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Background

Native fishes of the Sacramento-San 
Joaquin Delta and connected freshwater 
ecosystems face many stressors, including 
predation. Predation is multifarious and 
interactions among specific drivers are not 
always well understood. A subgroup of the 
IEP Predation Project Work Team has 
developed a conceptual model to help 
guide predation-related research and 
management.

Model

The base model is neither species- nor 
spatially-specific and serves as a template 
for more detailed models focused on 
species and habitats of interest. It is 
intended to encompass most potential 
predator types (fishes, birds, and 
mammals). 

The model follows a 5-tiered approach 
scaling from landscape level attributes to 
predation risk (see below).

Goal

The goal of this ongoing effort is a 
conceptual model that allows 
construction of multiple hypotheses 
that can guide research and evaluate 
management actions within an 
adaptive framework.
We welcome input so please feel 
free to contribute your expertise by 
leaving a comment on the 
discussion forum or emailing us.
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CMPAS Sub-models: Examples of hypothesized pathways

Specific variables thought to influence the predation process by affecting predator and/or prey 
behavior might include immediate hydrodynamics, artificial lighting, and habitat preferences.
H1: Water diversions attract/entrain prey fishes which leads to a numerical and/or functional 
response from predators (18).
H2: Riprap or artificial substrates attract predators increasing localized predator density making a 
predation hotspot (9, 23).
H3: Artificial lighting attracts prey species making them more vulnerable to predators (1, 8, 21).

Variables thought to influence predation through health/physiology aspects of predator and/or prey
might include contaminants, presence of parasites or pathogens, nutrition through food availability, 
and temperature.
H1: Increased contaminant load within prey species decreases evasion response leading to an 
increase in successful predation attempts (14).
H2: Increased prey parasite load or pathogen prevalence decreases evasion response abilities 
leading to an increase in successful predation attempts (11, 15).
H3: Increases in temperature increase the bioenergetic demand of predators leading to increased 
predation rates (17).

Physical attributes of predators thought to influence the predation process include body size, gape 
size or jaw protrusion (fish), swimming speed, flight and bill shape (avian), and claws/talons 
(mammalian/avian). Physical attributes of prey include body size, body depth, spines or plates, and 
swimming ability. 
H1: Low food availability resulting from decreased floodplain connectivity decreases prey fishes 
growth rates and size, preventing prey from outgrowing predation risk from certain sizes classes of 
gape-limited predators (10, 24).  
H2: Predators exhibit size-dependent prey selection to maximize net energy gain, thus consumption 
rates of small prey species may be influenced by density of small–intermediate sized predator 
species and/or interaction between size-classes of predator species. (7, 12, 16).
H3: Morphology (e.g., deep-bodied, spiny fin rays) of certain fishes (especially nonnatives) 
disproportionately prevents them from being preyed on by native species that did not evolve to 
consume prey with that morphology forcing native predators to increase reliance on native prey 
fishes (8).

Specific variables thought to influence the predation process by affecting predator and/or prey 
sensory abilities might include turbidity, artificial lighting, or contaminants. 
H1: Contaminants inhibit the olfactory ability of prey fishes to sense predators and disturbance cues 
(2, 5, 19, 22).
H2: Increasing turbidity decreases visual detection of prey fishes by predators (4, 6, 25, 26).
H3: Artificial lighting increases the ability of predators to see prey fishes during crepuscular and 
nocturnal time periods (3, 21).
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Variables thought to influence predation through health/physiology aspects might include 
contaminants, presence of parasites or pathogens, nutrition through food availability , and 
temperature.
*H1: Increased contaminant load within prey species decreases evasion response leading to an 
increase in successful predation attempts (14).
*H2: Increased prey parasite load or pathogen prevalence decreases evasion response abilities 
leading to an increase in successful predation attempts (11, 15).
*H3: Increases in temperature increase the bioenergetic demand of predators leading to increased 
predation rates (17).
H4: Poor nutrition in prey through decreased food availability and/or quality decreases evasion 
response abilities leading to an increase in successful predation attempts (24).
H5: Increases in temperature decrease growth rates and may produce thermal stress responses in 
certain native prey fishes that increase predation vulnerability leading to an increase in successful 
predation attempts (30).

Physical attributes of predators thought to influence the predation process include body size, gape 
size or jaw protrusion (fish), swimming speed, flight and bill shape (avian), and claws/talons 
(mammalian/avian). Physical attributes of prey include body size, body depth, spines or plates, and 
swimming ability. 
*H1: Low food availability resulting from decreased floodplain connectivity decreases prey fishes
growth rates and size, preventing prey from outgrowing predation risk from certain sizes classes of 
gape-limited predators (10, 24).  
*H2: Predators exhibit size-dependent prey selection to maximize net energy gain, thus 
consumption rates of small prey species may be influenced by density of small–intermediate sized 
predator species and/or interaction between size-classes of predator species. (7, 12, 16).
*H3: Morphology (e.g., deep-bodied, spiny fin rays) of certain fishes (especially nonnatives) 
disproportionately prevents them from being preyed on by native species that did not evolve to 
consume prey with that morphology forcing native predators to increase reliance on native prey 
fishes (8).
H4: The body morphology, fin structure/placement, jaw and buccal structure, etc. of certain non-
native fishes (e.g., Striped Bass, Largemouth Bass) allows for novel or refined predation tactics that 
native fishes have not co-evolved with and therefore leads to a higher vulnerability to predation 
(36).
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Specific variables thought to influence the predation process by affecting predator and/or prey 
behavior might include immediate hydrodynamics, artificial lighting, and habitat preferences.
*H1: Water diversions attract/entrain prey fishes which leads to a numerical and/or functional 
response from predators (18).
*H2: Riprap or artificial substrates attract predators increasing localized predator density making a 
predation hotspot (9, 23).
*H3: Artificial lighting attracts prey species making them more vulnerable to predators (1, 8, 21).
H4: Spatial overlap of native prey fishes and non-native fishes with early ontogenetic diet shifts to 
piscivory may diminish recruitment of native fishes by increasing predation in shallow 
nursery/rearing areas (27,29,31,34) 
H5: The continuous release of salvaged fishes at established fish release sites leads to a numerical 
and/or functional response from predators and a subsequent decrease in survival of these 
salvaged fishes (28,32,35).  
H6: Agonistic/competitive interactions with non-native fishes can displace native fishes from 
preferred feeding/habitat areas leading to higher vulnerability to predation (33).

Specific variables thought to influence the predation process by affecting sensory abilities might 
include turbidity, artificial lighting, or contaminants. 
*H1: Contaminants inhibit the olfactory ability of prey fishes to sense predators and disturbance 
cues (2, 5, 19, 22).
*H2: Increasing turbidity decreases visual detection of prey fishes by predators (4, 6, 25, 26).
*H3: Artificial lighting increases the ability of predators to see prey fishes during crepuscular and 
nocturnal time periods (3, 21).

(* Indicates hypothesis included on the poster, blue colored text indicates additional hypotheses)


