An assessment of non-consumptive recreation effects on wildlife: current and future research, management implications, and next steps

JOHN BAAS¹*, KARI DUPLER², AUDREY SMITH³, AND RACHAEL CARNES⁴

¹WRA, Inc., 4225 Hollis Street, Emeryville, CA 94608, USA

² WRA, Inc., 2169-G Francisco Boulevard E, San Rafael, CA 94901, USA

³ PSE Healthy Energy, 1440 Broadway, Suite 750, Oakland, CA 94612, USA

⁴ Environmental Science Associates, 180 Grand Avenue, Oakland, CA 94612, USA

*Corresponding Author: baas@wra-ca.com

Most research on the effects of non-consumptive recreation on wildlife to date has focused on birds and mammals. This research typically focuses on behavioral responses of individuals despite practical limitations in extrapolating ecological outcomes from individual behavior. Data gaps therefore present difficulties in integrating wildlife-protective policies into public access management. These gaps are exacerbated by a lack of wildlife studies that include data on public use patterns of open space areas. In a survey of park and open space managers in the San Francisco Bay Area, few of the entities surveyed restricted recreational access permanently or seasonally to address biological constraints; yet most indicated the presence of sensitive plant or animal species on their lands or stated conservation as one of their organization's purposes. To better bridge the gap between research and management practice, more research is needed on species beyond birds and mammals. This research should extend beyond noting behavioral response and should integrate investigation of outdoor recreation use patterns.

Key words: California, non-consumptive recreation, open space, parks, public access management, San Francisco Bay Area, wildlife

Throughout the state of California, there exists a large diversity of designated open space and protected areas that allow public access and outdoor recreation. Based on data from the Survey of Public Opinions and Attitudes on Outdoor Recreation in California, the average number of days of outdoor recreation participation among adult Californians is 96 days per year (California State Parks 2012). Based on California's population of approximately 27.4 million adults in 2008, California State Parks estimated approximately 2.6 billion days of outdoor recreation by adults during that year; that figure would be higher based on current population estimates. Within regional, state, or national parks, outdoor recreation participation (i.e., adults and children) totaled an estimated 478 million days, and for non-park natural and undeveloped areas there were an estimated 368 million annual days of outdoor recreation participation (California State Parks 2011).

A large portion of outdoor recreation activity consists of frequent use in the same areas by the same visitors. Much of it is relatively close to visitors' homes, and with California's warm, Mediterranean climate, outdoor recreation use often occurs near dawn and dusk, the times of day when multiple wildlife species are most active. Many areas where outdoor recreation occurs also provide occupied or potentially suitable habitat for special status wildlife species. California includes a variety of habitats that are occupied or potentially occupied by 181 state or federally listed wildlife species (CDFW 2019).

Non-consumptive forms of outdoor recreation (defined as those activities that do not include fishing and hunting) can impact wildlife species and their habitats in a variety of ways. There may be loss of individuals along trail corridors through incidental recreational use, such as crushing burrows or destroying nests. Non-consumptive recreation may also affect habitat. For example, recreation facility development can remove habitat, and recreational use of facilities can result in water quality degradation, soil erosion, and ground cover loss (USDA 2008). Presence of humans may cause displacement or change in behavior of wildlife, both temporary and permanent, through proximity to habitat, habitual use of an area (e.g., trails), or through direct harassment (Trulio et al. 2013; Shannon et al. 2014). There may also be effects on wildlife behavior from nighttime outdoor recreation activity, including light and sound pollution, or other disturbances associated with these recreational activities. Littering can have both direct and indirect effects (Boarman 2002), and bringing pets to open space and other types of protected areas may also cause direct and indirect impacts to wildlife species (Reed and Merelender 2008; Reilly et al. 2017).

However, despite more than 40 years of research on this topic, significant information gaps exist. The purpose of this article is to: 1) summarize what is known about effects on non-consumptive recreation on wildlife, 2) summarize current management practices used by park and recreation agencies in the San Francisco Bay Area to manage public access to protect wildlife, and 3) suggest additional research that will help fish and wildlife managers as well as park and open space managers more effectively manage and respond to potential impacts of non-consumptive outdoor recreation on wildlife species and their habitats.

CURRENT STATE OF THE KNOWLEDGE

Overall state of the knowledge

To preliminarily identify potential data gaps and long-term trends in the literature, we searched Google Scholar for articles containing the keywords "non-consumptive recreation" and "wildlife" at ten-year increments from 1980 to 2019. We subsequently performed the same query substituting "plants" for "wildlife." We identified 515 results containing the keywords "non-consumptive recreation" and "wildlife" between 1980 and 2019. Of these, 26 (5%) were published in the 1980s, 82 (16%) in the 1990s, 170 (33%) in the 2000s, and

237 (46%) in the 2010s. The same search with "plants" substituted for "wildlife" yielded 298 results between 1980 and 2019-15 (5%) in the 1980s, 44 (15%) in the 1990s, 105 (35%) in the 2000s, and 134 (45%) in the 2010s.

It is clear that the number of articles related to non-consumptive recreation and plant and wildlife management has increased over time, and that wildlife is consistently more studied than plants. More granular trends in the literature are less immediately apparent. We therefore identified several comprehensive literature reviews from the last 40 years to better understand which topics in plant and wildlife management are most often studied. In particular, we sought out reviews that would elucidate long-term trends in which types of recreational activities are the most studied, whether response variables are typically quantified at the individual or population level, which taxa are the most studied, and other trends that may inform the scope of future research. Due to the higher volume of studies available on wildlife than plants, we focused our efforts on wildlife-centered articles.

Boyle and Samson (1985) conducted a comprehensive review of the state of knowledge in which they identified trends in studies containing original data on terrestrial vertebrates in North America (n = 166). These articles most often studied birds (103, 62%), followed by mammals (70, 42%), with few studies of herpetofauna (7, 4%). Boyle and Samson reported negative effects for most activities and taxa, postulating potential mechanisms such as direct disturbance and indirect effects such as habitat degradation, noting that the latter may result in simpler vegetation profiles and overall loss of habitat diversity. Positive effects on overall biodiversity were reported in a few studies, but these positive effects typically corresponded with increased abundance and diversity of common species well-adapted to frequent disturbance by humans. Based on data gaps identified through their review process, Boyle and Samson concluded that primary shortcomings in the literature included a lack of experimental, rather than observational data, and a need to move from assessment of disturbance and mortality to analysis of long-term ecological effects (Boyle and Samson 1985).

A more contemporary review conducted by Larson et al. (2016) analyzed 280 articles on the effects of non-consumptive recreation and wildlife. This review was broader in scope than that of Boyle and Samson, including a wider swath of recreational activities and all taxa globally. Although these results are not directly comparable due to differences in scope, Larson et al. identified similar trends to Boyle and Sampson 31 years earlier. The researchers found that articles remained mostly observational, with only 30% of articles containing an experimental component. Among the articles included in their review (n = 280), mammals were studied the most often (114, 42%), followed closely by birds (101, 37%). A wide gap was observed between mammals and birds and invertebrates (34, 12%), herpetofauna (17, 6.2%), and fish (14, 5.1%). Notably, the authors found that the majority of species studied with International Union for Conservation of Wildlife (IUCN) status were classified as species of least concern, and that endangered, critically endangered species, and data-deficient species were the least often studied. Similar to Boyle and Samson, most studies evaluated identified significant effects of non-consumptive recreation on wildlife, with negative effects being the most frequent. Most studies that showed unclear results as to whether effects were positive or negative had a behavior-based response variable, demonstrating the challenges associated with interpreting behavioral responses (one of which is the potential for wildlife to habituate to recurring, non-threatening recreational use), and the implications for longterm ecology and land management (Larson et al. 2016).

Most studies on the effects of non-consumptive recreation on wildlife were conducted

in North America (Larson et al. 2016). In a paper on recreation impacts on wildlife submitted to the federal Interagency Visitor Use Management Council (IVUMC), Marion (2019) summarized the current state of research, with results falling into five broad categories. The categories included: 1) type of recreational activity; 2) recreationist behavior; 3) impact predictability; 4) impact frequency and magnitude; and 5) impact timing and duration. In regard to category one, Marion found mixed results on impacts from slow versus fast (e.g., walk, run, mountain bike, motorized vehicles) recreation activities. Regarding category two, he found visitors who directly approach wildlife are perceived as threatening, and wildlife are less disturbed by recreation travel that is slow, quiet, and in directions parallel to or away from them. Marion also found that wildlife are able to adapt to and tolerate consistent nonthreatening recreational activities, but unpredictable recreational activity in less visited off-trail locations can cause greater impact (category three). Repeated human interaction and disturbance of wildlife can exceed a threshold of tolerance that causes wildlife to leave a preferred habitat (category four). In regard to category five, Marion found wildlife show locational and seasonal sensitivities to recreation. Marion then describes multiple strategies to manage recreation to minimize impacts on wildlife, which are summarized later in this paper.

California-focused research

California plays an important role in this body of research due to its abundant biodiversity and large areas of protected and/or publicly-owned lands. California has been relatively well-studied, with most research focused on birds, and more recently mammalian carnivores. The discussion below is not intended to be exhaustive but rather to summarize the findings of representative research efforts with implications for recreation and wildlife management and provide context for on-the-ground practices and recommendations, with a focus on California.

In the San Francisco Bay Area, several studies on avian wildlife have emerged in recent years. A 2008 study on foraging shorebirds and trail use found no change in behavior or species diversity during trail use (Trulio and Sokale 2008). These findings indicate foraging shorebirds at regularly used trails may habituate to human activity. However, other experimental studies have found that shorebird numbers decreased with human presence on trails (Trulio et al. 2013), and that trail uses such as jogging and dog walking can increase flight distance (Lafferty 2001). Differences in shorebird response to human disturbance are likely attributable to the birds' degree of habituation to human disturbance. Studies indicate that shorebirds in areas of more frequent human disturbance display less response to human activity; although, birds tend to use these areas at lower rates than areas with less disturbance (Josselyn et al. 1989). Trulio et al. (2013) recommended keeping trail users at least 50 m from foraging habitat. They also suggested that infrequent trail use may be more disruptive to birds then frequent trail use, indicating that habitation may occur as referenced above. Similarly, Miller et al. (1998) found the composition and abundance of birds to be altered in a Colorado grassland and forest setting, with an area of influence of approximately 75 m (zone where human activity may displace wildlife from suitable habitat).

As exemplified by these studies, even the least intrusive non-consumptive recreational activities, such as hiking and picnicking, have the potential to affect wildlife. Reed and Merenlender (2008) examined this possibility in the context of mammalian carnivores in the Northern San Francisco Bay Area. They consistently found that sites where quiet, non-

consumptive recreation is permitted had lower density of native mammalian carnivores than areas with no recreation. All recreational sites showed a shift in carnivore detections toward non-native carnivores such as domestic dogs and cats (Reed and Merenlender 2008). These results corroborate the relatively consistent finding that the mere presence of humans and their introduced domestic species may prove detrimental to native wildlife, regardless of the types of recreation in which they engage.

The finding that community composition shifted toward non-native species such as domestic dogs where recreation was permitted suggests a need to better understand the effects of dogs on native wildlife and the efficacy of various dog management strategies. This need is furthered by the outsized role dogs tend to play in open space management efforts. To follow up on their previous findings, Reed and Merenlender (2011) further studied the effects of different dog management policies in recreation areas. They found no significant differences in mammalian carnivore abundance or species richness between recreational sites with no dogs, sites with on-leash dogs, and sites with off-leash dogs. They did, however, identify significant differences between all three types of sites and reference sites with no recreation, suggesting that the presence of humans is a more important influence on species diversity and carnivore density than that of dogs (Reed and Merenlender 2011).

MANAGING PUBLIC ACCESS TO PROTECT WILDLIFE

To better understand whether trends identified in the literature are translated to open space management practice, we obtained information from local park, recreation, and open space area managers on how they address public access and its potential impacts on wildlife. Due to the abundance of literature focusing on the region and the richness of open space availability and biodiversity in close proximity to urban populations, we focused this effort on the San Francisco Bay Area.

Case study on San Francisco Bay Area open space management strategies

To assess current practices in addressing biological constraints in public access management and to identify how principles elucidated in the literature are applied in practice, we conducted a case study based on information obtained from ten open space management entities in the San Francisco Bay Area. Four of these were special districts, four were county agencies, and two were non-profit organizations. Each organization is identified numerically in the following discussion for the purposes of anonymity. All organizations were contacted by email in September 2019 and provided a survey with a standardized set of questions on public access management approach in areas known to contain sensitive biological resources. Each organizations' webpage was subsequently queried for supplemental information.

Five of ten organizations contacted via email responded to initial outreach efforts. Of these, three indicated that they restrict recreational access to some or all of their lands based on the presence of sensitive biological resources (County Two, Special Districts Two and Three). The other two respondents said they do not restrict access on any of their lands (Special District Four) or that they entitle open space preserves but do not hold land in the long-term or provide access opportunities (Non-Profit One).

County Two's response suggests limitations in their capacity to restrict public access for the purposes of addressing biological constraints. This County was in the process of developing a dog policy to determine where dogs are permitted and where leashes are required. In describing this policy, County Two representatives did not specify any biological factors being considered. Outside of its dog policy, the County indicated that they may restrict park access due to wet weather or public safety concerns; but that they generally do not restrict access for biological reasons apart from seasonally fencing off a small portion of one park for nesting shorebirds. In describing their shorebird protection efforts, representatives stated that they only restrict access insofar "as that is allowed."

Webpage queries of all 10 organizations demonstrated that a management approach similar to County Two's was common. There was little indication of restricted recreational access such as permit-only areas or seasonal park or trail closures to address biological constraints, with dog policies being the most common strategy to protect wildlife. Most permits were related to facility rental or special event production, with some parks containing sensitive plant species also providing scientific collection permits. Furthermore, most seasonal trail closures cited severe weather and trail washouts, and few were explicitly tied to biological concerns. Among the organizations surveyed, restricting the presence of dogs in parks was the most common strategy used by land managers to reconcile potential incompatibilities between non-consumptive recreation and sensitive species protection. Virtually all organizations had some type of dog policy in place or were in the process of establishing a dog policy. More than half of them specifically cited disturbance of wildlife or other biological constraints when describing dog access restrictions. Policies ranged from outright prohibition of dogs to requirements that dogs be kept on leashes.

Special District One was a notable exception to the patterns described above. In addition to restrictions on dogs, this organization employed a variety of methods, including permit-only access areas and seasonal trail and road closures. Special District One maintains one area that can only be accessed by permit holders. This area provides habitat for specialstatus avian species and other non-special status wildlife species. Recreational activities in this area are restricted to camping, hiking, horseback riding, and backpacking, and permits must be purchased in advance. Hunting is not allowed. Additionally, Special District One closes portions of one park annually for raptor nesting, and at the time of writing, one other park had trail closures for unspecified habitat protection. Special District One indicated in its response to outreach efforts that it annually and occasionally employs this technique as needed, closing trails and roads based on the presence of wildlife during sensitive windows such as nesting or mating. Moreover, correspondence with this District indicated that they purchase lands in collaboration with conservation organizations and place these lands under easement, and that when these lands become publicly accessible, permissible recreational activities are limited to those compatible with applicable habitat conservation plans. In addition to these strategies and similarly to other organizations, Special District One provides restrictions on where and how dogs may be present on their land. Biological considerations incorporated in this District's dog policy included prohibition on dogs where specified by conservation easements and in sensitive habitats such as marshes and wetlands.

The two non-profit entities included in this study had management practices that were among the most wildlife-protective. Non-Profit One indicated that opportunities for public access on their lands are very limited due to their high conservation value and the organization's emphasis on preserving biodiversity—suggesting an approach placing higher value on conservation than recreation and incidentally allocating recreational opportunities where compatible with biological constraints. Perhaps the most unique management strategy identified in our case study was employed by Non-Profit Two. This organization divided their lands into two distinctive types of preserves—with the primary purpose of one type being public outreach and education, while the other type primarily served conservation purposes. While conservation and restoration activities are held on both types of preserve, the former includes more opportunity for educational events, hiking, and community volunteer days than the latter, where public access is limited due to resource constraints.

In our outreach and website queries, we looked for permit-only access areas, seasonal trail closures, restrictions on dogs, and other management strategies. Few of the public entities included in this case study restricted recreational access permanently or seasonally to address biological constraints, with surveyed non-profit organizations doing so more holistically. Yet, most public entities indicated the presence of sensitive plant or animal species on their lands or stated conservation as one of their organization's purposes. Although this case study examines a small, non-representative sample of management entities, these findings suggest that the public land management agencies that responded to our query may be constrained by mission and purpose in their ability to limit public access relative to other organizations such as non-profits with a singularly focused purpose of resource protection.

ADDITIONAL RESEARCH NEEDS

Several implications emerge from our review: 1) research efforts need to extend beyond noting individual behavioral responses; 2) more research is needed on species beyond birds and mammals; and 3) impact studies needs to be more frequently integrated with research on outdoor recreation use patterns.

The studies we reviewed indicate that although some research has been conducted on the effects of non-consumptive recreation on wildlife, the scope is generally narrow. There is a need for additional information on other taxa, given the number of listed species that are not birds or mammals. Moreover, recreational impacts on special status plant species are consistently less studied than those on wildlife, despite the high number of listed plant species, and the fact that habitat degradation (including impacts to vegetation) is a potential mechanism for recreation's impacts on wildlife. One example of such an investigation is the Spring Mountains National Recreation Area Landscape Analysis (USDA 2008). This report included an evaluation of spatial impacts from current and future recreation facilities on habitat loss for 30 special status species, most of which were plants. Another example is the Marin County Road and Trail Management Plan (Marin County Parks and Open Space District 2014) which included an analysis of illegally constructed mountain bike trails on special status species, most of which were plants.

Our findings suggest that individual wildlife response to recreational activity is studied more often than population-level response. One exception is experimental, longitudinal research conducted by Riffell et al. (1996), who evaluated the effects of repeated intrusion by hikers to avian communities in Wyoming's Medicine Bow National Forest for 10 weeks during the breeding season over 5 years. Their study found no cumulative or yearly declines in seasonal species richness, mean richness, or mean total abundance. They did find that repeated intrusions altered the composition of the community represented by the most common species, but no widespread impacts on avian community structure were documented. Continuing this line of research will be important to evaluate recreation impacts at the population level. This is particularly crucial given the nature of Federal and State regulatory schemes for endangered species, which typically take a population-based approach to species protection. Moreover, conducting research at the population level eliminates the need to interpret individual-level responses' implications for broader conservation efforts. Extrapolating individual response to a population-level context can prove difficult (Bejder et al. 2009; Caro 2007), and eliminating the need to do so reduces uncertainty for decision-makers.

Population-based outcomes should continue to be incorporated in future studies to facilitate stronger understanding of recreation's implications for conservation. While this is a more difficult undertaking than simply investigating behavioral responses, this type of research is needed to inform policies implemented by land managers. Useful models for conducting long-term, quasi-experimental research that addresses the larger question of population viability in the context of known threats, including non-consumptive recreation, to special status species exists in previous studies and can be used to inform future research.

Additionally, the taxa studied need to be prioritized to include additional groups. Mammals and birds have been studied more often than other taxonomic groups since nonconsumptive recreation became a popular topic of research in the 1980s, and continue to be the most studied today. This does not necessarily correspond with greater conservation or research needs, especially considering the high number of amphibian, reptile, and invertebrate species with special status as designated by the California Department of Fish and Wildlife or the U.S. Fish and Wildlife Service (~61% of listed species in California). If park and open space managers are to make informed, high-impact conservation decisions using the limited resources available to them, research efforts must be prioritized based on conservation need rather than focusing on the most visible species. Similar work is needed to provide frameworks for prioritizing research dollars in wildlife and open space management.

Before embarking on a new vein of research to address these above areas, it may be useful to consider comments offered by Dr. David Cole and William Hammitt, from their textbook, *Wildland Recreation: Ecology and Management*. From Hammitt and Cole (2015):

The relationship between amount of recreational use and wildlife impacts is not well understood. Very few studies have systematically examined the effects of varying numbers of visitors on wildlife. Even fewer wildlife studies have determined an accurate population count of organisms prior to the introduction of recreation....Previous research indicates the complexity of the relationship by stating that the number of visitors cannot be considered in isolation from species requirements and habits, setting attributes, and type of recreational use. Various aspects of use intensity are also involved, including frequency and regularity of use and number of people at one time.

Thus, the third area where additional research is needed is integrated research that links specific outdoor recreation patterns to effects on species distribution and abundance. Some of this is occurring via research by Larson, Reed, Merelender, and others. For example, Larson et al. (2018) correlated recreational use levels with habitat occupancy for seven special status species for 18 reserves in San Diego County. This is a thorough research effort that integrates a model to predict recreation use levels with whether habitats for special status species are occupied. A more comprehensive and robust effort is needed that extends this type of research to a variety of habitat types and recreational use levels throughout California. Finally, the effectiveness of the "regulatory toolkit" that park, recreation, and open space managers have to control outdoor recreation use is well-established for federal lands, but its applicability to protected areas in close proximity to urban areas is largely unknown. Marion (2019) mentions strategies on how to address recreation impacts to wildlife including: reducing use, modifying the timing and location of use, modify the type of use, visitor behavior and expectations, and maintain and/or rehabilitate the resource. In regard to modifying visitor behavior, there is an entire body of research that focuses on how well visitors comply with wilderness and other protected area regulations (Lucas 1981; Washburne 1982; Duncan and Martin 2002; Marion and Dvorak; Martin and McCurdy 2010), and a review of low impact education programs (Marion and Reid 2007), such as Leave No Trace, suggests these programs can be effective at altering visitor behaviors that can cause impacts to natural resources. However, what has not been well investigated is how widespread such programs are implemented by park, recreation, and open space managers, and their applicability to open space preserves near urbanized areas.

Furthermore, it is important for research to go beyond theory and be adopted into practice by land managers. Research findings must be placed into a conservation and management context, with actionable priorities and recommendations for park, recreation, and open space managers. Researchers should engage with park and open space managers to ensure that science-based policies are enacted. Although limited in scope, our case study indicates some potential disconnects exist between the scientific community and on-the-ground open space management entities. For example, a large portion of the San Francisco Bay Area open space management and wildlife conservation efforts focused on developing sound dog policies; yet our research on the matter suggests that the effects of dogs are secondary to those of the presence of humans. Therefore, it may be of higher impact to examine ways to limit human activity in areas with sensitive biological resources through trail routing, permanent and seasonal park closures, and other methods.

Researchers and managers should therefore work together to develop, implement, and test science-based strategies. Social science-based methods should be included when testing approaches to better understand compliance with and attitude towards various management approaches as well as park use patterns. Several studies described above (Duncan and Martin 2002; Martin and McCurdy 2009) integrated these methods into their research but were focused on compliance with wilderness regulations.

Taylor and Knight (2003) demonstrated a potential approach for researchers to integrate study of park user perceptions into their work. They used a behavior-based model to study ungulate response to hikers and mountain bikers in a state park in Utah and, importantly, analyzed visitors' perceptions of their own effects on wildlife. They found that recreationists tend to attribute adverse effects on wildlife to other recreationists' actions and not their own. These results illustrate the importance of park user education as well as collaboration between the natural and social sciences in recreation and wildlife management.

Another example may be found in research conducted by Jefferson County Open Space District in Colorado, which has documented "heat maps" of recreation use for trails that bisect their open space areas. This information can then be overlaid with known or potential occurrences of special status species. Accurately collected recreation use data such as these would help biologists and park and open space managers better understand the relationship between overall park use patterns and wildlife impacts, an area of research that we found to be notably understudied. To move toward sound management practice that effectively accommodates demand for public access and need for species protection, methodological changes and research prioritization are needed. Through review of literature related to the effects of non-consumptive recreation on wildlife and a survey of local agencies' integration of science-based methods into open space management efforts, we found that significant data gaps exist in both science and policy. New frameworks are needed to prioritize conservation efforts, which identify sensitive resources and integrate these into management efforts. Additional research using population-based response variables is necessary to quantify effects and determine whether management strategies are effective. A holistic approach incorporating conservation status and public recreational use patterns is needed to prioritize finite research and management resources.

ACKNOWLEDGMENTS

We would like to thank the two reviewers whose comments and suggestions helped improve this manuscript. Finally, the authors want to thank and acknowledge the anonymous park and open space managers who responded to the survey about managing public access and wildlife.

Author Contributions

Conceived and designed the study: JB Collected the data: AS Performed analysis of the data: AS Authored the manuscript: JB, KD, AS Provided critical revision of the manuscript: JB, KD, RC

LITERATURE CITED

- Bejder, L., A. Samuels, H. Whitehead, H. Finn, and S. Allen. 2009. Impact assessment research: use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. Marine Ecology Progress Series 395:177–185.
- Boarman, W. I. 2002. Threats to desert tortoise populations: a critical review of the literature. United States Geological Survey, Western Ecological Research Center, Oakhurst, CA, USA.
- Boyle, S. A., and F. B. Samson. 1985. Effects of nonconsumptive recreation on wildlife: a review. Wildlife Society Bulletin 13(2):110–116.
- California Department of Fish and Wildlife (CDFW). 2019. Threatened and Endangered Species. Available from: https://www.wildlife.ca.gov/Conservation/CESA (November 2019).
- California State Parks. 2012. Survey on public opinions and attitudes on outdoor recreation in California. Available from: https://www.parks.ca.gov/SPOA (September 2019).
- California State Parks. 2011. California Outdoor Recreation Economic Study: Statewide Contributions and Benefits. Available from: https://www.parks.ca.gov/pages/795/files/CA%20Outdoor%20Recreation%20Economic%20Study-State%20

Park%20System%20Contributions%20and%20Benefits%202011.pdf (November 2019).

- Caro, T. 2007. Behavior and conservation: a bridge too far? Trends in Ecology and Evolution 22:394–400.
- Duncan, S., and S. R. Martin. 2002. Comparing the effectiveness of interpretive and sanction messages for influencing wilderness visitors' intended behavior. International Journal of Wilderness 8(2):20–25.
- Hammitt, W. E., and D. N. Cole. 2015. Wildland recreation: ecology and management. Wiley, New York, NY, USA.
- Lafferty, K. 2001. Birds at a southern California beach: seasonality, habitat use and disturbance by human activity. Biodiversity and Conservation 10:1949–1962.
- Larson, C. L., S. E. Reed, A. M. Merenlender, and K. R. Crooks. 2016. Effects of recreation on animals revealed as widespread through a global systematic review. PLoS ONE. 11(12):e0167259.
- Larson, C. L., S. E. Reed, A. M. Merelender, and K. R. Crooks. 2018. Accessibility drives species exposure to recreation in a fragmented urban reserve. Landscape and Urban Planning 175: 61–72.
- Lucas, R. C. 1981. Redistributing wilderness use through information supplied to visitors. United States Department of Agriculture, U.S. Forest Service, Intermountain Forest and Range Experiment Station. Research Paper-INT-277.
- Josselyn, M., M. Martindale, and J. Duffield. 1989. Public access and wetlands: impacts of recreational use. Technical Report #9, Romberg Tiburon Centers, Center for Environmental Studies, San Francisco State University, Tiburon, CA, USA.
- Marin County Parks and Open Space District. 2014. Road and Trail Management Plan. Available from: https://www.marincountyparks.org/-/media/files/sites/marincounty-parks/projects-and-plans/road-and-trail-management/system-designation-all/rtmp final 120614.pdf?la=en (February 2020).
- Marion, J. L. 2019. Impacts to wildlife: managing visitors and resources to protect wildlife. Contributing Paper prepared for the Interagency Visitor Use Management Council.
- Marion, J. L., and S. E Reid. 2007. Minimising visitor impacts to protected areas: the efficacy of low impact education programmes. Journal of Sustainable Tourism 15(1):5–27.
- Marion, J. L., and R. G. Dvorak. 2008. Wildlife feeding in parks: methods for monitoring the effectiveness of educational interventions and wildlife food attraction behaviors. Human Dimensions of Wildlife 13(1):429–442.
- Martin, S. R., and K. McCurdy. 2009. Wilderness food storage in Yosemite: using the theory of planned behavior to understand backpacker canister use. Human Dimensions of Wildlife 14(3):206–18.
- Miller, S. G., R. L. Knight, and C. K. Miller. 1998. Influence of recreational trails on breeding bird communities. Ecological Applications 8:162–169.
- Reed, S. E., and A. M. Merenlender. 2008. Quiet, nonconsumptive recreation reduces protected area effectiveness. Conservation Letters 1(3):146–154.
- Reed, S. E., and A. M. Merenlender. 2011. Effects of management of domestic dogs and recreation on carnivores in protected areas in Northern California. Conservation Biology. 25:504–513.

- Reilly, M. L., M. W. Tobler, D. L. Sonderegger, and P. Beier. 2017. Spatial and temporal response of wildlife to recreational activities in the San Francisco Bay ecoregion. Biological Conservation 207:117–126.
- Riffell, S. K., K. J. Gutzwiller, and S. H. Anderson 1996. Does repeated human intrusion cause cumulative declines in avian richness and abundance? Ecological Applications 6:492–505.
- Shannon, G. L. M. Angeloni, G. Wittemeyer, and K. M. Fristrup. 2014. Road traffic noise modifies behavior of a keystone species. Animal Behaviour 94:135–141.
- Taylor, A. R., and R. L. Knight. 2003. Wildlife responses to recreation and associated visitor perceptions. Ecological Applications 13:951–963.
- Trulio, L. A., and J. Sokale. 2008. Foraging shorebird response to trail use around San Francisco Bay. Journal of Wildlife Management 72:1775–1780.
- Trulio, L. A., J. Sokale, and D. Chromczak. 2013. Experimental study of shorebird response to new trail use in the South Bay salt pond restoration project. South Bay Salt Pond Restoration Project. Available from: https://www.southbayrestoration. org/document/ experimental-study-shorebird-response-new-trail-use-south-baysalt-pond-restoration.
- United States Department of Agriculture (USDA). 2008. Spring Mountains National Recreation Area Landscape Assessment. USDA Forest Service, Humboldt Toiyabe National Forest, Las Vegas, NV, USA.
- Washburn, R. F. 1982. Wilderness recreational carrying capacity: are numbers necessary? Journal of Forestry 80:726–728.