercedis*. Some individuals were caught at 25-26°C (highest temperature range recorded during the sample period). One study of mysids in Suisun Marsh in the spring also noted *H. longirostris* peaking at warmer temperatures and hypothesized that their smaller size may give them a competitive advantage at high temperatures (Carlson and Matern 2000). From their native range, Suzuki et al (2009) found high densities of juvenile *H. longirostris* between 15-25°C in the Chikugo River estuary, with organisms present in waters up to 30°C. Further sampling at warmer temperatures, or controlled laboratory experiments on *H. longirostris* are needed to refine our knowledge of their temperature tolerances.

Water temperature data for FMWT was limited by the seasonality of the sampling period, declining from a median around 20°C in September to 10°C in December (Figure 26 in Brown et al. 2011). The Environmental Monitoring Program (EMP), which samples year-round, reported that mean CPUE for both *H. longirostris* and *N. mercedis* since the introduction of *Potamocorbula* is usually higher in spring (March-May) and summer (June-August), and extremely low in fall (September-November) (Hennessy and Enderlein 2013). Suzuki et al (2009) found a seasonal variation among life stages of *H. longirostris*; small juveniles (<1 mm carapace length) were almost completely absent during July and August, except in one case of high flows resulting in lower water temperature. EMP data also indicates a consistent food limitation in late summer and fall months (Hennessy and Enderlein 2013); abundance of copepods (a major food source for mysids) drops sharply
as grazing rates of *Potamocorbula* increase in the summer. With food limitation already present during warmer months, temperature may be a secondary detrimental factor for *N. mercedis* and allow the apparently more heat tolerant *H. longirostris* to flourish in its place (Figure 6). If higher temperature tolerance is the driving factor, as hypothesized here, then the predictions of increased temperature under most climate change scenarios may further favor this invasive species (Brown et al. 2016).

The FMWT mysid data can be used to examine the salinity range of *H. longirostris*, but it is limited by the geographic range and seasonality of estuarine conditions encountered in the study (i.e., seasonal location of the mixing zone and salinity gradient). *H. longirostris* was often collected at the most saline sampling locations (Figure 7, Suisun Bay and Carquinez Strait), and likelihood of presence increased with salinity (Table 1), so it is unlikely that FMWT data captures the upper salinity maximum of the species. The highest salinity recorded during the study for *H. longirostris* was 19.2 psu, though Mecum (2007) cites a salinity range of freshwater to 28 psu for the species. CPUE was highest between 0-10 psu, which is consistent with data from the Chikugo River estuary in Japan (Suzuki et al 2009).

N. mercedis was documented across a wide range of salinities (freshwater to 17 psu), with an upper salinity limit slightly lower than *H. longirostris*. Orsi (1997) reported that *H. longirostris* was slightly more euryhaline than *N. mercedis*. Previous laboratory work using *N. mercedis* demonstrated mortality in freshwater for specimens collected in areas of higher salinity (Wilson 1951). Field studies (Heubach 1969) hypothesized that reproduction may be reduced in freshwater due to lower percentages of gravid females compared with low salinity regions. The FMWT mysid data did not show reduced abundance in freshwater, however, *N. mercedis* catch was extremely low, so salinity values may not be an accurate representation of salinity habitat distribution within the estuary, or *N. mercedis* may be excluded from higher salinity water due to food limitation or competition with the more euryhaline *H. longirostris*.

The higher CPUE of mysids at turbidity values >10 ntu is likely related to negatively phototaxic behavior. Studies have documented the vertical migration of other mysid species following changes in light intensity (Beeton and Bowers 1982), with individuals moving towards the bottom of the water column as light intensity increases. Kimmerer et al. (1998) found *N. mercedis* vertically migrates at night, however the incidence of this behavior changed with environmental conditions, including turbidity. The FMWT mysid data found low CPUE values for both *H. longirostris* and *N. mercedis* at very low turbidity levels (<10 ntu; Figure 8) where light intensity is highest. Low CPUE associated with low turbidity could be due to vertical migration to deeper waters during daytime hours. FMWT mysids were sampled using oblique tows exclusively during the day, so the net only spent a portion of each tow near the bottom.

The FMWT mysid data indicated an upper turbidity limit of between 140-160 ntu for both *H. longirostris* and *N. mercedis*, but this is likely a sample size limitation resulting from few samples taken during extremely high flows. In the Chikugo River estuary, where *H. longirostris* is overwhelmingly dominant, turbidities often exceed 200 ntu during high flows (Suzuki et al. 2009). An upper limit for *H. longirostris* and *N. mercedis* could be determined with more mysid sampling, but the FMWT mysid data indicate that both species are common across a turbidity range of 10-80 ntu.

Due to small sample size, size-at-maturity statistics were not developed for *N. mercedis* from FMWT mysid data though there is some published information. It is already known that *H. longirostris* is smaller than *N. mercedis* (Feyrer et al. 2003; Hennessy 2011), with
the latter maturing around 7 mm (Heubach 1969). In contrast, FMWT mysid data contained mature *H. longirostris* as small as 4-5 mm, and average size of adults being smaller overall (Figure 9). There is no known data on age-at-maturity for *H. longirostris*. If the smaller size at maturity of *H. longirostris* results in a younger age-at-maturity this shorter generation time may result in a competitive advantage over *N. mercedis*. Furthermore, smaller size may make *H. longirostris* less subject to food limitation, a chronic problem in the SFE (Orsi and Mecum 1996).

Figure 8. Mean CPUE (catch per cubic meter) (±1 SE) for *N. mercedis* (top) and *H. longirostris* (bottom) by 10 ntu intervals, from Fall Midwater Trawl mysid sampling, 2011–2016.
As with size-at-maturity, sample size for gravid *N. mercedis* in FMWT was too small to directly compare fecundity with *H. longirostris*. Previously published information on *N. mercedis* (referred to as *Neomysis awatschensis* in the study) found that fecundity is based on size and time of year (Heubach 1969) with relatively high numbers of eggs produced by females of the same size during spring and summer, and lower numbers in fall and winter. Laboratory raised *N. mercedis* were found to have brood sizes ranging from 4 to 31, with an average of 15.1 (Bailey 1985) based on number of young successfully released from the brood pouch. This is higher than the mean brood size of *H. longirostris* found in the FMWT mysid data (7.7 for stage 3, the closest to being released), but the ideal laboratory conditions used in the study likely produced high values that would not be seen under normal field conditions. *H. longirostris* may follow the same trend as *N. mercedis*, with the highest reproduction in spring. If reproduction is normally reduced in fall, FMWT mysid data is inadequate for determining actual brood size ranges for either mysid species. An analysis of EMP data from 1993-1996 (Orsi 1997) found that *H. longirostris* at the same size had larger average brood sizes than *N. mercedis*. Future analysis of more recent EMP data compared with that of FMWT would improve our knowledge of mysid fecundity.

Further studies are necessary to document the overall abundance of mysid species across the full range of the SFE, characterize the life history of *H. longirostris*, and further understand why *H. longirostris* is the most abundant mysid in the upper SFE and the native *N. mercedis* is not.

ACKNOWLEDGMENTS

We thank R. Baxter (CDFW) for providing the time for intellectual discussion and direction for this paper, as well as multiple rounds of comments to improve content and clarity. We also thank A. Hennessy, F. La Luz, and S. Sherman (all CDFW) for providing comments on the paper and, more importantly, motivation to continue this work. This paper would not have been possible without support from our other CDFW colleagues E. Davidson, M. Harden, S. Finstad, and T. Bippus who provided feedback on an earlier poster presentation on this topic, inspiring further research that ultimately produced this paper. Finally, we would like to show appreciation to all laboratory staff during the study years who spent thousands of hours sorting and identifying mysid samples. Funding was provided by the California Department of Fish and Wildlife (Interagency Ecological Program element 003). The findings and conclusions in this article are those of the authors and do not necessarily represent the view of the member agencies of the Interagency Ecological Program for the San Francisco Estuary.

Author Contributions

Conceived and designed the study – MA

Collected the data – MA

Performed the analyses – MA & RH

Authored the MS – MA

Critical revisions - RH

Figure 9. Length distribution of juveniles, adult males, and adult females for *N. mercedis* and *H. longirostris*.
As with size-at-maturity, sample size for gravid *N. mercedis* in FMWT was too small to directly compare fecundity with *H. longirostris*. Previously published information on *N. mercedis* (referred to as *Neomysis awatschensis* in the study) found that fecundity is based on size and time of year (Heubach 1969) with relatively high numbers of eggs produced by females of the same size during spring and summer, and lower numbers in fall and winter. Laboratory raised *N. mercedis* were found to have brood sizes ranging from 4 to 31, with an average of 15.1 (Bailey 1985) based on number of young successfully released from the brood pouch. This is higher than the mean brood size of *H. longirostris* found in the FMWT mysid data (7.7 for stage 3, the closest to being released), but the ideal laboratory conditions used in the study likely produced high values that would not be seen under normal field conditions. *H. longirostris* may follow the same trend as *N. mercedis*, with the highest reproduction in spring. If reproduction is normally reduced in fall, FMWT mysid data is inadequate for determining actual brood size ranges for either mysid species. An analysis of EMP data from 1993-1996 (Orsi 1997) found that *H. longirostris* at the same size had larger average brood sizes than *N. mercedis*. Future analysis of more recent EMP data compared with that of FMWT would improve our knowledge of mysid fecundity.

Further studies are necessary to document the overall abundance of mysid species across the full range of the SFE, characterize the life history of *H. longirostris*, and further understand why *H. longirostris* is the most abundant mysid in the upper SFE and the native *N. mercedis* is not.

ACKNOWLEDGMENTS

We thank R. Baxter (CDFW) for providing the time for intellectual discussion and direction for this paper, as well as multiple rounds of comments to improve content and clarity. We also thank A. Hennessy, F. La Luz, and S. Sherman (all CDFW) for providing comments on the paper and, more importantly, motivation to continue this work. This paper would not have been possible without support from our other CDFW colleagues E. Davidson, M. Harden, S. Finstad, and T. Bippus who provided feedback on an earlier poster presentation on this topic, inspiring further research that ultimately produced this paper. Finally, we would like to show appreciation to all laboratory staff during the study years who spent thousands of hours sorting and identifying mysid samples. Funding was provided by the California Department of Fish and Wildlife (Interagency Ecological Program element 003). The findings and conclusions in this article are those of the authors and do not necessarily represent the view of the member agencies of the Interagency Ecological Program for the San Francisco Estuary.

Author Contributions

Conceived and designed the study – MA
Collected the data – MA
Performed the analyses – MA & RH
Authored the MS – MA
Critical revisions - RH
LITERATURE CITED

Submitted 2 May 2019
Accepted 30 July 2019
Associate Editors were N. Kogut and A. Hennessy
Occurrences of Steelhead Trout (*Oncorhynchus mykiss*) in southern California, 1994–2018

ROSI DAGIT¹*, MICHAEL T. BOOTH², MAURICIO GOMEZ³, TIMOTHY HOVEY⁴, STEVE HOWARD⁵, SCOTT D. LEWIS⁶, SANDRA JACOBSON⁷, MARY LARSON⁸, DANA MCCANNE⁴, AND TIMOTHY H. ROBINSON⁸

¹ Resource Conservation District of the Santa Monica Mountains, Topanga, CA 90290, USA

² United Water Conservation District, 106 N 8th St, Santa Paula, CA 93060, USA (Current affiliation: Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45220, USA)

³ South Coast Habitat Restoration, P.O. Box 335, Carpinteria, CA 93014, USA

⁴ California Department of Fish and Wildlife, Region 5, 3883 Ruffin Road, San Diego, CA 92123, USA

⁵ United Water Conservation District, 106 N 8th St, Santa Paula, CA 93060, USA (Current affiliation: Rincon Consultants, Inc.)

⁶ Casitas Municipal Water District, 1055 Ventura Ave, Oak View, CA 93022, USA

⁷ California Trout - South Coast Region, 5425 Oberlin Drive, Suite 209, San Diego, CA 92121, USA

⁸ Cachuma Operations Management Board, 3301 Laurel Canyon Rd., Santa Barbara, CA 93105, USA

*Corresponding Author: rdagit@rcdsmm.org

Observations of federally endangered Southern Steelhead Trout (*Oncorhynchus mykiss*) were compiled for the southern California Distinct Population
Segment (DPS) that extends approximately 500 kilometers from the Santa Maria River (Santa Barbara County) south to the Mexican border. Existing monitoring programs and anecdotal observations documented 177 adult Steelhead in the past 25 years. The level of monitoring effort and technology used varied by watershed and year. Thus, the low numbers of adult Steelhead observed during the past 25 years provides relative abundance and distribution documentation of occurrences but likely underestimates the abundance of adult Steelhead throughout the DPS. The patchy distribution observed suggests that fish are opportunistically entering creeks and river mouths based on available hydrologic passage opportunities associated with higher rainfall years. Given the extremely low numbers of anadromous adults, long recovery timeline, future uncertainty with respect to climate change, and a multitude of anthropogenic factors, additional conservation actions including state and federal protection of resident *O. mykiss* are recommended to increase the likelihood of the continued existence of the species within the DPS. Additional focused monitoring, research, and implementation of recovery actions are needed to expand our knowledge of southern California Steelhead distribution and abundance.

Key words: anadromous adults, Rainbow Trout, southern California, Southern Steelhead

The Southern California Steelhead Trout (*Onchorhynchus mykiss*) Evolutionarily Significant Unit (ESU) populations located from the Santa Maria River in Santa Barbara County south to Malibu Creek in the Santa Monica Bay were listed as endangered in 1997 under the Endangered Species Act (NOAA 1997: 62 FR 43937). After recognizing that additional populations of Steelhead were found further south in Topanga Creek near Malibu, and San Mateo Creek near San Diego, the ESU was extended to the Mexican border in 2002 (NOAA 2002: 7 FR 21586). Subsequently, the National Marine Fisheries Service (NOAA) adopted the Distinct Population Segment (DPS) designation to replace the use of ESU in 2006 (NOAA 2006: 71 FR 5248). Based on these designations, all naturally spawned *O. mykiss* found in freshwater habitat below impassible natural and artificial barriers are protected by this listing. Additionally, any individuals spawned upstream of these barriers that migrate downstream into designated critical habitat are also protected.

When observed in rivers and streams, it is difficult to determine the life history phenotype of an individual *O. mykiss* without genetic (Pearse et al. 2014), morphological (Beeeman et al. 1995; Haner et al. 1995), or physiological evaluations (Negus 2003). However, it is possible to identify anadromous adults when they return to rivers and streams from the ocean because they are typically larger (fork length > 400 mm), have greater girth, and are steel-gray in color (Moyle et al. 2017). Using these identifying characteristics to document adult occurrences in the DPS is critical to evaluate population viability and progress towards recovery goals (Boughton et al. 2006; Boughton 2010a, b; Adams et al. 2011; NOAA 2012). Resident *O. mykiss* in upper watershed areas outside the designated critical habitat are not protected by either state or federal endangered species acts, despite their documented link in maintaining maximum numbers of Steelhead (NOAA 2012).
The federal Recovery Plan (NOAA 2012) defines DPS-level and population-level criteria to lower the risk of extinction both for individual populations in a given river/creek system and the DPS as a whole (Boughton et al. 2007). Criteria listed include preventing extinction by protecting existing populations and all life history expressions, expanding distribution to historically occupied areas, restoring suitable habitat, conserving existing genetic diversity, and providing opportunities for genetic mixing between and within populations. Mean annual run size, which was estimated based on Lindley’s (2003) “random walk with drift” model using field data from the Central Valley (Boughton et al. 2007; Williams et al. 2016), resulted in a run size estimate of 4,150 spawners per year (100% anadromous) and generated a 95% chance of species persistence over a 100-year time period. In southern California however, the number of spawners observed is far below this estimate.

The objective of this study was to compile and examine the occurrence and geographic distribution of adult Steelhead over the past 25 years throughout the southern California DPS that could serve as a baseline for future conservation efforts. This information will help assess the effectiveness of restoration and recovery actions. Individuals documented upstream of barriers to anadromous migration were considered resident _O. mykiss_ and were not included in the enumeration of anadromous adults, although they are important components of Steelhead recovery. Due to uneven monitoring efforts and detection limitations, these observations provide only a limited snapshot, and they do not represent a census within any specific watershed or the DPS as a whole. They do, however, provide insight into relative abundance, distribution, and monitoring efforts over 25 years (1994 – 2018) since Southern Steelhead were federally listed as an endangered species.

METHODS

Study area

The study area spans the entire geographic region of the southern California Steelhead DPS identified in the recovery planning area (NMFS 2012; Figure 1). The southern DPS includes 50 creek/river systems and their tributaries covering approximately 500 kilometers of coastline, and it is further divided into five Biogeographical Population Groups (BPG). At the northern end of the DPS, the Monte Arido Highlands BPG includes the Santa Maria, Santa Ynez, Ventura, and Santa Clara rivers, which are large watersheds that extend well inland. Several smaller coastal creeks are also found throughout that region but were not included in the BPG such as the highly urbanized Conejo Creek, which is a tributary of Calleguas Creek. The Conception Coast BPG extends 80 km from Jalama Creek to Rincon Creek and includes: Arroyo Hondo, Mission, and Carpinteria creeks as well as the Goleta Slough complex, which includes Tecolotito, Los Carneros, San Pedro, Las Vegas, Maria Ygnacio, San Jose, and Atascadero creeks. The Santa Monica Mountains BPG extends approximately 52 km from Big Sycamore Creek south to Topanga Creek, including populations in Arroyo Sequit and Malibu Creeks. The Mojave Rim BPG encompasses the large watersheds and upper tributaries of the Los Angeles, San Gabriel, and Santa Ana Rivers, as well as Ballona Creek, which historically was an outlet of the Los Angeles River. The Santa Catalina Gulf Coast BPG extends from San Juan Creek at the north near Dana Point, south to the Mexican Border at the Tijuana River. This BPG includes coastal rivers such as San Mateo, San Onofre, Santa Margarita, San Luis Rey, and San Dieguito Rivers, as well as the larger San Diego Bay estuary, which is the terminus of the Sweetwater and Otay Rivers.
Survey methodology

We compiled and reviewed a variety of gray literature reports and technical memos in addition to published records for Steelhead occurrence data throughout the DPS (M. Gomez (South Coast Habitat Restoration), D. Hyatt (Bureau of Reclamation), K. McLaughlin (CDFW), C. Swift, personal communication; Hovey 2004; Capelli 2000 - 2017, CDFG 2007; CMWD 2009 – 2017; Downie and Kajtaniak 2010; Barabe 2013; COMB 2013, 2015; Allen 2014; Booth 2016; FOLAR 2016; COMB 2018; Dagit et al. 2018a, b). Surveys for adult Steelhead varied widely both in level of effort and timing throughout the DPS, but covered the majority of publicly accessible portions of the designated critical habitat, which extends from the ocean upstream to the limits of anadromy in numerous priority watersheds. Some reaches on private property were not surveyed. Upstream migration barriers were either natural, such as waterfalls, or, more commonly, anthropogenic barriers such as dams, bridges, and culverts. Detailed descriptions of these watersheds and barriers are found in the Southern California Steelhead Recovery Plan (NOAA 2012).

Documenting presence and abundance of adult Steelhead varied from opportunistic observations to more standardized observation methods consistent with protocols developed by the California Department of Fish and Wildlife (CDFW) Coastal Monitoring Program. These methods included snorkel/redd/carcass surveys, fish passage facilities, weir traps, video surveillance systems, Vaki Riverwatchers (VAKI Aquaculture Systems LTD, Iceland), in-stream Passive Integrated Transponder (PIT) antennas, and Dual-Frequency Identification Sonar (DIDSON: Sound Metrics, Washington, USA) cameras. Table 1 summarizes the location of all in-stream monitoring stations and devices. The time of equipment deployment within any year varied, depending on flow.

<table>
<thead>
<tr>
<th>Device</th>
<th>Deployment Location/River</th>
<th>Deployment Time Frame</th>
<th>Operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish Passage</td>
<td>Vern Freeman Diversion Dam, Santa Clara River</td>
<td>1994–2018</td>
<td>UWCD</td>
</tr>
<tr>
<td></td>
<td>Robles Fish Passage Facility, Ventura River</td>
<td>2006–2018</td>
<td>CMWD</td>
</tr>
<tr>
<td>Traps</td>
<td>Salsipuedes Creek, Santa Ynez River</td>
<td>1995–2018</td>
<td>COMB</td>
</tr>
<tr>
<td></td>
<td>Hilton Creek, Santa Ynez River</td>
<td>1994–2018</td>
<td>COMB</td>
</tr>
<tr>
<td></td>
<td>Lower Santa Ynez River</td>
<td>2005–2018</td>
<td>COMB</td>
</tr>
<tr>
<td></td>
<td>Topanga Creek</td>
<td>2008–2014</td>
<td>RCDSMM</td>
</tr>
<tr>
<td>In-stream PIT antenna</td>
<td>Topanga Creek</td>
<td>2008–2016</td>
<td>RCDSMM</td>
</tr>
<tr>
<td>DIDSON camera</td>
<td>Salsipuedes Creek, Santa Ynez River</td>
<td>2013–2018</td>
<td>CDFW</td>
</tr>
<tr>
<td></td>
<td>Carpinteria Creek</td>
<td>2014–2017</td>
<td>CDFW</td>
</tr>
<tr>
<td></td>
<td>Ventura River</td>
<td>2014–2018</td>
<td>CDFW</td>
</tr>
<tr>
<td></td>
<td>Topanga Creek</td>
<td>2012–2018</td>
<td>RCDSMM</td>
</tr>
</tbody>
</table>
Due to a variety of limitations, the level of monitoring effort was not consistent through time and geographic areas. Adult Steelhead were typically observed in traps, weirs, or by in-steam PIT antenna, video surveillance, and DIDSON cameras, or at fish passage facilities following storm events when flows could support migration. During spring and summer visual and snorkel surveys Steelhead were observed when detection in lower flows was possible. Stream flows in this region are flashy and inconsistent, making it difficult to effectively monitor the patchy spatial and temporal distribution of adult Steelhead throughout the DPS, particularly under turbid conditions. High turbidity is a distinctive feature of high flows in this region and depending on the drainage, can last days or weeks after significant rainfall with associated stormflow. Turbid conditions made it difficult to detect adult Steelhead at monitoring stations due to operational challenges and dangerous conditions at high flows when conditions might be favorable for migration. In addition, opportunistic observations were contributed by a variety of sources, including local conservation groups, governmental agency staff, and the general public. Opportunistic observations were verified by state, federal, or other experienced fisheries biologists based on photos, carcasses, or on-site visual confirmation.

Geographic observation details proceeding north to south

Cachuma Maintenance Operations Board (COMB) Fisheries Division staff have conducted migrant trapping from January to June since 1994 using weir traps at several locations within the lower Santa Ynez River (LSYR), Salsipuedes Creek, and Hilton Creek. During the migration season, COMB staff routinely conducted spawner/redd surveys according to National Marine Fisheries Service (NMFS) protocols throughout the LSYR basin in those reaches that historically provided spawning opportunities (AMC 2009). Monitoring was conducted to prepare biological assessments and for compliance measures set forth in the Cachuma Project Biological Opinion (NOAA 2000). In addition, COMB staff conducted snorkel surveys during spring, summer, and fall from 1994 to the present. Most reaches that hold over-summering *O. mykiss* were surveyed annually, and additional estuary monitoring was also conducted opportunistically during the study period in association with migrant trapping to track population abundance and distribution.

Snorkel and spawner/redd surveys were conducted at specific reaches within the Ventura River and upper tributaries. The Casitas Municipal Water District conducted redd and snorkel surveys since 2009 at index sites throughout the Ventura Basin (CMWD 2009 - 2017). Allen (2014) conducted snorkel surveys and electrofishing surveys in a subset of index reaches throughout the upper Ventura River from 2006 to 2012. The Robles Fish Passage Facility (23 km upstream from the ocean) was constructed in 2005 and is operated by Casitas Municipal Water District. Fish passage monitoring through the Robles facility was conducted with a VAKI Riverwatcher.

The Vern Freeman Diversion Dam (16 km upstream from the ocean) on the Santa Clara River is operated by United Water Conservation District and has monitored upstream migration since 1994. Prior to 1997, fish were captured in an upstream migrant trap at the facility’s Denil fish ladder. From 1998 to 2003 fish were incidentally encountered through periodic dewatering of the fish ladder facility. In 2003 this facility was retrofitted to include
a false weir with a passive, video-based migrant surveillance system and was updated in 2010. This system was thought to potentially undercount adult Steelhead based on collection of several downstream migrating kelts observed in the facility’s downstream migrant trap through 2014 that did not match observed upstream migrants. Due to permitting restrictions, the downstream migrant trap was not operated after 2015 and no upstream migrants were observed in the video surveillance system in this period (Booth 2016) although the system continues to be updated as technology improves. Stoecker and Kelley (2005) and Kelley (2008) conducted surveys throughout the Santa Clara River.

The Resource Conservation District of the Santa Monica Mountains (RCDSMM) in Arroyo Sequit and Malibu Creeks conducted monthly snorkel surveys in the Santa Monica Mountains BPG from 2005 through 2019, and in Topanga Creek from 2001 through 2019. Presence/absence surveys and lagoon monitoring were also conducted in Big Sycamore, Las Flores, Solstice, Trancas, and Zuma Creeks annually 2013 through 2018. DIDSON cameras have been used in several locations (Table 1) to augment storm event monitoring, but limitations due to high turbidity, bedload, fine sediment fouling, and extremely low flows resulted in fewer than 10 confirmed observations. The RCDSMM conducted five seining and angling efforts in the lower Los Angeles River from May 2014 to August 2015.

In 2016, the South Coast Steelhead Coalition initiated post-rain reconnaissance surveys in the four high-priority Steelhead recovery rivers in San Diego and Orange Counties including: San Juan/Arroyo Trabuco Creek, San Mateo Creek, Santa Margarita River, and the San Luis Rey River. These river mouths have seasonally accessible estuaries where adult Steelhead have occasionally been observed. Prior to the more organized surveys, opportunistic monitoring and incidental observations by CDFW, Caltrout, local conservation groups, and Trout Unlimited members documented adult Steelhead on several occasions.

Finally, we attempted to fit regression models to test for relationships between precipitation and associated stormflow with adult Steelhead abundance. However, due to the variable sampling methods, efforts and locations, the models fit the data poorly and had low explanatory ability, so the results were not reported.

RESULTS

In the 25 years from 1994 through 2018, we observed a total of 177 adult Steelhead throughout the southern California DPS. Annual Steelhead observations ranged from 1 fish (1997, 2016, and 2018) to 49 fish (2008), with a mean of 7 fish (SD = 10). Three or fewer fish were observed in 11 years. Most noteworthy were the Santa Ynez River (n = 16) and Mission Creek (n = 13) (Capelli 2008; USBR 2011).

Records of adult Steelhead observed are presented in Table 2 and were compiled from various sources. Observations are grouped based on the BPG location and 34 of the 50 river/creek systems within the DPS were surveyed. Of these, annual monitoring occurred for 25 years at the Freeman Diversion on the Santa Clara River, 24 years on the Santa Ynez River, 18 years in Topanga Creek, and 14 years in both Arroyo Sequit and Malibu Creeks. Monitoring in all other systems was more erratic and limited due to private property access issues, although seven more systems (Ventura River, San Antonio, Big Sycamore, Las Flores, Solstice, Trancas, and Zuma Creeks) were annually monitored from 2013 through 2018.
Table 2. Summary of adult steelhead observations for locations in the southern California Distinct Population Segment Biogeographical Population Groups (BPG) from 1994 through 2018 listed from north to south. Blank spaces indicate that no formal visual or snorkel survey results were available, and opportunistic observations noted in bold. A zero indicates that surveys were conducted but no anadromous *O. mykiss* observed.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte Arido Highlands</td>
<td>Santa Maria River</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santa Ynez River</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Robles Diversion</td>
<td>1</td>
<td></td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Ventura River</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Antonio Creek</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Santa Clara Freeman Diversion</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Conception Coast</td>
<td>Arroyo Hondo</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goleta Slough Maria Ygnacio Creek</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goleta Slough Atascadero Creek</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goleta Slough San Pedro Creek</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mission Creek</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carpinteria Creek</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Santa Monica Mountains</td>
<td>Conejo Creek</td>
<td>Not listed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Big Sycamore Creek</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arroyo Sequit Creek</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Las Flores Creek</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solstice Creek</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malibu Creek</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topanga Creek</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trancas Creek</td>
<td>Not listed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zuma Creek</td>
<td>Not listed</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 continued.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohave Rim</td>
<td></td>
</tr>
<tr>
<td>Ballona Creek</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Los Angeles River</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Santa Ana River</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Santa Catalina Gulf Coast</td>
<td></td>
</tr>
<tr>
<td>Santa Juan Creek</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>San Mateo Creek</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Santa Margarita River</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>San Luis Rey River</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Los Penasquitos Creek</td>
<td>Not listed</td>
<td></td>
</tr>
<tr>
<td>TOTAL DPS</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>18</td>
<td>49</td>
<td>9</td>
<td>7</td>
<td>11</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>
DISCUSSION

Survey results

The level of monitoring effort and efficiency varied throughout the DPS, and as a result, the low numbers of adult Steelhead observed during the past 25 years provides documentation of abundance and distribution. Anadromous Steelhead are difficult to detect, especially when numbers are low, because they typically migrate following peak flows when visibility is usually compromised and accessibility to river sites is dangerous for monitoring. Levels of effort to observe adult Steelhead increased over time using a variety of methods. Absence of documented sightings does not necessarily mean that adult Steelhead were not present, just that they were not observed, or that no surveys were conducted. We recognize that the occurrence numbers reported here likely underestimate the abundance of adult Steelhead across the DPS. As reported by Williams et al. (2016) and confirmed by our observations, at no point since Steelhead were listed as endangered in 1997 was the preliminary provisional viable population goal of 4,150 annual anadromous spawners observed in any individual watershed, nor throughout the DPS as a whole.

No geographic distribution pattern was observed, but larger systems with more hydrologically persistent estuaries and flow regimes (Santa Ynez River watershed) reported more adult Steelhead than smaller, more intermittently connected systems. Adult Steelhead were typically observed in traps, or by in-stream PIT antenna, video surveillance, and DIDSON cameras following storm events when flows could support migration. They were also observed during spring/summer visual and snorkel surveys when detectability was increased in lower flows and fish were trapped in the freshwater system and concentrated in refugia habitats. The large rainfall events in 2005 and 2008 provided good upstream migration, spawning, and rearing opportunities throughout the DPS and the potential for out-migrating smolts, which resulted in a substantial increase in adult anadromous Steelhead returns observed in 2008 and 2011, when there was also enough rainfall and associated flows to support migration. Having a close sequence of wet years provided the opportunity for previous cohorts to return in subsequent years as adults (e.g., the 2005 cohort returned in 2008). However, even though we logically expect these results the overall low abundance, variable sampling methods, inconsistent levels of effort, and differences in monitoring protocols used at each location made it difficult to identify clear correlations between adult abundance and rainfall/flows.

The limited and inconsistent monitoring for all life stages occurring in southern California makes it challenging to answer key questions regarding smolt production and adult returns, although the extreme drought from 2012 to 2016 was known to play a role in the lower Santa Ynez River (COMB 2015) and in Topanga Creek by reducing connectivity and limiting available rearing space (Dagit et al. 2017) and the overall population. Further monitoring and research are needed to determine what combinations of factors are resulting in such low numbers of adults (Boydstun and McDonald 2005; Adams et al. 2011; NOAA 2016). Although more Steelhead of all life stages were observed in locations with more consistent monitoring programs, differences still existed when considering passage limitations and system size. For instance, even though the monitoring effort and detection potential were higher in Topanga Creek than in Malibu Creek, passage restrictions at Topanga lagoon and drought-related low flow conditions resulted in fewer Steelhead accessing that system.
as compared to Malibu Creek (Dagit et al. 2018a).

Given the limitations of the data available, it was not possible to examine the potential role of other variables on adult Steelhead migration such as lagoon breaching dynamics, timing of wet years needed for sufficient flow for adult migration, basin size, passage barriers, and smolt production, survival and emigration conditions. The fact that adult Steelhead were observed in some locations more frequently than others could reflect migration access, suitable habitat, level and type of monitoring effort and detection efficiency and ocean conditions.

Lack of a discernible distribution pattern of adult Steelhead is inconclusive given the monitoring limitations, overall low population densities, limited passage opportunities, and persistent drought conditions. All these systems were highly impacted by drought, especially from 2012 through 2016, resulting in little if any connection to the ocean, both intermittent and interrupted stream flow, and fragmented habitat upstream (COMB 2015; Dagit et al. 2017). Genetic data from southern California indicates that although many adults return to their natal stream to spawn, others stray (Clemento et al. 2009; Pearse et al. 2014). Due to the limited genetic information available it was not possible to assess the percentage of strays from the monitoring data evaluated during this study.

Influences of anadromy and residency

Factors influencing residency versus anadromy have been explored by Kendall et al. (2015), and their findings suggest that environmental conditions such as those occurring in southern California play an important role in determining propensity for anadromy, in addition to an individual’s genotype (Hendry et al. 2004). The genetic potential for anadromy appears to persist in upper watershed locations throughout the southern California DPS below and in some instance above barriers (Thrower et al. 2004; Pearse et al. 2009; COMB 2013; Abadia-Cardoso et al. 2016; RCDSMM, unpublished data) and when opportunity arises, resident fish can smolt and emigrate to the ocean (McPhee et al. 2007; Holecek at al. 2012; Corter et al. 2013; Kendall et al. 2015). However, given the limited opportunity for passage due to low flows, there may not be sufficient numbers of smolts making it to the ocean, resulting in low numbers of adults returning. The snorkel/redd survey data, various fish passage/traps, and DIDSON camera data available from a few systems (Arroyo Sequit, Malibu, and Topanga Creeks (Dagit et al. 2018a, b); lower Santa Ynez River (COMB 2013; COMB 2018); Santa Clara River (Booth 2016); and Ventura River (CDFW, unpublished data), have documented low numbers of smolts throughout the DPS. Additionally, the effects of ocean conditions on smolts is another important factor. Michel (2018) found that flow levels during outmigration explained survival patterns for Chinook salmon more than marine conditions, and Kendall et al. (2015) suggest that there is a wide range of environmental and individual fitness variables that might influence marine survival. Analysis of the smolt-to-adult survival ratio in Southern Steelhead needs further study.

If the number of anadromous *O. mykiss* continues to decline, there will be increased dependence on resident Rainbow Trout for smolt production to maintain or re-establish the Steelhead life history. Resident *O. mykiss* currently play a key role in smolt production. Ultimately reproduction by both resident and anadromous life histories contributes to the overall abundance of *O. mykiss* (NOAA 2012). However, these resident populations are at risk from negative anthropogenic impacts, environmental effects, and other population-
level threats. Decreased expression of and/or retention of genetic markers associated with anadromy, coupled with low population numbers and barriers to migration, could exacerbate the issue of inbreeding in small isolated populations (Pearse et al. 2009). Sharp declines in local population numbers can cause inbreeding depression and lower fitness (Pearse et al. 2014; Abadia-Cardoso et al. 2016; Leitwein et al. 2016). Recent genetic studies of Southern California Steelhead populations indicate that these populations have low allelic diversity (Clemento et al. 2009; Pearse et al. 2009; Jacobson et al. 2014; Abadia-Cardosa et al. 2016; Apgar et al. 2017). Strays may be important for re-establishing populations once extirpated (Bell et al. 2011) and provide additional genetic diversity (Garza et al. 2014). Many of these populations retain alleles associated with anadromy (Pearse et al. 2009; Abadia-Cardosa et al. 2016), suggesting that despite their primarily freshwater resident life history pattern, the genetic potential for anadromy is still present. Importantly, the potential for resident O. mykiss to establish anadromous populations (Nielsen 1999; Courter et al. 2013; Phillis et al. 2016; Apgar et al. 2017) further supports their importance in promoting Steelhead recovery. Given recent occurrence of multiple large-scale catastrophic events in this region (e.g., wildfires and drought), genetically informed conservation actions must happen expeditiously to avoid further loss of genetic diversity potentially present in these isolated populations while other Steelhead recovery efforts continue.

Recovery planning and future needs

How should monitoring approaches be adjusted to accommodate challenges in assessing DPS status and trends? There are numerous identified factors contributing to the decline of this species within the southern California DPS both in its freshwater and ocean environments. The federal Recovery Plan (NOAA 2012) provides a thorough assessment of the threats to southern California DPS Steelhead and prioritizes recovery actions specific to each watershed that could help mitigate these threats. Increased and consistent monitoring efforts are needed, especially in the smaller systems and tributaries, to further understand distribution and abundance patterns and assess the effectiveness of restoration and recovery actions to increase populations over time. Further monitoring and research are needed to assess what combinations of factors are resulting in such low numbers of adults, although the extreme drought from 2012 to 2016 played a large role in population reduction in Topanga Creek (Dagit et al. 2017) and the lower Santa Ynez River (COMB 2015). Additional threats such as barriers to fish passage and migration, impacts to freshwater habitat quality, degradation of estuarine habitat, water quality and quantity, increased development, prolonged and intensive drought, loss of habitat due to wildfires, and increased number of both aquatic and terrestrial invasive species are well documented within the southern California DPS and have cumulatively taken a toll (NOAA 2012).

Numerous barrier removal and habitat restoration projects have been implemented in the past 25 years to address some of these threats throughout the DPS (NOAA 2016), but recent wildfires, floods, and persistent drought have seriously reduced the effectiveness of those efforts (Smith et al. 2018). These events, especially wildfires, have further reduced the number of small, isolated remnant populations found mostly in upper tributaries (Smith et al. 2018; CDFW, unpublished data). Restoring dependable flow through a natural flow regime despite drought and anthropogenic impacts are long-term efforts key to promoting Steelhead recovery. Advancements in surface and groundwater management to address the
competing needs of providing potable water supply as well as maintain stream baseflow
during the dry season may provide opportunities to ensure more reliable stream flows.
The Thomas Fire (2017) impacted many drainages throughout Santa Barbara and Ventura
Counties; the Whittier Fire (2017) impacted the Santa Ynez watershed in Santa Barbara
County, and the Woolsey Fire (2018) impacted all creeks in the Santa Monica Mountains
except Topanga Creek. Subsequent fire related floods and debris flows continue to impact
these areas and caused local extirpation (CDFW, unpublished data). Evidence from previous
wildfires suggests that when local populations are extirpated, intervention may be needed
for re-establishment (Rinne 1996; Cooper et al. 2015).

To identify the proximate causes limiting the DPS from meeting population level re-
cuperation criteria proposed for viable populations in core watersheds (NOAA 2012), continued
and consistent monitoring efforts are needed. Building quantitative models that consider both
anadromous and resident fish in the production of smolts, in addition to watershed-specific
carrying capacities would be a valuable effort towards refining population goals. Removal
of fish passage barriers, habitat improvement, invasive species removal, and adequate river
flow are essential components, but may not be sufficient to restore populations.

Novel approaches are needed to protect and increase the resiliency of resident and
anadromous *O. mykiss*. Such approaches may include one or more of the following as part
of a carefully considered regional conservation strategy for the DPS: 1) removal of invasive
aquatic species (in particular predatory species such as bass and sunfish) to create additional
suitable habitat; 2) translocation and assisted migration of *O. mykiss* into vacant refugia
habitat both above and below dams to increase geographic distribution; 3) conservation
hatcheries to increase abundance and genetic diversity; and, 4) cryopreservation to preserve
 genetic material of high-risk populations (Labbe et al. 2001). Policies that afford further
protection to resident Rainbow Trout should also be considered, such as the Similarity of
Appearance clause in the ESA (Fejtek 2017). Additional genetic work is needed to better
understand factors that regulate anadromy.

Projected impacts of climate changes (Sun et al. 2015) suggest that protecting the more
resilient, and warm water tolerant (Matthews and Berg 1997; Myrick and Check 2005; Spina
2007; Sloat and Osterback 2013) Steelhead populations found in southern California would
be prudent. Southern Steelhead Trout are incredibly resilient (Boughton et al. 2010; NOAA
2012; Moyle et al. 2017), but despite 25 years of protection under the federal Endangered
Species Act, have not been able to overcome the many threats to their survival. The future
of this species at the southern extent of its range will depend on a suite of carefully planned
and expeditiously implemented recovery actions but most importantly, recognition that
protecting both resident and anadromous *O. mykiss* together is beneficial for the recovery
of the species as a whole.

ACKNOWLEDGMENTS

Many of the surveys and observations were made possible thanks to numerous grants
from the Fisheries Restoration Grant Program. We thank M. Capelli (National Marine
Fisheries Service) for his important documentation of occurrences, thoughtful input to this
paper, and dedicated work on the Recovery Plans. We also want to recognize all the many
concerned stakeholders who have contributed to the effort to protect and recover Southern
Steelhead, especially all the dedicated technicians, E. Kelley, M. Stoecker, G. Sutherland
(Trout Unlimited), Dr. C. Swift, Dr. S. Cooper, and B. Trautwein (Environmental Defense Center). We also thank Watershed Steward Program member B. Demirci for preparing the map and reviewers D. Boughton, M. Keefer, N. W. Kendall, J. S. Lamperth Jr., C.M. Polivka, R. M. Sullivan for their help in shaping this paper.

Author Contributions

Conceived and designed the study - RD, ML, DMCC, THR
Collected the data - all
Performed the analysis of the data - RD, MTB, SH, SDL, SJ, THR
Authored the manuscript - RD, MTB, SH, SDL, SJ, THR
Provided critical revision of the manuscript - RD, MTB, TH, SH, SDL, ML, SJ, THE

LITERATURE CITED

Boughton, D. A. 2010b. Some research questions on recovery of Steelhead on the South-Central and Southern California Coast. NOAA Technical Memorandum NMFS-SWFSC-467. California, USA. Available from: https://repository.library.noaa.gov/view/noaa/3821

Capelli, M. 2017. Adult Steelhead observation, Maria Ygnacio Creek (Santa Barbara

Downie, S., and D. Kajtaniak. 2010. San Luis Rey River Assessment. Coastal Watershed Planning and Assessment Program. California Department of Fish and Game. CA, USA. Available upon request from: www.rcdsmm.org

abundance, and behavior of Steelhead Trout (*Oncorhynchus Mykiss*) in a Southern California stream. Canadian Journal of Fisheries and Aquatic Sciences 70:64–73.

Submitted 19 June 2019

Accepted 7 August 2019

Associate Editor was R. Sullivan
Reported vessel strike as a source of mortality of White Sturgeon in San Francisco Bay

NICHOLAS J. DEMETRAS*, BRENnan A. HELWIG, AND ALEXANDER S. MCHURON

University of California, Santa Cruz, Cooperative Institute for Marine Ecosystems and Climate (CIMEC), Affiliated with: Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 110 McAllister Way, Santa Cruz, CA 95060, USA

*Corresponding Author: nicholas.demetras@noaa.gov

Key words: Acipenser transmontanus, Carquinez Strait, San Francisco Estuary, ship strike, vessel strike, White Sturgeon

Ship strikes are a source of injury and mortality for many aquatic species worldwide (Holland 1986; Laist and Shaw 2006; Hazel et al. 2007). Over the past few years, the impact of vessel strikes involving large cetaceans has received significant attention (Laist et al. 2001; Peel et al. 2018). However, the impact of vessel strikes on large adult fishes has received considerably less attention worldwide. Currently, the knowledge base of vessel strikes and their potential impact on fishes in the scientific literature is limited to a few studies involving large, long-lived fishes such as sturgeon (Gutreuter et al. 2003; Simpson and Fox 2009; Brown and Murphy 2010; Balazik et al. 2012; Watanabe et al. 2013). Recently, both Simpson and Fox (2009) and Brown and Murphy (2010) reported vessel strike mortalities of the ESA listed Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) in the Delaware River estuary, while Balazik et al. (2012) reported vessel strike mortalities of Atlantic sturgeon in the tidal freshwater portion of the James River, Virginia. Using an-egg-per-recruit analysis, Brown and Murphy (2010) demonstrated that vessel strike mortalities could be detrimental to the population if more than 2.5% of the female Atlantic Sturgeon are killed annually in the Delaware Estuary.

Despite the potential importance of vessel strike mortalities in limiting Atlantic Sturgeon recovery on the US East Coast (Brown and Murphy 2010), very little is known about White Sturgeon (A. transmontanus) vessel interactions on the US West Coast, especially in the heavily trafficked waters of the San Francisco Estuary (SFE). Though anecdotal evidence and personal observations (with no supporting information) abound, we were unable to find any direct evidence of confirmed White Sturgeon vessel interactions in the scientific literature. In this short article, we report on a vessel strike that we observed which resulted in the decapitation of a White Sturgeon in the SFE.
All observations and specimen collections were made from the National Oceanic & Atmospheric Administration’s R/V Heron near the Port of Benicia, California USA. Due to the incomplete and decapitated nature of the specimen encountered, we used a head to body length of 4.5:1 as reported by Ruiz-Campos et al. (2011) to estimate its total length. Using this estimate of size we applied the length at age equation, \(l_t = 230.59[1 - e^{-0.0533(t+2.9176)}] \) developed by Brennan & Cailliet (1989) for White Sturgeon in the SFE, where \(l_t \) is the length at age \(t \) (years) to estimate a minimum age. We used ArcGIS v10.5 to visualize the location of the observed vessel strike with an added bathymetry layer of the surrounding area.

On 24 April 2018 at approximately 1000 (PDT), we observed a crude oil tanker depart from the Port of Benicia on the north shore of the Carquinez Strait, directly downstream of the Interstate 680 Bridge, in approximately 20 m of water (Figure 1). The tanker measured approximately 250 m in length with a beam of 44 m and a maximum draught of 14.8 m. Immediately after its departure, we saw what appeared to be a live White Sturgeon struggling at the surface in an area the tanker had previously occupied. Upon closer inspection, it was determined to be a recently decapitated adult White Sturgeon measuring 92 cm total length without the head (Figures 2, 3). A significant amount of blood was still present in the body, which immediately drained upon removal from the water. Several strong tail beats and a general thrashing of the body suggested that the removal of the head occurred immediately prior to our observation of the fish struggling at the surface. No marine mammals, anglers, or other potential perpetrators were observed in the immediate vicinity prior to, during or after the fish was brought on board. The clean nature of the decapitation wounds (Figure 2) suggest they were caused by something quite sharp and powerful, and are not consistent

![Figure 1. Location of Carquinez Strait in relation to the greater San Francisco Estuary, CA, USA (upper left). A) Port of Benicia with black line representing wharf structure. B) Parallel black lines indicate the location of the east and west spans of the I-680 Bridge. White circle denotes approximate location of observed vessel strike of White Sturgeon overlaid with the surrounding bathymetry.](image-url)
All observations and specimen collections were made from the National Oceanic & Atmospheric Administration’s R/V Heron near the Port of Benicia, California USA. Due to the incomplete and decapitated nature of the specimen encountered, we used a head to body length of 4.5:1 as reported by Ruiz-Campos et al. (2011) to estimate its total length. Using this estimate of size we applied the length at age equation,

\[l_t = 230.59 [1 - e^{-0.0533(t+2.9176)}] \]

developed by Brennan & Cailliet (1989) for White Sturgeon in the SFE, where \(l_t \) is the length at age \(t \) (years) to estimate a minimum age. We used ArcGIS v10.5 to visualize the location of the observed vessel strike with an added bathymetry layer of the surrounding area.

On 24 April 2018 at approximately 1000 (PDT), we observed a crude oil tanker departing from the Port of Benicia on the north shore of the Carquinez Strait, directly downstream of the Interstate 680 Bridge, in approximately 20 m of water (Figure 1).

The tanker measured approximately 250 m in length with a beam of 44 m and a maximum draught of 14.8 m. Immediately after its departure, we saw what appeared to be a live White Sturgeon struggling at the surface in an area the tanker had previously occupied. Upon closer inspection, it was determined to be a recently decapitated adult White Sturgeon measuring 92 cm total length without the head (Figures 2, 3).

A significant amount of blood was still present in the body, which immediately drained upon removal from the water. Several strong tail beats and a general thrashing of the body suggested that the removal of the head occurred immediately prior to our observation of the fish struggling at the surface. No marine mammals, anglers, or other potential perpetrators were observed in the immediate vicinity prior to, during or after the fish was brought on board. The clean nature of the decapitation wounds (Figure 2) suggest they were caused by something quite sharp and powerful, and are not consistent...
with the dentition of the California sea lion (*Zalophus californianus*), the dominant marine mammal predator in the area (Sinai et al. 2014).

The size of the fish and presence of male gonads suggest that the fish may have been at least 10 to 12 years old and possibly of breeding age (Moyle 2002). Using the measured body length of 92 cm and a head to body length ratio of 4.5:1, as reported by Ruiz-Campos et al. (2011), we estimated the total length including the head, at approximately 112 cm. The length at age equation, developed by Brennan and Cailliet (1989) for White Sturgeon in the SFE supports the minimum age estimate of our specimen at approximately 10 years old. This length at age equation relies in large part upon age data inferred from annual rings laid down in the cross section of White Sturgeon pectoral fins. However, this method may underestimate the true age of White Sturgeon by as much as 30-60% in some cases (Paragamian and Beamesderfer 2003).

Though we are aware of anecdotal and speculative reports of vessel strikes involving San Francisco Bay-Delta White Sturgeon in the scientific literature (Hildebrand et al. 2016), we are unaware of any previously published eyewitness accounts. The Carquinez Strait, within the greater SFE complex, is a heavily trafficked passageway that connects San Pablo Bay to Suisun Bay and the interior Sacramento-San Joaquin Delta. Both San Pablo and Suisun Bay are the primary, non-spawning habitat of adult White Sturgeon in the SFE and they move regularly between the two (Israel et al. 2011). This effectively acts as a bottleneck through which all fishes must pass and results in a deep channel with increased tidal flow suitable for the navigation of large vessels.

The characteristic bathymetry and tidal flow of the Carquinez Strait may increase the spatial overlap of White Sturgeon and large vessels in shipping channels as observed by Hondrop et al. (2017) in Lake Sturgeon (*A. fulvescens*) from the Detroit River. In addition, a growing body of research has shown that many Sturgeon species may not be as benthic oriented as once believed (Kelly and Klimley 2012; Watanabe et al. 2013; Beardsall et al. 2016; Taylor et al. 2016; Breece et al. 2018). Using vector analysis, Kelly and Klimley (2012) found that Green sturgeon spent the majority of their time in the upper water column, often at the surface, while undergoing rapid long-distance movements in deep, high-current areas such as the Carquinez Strait. To compound matters, Dijohnson (2019) found that Atlantic Sturgeon did not exhibit a behavioral avoidance response in the presence of vessel traffic. While similar vector analysis data is lacking for White Sturgeon, and behavioral data in the presence of vessel traffic is lacking for both Green and White Sturgeon, it may be reasonable to suggest that they behave similarly. Taken together these factors may lead to an increased risk of vessel strikes for both species in the Carquinez Strait.

While the impact of vessel strikes in the SFE on the White Sturgeon population may currently be of minor importance on its own, the cumulative impact when taken into consideration along with other stressors may present significant future challenges (Moyle et al. 2015). At this time, vessel strikes may have a greater impact on the population persistence of the ESA listed southern distinct population segment (sDPS) of Green Sturgeon (*A. medirostris*) due to their smaller population sizes. Southern DPS Green Sturgeon regularly pass through the SFE and the Carquinez Strait from late winter to spring in route to spawning grounds in the Sacramento and Feather Rivers (Mora et al. 2017; Seesholtz et al. 2015). However, we were unable to find any reports (anecdotal or otherwise) of vessel strikes involving Green Sturgeon in the SFE. This lack of observed vessel strikes may reflect upon the much smaller population size of Green Sturgeon in comparison to White Sturgeon in the SFE (Heublein et
The apparent use of the Carquinez Strait primarily as a migration corridor by adult Green Sturgeon, as opposed to White Sturgeon that regularly transit the Carquinez Strait between feeding grounds, may limit the vessel strike susceptibility of adult Green Sturgeon to specific periods of migration (Heublein et al. 2009). However, sub-adult Green Sturgeon, similar to the size of our specimen, have been recorded in and around the Carquinez Strait, and may be vulnerable to vessel strikes as well (NMFS 2009).

It is apparent through both anecdotal reports and now eyewitness accounts that vessel strikes pose a risk of both injury and mortality to White Sturgeon in the Carquinez Strait, the SFE, and possibly elsewhere. However, the magnitude and extent of the threat, not only in the SFE but also throughout its entire range, is not fully understood. As a first step, a registry to report Sturgeon vessel strikes would provide a centralized repository of data that is currently lacking, similar to NOAA Fisheries National Marine Mammal Stranding Network (https://www.westcoast.fisheries.noaa.gov/protected_species/marine_mammals/national_stranding_network.html) or that of the International Whaling Commission’s Ship Strikes database (https://iwc.int/ship-strikes). Such a database could assist fishery managers in making future decisions in regard to White Sturgeon, a long-lived fish that faces significant threats throughout its native range.

ACKNOWLEDGMENTS

In memory of our dear friend and colleague, Ethan Alden Mora (1977-2019). His friendship, encouragement, and enthusiasm for all things Sturgeon will be greatly missed. A big thank you to E. McHuron for reviewing and providing invaluable comments, insights, and suggestions on earlier versions of the manuscript. A. Seesholtz and an anonymous reviewer provided constructive comments on the initial draft. Material and logistical support was provided by the National Oceanic & Atmospheric Administration’s National Marine Fisheries Service - Southwest Fisheries Science Center.

Author Contributions

Collected the data: ND, BH, AM
Authored the manuscript: ND
Provided critical revision of the manuscript: BH, AM

LITERATURE CITED

Dijohnson, A. M. 2019 Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) behavioral responses to vessel traffic and habitat use in the Delaware River, USA. Thesis, Delaware State University, Dover, USA.

Moyle, P. B., R. M Quiñones, and J. V. Katz, and J. Weaver. 2015. Fish species of special concern in California. California Department of Fish and Wildlife, Sacramento, CA, USA.

Submitted 22 July 2019
Accepted 2 September 2019
Associate Editor was P. Reilly
Mountain lion (Puma concolor) population management in California has varied widely over the past 100 plus years, ranging from a bounty system (1906-1963) to specially-protected status (1972-present). To elucidate how these different management approaches have influenced California’s mountain lion populations, we estimated historical population trends by combining purposeful (i.e., bounty and depredation) and incidental (i.e., vehicle strike) mortality statistics with estimates of annual growth and mortality rates derived from the literature. We used a backwards population projection method to estimate annual abundance and population trends, starting with population sizes drawn randomly from a uniform distribution ranging from 1,000-5,000. These back-calculations suggest that the bounty was effective at reducing mountain lion populations, as all simulations indicated a statewide population decline during this period. Specially-protected status was also likely effective, as mountain lion populations appear to have increased statewide following cessation of the bounty period. These analyses demonstrate the effectiveness of various management approaches to influence mountain lion population trends for the intended results, and provide context for understanding historical aspects of mountain lion populations in California, which is unique from other areas given the species’ specially-protected status here.

Key words: bounty, depredation, mortality, Puma concolor, vehicle strike
In 1919, the California Department of Fish and Game (Department) employed the first full-time statewide lion hunter (McLean 1954), and the number of individuals employed for this purpose grew to a maximum of five in 1948. The Department employed at least one individual through 1959, prior to terminating the bounty program in 1963 (Nowak 1974). Records show that bounty hunters took 224 mountain lions on average each year, totaling 12,580 over the duration of the bounty system (Mansfield and Weaver 1989). After the bounty system ended in 1963, hunters could take mountain lions year-round without a bag limit or hunting license. In 1970 the Fish and Game Commission designated mountain lions as a game species, wherein a hunting license and tag were required for the 1970 and 1971 hunting seasons. In 1972, the state legislature enacted a moratorium on the hunting of mountain lions due to growing public concern over the status of the species in California (Fitzhugh and Gorenzel 1986). The moratorium expired in 1986 and ungulate conservation groups successfully lobbied to re-designate mountain lions as a game species. As a result, the Department began to develop regulations for harvest quotas and management zones, and to assess environmental impacts in compliance with the California Endangered Species Act (Mansfield and Weaver 1989). However, a majority vote by the citizens of California passed Proposition 117 (Fish & Game Code §4800-4809) in 1990, which classified mountain lions as a specially-protected mammal species. This unique status was a political designation, and not based on biological information regarding population abundance or trend. Thus, from 1990 to present, human-caused mountain lion mortalities have been limited to vehicle strikes, targeted removal under the authority of a depredation permit, poaching, public safety concerns, and take of mountain lions negatively impacting California bighorn sheep (Torres et al. 1996; Fish & G. Code §4801).

Mountain lions’ specially-protected status has resulted in a spectrum of concerns from interested parties. On one end of the spectrum are ungulate conservation groups who have expressed concern that the mountain lion population may be increasing and thus negatively impacting deer (Odocoileus hemionus) herds due to high rates of predation (Proposition 197 [1996]; Walgamuth 2017). Conversely, predator conservation groups have suggested that a combination of mortality factors (e.g., habitat loss, degradation, and fragmentation; vehicle

Table 1. Management status of mountain lions (Puma concolor) through time in California, USA.

<table>
<thead>
<tr>
<th>Years</th>
<th>Status</th>
<th>per Male</th>
<th>per Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1906–1916</td>
<td>Bounty</td>
<td>$20</td>
<td>$20</td>
</tr>
<tr>
<td>1917–1944</td>
<td>Bounty</td>
<td>$20</td>
<td>$30</td>
</tr>
<tr>
<td>1945–1963</td>
<td>Bounty</td>
<td>$50</td>
<td>$60</td>
</tr>
<tr>
<td>1964–1969</td>
<td>Vermin</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1970–1971</td>
<td>Game</td>
<td>$1(^a)</td>
<td>$1</td>
</tr>
<tr>
<td>1972–1986</td>
<td>Protected</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1987–1990</td>
<td>Game</td>
<td>NA(^b)</td>
<td>NA</td>
</tr>
<tr>
<td>1991–2018</td>
<td>Protected</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

\(^{a}\)Price per hunting tag

\(^{b}\)No hunting season occurred
strikes; depredation take; disease; etc.) may be causing the state’s mountain lion population to decline in numbers and genetic diversity to a level that may threaten the species’ viability (Proposition 117 [1990]; Walter 2015). To address these concerns, wildlife managers and biologists must gain insight into historical trends and the contemporary abundance of mountain lion populations to make effective management decisions.

In light of the controversies regarding mountain lion status in California, the Department seeks to clarify the effects of historical management on mountain lion populations. For this purpose, we proposed the following hypotheses: 1) the statewide mountain lion population in California declined during the bounty period (1906-1963); and 2) the statewide mountain lion population in California increased during the period of increasing legal protections (1972-2018). We tested these hypotheses by analyzing historical statewide data on mountain lion mortalities within a discrete growth equation to estimate historical population trends. Our objectives were to estimate statewide population trends during and after the bounty period, and to elucidate how historical and current management policies have affected the statewide mountain lion population.

METHODS

Study area

We collected mortality data from California county courthouses; California Departments of Fish and Wildlife (Department), and Transportation (Caltrans); California Highway Patrol (CHP); and United States Department of Agriculture, Wildlife Services (USDA Wildlife Services). County courthouse and Department records supplied data on mountain lions removed during the bounty period, and included data from all counties except Imperial, Sacramento, San Francisco, Solano, and Sutter, from which no bounty records were available. CHP and Caltrans supplied statewide data on mountain lions killed due to vehicle strikes. Department and USDA Wildlife Services supplied statewide data on mountain lions removed due to depredation.

Data collection

We collected statewide data on mountain lions purposefully killed due to bounties, hunting, and depredations from 1906-2018 (McLean 1954; Fitzhugh and Gorenzel 1986; Mansfield and Weaver 1989), and on mountain lions incidentally killed due to vehicle strikes from 2009-2018 (Table 2). There were no data available on purposeful removals between the conclusion of the bounty system in 1963 and establishment of a hunting season in 1970, nor were accurate data available on sex and age of individuals for any animals (bountied, hunted, depredated, vehicle-killed) but the most recent depredations (2015-2017).

For all these data, we made a number of assumptions described here, which may variously have contributed to over- or under-estimates of the number of lions removed from the population. Throughout the time period of interest, mountain lions undoubtedly died due to additional human-related incidents (e.g., poaching). Because of a scarcity of accurate data on such incidents, we assumed that our bounty, hunting, depredation, and vehicle strike data represented the majority of human-caused mountain lion mortalities. This assumption may underestimate the number of individuals removed. In addition, bounty systems encourage
<table>
<thead>
<tr>
<th>Status</th>
<th>Year</th>
<th># Purposefully Removed</th>
<th># Incidentally Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depredation</td>
<td>2018</td>
<td>100</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>87</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>120</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>101</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>90</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>68</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>77</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>105</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>108</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>103</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>123</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>137</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>128</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>125</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>133</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>111</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>124</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>121</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>151</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>1999</td>
<td>120</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>123</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1997</td>
<td>104</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1996</td>
<td>110</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>117</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1994</td>
<td>124</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>1993</td>
<td>76</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>1992</td>
<td>83</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1991</td>
<td>74</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1990</td>
<td>76</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>1989</td>
<td>76</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>1988</td>
<td>61</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>1987</td>
<td>50</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>1986</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td>58</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1984</td>
<td>37</td>
<td>44</td>
</tr>
</tbody>
</table>

Table 2. Data on mountain lions (*Puma concolor*) purposefully (i.e., bounty, hunting, and depredation) and incidentally (i.e., vehicle strike) removed through time in California. Incidental removals 2015–2018 are raw data while incidental removals prior to that are derived based on the assumption of decreasing traffic volume backward through time.
Table 2 continued

<table>
<thead>
<tr>
<th>Status</th>
<th>Year</th>
<th># Purposefully Removed</th>
<th># Incidentally Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunting</td>
<td>1971</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>1970</td>
<td>83</td>
<td>36</td>
</tr>
<tr>
<td>Bounty</td>
<td>1963</td>
<td>99</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1962</td>
<td>115</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>1961</td>
<td>144</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>1960</td>
<td>127</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>1959</td>
<td>112</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>1958</td>
<td>136</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1957</td>
<td>157</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>1956</td>
<td>165</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1955</td>
<td>188</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>1954</td>
<td>155</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>1953</td>
<td>188</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1952</td>
<td>167</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>1951</td>
<td>140</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>1950</td>
<td>202</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1949</td>
<td>228</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1948</td>
<td>188</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1947</td>
<td>199</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>1946</td>
<td>213</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>1945</td>
<td>152</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>1944</td>
<td>177</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1943</td>
<td>155</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1942</td>
<td>159</td>
<td>30</td>
</tr>
</tbody>
</table>
Table 2 continued

<table>
<thead>
<tr>
<th>Year</th>
<th># Purposefully Removed</th>
<th># Incidentally Removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1941</td>
<td>236</td>
<td>29</td>
</tr>
<tr>
<td>1940</td>
<td>224</td>
<td>28</td>
</tr>
<tr>
<td>1939</td>
<td>291</td>
<td>28</td>
</tr>
<tr>
<td>1938</td>
<td>252</td>
<td>27</td>
</tr>
<tr>
<td>1937</td>
<td>221</td>
<td>29</td>
</tr>
<tr>
<td>1936</td>
<td>185</td>
<td>31</td>
</tr>
<tr>
<td>1935</td>
<td>249</td>
<td>27</td>
</tr>
<tr>
<td>1934</td>
<td>225</td>
<td>32</td>
</tr>
<tr>
<td>1933</td>
<td>268</td>
<td>23</td>
</tr>
<tr>
<td>1932</td>
<td>313</td>
<td>27</td>
</tr>
<tr>
<td>1931</td>
<td>292</td>
<td>26</td>
</tr>
<tr>
<td>1930</td>
<td>293</td>
<td>24</td>
</tr>
<tr>
<td>1929</td>
<td>297</td>
<td>23</td>
</tr>
<tr>
<td>1928</td>
<td>339</td>
<td>26</td>
</tr>
<tr>
<td>1927</td>
<td>247</td>
<td>24</td>
</tr>
<tr>
<td>1926</td>
<td>253</td>
<td>26</td>
</tr>
<tr>
<td>1925</td>
<td>240</td>
<td>27</td>
</tr>
<tr>
<td>1924</td>
<td>279</td>
<td>28</td>
</tr>
<tr>
<td>1923</td>
<td>230</td>
<td>23</td>
</tr>
<tr>
<td>1922</td>
<td>302</td>
<td>21</td>
</tr>
<tr>
<td>1921</td>
<td>252</td>
<td>25</td>
</tr>
<tr>
<td>1920</td>
<td>238</td>
<td>22</td>
</tr>
<tr>
<td>1919</td>
<td>263</td>
<td>22</td>
</tr>
<tr>
<td>1918</td>
<td>192</td>
<td>23</td>
</tr>
<tr>
<td>1917</td>
<td>171</td>
<td>24</td>
</tr>
<tr>
<td>1916</td>
<td>181</td>
<td>25</td>
</tr>
<tr>
<td>1915</td>
<td>170</td>
<td>23</td>
</tr>
<tr>
<td>1914</td>
<td>196</td>
<td>23</td>
</tr>
<tr>
<td>1913</td>
<td>232</td>
<td>22</td>
</tr>
<tr>
<td>1912</td>
<td>253</td>
<td>21</td>
</tr>
<tr>
<td>1911</td>
<td>270</td>
<td>21</td>
</tr>
<tr>
<td>1910</td>
<td>322</td>
<td>20</td>
</tr>
<tr>
<td>1909</td>
<td>360</td>
<td>22</td>
</tr>
<tr>
<td>1908</td>
<td>443</td>
<td>20</td>
</tr>
<tr>
<td>1907</td>
<td>117</td>
<td>23</td>
</tr>
<tr>
<td>1906</td>
<td>118</td>
<td>23</td>
</tr>
</tbody>
</table>
inflated reporting (i.e., submitting animals for bounty in California while they were actually taken in a neighboring state), so bounty data may overestimate the number of individuals removed (Fitzhugh and Gorenzel 1986). However, it should be noted that the majority (>50%) of the bounty records submitted were by agency employees. Further, none of the border counties had high numbers of bounties paid relative to interior counties. As such, we assumed that these records are accurately reported and represent animals taken within California. There is also a likelihood that vehicle strike data are underreported. We assumed that the proportion of missing records is similar from year-to-year and does not account for a significant number of records in a given year. To account for potentially missing depredation reports, we compared Department records and USDA Wildlife Services records for 1998-2018. Discrepancies between the two sets of records were generally within ±10 individuals statewide, and occurred for a variety of reasons (e.g., lost paperwork, position vacancies, etc.). Where discrepancies existed between the two datasets, we used the higher of the two reported numbers to represent number of animals removed via depredation in the given year.

Population simulations

Using a back-calculation method to estimate the historical population of mountain lions in California, we began with a discrete growth equation, modified to include rates of human-caused mortality:

\[
N_{t+1} = N_t \lambda_t - d_t - N_t \lambda_t m_t,
\]

where \(\lambda\) is the annual intrinsic growth rate, \(d\) is the combined number of individuals taken purposefully and incidentally per year, and \(m\) is the coefficient of additional mortality (e.g., intraspecific strife, poaching, and disease) per year (Mykra and Pohja-Mykra 2015). Estimating the trend of a population from one year to the next requires an estimate of potential annual growth and mortality. Based on results reported by Beausoleil et al. (2013), we established the mean intrinsic growth (\(\lambda\)) at 1.14 (14% annual increase) with a standard deviation of 0.03 to allow for annual stochasticity (Robinson et al. 2008; Cooley et al. 2009; Robinson and DeSimone 2011; Beausoleil et al. 2013). We estimated the number of mountain lions killed annually by vehicle strike from 2000-2014 (prior to available data) by using the mean number killed annually by vehicle strike from 2015-2018, with a standard deviation of ±10% to account for annual stochasticity. For every decade prior to this (e.g., 1990-1999, 1980-1989), we decreased the mean by 10% from the next most recent timespan (i.e., mean for 1990-1999 was 10% less than mean for 2000-2014), but held standard deviation at ±10%. We decreased the mean from current to past to simulate decreased vehicle traffic in the past, and thus decreasing likelihood of vehicle strike. We established the coefficient of additional mortality per year (\(m\)) at a mean of 0.10 with a standard deviation of 0.03 to allow for annual stochasticity in additional mortality factors (Robinson et al. 2008; Cooley et al. 2009; Robinson and DeSimone 2011; Beausoleil et al. 2013). For the years in which there were no take data (1964-1969), \(d\) is the average removal rate during the two hunting seasons (59 mountain lions/year), and we allowed annual population parameters to vary stochastically as with all other iterations. Thus, for each year that we simulated population abundance, we randomly drew values for \(\lambda\) and \(m\) from a normal distribution with a mean of 0.14 and 0.10, respectively, and a standard deviation of 0.03. To assess impacts of missing data on population trends, we estimated sensitivity of population simulations to changes in mean values of \(\lambda\) and \(m\) (see Supplementary Material).
For estimating population sizes via back-calculation, we transformed Equation 1:

\[N_{t-1} = \frac{N_t + d_t}{(1 - m_t)\lambda_t}. \]

(2)

We considered \(N_{t-1} \) to be the population size at the end of the year after accounting for annual growth, additional mortality, and individuals taken that year. We iterated the backwards equation annually starting with 2018 and ending with 1906. We randomly drew the initial population abundance at 2018 from a uniform distribution ranging from 1,000-5,000 individuals. We selected the upper limit of the uniform distribution from potential mountain lion densities previously identified within high, medium, and low suitability habitats across California (Torres et al. 1996; Table 3). These upper threshold values are within reported confidence intervals derived in other areas of the western United States (Cougar Management Guidelines Working Group 2005). We selected the lower limit of the uniform distribution from recently published results on effective population size (\(N_e \)) in regional mountain lion populations (Gustafson et al. 2018) and ratios between \(N_e/N \) (Frankham 1995). Together, the upper and lower thresholds likely contain the actual statewide abundance of mountain lions in California, particularly considering the estimated average adult mountain lion density across the western United States (1.6/100 km\(^2\); Quigley and Hornocker 2010; Beausoleil et al. 2013), and the amount of mountain lion habitat in California (186,000 km\(^2\); Torres et al. 1996). We also assessed sensitivity of population simulations to changes in starting values (see Supplementary Material).

After deriving initial abundance, we iterated back-calculations according to Equation 2 for 112 years (timespan from 1906-2018) with 1,000 replications, and values of \(\lambda \) and \(m \) varying stochastically according to mean and standard deviation values detailed above. We also generated minimum and maximum population trajectories with our simulations to illustrate the extreme limits within which California mountain lion populations may grow or decline. For the minimum population trajectory, we kept the annual growth rate constant at one standard deviation above the mean \(\lambda \) for a value of 1.17, and the additional annual mortality rate constant at one standard deviation below the mean of \(m \) for a value of 0.07. For the maximum population trajectory, we kept the annual growth rate constant at one standard deviation below the mean of \(\lambda \) for a value of 1.11, and the additional annual mortality rate constant at one standard deviation above the mean of \(m \) for a value of 0.13.

Table 3. Demonstration of systematically adjusted density values for each habitat suitability class and derived range of initial mountain lion population values for back calculation of mountain lion (Puma concolor) population projections.

<table>
<thead>
<tr>
<th>Suitability</th>
<th>Habitat Suitability Score(^a)</th>
<th>Size</th>
<th>Mountain Lion Density (animals/100km(^2))(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>>0.60</td>
<td>170,486 km(^2)</td>
<td>2.20</td>
</tr>
<tr>
<td>Medium</td>
<td>0.41–0.60</td>
<td>63,085 km(^2)</td>
<td>1.60</td>
</tr>
<tr>
<td>Low</td>
<td>0.20–0.40</td>
<td>24,641 km(^2)</td>
<td>1.00</td>
</tr>
<tr>
<td>None</td>
<td><0.20</td>
<td>165,759 km(^2)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\(^a\)Habitat suitability thresholds were on a scale of 0–1

\(^b\)Densities of mountain lions (animals/100km\(^2\)) for each habitat suitability.
Sensitivity testing

Because each replicate began with a randomly drawn value, we estimated the sensitivity of population trend estimates to variation in input values. We thus derived the upper and lower 10% population values for each decade (beginning in 1910 and concluding in 2010) for all 1,000 replicates. Next, we estimated slopes of values between decades (e.g., 1910 to 1920) for those upper and lower 10% values, and tested for significant differences between them. For example, we estimated the slope between the upper 10% values for 1910 and 1920 to represent population trend between the two periods. We did the same for the lower 10% values in the same timeframe, and then statistically compared the two slopes using a Student’s t-test (Mykra and Pohja-Mykra 2015). We elected to use conservatively high and low initial values, to maximize the possibility that the actual mountain lion population would be represented within these estimates. All non-significant (α > 0.05) p-values thus provided increased confidence in the given range for mountain lion abundance for the given time period. We used Program R, version 3.1.2 (R Core Team 2014) for all statistical analyses.

Hypothesis testing

To test our two hypotheses, we determined the proportion of years among all simulations in which removal was above or below 14% of N_t. Removals from the simulated populations above this level would lead to a decline that presumably corresponds with a removal threshold for mountain lions in California above which populations would have declined (Cougar Management Guidelines Working Group 2005, Beausoleil et al. 2013). Removals from the simulated populations below 14% would lead to an increase that presumably corresponds with a removal threshold for mountain lions in California below which populations would have increased.

Results

Results of 1,000 replicates of back-calculations on mountain lion removal data consistently suggest a steady decline occurred in mountain lion populations from 1906 to the mid-1960s, followed by an increase until the mid-1990s, after which the population appears to have stabilized until about 2000. However, after 2000, our results diverged (Figure 1). Replicates with starting values in the low 1,000s exhibited a second population decline occurring in the early 2000s that continues until present. Replicates with starting values ranging from approximately 1,500 to 5,000 exhibited a slowing or stabilizing population growth rate from the late 1990s to mid-2000s, and a stable or increasing population growth rate, with population values comparable to the input values.

We found no significant differences between the slopes of the upper and lower 10-year population trends (the sensitivity analysis) from 1910 to 1980 (Table 4). However, after 1980 we detected significant differences in those slopes in the simulated data. This divergence began several decades after the conclusion of the bounty period, and was likely a result of the large range in starting values which itself was due to uncertainty about the current status of the mountain lion population across California. The closer the date a given annual population simulation was to the initial starting value, the greater influence that initial starting value had on the associated numeric value of that simulation. Thus, all simulations
Figure 1. Mountain lion (*Puma concolor*) population simulation results for California from 1906-2018. Simulation results were yielded by running 1,000 iterations wherein a random number between 1,000-5,000 was selected as a starting population estimate. Back calculation of yearly population size to 1906 was then done using mountain lion demographic estimates derived from literature searches and mountain lion removal data from California. Previous mountain lion population abundance estimates reported by California Department of Fish and Game are represented by asterisks (*) symbols. Individual simulations are represented by gray lines. The mean for all simulations is represented by the bold black line. The maximum and minimum population simulations are represented by the dotted black lines. The upper dotted line was created by holding annual population growth constant at 1.17 (one standard deviation above the mean of 1.14) and additional annual mortality constant at 0.07 (one standard deviation below the mean of 0.10). The lower dotted line was created by holding annual population growth constant at 1.11 (one standard deviation below the mean of 1.14) and additional annual mortality constant at 0.13 (one standard deviation above the mean of 0.10).
support that the statewide mountain lion population experienced a decline during the bounty period and a subsequent increase (Table 4) after the bounty was ended.

DISCUSSION

The type of modeling we report here is not inherently tied to mountain lion populations, nor are such analyses new (Elton and Nicholson 1942; Jedrzejewski et al. 1996; Kojola 2005; Mykra and Pohja-Mykra 2015). This simple approach to using purposeful and incidental mortality data to infer historical population trends is an important tool for managers who lack adequate population information. However, the approach does have limitations, and its results cannot be assumed to represent precise population figures. In addition to the assumptions described previously, the data and our population modeling approach present limitations which preclude such precision. Neither the size and ecological diversity of California, nor the magnitude of anthropogenic changes to habitat that have occurred therein during the period of interest (Torres et al. 1996) are accounted for in our results. For example, although we did adjust for decreasing vehicle density going back in time, our estimates were limited by lack of accurate data. Nor did our estimates account for changes in road densities and other developments that may have affected lion densities and removal rates. Further, our model did not account for density dependent factors, including prey abundance, that may have affected our results. Our model treated all mountain lion removals as additive, which was likely not the case with the actual removals, at least not for all lion subpopulations (Lambert et al. 2006; Robinson et al. 2008; Cooley et al. 2009). Consequently, the actual rates of decline and subsequent increase were likely somewhat different than those we detected with our model. We suspect that density dependence was

Table 4. Statistical comparisons of slopes of simulated population trends over 10-year periods for the lower and upper 10% starting population values, respectively, using a Student’s t-test. The first mean lower 10% value represents the mean of the lowest 10% of the simulated population estimates for the first year in the comparison. For example, the value 2,898 represents the mean value of the lower 10% of simulated population estimates for 1910, while the value 3,094 represents the mean value of the lower 10% of simulated population estimates for 1920. The same associations apply for the upper 10% column.

<table>
<thead>
<tr>
<th>Years compared</th>
<th>Mean lower 10%</th>
<th>Mean upper 10%</th>
<th>t-score<sup>a</sup></th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1910 & 1920</td>
<td>2,898; 3,094</td>
<td>3,816; 3,996</td>
<td>-0.34</td>
<td>0.74</td>
</tr>
<tr>
<td>1920 & 1930</td>
<td>3,094; 2,749</td>
<td>3,996; 3,527</td>
<td>-1.69</td>
<td>0.09</td>
</tr>
<tr>
<td>1930 & 1940</td>
<td>2,749; 2,139</td>
<td>3,527; 2,749</td>
<td>1.48</td>
<td>0.14</td>
</tr>
<tr>
<td>1940 & 1950</td>
<td>2,139; 1,729</td>
<td>2,749; 2,210</td>
<td>1.64</td>
<td>0.10</td>
</tr>
<tr>
<td>1950 & 1960</td>
<td>1,729; 1,177</td>
<td>2,210; 1,549</td>
<td>1.11</td>
<td>0.27</td>
</tr>
<tr>
<td>1960 & 1970</td>
<td>1,177; 927</td>
<td>1,549; 1,364</td>
<td>-1.68</td>
<td>0.09</td>
</tr>
<tr>
<td>1970 & 1980</td>
<td>927; 1,389</td>
<td>1,364; 1,984</td>
<td>-1.76</td>
<td>0.08</td>
</tr>
<tr>
<td>1980 & 1990</td>
<td>1,389; 1,840</td>
<td>1,984; 2,676</td>
<td>-2.48</td>
<td>0.01</td>
</tr>
<tr>
<td>1990 & 2000</td>
<td>1,840; 1,897</td>
<td>2,676; 3,103</td>
<td>-6.15</td>
<td><0.01</td>
</tr>
<tr>
<td>2000 & 2010</td>
<td>1,897; 1,524</td>
<td>3,103; 3,685</td>
<td>-10.75</td>
<td><0.01</td>
</tr>
</tbody>
</table>

^aDegrees of Freedom = 3,996
likely marginally important under intense removal during the bounty period but became more so as carrying capacity changed due to human-caused habitat conversion (Cougar Management Guidelines Working Group 2005). Finally, our model did not account for the disproportionate impact that mortalities of different sex and age classes have on population dynamics. However, detecting these fine-scale population effects were beyond the scope of this study, and despite the limitations discussed herein, our model provides important insight into the overall effects of historical policies and laws on the statewide mountain lion population in California.

To our knowledge, no population estimates were conducted on mountain lions in California during most of the bounty period. The first known estimate by McLean (1954) of 600 mountain lions in California was made 10 years prior to the end of the bounty period. The next estimate of approximately 2,400 was published nearly 10 years after the bounty period ended (Sitton et al. 1976). We were unable to determine how these two estimates were derived. Subsequent researchers reported the number of mountain lions in California at 4,100 - 5,700 individuals (California Department of Fish and Game 1984), in which Department staff averaged adult densities from various studies across suitable mountain lion habitat statewide. The minimum population estimate (5,100) reported in Mansfield and Weaver (1989) did not distinguish between high, medium, and low habitat suitability, and thus identified almost 25% more highly suitable habitat for mountain lions than Torres et al. (1996), and used a density estimate 1.8 times greater than our highest estimate (Table 3). Given the differences in how these various estimates were derived, we were unable to use our findings to support or dispute any of these previous estimates.

A simple calculation of average adult mountain lion density (1.6/100 km2; Quigley and Hornocker 2010; Beausoleil et al. 2013) in the western United States, and a recent estimate of mountain lion habitat in California (165,350-170,085 km2; Dellinger et al. in press) suggests that the statewide mountain lion population in California occurs within the 1,500-5,000 range. Recent work estimating the effective population size (that portion of the total population likely to contribute to the next generation – essentially the breeding individuals in a population) of mountain lions in California is approximately 400 (Gustafson et al. 2018) also suggests that California’s statewide mountain lion population is most likely in the 1,500-5,000 range (Frankham 1995). However, none of the population estimates discussed here are based on systematic assessments of mountain lions. In the absence of such robust data, we present our simulations based on the data available to us.

The general agreement among the results of our simulations with respect to mountain lion population trends during the bounty period regardless of input value (Figure 1), and low variation in trend slopes (see Supplementary Material), suggests that our model is a reasonable estimation of mountain lion population trends for that period. Some researchers have suggested that the bounty had little to no impact on the statewide mountain lion population (Fitzhugh and Gorenzel 1986), likely because previous research suggested it could sustain 25-30% removal rates. However, our analyses suggest that removal rates in many years during the bounty period regularly exceeded the removal threshold of 14% from our simulated populations (Figure 2). A plot of the take data for which removals exceeded the estimated removal threshold of 14% suggests that during the bounty period the number of mountain lions taken exceeded the population’s ability to replace itself (Figure 2).

Our simulations also suggest that mountain lion populations increased following the bounty period (Figure 1), and that removal was below the replacement threshold of 14%
(Figure 2), allowing the population to recover. Though our trend estimates began to diverge in the 1980s, the upward trend remained consistent until the 1990s (Table 4), after which our results were inconsistent, again likely due to the range in initial starting values. Further support for a rapid increase in the mountain lion population in the few decades following the end of the bounty period was an increase in distribution and number of mountain lions taken via depredation permit in California over the same time period (Torres et al. 1996).

For example, mountain lions may have been extirpated from or severely reduced in the Santa Cruz Mountains based on the fact that only five animals were bountied in the Santa

Figure 2. Mountain lion (*Puma concolor*) removal in California from 1906-2018 in relation to population simulation removal thresholds. Removal thresholds were determined from literature searches and set at 0.14 or 14% of the population. Likelihood of whether number of mountain lions removed in a given year (solid line) surpassed the removal threshold of 14% of the population was done by assessing proportion of all 1,000 simulations where removal > 0.14 x Nt (dotted line). The greater the proportion of instances where actual removal was greater than simulations for a given year, the greater the support for mountain lion populations having decreased during that given year (e.g., 1950-1970 in the figure).
Cruz Mountains, with the last one taken in 1923 (McLean 1954). Then it appears mountain lions subsequently recolonized the area following the bounty period based on the fact that there have been ≥12 mountain lion depredation events per year in the Santa Cruz Mountains in the last 10 years (CDFW 2019). This example demonstrates the ability of mountain lion populations to recover quickly following intense removal (Cougar Management Guidelines Working Group 2005; Quigley and Hornocker 2010). Release from incentivized and widespread intensive removal likely decreased overall anthropogenic mortality of mountain lions, increased their survival rates, and allowed the population to grow. This increase in number of mountain lions taken via depredation permit could have arisen in part due to increased human density, land-use changes, and an increase in development; however, increased human-carnivore conflict has been shown to increase with increasing carnivore population size (Torres et al. 1996; Thompson 2009; Vickers et al. 2015; Poudyal et al. 2016; Teichman et al. 2016). Further, Torres et al. (1996) demonstrated that most mountain lion depredations in California from 1972-1995 were not in counties with high human densities or development. This suggests that increases in mountain lion depredations could be the result of an overall increase in mountain lion populations. Additional research into how local mountain lion abundance relates to local depredation incidents and human density and development is needed to tease apart how these factors interact in California.

A logical explanation of our results is that California’s mountain lion population was unable to withstand the high rates of removal under the bounty, causing their numbers to decline significantly from the early 1900s until well into the 1960s; after which they were released into an overabundant prey base, allowing their numbers to increase rapidly into the 1990s. During the 1960s, as the bounty on mountain lions ended, deer populations in California had peaked (Longhurst et al. 1976). During the decades following the 1960s, deer were declining due to a number of factors (Chapel and Rempel 1981; Neal et al. 1987; Loft and Bleich 2014), while the mountain lion population initially increased rapidly, and eventually came into equilibrium with its much-declined prey base after 2000.

We attribute the variability in our results for the most recent period (e.g., 2000-2018) to the broad range of input values (Tables 3, 4). Efforts to effectively assess mountain lion populations are lacking (Sitton et al. 1976; Weaver 1982; CDFG 1984; Fitzhugh and Gorenzel 1986; Mansfield and Weaver 1989), and that lack of effort is especially notable since the 1970s. Wildlife policies and laws are most effective when based on scientifically rigorous data. Given the diversity of stakeholder interests and agency issues related to managing and conserving mountain lions in California (Bruskotter and Shelby 2010; Davenport et al. 2010), our results highlight the need to remedy the knowledge deficit by significantly increasing our assessment efforts. This would give the Department the information they need to accurately assess the implications of the specially-protected status of mountain lions in California.

ACKNOWLEDGMENTS

This work was supported by the California Department of Fish and Wildlife. We recognize and appreciate the efforts of past employees who carefully compiled and maintained the important historical and current databases used to carry out these analyses. We thank M. Kenyon Jr., D. Weaver, L. Sitton, C. Del Signore, H. Keough.
Author Contributions:

Conceived and designed the study – JD & ST
Collected the data – ST
Performed the analyses – JD
Authored the MS – JD & ST
Critical revisions – JD

LITERATURE CITED

California Department of Fish and Game (CDFG). 1984. Computer simulation model for mountain lions. California Department of Fish and Game, Sacramento, CA, USA.

Thompson, D. J. 2009. Population demographics of cougars in the black hills: survival, dispersal, morphometry, genetic structure, and associated interactions with density
dependence. Dissertation. South Dakota State University, Brookings, SD, USA.
Weaver, R. A. 1982. Status of the mountain lion in California with recommendations for management. California Department of Fish and Game, Sacramento, CA, USA.

Submitted 10 July 2019
Accepted 27 August 2019
Associate Editor was K. Converse
SUPPLEMENTARY MATERIAL

We estimated the sensitivity of population simulations to changes in annual population growth (λ) and additional annual mortality (m) rates. We allowed the input value to vary in a uniform distribution between 500 and 5,000 while changing the mean λ and m values. We set the mean value of λ variously at 1.11, 1.14 (used in main analyses), and 1.17, and that of m at 0.08, 0.10 (used in the main analyses), and 0.12. We conducted 1,000 simulations for each λ and m value, which resulted in 9 different groupings of 1,000 simulations. For example, one set of 1,000 simulations had a mean λ value of 1.11 and a mean m value of 0.08. Visual examination of the results demonstrated that changes to mean λ and m values, respectively, did change the results of our population simulations, but the population trends (i.e., overall decreasing during the bounty period and overall increasing post-bounty) were unchanged (Supplementary Figure 1).

We also estimated the sensitivity of our simulations to input population values. We used the parameterizations described in the manuscript but held the input value constant for 1,000 simulations. We did this for different input population values in intervals of 500. For example, we conducted 1,000 simulations wherein we held the input population value constant at 500. We then conducted another 1,000 simulations wherein we held the input population constant at 1,000. We did this at intervals of 500 up to a starting population value of 5,000. Visual examination of the results demonstrated that influence of starting value on simulated population trends decreased around the year 2000 (Supplementary Figure 2). Furthermore, starting population value did not change the overall trends of simulated populations during the bounty (i.e., decreasing mountain lion population size) or post-bounty up to the mid-1990s (i.e., increasing mountain lion population size).
Supplementary Figure 1.
Supplementary Figure 2.
BOOK REVIEW

Wildlife Ecology and Management in Mexico

This book is the English-language translation of an earlier work that was published in Spanish. In 2014, Drs. Valdez and Ortega-S. co-edited the volume Ecologia y Manejo de Fauna Silvestre en Mexico, published by Editorial Colegio de Postgraduados in Mexico. That work (hereafter, Ecologia y Manejo) was the most complete volume on wildlife and conservation in that country since publication of A. Starker Leopold’s 1959 classic, Wildlife of Mexico: The Game Birds and Mammals. Leopold’s work was translated into Spanish, and was a seminal contribution that stimulated many students and professionals in Mexico to pursue interests in wildlife research and conservation in that country. Sixty years following publication of Leopold’s tome, Valdez and Ortega’s Wildlife Ecology and Management in Mexico has made the tremendous amount of information in their Spanish-language volume, Ecologia y Manejo, readily available to a vast, English-speaking readership.

The editors brought together a team of 46 experts to contribute to this work. It is especially noteworthy that the majority of contributors are scientists representing Mexican universities or agencies and that are, or previously have been, actively involved in research on or management of birds or mammals in their country. Most of the other contributors also have worked for many years in Mexico, either through affiliations with academic institutions or agencies in that country, or through American universities. Thus, familiarity with the history, policies, and challenges to wildlife conservation, or knowledge of the biology of the taxa discussed in this work largely was gained first-hand.

The book consists of 22 chapters, 5 of which address historical, social, political, or economic aspects of wildlife conservation in Mexico, and the remainder of which are dedicated to various species or groups that represent the primary game birds and large mammals occurring there. Mexico ranks fifth in biodiversity on a world-wide scale. The country is inhabited by 1,107 species of birds and 544 mammals; thus, the current work concerns but a tiny fraction of the avian and mammalian fauna found there. Nevertheless, the taxa addressed are, in many ways, those most apt to require attention from a management or conservation perspective. To that end, Valdez, Ortega-S., and the contributors have produced a volume that not only will have a long-term influence on wildlife management in Mexico, but will be a lasting reference for English-speaking scientists not familiar with conservation and management issues in that country. I believe it will also stimulate more English-speaking scientists to initiate collaborative work with Mexican researchers or managers and, thereby, lead to enhanced efforts on behalf of conservation.
An unfortunate, albeit unavoidable, consequence of the 4-year process involved in producing the English-language edition of *Ecologia y Manejo* was the inability to include references to the most recent ongoing work. The literature is complete, however, up to publication of *Ecologia y Manejo* and many of the chapters include references published as recently as 2013. From my perspective, this is not an issue that should be of concern to interested readers, and it does not detract from the utility or value of this work. Indeed, among the extremely valuable material included was that dedicated to enhancing the reader’s understanding of the historical and conservation perspectives of wildlife (Chapter 1); natural and human landscapes (Chapter 2), wildlife as a public and economic resource (Chapter 3); evolution of wildlife laws and policies (Chapter 21); and challenges to wildlife conservation strategies (Chapter 22) in Mexico. These are topics with which many wildlife biologists—me included—likely would not be familiar, but also are topics central to issues of wildlife conservation, whether game, ‘non-game’, or endangered species.

Valdez and Ortega-S. are to be commended for producing this book, which will be of value to those working on management and conservation issues in Mexico, as well as those seeking a better understanding of the complexities of conservation in that country. There is much to be learned, and the material included has important implications for the management of wildlife in Mexico and will be a “go-to” source for many years to come. As the first major contribution of this type since Leopold’s 1959 effort, publication in English is timely, welcomed, and appreciated.

VERNON C. BLEICH, Department of Natural Resources and Environmental Science, University of Nevada Reno and Eastern Sierra Center for Applied Population Ecology, Bismarck, ND, USA
INFORMATION FOR AUTHORS

The California Fish and Wildlife Journal (CFWJ) is a peer-reviewed, scientific journal focused on the biology, ecology, and conservation of the flora and fauna of California and surrounding areas, and the northeastern Pacific Ocean.

Submissions guidelines (PDF) for the Journal have been updated (July 2019).

The California Fish and Wildlife Journal accepts manuscripts in the following categories:

• Original research papers
• Research notes
• Review papers
• Book reviews
• Commentaries and Essays

Manuscripts must be submitted by e-mail following directions provided in the link: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=171113&inline. The journal standard for style is consistent with the Council of Science Editors (CSE) Style Manual. Instructions in the CFWJ guidelines supersede the CSE Style Manual where differences exist between formats. Please follow these formatting guidelines carefully. Manuscripts that do not conform to the guidelines will be returned for revision.

Authors of manuscripts that are accepted for publication will be invoiced for charges at the rate of $50 per printed page shortly after page proofs are distributed.* Authors should state acceptance of printing charges in their cover letters. The corresponding author will receive a PDF file of the publication without additional fees and may distribute copies without restriction.

*Page charges may be waived for authors under in certain instances (e.g., for authors from developing countries or students without funding). If applicable, please request a waiver in your cover letter.
Front. One-and-half-inch long young of the year Giant Seabass. Photo © Michael Couffer.

Back. Mountain lion (*Puma concolor*). Photo by Gerald and Buff Corsi © California Academy of Science