Classification of the Vegetation Alliances and Associations of the Northern Sierra Nevada Foothills, California

Volume 2 of 2 – Vegetation Descriptions

By
Anne Klein
Josie Crawford
Julie Evens
Vegetation Program
California Native Plant Society

Todd Keeler-Wolf
Diana Hickson
Vegetation Classification and Mapping Program
Biogeographic Data Branch
California Department of Fish and Game

For the
Resources Management and Policy Division
California Department of Fish and Game
Contract Number: P0485520

December 2007

This report consists of two volumes. Volume 1 contains the project introduction, methods, and results, as well as literature cited, and appendices. This volume (Volume 2) includes descriptions of the vegetation alliances and associations defined for this project.

This classification report covers vegetation associations and alliances attributed to the northern Sierra Nevada Foothills, California. This classification has been developed in consultation with many individuals and agencies and incorporates information from a variety of publications and other classifications. Comments and suggestions regarding the contents of this subset should be directed to:

Anne Klein Vegetation Ecologist California Dept. of Fish and Game Sacramento, CA <aklein@dfg.ca.gov> Julie Evens
Senior Vegetation Ecologist
California Native Plant Society
Sacramento, CA
<jevens@cnps.org>

Todd Keeler-Wolf Senior Vegetation Ecologist California Dept. of Fish and Game Sacramento, CA <tkwolf@dfg.ca.gov>

Copyright © 2007 California Native Plant Society, 2707 K Street, Suite 1 Sacramento, CA 95816, U.S.A. All Rights Reserved.

Citation:

The following citation should be used in any published materials that reference this report:

Klein, A., J. Crawford, J. Evens, T. Keeler-Wolf, and D. Hickson. 2007. Classification of the vegetation alliances and associations of the northern Sierra Nevada Foothills, California. Report prepared for California Department of Fish and Game. California Native Plant Society, Sacramento, CA.

Restrictions on Use: Permission to use, copy and distribute these data is hereby granted under the following conditions:

- 1. The above copyright notice must appear in all documents and reports;
- 2. Any use must be for informational purposes only and in no instance for commercial purposes;
- 3. Some data may be altered in format for analytical purposes, however the data should still be referenced using the citation above.

Any rights not expressly granted herein are reserved by the California Native Plant Society (CNPS). Except as expressly provided above, nothing contained herein shall be construed as conferring any license or right under any CNPS copyright.

Information Warranty Disclaimer: All data are provided as is without warranty as to the currentness, completeness, or accuracy of any specific data. The absence of data in any particular geographic area does not necessarily mean that species or ecological communities of concern are not present. CNPS hereby disclaims all warranties and conditions with regard to these data, including but not limited to all implied warranties and conditions of merchantability, fitness for a particular purpose, and non-infringement. In no event shall CNPS be liable for any special, indirect, incidental, consequential damages, or for damages of any kind arising out of or in connection with the use of these data. Because the data supporting this is continually being updated, it is advisable to check for data and classification revisions at least once a year after receipt.

TABLE OF CONTENTS

TREE DESCRIPTIONS	1
Acer macrophyllum Woodland/Forest Alliance	2
Acer macrophyllum Association (Provisional)	
Acer macrophyllum - Pseudotsuga menziesii / Dryopteris arguta Association	
(Provisional)	5
Aesculus californica Woodland/Forest Alliance	7
Aesculus californica / Toxicodendron diversilobum / Moss Association	
Aesculus californica Riparian Association (Provisional)	
Alnus rhombifolia Woodland/Forest Alliance	
Alnus rhombifolia - Quercus chrysolepis Association	
Alnus rhombifolia - Salix laevigata Association	
Alnus rhombifolia - Salix laevigata - Platanus racemosa Association	
Alnus rhombifolia / Carex Association	
Alnus rhombifolia / Darmera peltata Association	
Alnus rhombifolia / Salix exigua Association	
Arbutus menziesii Woodland/Forest Alliance	
Arbutus menziesii Alliance (no Associations defined)	
Calocedrus decurrens Woodland/Forest Alliance	
Calocedrus decurrens - Alnus rhombifolia Association	
Cupressus macnabiana Woodland/Forest Alliance	
Cupressus macnabiana / Arctostaphylos viscida Association (Provisional)	
Fraxinus latifolia Woodland/Forest Alliance	
Fraxinus latifolia - Alnus rhombifolia Association	
Juglans hindsii Woodland/Forest Semi-Natural Stands	
Juglans hindsii Woodland Semi-Natural Stands (no Associations defined)	
Pinus ponderosa Stroom Torrosa Association (Provisional)	
Pinus ponderosa Stream Terrace Association (Provisional)	40 42
Pinus sabiniana Woodland/Forest Alliance	43 <i>15</i>
Pinus sabiniana / Adenostoma fasciculatum Association	
Pinus sabiniana / Arctostaphylos viscida Association (Provisional)	
Pinus sabiniana / Ceanothus cuneatus Association	50
Pinus sabiniana / Ceanothus cuneatus / Plantago erecta Serpentine Association	
(Provisional)	52
Pinus sabiniana / Rhamnus tomentella Association (Provisional)	55
Platanus racemosa Woodland/Forest Alliance	
Platanus racemosa Alliance (no Associations defined)	
Populus fremontii Woodland/Forest Alliance	
Populus fremontii - Salix laevigata Association	
Populus fremontii / Vitis californica Association	
Pseudotsuga menziesii Woodland/Forest Alliance	66
Pseudotsuga menziesii Association	66
Pseudotsuga menziesii - Quercus chrysolepis Association	
Quercus chrysolepis Woodland/Forest Alliance	
Quercus chrysolepis Association	72
Quercus chrysolepis / Arctostaphylos viscida Association	75
Quercus chrysolepis - Pinus ponderosa Association	77
Quercus chrysolepis - Quercus kelloggii Association	79
Quercus chrysolepis - Quercus kelloggii - Acer macrophyllum Association (Provisional)	
Quercus chrysolepis - Quercus lobata / Vitis californica Association	
Quercus chrysolepis - Quercus wislizeni Association	
Quercus chrysolepis - Umbellularia californica Association	
Quercus chrysolepis - Umbellularia californica / Vitis californica Riparian Association	91

Quercus douglasii Woodland/Forest Alliance	. 94
Quercus douglasii / Annual Grass - Forb Sub-Alliance	
Quercus douglasii / Perennial Grass - Forb Sub-Alliance	. 97
Quercus douglasii / Selaginella hansenii - Navarretia pubescens Association	
(Provisional)	. 99
Quercus douglasii / Arctostaphylos manzanita / Herbaceous Association	101
Quercus douglasii / Ceanothus cuneatus / Herbaceous Association	104
Quercus douglasii / Juniperus californica - Ceanothus cuneatus Association	
(Provisional)	106
Quercus douglasii - Aesculus californica / Herbaceous Association	109
Quercus douglasii - Pinus sabiniana / Arctostaphylos viscida / Herbaceous	
Association	112
Quercus douglasii - Pinus sabiniana / Herbaceous Association	115
Quercus douglasii - Quercus Iobata / Herbaceous Association	
Quercus douglasii - Quercus wislizeni / Herbaceous Association	
Quercus kelloggii Woodland/Forest Alliance	
Quercus kelloggii / Arctostaphylos viscida Association (Provisional)	123
Quercus kelloggii / Ceanothus integerrimus Association	126
Quercus kelloggii / Toxicodendron diversilobum - Styrax officinalis / Triteleia laxa	
Association	128
Quercus kelloggii / Toxicodendron diversilobum / Grass Association	
Quercus kelloggii - Pinus ponderosa Association	
Quercus kelloggii - Pinus ponderosa / Arctostaphylos viscida Association	
Quercus kelloggii - Pinus ponderosa / Ceanothus integerrimus Association	
Quercus kelloggii - Pseudotsuga menziesii - Umbellularia californica Association	
(Provisional)	141
Quercus kelloggii - Quercus chrysolepis / Toxicodendron diversilobum Association	
Quercus lobata Woodland/Forest Alliance	
Quercus Iobata / Herbaceous Semi-Riparian Association	
Quercus Iobata / Rhus trilobata Association (Provisional)	148
Quercus Iobata / Rubus discolor Association	
Quercus Iobata - Alnus rhombifolia Association	
Quercus Iobata - Quercus wislizeni Association	
Quercus wislizeni Woodland/Forest Alliance	
Quercus wislizeni / Arctostaphylos viscida Association	
Quercus wislizeni / Heteromeles arbutifolia Association	
Quercus wislizeni / Toxicodendron diversilobum Association	
Quercus wislizeni Mixed Shrub Association (Provisional)	
Quercus wislizeni - Salix laevigata / Rhamnus tomentella Association	165
Quercus wislizeni - Saix iaevigata / Khammus tomentena Association	
Quercus wislizeni - Aesculus californica Association	
Quercus wislizeni - Pinus poriderosa Association	
Quercus wislizeni - Pinus sabiniana / Arctostaphylos manzanita Association	
Quercus wislizeni - Quercus douglasii - Aesculus californica Association	
Quercus wislizeni - Quercus douglasii - Pinus sabiniana Association	179
Quercus wislizeni - Quercus douglasii / Herbaceous Association	
Quercus wislizeni - Quercus kelloggii Association	
Salix gooddingii Woodland/Forest Alliance	
Salix gooddingii Association (Provisional)	
Salix laevigata Woodland/Forest Alliance	
Salix laevigata Association	
Salix laevigata / Salix lasiolepis Association	
Umbellularia californica Woodland/Forest Alliance	
Umbellularia californica - Alnus rhombifolia Association (Provisional)	
Umbellularia californica - Quercus wislizeni Association	199

Shrub Descriptions	201
Adenostoma fasciculatum Shrubland Alliance	202
Adenostoma fasciculatum Association	
Adenostoma fasciculatum / Herbaceous Association	
Adenostoma fasciculatum - Arctostaphylos manzanita Association (Provisional)	
Adenostoma fasciculatum - Arctostaphylos viscida Association	
Adenostoma fasciculatum - Eriodictyon californicum - Lotus scoparius Association	
Arctostaphylos viscida Shrubland Alliance	
Arctostaphylos viscida Association	
Arctostaphylos viscida / Salvia sonomensis Association (Provisional)	
(Arctostaphylos viscida - Adenostoma fasciculatum) / Salvia sonomensis Association	
Arctostaphylos viscida - Quercus wislizeni Association	
Ceanothus cuneatus Shrubland Alliance	
Ceanothus cuneatus / Herbaceous Association	
Ceanothus cuneatus / Plantago erecta Association	
Adenostoma fasciculatum - Ceanothus cuneatus Association	
Ceanothus cuneatus - Eriodictyon californicum - (Fremontodendron californicum)	
Association (Provisional)	234
Ceanothus integerrimus Shrubland Alliance	237
Ceanothus integerrimus Association	237
Ceanothus integerrimus - Quercus garryana var. breweri Association (Provisional)	
Cephalanthus occidentalis Shrubland Alliance	
Cephalanthus occidentalis Association	243
Cercocarpus betuloides Shrubland Alliance	
Cercocarpus betuloides Association	
Cercocarpus betuloides - Ceanothus cuneatus Association (Provisional)	
Cornus sericea Shrubland Alliance	
Cornus sericea Alliance (no Associations defined)	254
Eriodictyon californicum Shrubland Alliance	
Eriodictyon californicum / Herbaceous Association	
Heteromeles arbutifolia Shrubland Alliance	
Heteromeles arbutifolia Serpentine Association (Provisional)	260
Juniperus californica Shrubland Alliance	
Juniperus californica / Herbaceous Association	
Quercus berberidifolia Shrubland Alliance	267
Quercus berberidifolia - Ceanothus cuneatus Association	267
Quercus berberidifolia - Fraxinus dipetala - Heteromeles arbutifolia Association	270
Quercus durata Shrubland Alliance	
Quercus durata Association (Provisional)	273
Quercus durata - Adenostoma fasciculatum / Salvia sonomensis Association	
(Provisional)	
Quercus garryana var. breweri Shrubland Alliance (Provisional)	277
Quercus garryana var. breweri Association (Provisional)	277
Frangula californica (=Rhamnus tomentella) Shrubland Alliance	280
Rhamnus tomentella - Hoita macrostachya Association (Provisional)	280
Rubus discolor Shrubland Semi-Natural Stands	
Rubus discolor Association	284
Salix exigua Shrubland Alliance	287
Salix exigua Association	287
Salix exigua - Brickellia californica Association (Provisional)	
Salix lasiolepis Shrubland Alliance	
Salix lasiolepis / Rubus spp. Association	
Tamarix sp. Shrubland Semi-Natural Stands	296
Tamarix spp. Shrubland Semi-Natural Stands (no Associations defined)	
Toxicodendron diversilobum Shrubland Alliance	
Toxicodendron diversilobum / Herbaceous Association	

HERB DESCRIPTIONS	301
Avena (barbata, fatua) Herbaceous Semi-Natural Stands	302
Avena barbata - Bromus hordeaceus Herbaceous Association (Provisional)	
Bromus (diandrus, hordeaceus, madritensis) Herbaceous Semi-Natural Stands	305
Brachypodium distachyon - Bromus diandrus / (Quercus douglasii) Sub-Alliance	
Bromus hordeaceus - Erodium botrys - Plagiobothrys fulvus Herbaceous Association	
Bromus hordeaceus - Leontodon taraxacoides Herbaceous Association	
Bromus hordeaceus - Lupinus nanus - Trifolium spp. Herbaceous Association	
(Provisional)	313
Trifolium hirtum - Bromus hordeaceus Herbaceous Association (Provisional)	316
Bromus hordeaceus - (Holocarpha virgata) Herbaceous Alliance	
Holocarpha virgata - Bromus hordeaceus - Taeniatherum caput-medusae	
Herbaceous Association	318
Bromus hordeaceus - (Plagiobothrys nothofulvus) Herbaceous Alliance	321
Plagiobothrys nothofulvus - Daucus pusillus - Bromus hordeaceus Herbaceous	
Association	321
Carex barbarae Herbaceous Alliance	324
Carex barbarae Herbaceous Association (Provisional)	324
Carex nudata Herbaceous Alliance	
Carex nudata Herbaceous Association	
Carex serratodens Herbaceous Alliance	
Carex serratodens Herbaceous Association (Provisional)	
Centaurea (melitensis, solstitialis) Herbaceous Semi-Natural Stands	
Centaurea solstitialis Herbaceous Association (Provisional)	
Eleocharis acicularis Herbaceous Alliance (Provisional)	
Eleocharis acicularis - Eryngium castrense Herbaceous Association (Provisional)	
Eleocharis macrostachya Herbaceous Alliance	
Eleocharis macrostachya Herbaceous Association	
Eleocharis macrostachya - (Pleuropogon californicus) Herbaceous Association (Provisional)	
Eleocharis macrostachya - Marsilea vestita Herbaceous Association (Provisional)	
Juncus (balticus, mexicanus) Herbaceous Alliance	
Juncus balticus Herbaceous Association	
Juncus balticus - Carex praegracilis Herbaceous Association (Provisional)	
Juncus (oxymeris, xiphioides) Herbaceous Alliance	
Juncus oxymeris Herbaceous Association (Provisional)	
Juncus xiphioides Herbaceous Association (Provisional)	349
Juncus effusus Herbaceous Alliance	
Juncus effusus Herbaceous Association	
Lasthenia fremontii - Downingia (bicornuta) Herbaceous Alliance	
Downingia (cuspidata, bicornuta) Herbaceous Association	
Downingia bicornuta - Lasthenia fremontii Herbaceous Association	
Downingia ornatissima - Lasthenia fremontii Herbaceous Association	
Eryngium (vaseyi, castrense) Herbaceous Association	
Lasthenia fremontii Herbaceous Association (Provisional)	
Layia fremontii Herbaceous Alliance	
Layia fremontii - Lasthenia californica - Achyrachaena mollis Herbaceous	00 .
Association	364
Layia fremontii - Leontodon taraxacoides - Plagiobothrys greenei Herbaceous	55 +
Association	368
Plagiobothrys austiniae - Achyrachaena mollis Herbaceous Association	371
Lolium multiflorum Herbaceous Semi-Natural Stands	
Lolium multiflorum - Centaurium muehlenbergii Herbaceous Association	
Lolium multiflorum (Zigadenus fremontii) Herbaceous Alliance (Provisional)	
Zigadenus fremontii Herbaceous Association (Provisional)	377

Mimulus guttatus Herbaceous Alliance (Provisional)	. 380
Mimulus guttatus - Vulpia microstachys Serpentine Herbaceous Association	
(Provisional)	380
Muhlenbergia rigens Herbaceous Alliance	. <mark>38</mark> 3
Muhlenbergia rigens Herbaceous Association	. 383
Nassella pulchra Herbaceous Alliance	. 386
Nassella pulchra Herbaceous Association	386
Nassella pulchra - Leontodon taraxacoides Herbaceous Association	389
Phalaris aquatica Herbaceous Semi-Natural Stands	. 392
Phalaris aquatica - Bromus hordeaceus - Centaurea solstitialis Herbaceous	
Association	392
Schoenoplectus (=Scirpus) acutus Herbaceous Alliance	. 395
Schoenoplectus (=Scirpus) acutus var. occidentalis Herbaceous Association	395
Schoenoplectus (=Scirpus) acutus - Typha domingensis Herbaceous Association	. 397
Trifolium variegatum Herbaceous Alliance	. 399
Trifolium variegatum Herbaceous Association	399
Trifolium variegatum - Lolium multiflorum - Leontodon taraxacoides Herbaceous	
Association	402
Trifolium variegatum - Vulpia bromoides - (Hypochaeris glabra - Leontodon	
taraxacoides) Herbaceous Association	405
(Trifolium variegatum - Vulpia bromoides) - Hypochaeris glabra - Leontodon	
taraxacoides Herbaceous Association	408
Typha (angustifolia, domingensis, latifolia) Herbaceous Alliance	. 411
Typha latifolia Herbaceous Association	. 411
Vulpia microstachys-Lasthenia californica-Plantago erecta Herbaceous Alliance	. 414
Selaginella hansenii - Vulpia microstachys Herbaceous Association	. 414
Selaginella hansenii - Vulpia microstachys - Lupinus nanus Herbaceous Association (Provisional)	417
Selaginella hansenii - Vulpia microstachys - Lupinus spectabilis Herbaceous	
Association (Provisional)	. 420
Vulpia microstachys - Elymus elymoides - Achnatherum lemmonii Herbaceous Association	
(Provisional)	. 422
Vulpia microstachys - Lasthenia californica - Agrostis elliottiana Herbaceous	
Association	. 424
Vulpia microstachys - Lasthenia californica - Parvisedum pumilum Herbaceous	
Association	427
Vulpia microstachys - Navarretia tagetina Herbaceous Association	
Vulpia microstachys - Plantago erecta - Calycadenia (truncata, multiglandulosa) Herbaceous	
Association	433

TREE DESCRIPTIONS

A stand representing the *Quercus chrysolepis* - *Quercus kelloggii* - *Acer macrophyllum* Provisional Forest Association. Photo taken in the fall, on a north-facing slope above the Yuba River, Nevada County.

Acer macrophyllum Woodland/Forest Alliance Big-leaf Maple Woodland/Forest Alliance

As defined in the state, *Acer macrophyllum* is dominant or co-dominant in the tree canopy with *Abies concolor, Alnus rhombifolia, Calocedrus decurrens, Cornus nuttallii, Pinus ponderosa, Pseudotsuga menziesii, Quercus chrysolepis, Q. kelloggii, Q. lobata, Taxus brevifolia, Tsuga heterophylla, or <i>Umbellularia californica*. The canopy is typically intermittent or continuous, and the shrub and herb layers are sparse to abundant. Stands occur along raised stream benches, terraces, and on lower slopes. Soils may be rocky. The alliance is relatively rare in the state, previously known from the northern California Coast, where it exists on alluvial terraces, including locations that have been cleared in the past for agriculture. Mixed stands of *Pseudotsuga menziesii* and *Acer macrophyllum* occur at higher elevations in the Klamath Mountains and North Coast Ranges, and stands in Redwood National Park and in Prairie Creek and Jedediah Smith Redwoods state parks are not currently described (Sawyer et al. 2007 MS).

Stands of the Big-leaf Maple Alliance are uncommon in the Sierra Nevada Foothills, but they become more frequent at elevations above the Foothills boundary. Two associations were classified in the study area and are described below. The stands were found in canyons and along riparian terraces.

Acer macrophyllum Association (Provisional) Big-leaf Maple Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Acer macrophyllum* at 10-47% cover. Other trees such as *Quercus chrysolepis* and *Quercus lobata* were characteristically present. The shrub layer was open with *Rhamnus tomentella* and *Toxicodendron diversilobum* often present. The herbaceous layer was open and often included *Cynosurus echinatus*, *Elymus glaucus*, *Melica torreyana*, *Sanicula bipinnatifida*, and *Torilis arvensis*.

This association was sampled infrequently in the study area within the Cascade Range Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on volcanic, basalt, and sandstone substrates. They occupied bottom to middle slopes that were gentle to moderate. Big-leaf Maple stands are usually associated with springs or riparian zones.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte County, within the Shingletown-Paradise (M261DI) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997). Most stands sampled occurred in the Big Chico Creek Ecological Reserve.

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	65	34-93	-
Herb	12	1-27	variable
Shrub	3.8	0-6	<5
Low Tree/Tall Shrub	10	0-40	10-15
Hardwood	49.5	25-70	10-35
Conifer	2.6	0-10	5->35
Relative non-native to native cover	11	0-27	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (2), SW (1), SE (1)

Macrotopography: bottom (1), bottom to lower slope (1), lower slope (1), middle slope (1)

Microtopography: concave (2), convex (1)

Parent Material: volcanic (2), basalt (1), sandstone (1)

Soil Texture: silt or silt loam (2), clay or clay loam (1), loam or sandy loam (1)

	Mean	Range
Elevation	1486 ft.	970-2000 ft.
Slope	7.5°	3-11°
Large rock cover	7%	1-13%
Small rock cover	5%	3-9%
Bare ground cover	4.6%	<1-10%
Litter cover	75%	50-92%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=4)

Rapid Assessments: SNNR0553, SNNR0567, SNNR0713, SNNR1120

Rank: G4S3

GLOBAL DISTRIBUTION

This association is being described for the first time for the Sierra Nevada and southern Cascade Range based on data collected for this project. Similar stands were mapped (but not sampled) on north-facing talus cones in Yosemite Valley.

STAND TABLE Acer macrophyllum Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	ACMA3-T	Acer macrophyllum	100	34.0	10	47	Χ		Χ	
	QUCH2-T	Quercus chrysolepis	100	13.3	5	30			Χ	
	QULO-T	Quercus lobata	75	0.6	0.2	1			Χ	
	QUKE-T	Quercus kelloggii	50	2.5	4	6				
	UMCA-T	Umbellularia californica	50	1.1	0.2	4				
	QUWI2-M	Quercus wislizeni	50	0.1	0.2	0.2				
	ALRH2-T	Alnus rhombifolia	25	2.5	10	10				
	PSME-T	Pseudotsuga menziesii	25	2.5	10	10				
	CADE27-L	Calocedrus decurrens	25	1.0	4	4				
	QUCH2-L	Quercus chrysolepis	25	0.3	1	1				
	QUWI2-T	Quercus wislizeni	25	0.3	1	1				
	UMCA-L	Umbellularia californica	25	0.3	1	1				
	UMCA-M	Umbellularia californica	25	0.3	1	1				
	CADE27-T	Calocedrus decurrens	25	0.1	0.2	0.2				
	CADE27-M	Calocedrus decurrens	25	0.1	0.2	0.2				
	PISA2-T	Pinus sabiniana	25	0.1	0.2	0.2				
	PSME-L	Pseudotsuga menziesii	25	0.1	0.2	0.2				
	PSME-M	Pseudotsuga menziesii	25	0.1	0.2	0.2				

STAND TABLE continued Acer macrophyllum Association (Provisional)

Lifeform		Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUCH2-M	Quercus chrysolepis	25	0.1	0.2	0.2				
	QULO-M	Quercus lobata	25	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	50	1.5	1	5				
	RHTO6	Rhamnus tomentella	50	0.5	1	1				
	CONU4	Cornus nuttallii	25	10.0	40	40				
	VICA5	Vitis californica	25	0.3	1	1				
	LOHIV	Lonicera hispidula var. vacillans	25	0.1	0.2	0.2				
	RIBES	Ribes	25	0.1	0.2	0.2				
Herb										
	TOAR	Torilis arvensis	75	5.5	3	15			Χ	Χ
	ELGL	Elymus glaucus	75	0.4	0.2	1			Χ	
	CYEC	Cynosurus echinatus	50	3.0	2	10				Χ
	METO	Melica torreyana	50	0.3	0.2	1				
	SABI3	Sanicula bipinnatifida	50	0.1	0.2	0.2				
	MELIC	Melica	25	2.0	8	8				
	POACXX	Poaceae	25	1.3	5	5				
	SACR2 SMILA2	Sanicula crassicaulis Smilax	25 25	0.8 0.5	3 2	3 2				
	LILIXX	Liliaceae	25	0.3	1	1				
	NEHE	Nemophila heterophylla	25	0.3	1	1				
	PTAQ	Pteridium aquilinum	25	0.3	1	1				
	RAOC	Ranunculus occidentalis	25	0.3	1	1				
	TRLA6	Trientalis latifolia	25	0.3	1	1				
	AGRE	Agoseris retrorsa	25	0.1	0.2	0.2				
	CALOC	Calochortus	25	0.1	0.2	0.2				
	CEGL2	Cerastium glomeratum	25	0.1	0.2	0.2				Χ
	CHPO3	Chlorogalum pomeridianum	25	0.1	0.2	0.2				
	CLPA5	Claytonia parviflora	25	0.1	0.2	0.2				
	GAPA5	Galium parisiense	25	0.1	0.2	0.2				Χ
	GERAN	Geranium	25	0.1	0.2	0.2				Χ
	NAPU4	Nassella pulchra	25	0.1	0.2	0.2				
	PITR3	Piperia transversa	25	0.1	0.2	0.2				
	POSE	Poa secunda	25	0.1	0.2	0.2				
	POMU	Polystichum munitum	25	0.1	0.2	0.2				
	SCCA3	Scutellaria californica	25	0.1	0.2	0.2				
	SMCA2	Smilax californica	25	0.1	0.2	0.2				
	VICIA	Vicia	25	0.1	0.2	0.2				
Epiphyte	PHVI9	Phoradendron villosum	25	0.3	1	1				

Acer macrophyllum - Pseudotsuga menziesii / Dryopteris arguta Association (Provisional) Big-leaf Maple - Douglas-fir / Wood Fern Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically intermittent to continuous and dominated by Pseudotsuga menziesii at 25-35% cover. Other trees such as Acer macrophyllum, Quercus chrysolepis, and Umbellularia californica were characteristically present. The shrub layer was open to intermittent with Toxicodendron diversilobum dominant. The herbaceous layer was open with abundant and characteristic taxa such as Adiantum jordanii, Dryopteris arguta, and Melica torrevana.

This association was sampled infrequently in the study area within the Cascade Range Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on volcanic substrates. They occupied lower to upper slopes that were steep. Stands of Big-leaf Maple -Douglas-fir / Wood Fern occurred along riparian corridors or on mesic, north-facing canyon slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte County, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	81	77-85	-
Herb	25	20-30	variable
Shrub	33	26-40	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	38.5	32-45	10-20
Conifer	35.5	28-43	10->35
Relative non-native to native cover	2.1	0-4	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (2)

Macrotopography: lower to middle slope (1), upper slope (1)

Microtopography: concave (1), undulating (1)

Parent Material: volcanic (2)

Soil Texture: sand (1)

	Mean	Range
Elevation	1486 ft.	1410-1562 ft.
Slope	37.5°	35-40°
Large rock cover	5%	5-5%
Small rock cover	2%	2-2%
Bare ground cover	8%	8-8%
Litter cover	80%	80-80%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR0534, SNNR0776

Rank: G3S3

GLOBAL DISTRIBUTION

Stands with an overstory dominated by *Pseudotsuga menziesii* and *Acer macrophyllum* are known from Oregon, Washington, and British Columbia (NatureServe 2007a). This association has only been described for the Sierra Nevada and southern Cascade Ranges. It is also likely to occur in the North Coast Ranges and the eastern Klamath Mountains of California.

STAND TABLE

Acer macrophyllum - Pseudotsuga menziesii / Dryopteris arguta Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PSME-T	Pseudotsuga menziesii		30.0		35		Χ	Χ	
	ACMA3-T	Acer macrophyllum		23.5		35		Χ	Χ	
	UMCA-T	Umbellularia californica	100	10.0	10	10			Χ	
	QUCH2-T	Quercus chrysolepis	100	4.5	4	5			Χ	
	QUKE-T	Quercus kelloggii	50	8.5	17	17				
	CADE27-M	Calocedrus decurrens	50	4.0	8	8				
	PIPO-T	Pinus ponderosa	50	2.5	5	5				
	AECA-M	Aesculus californica	50	1.0	2	2				
Shrub										
	TODI	Toxicodendron diversilobum	100	8.0	6	10			Χ	
	CAOC5	Calycanthus occidentalis	50	6.0	12	12				
	COSE16	Cornus sericea	50	5.0	10	10				
	HEAR5	Heteromeles arbutifolia	50	5.0	10	10				
	VICA5	Vitis californica	50	3.0	6	6				
	SYALL	Symphoricarpos albus var. laevigatus	50	2.5	5	5				
	CEIN3	Ceanothus integerrimus	50	1.0	2	2				
	ARCA10	Aristolochia californica	50	0.5	1	1				
Herb										
	DRAR3	Dryopteris arguta	100	5.0	2	8			Χ	
	ADJO	Adiantum jordanii	100	4.5	4	5			X	
	METO	Melica torreyana	100	3.1	0.2	6			Χ	
	ASHA	Asarum hartwegii	50	2.0	4	4				
	CYEC	Cynosurus echinatus	50	2.0	4	4				Χ
	BRLA3	Bromus laevipes	50	0.5	1	1				
	TOAR	Torilis arvensis	50	0.5	1	1				Χ
	TRLA6	Trientalis latifolia	50	0.5	1	1				
	HEMI7	Heuchera micrantha	50	0.1	0.2	0.2				
	IRIS	Iris	50	0.1	0.2	0				

Aesculus californica Woodland/Forest Alliance California Buckeye Woodland/Forest Alliance

As defined in the state, *Aesculus californica* is dominant or co-dominant in the tree canopy with *Fraxinus dipetala*, *Heteromeles arbutifolia*, *Pinus sabiniana*, *Prunus ilicifolia*, *Quercus agrifolia*, *Q. douglasii*, *Q. wislizeni*, and *Umbellularia californica*. The canopy is open to continuous, and is one or two-tiered. Stands of *Aesculus californica* occur on varied slopes and topography. Soils are shallow and moderately to excessively drained.

In the study area, California buckeye often forms stands on middle to lower, steep riparian terraces and on rocky volcanic slopes. As described below, two associations of the California Buckeye Alliance were classified. Additional variation was found in one stand (SNNR0849), which lacked *Toxicodendron diversilobum* and moss. This stand was classified to the alliance level only.

Aesculus californica / Toxicodendron diversilobum / Moss Association California Buckeye / Poison-oak / Moss Association

SUMMARY

In the stands sampled, the canopy was typically open to intermittent and dominated by *Aesculus californica* at 10-77% cover (combined cover in the tree overstory and/or understory layers). *Quercus wislizeni* was characteristically present as a tree and/or shrub. The shrub layer was open to continuous with *Toxicodendron diversilobum* dominant. The herbaceous layer was sparse to intermittent and often included *Avena barbata*, *Bromus diandrus*, *Bromus hordeaceus*, *Melica californica*, and *Torilis arvensis*. Moss was often present in the understory cryptogam layer, with an average cover higher than the shrub or herb layers.

In the study area, this association was sampled commonly within the central Sierra Nevada Foothills and less frequently in the Cascade Range Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands often occurred on volcanic (including basalt) substrates, and occurred less frequently on metamorphic (including slate), and ultramafic substrates. They occupied slope positions from bottom to ridgetop. Slopes varied from moderate to steep. These California Buckeye / Poison-oak / Moss stands occurred in somewhat mesic, upland settings, often associated with a creek or river.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras, Mariposa, Nevada, Sacramento, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	63.7	44-85	-
Herb	25.8	0-65	variable
Shrub	30.6	0-78	<5
Low Tree/Tall Shrub	9.2	0-65	5-10
Hardwood	15.6	0-60	5-20
Conifer	0.1	0-1	10-20
Relative non-native to native cover	23.5	0-66	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (4), N (4), E (3), W (1), Variable (1), SW (1)

Macrotopography: bottom to lower slope (1), lower slope (4), lower to middle slope (1), middle

slope (4), upper slope (3), ridgetop (1)

Microtopography: undulating (10), concave (2), flat (1), convex (1)

Parent Material: volcanic (5), metamorphic (3), basalt (2), slate (2), limestone (1), ultramafic (1) Soil Texture: loam or sandy loam (6), clay or clay loam (2), sand (1), silt or silt loam (1), unknown (1)

	Mean	Range
Elevation	1118 ft.	300-1785 ft.
Slope	29.7°	14-45°
Large rock cover	37.1%	<1-97%
Small rock cover	12.4%	0-33%
Bare ground cover	6%	0-20%
Litter cover	39.3%	0-88%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=14)

Rapid Assessments: SNNR0057, SNNR0077, SNNR0200, SNNR1112, SNNR1212, SNNR1336, SNNR1454, SNNR1470, SNNR1472 **Relevés:** SNFN0213, SNFN0643,

SNFN0648, SNFN0678, SNFN0684

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills. It is likely to occur in the Northern California Interior Coast Ranges, the Central California Coast Ranges, and the Eastern Klamath Mountains as well.

STAND TABLE

Aesculus californica / Toxicodendron diversilobum / Moss Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	AECA-M	Aesculus californica	79	21.4	5	77	Χ		Χ	
	QUWI2-T	Quercus wislizeni	79	2.4	0.2	8			Χ	
	QUDO-T	Quercus douglasii	43	3.1	3	20				
	AECA-T	Aesculus californica	36	12.7	5	60				
	AECA-L	Aesculus californica	21	0.2	0.2	1				
Shrub										
	TODI	Toxicodendron diversilobum	93	8.4	0.2	30	Χ		Χ	
	HEAR5	Heteromeles arbutifolia	36	1.7	0.2	10				
	MIAU	Mimulus aurantiacus	36	1.4	0.2	12				
	KEBR	Keckiella breviflora	36	1.0	0.2	8				
	CEOCO	Cercis occidentalis	21	1.9	0.2	25				
	SAME5	Sambucus mexicana	21	0.7	0.2	5				
	RHIL	Rhamnus ilicifolia	21	0.2	0.2	2				
	RHTO6	Rhamnus tomentella	21	0.2	0.2	2				

STAND TABLE continued

Aesculus californica / Toxicodendron diversilobum / Moss Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
TICID	BRDI3	Bromus diandrus	71	1.8	0.2	6				Χ
	TOAR	Torilis arvensis	57	2.5	0.2	25				Χ
	BRHO2	Bromus hordeaceus	50	4.4	0.2	25				Χ
	AVBA	Avena barbata	50	1.0	0.2	9				Χ
	MECA2	Melica californica	50	0.2	0.2	1				
	BRMA3	Bromus madritensis	36	1.0	0.2	5				Χ
	TRWI3	Trifolium willdenovii	36	0.3	0.2	2				
	PETRT	Pentagramma triangularis subsp. triangularis	36	0.2	0.2	2				
	PHCI	Phacelia cicutaria	36	0.2	0.2	1				
	PETR7	Pentagramma triangularis	36	0.1	0.2	0.2				
	BRDI2	Brachypodium distachyon	29	2.3	0.2	20				Χ
	TRHI4	Trifolium hirtum	29	1.3	0.2	18				Χ
	VIVI	Vicia villosa	29	0.9	0.2	5				Χ
	CAPY2	Carduus pycnocephalus	29	0.5	0.2	3				Χ
	CLUN	Clarkia unguiculata	29	0.1	0.2	0.2				
	DIVO	Dichelostemma volubile	29	0.1	0.2	0.2				
	TRLA16	Triteleia laxa	29	0.1	0.2	0.2				
	AVFA	Avena fatua	21	2.4	2	30				Χ
	CLPE	Claytonia perfoliata	21	0.5	0.2	5				
	VUMY	Vulpia myuros	21	0.2	0.2	1				Χ
	AMMEI2	Amsinckia menziesii var. intermedia	21	0	0.2	0.2				
	COHE	Collinsia heterophylla	21	0	0.2	0.2				
	DUCYC3	Dudleya cymosa subsp.	21	0	0.2	0.2				
	HERBAC	unknown	21	0	0.2	0.2				
Cryptoga	ım									
	MOSS	Moss	71	15.2	1	80				
	SEHA2	Selaginella hansenii	36	1.2	0.2	8				

Aesculus californica Riparian Association (Provisional) California Buckeye Riparian Association (Provisional)

SUMMARY

In the stands sampled, the canopy was typically open to intermittent and dominated by *Aesculus californica* at 17-52% cover (combined cover in the tree overstory and/or understory layers). *Quercus lobata* was often present in the overstory. The shrub layer was open to continuous with *Ficus carica*, *Rhamnus tomentella*, *Toxicodendron diversilobum*, and *Vitis californica* often present. The herbaceous layer was open to intermittent and often included *Carduus pycnocephalus*, *Claytonia perfoliata*, *Galium aparine*, *Geranium molle*, *Pentagramma triangularis*, *Sanicula crassicaulis*, *Sherardia arvensis*, *Stellaria media*, and *Torilis arvensis*.

This association was sampled infrequently in the study area within the central Sierra Nevada Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates and less frequently on basalt or mixed alluvium substrates. These California Buckeye Riparian stands occurred along riparian corridors and flood plains, and they usually occupied bottom to lower slopes or terraces that were moderate to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Mariposa, and Nevada Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	68.3	32-90	-
Herb	23.3	1-53	variable
Shrub	50.7	25-75	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	11.7	0-32	10-35
Conifer	0.5	0-3	20-35
Relative non-native to native cover	20.1	0-43	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: E (2), W (1), SW (1), S (1), N (1)

Macrotopography: bottom (1), lower slope (3), middle to upper slope (1), terrace (1)

Microtopography: undulating (4), flat (2)

Parent Material: metamorphic (4), basalt (1), mixed alluvium (1)

Soil Texture: loam or sandy loam (2), clay or clay loam (1), silt or silt loam (1), unknown (1)

	Mean	Range
Elevation	930 ft.	499-1602 ft.
Slope	16.7°	6-45°
Large rock cover	19.6%	<1-60%
Small rock cover	3.6%	0.4-10%
Bare ground cover	3.1%	<1-10%
Litter cover	69.3%	11-95%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=6)

Rapid Assessments: SNNR1088, SNNR1333 Relevés: SNFN0021, SNFN0037, SNFN0051,

SNFN0246

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described solely from the Sierra Nevada Foothills, although it may occur elsewhere in cismontane California, north of the Transverse Ranges.

STAND TABLE
Aesculus californica Riparian Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	AECA-M	Aesculus californica	100	19.2	0.2	32	Χ		Χ	
	AECA-T	Aesculus californica	67	13.5	2	45				
	QULO-T	Quercus lobata	50	5.3	4	20				
	AECA-L	Aesculus californica	50	1.4	0.2	7				
	QUWI2-M	Quercus wislizeni	50	1.2	1	4				
	QUWI2-T	Quercus wislizeni	33	1.8	4	7				
	QUDO-T	Quercus douglasii	33	0.4	0.2	2				
	QULO-L	Quercus lobata	33	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	100		0.2	11			Χ	
	RHTO6	Rhamnus tomentella	83	3.1	0.2	16			Χ	
	VICA5	Vitis californica	50	0.7	0.2	3				
	FICA	Ficus carica	50	0.1	0.2	0.2				Χ
	SYALL	Symphoricarpos albus var. laevigatus	33	7.5	5	40				
	RUDI2	Rubus discolor	33	0.9	2.2	3.2				Χ
	CLLA3	Clematis lasiantha	33	0.4	0.2	2				
	HEAR5	Heteromeles arbutifolia	33	0.2	0.2	1				
	HOMA4	Hoita macrostachya	33	0.2	0.2	1				
	LONIC	Lonicera	33	0.2	0.2	1				
Herb										
	SACR2	Sanicula crassicaulis	83	0.5	0.2	2			Χ	
	GAAP2	Galium aparine	67	0.1	0.2	0.2				
	TOAR	Torilis arvensis	50	4.7	1	25				Χ
	GEMO	Geranium molle	50	2.8	1	15				Χ
	CLPE	Claytonia perfoliata	50	0.4	0.2	1				
	PETR7	Pentagramma triangularis	50	0.2	0.2	1				
	CAPY2	Carduus pycnocephalus	50	0.1	0.2	0.2				Χ
	SHAR2	Sherardia arvensis	50	0.1	0.2	0.2				Χ
	STME2	Stellaria media	50	0.1	0.2	0.2				Χ

STAND TABLE continued
Aesculus californica Riparian Association (Provisional)

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
петы	BRDI3	Bromus diandrus	33	6.3	8	30				Х
	BRHO2	Bromus hordeaceus	33	3.0	0.2	18				Χ
	TRHI4	Trifolium hirtum	33	0.8	2	3				Χ
	VISA	Vicia sativa	33	0.5	0.2	3				Χ
	ELGL	Elymus glaucus	33	0.4	0.2	2				
	MIMUL	Mimulus	33	0.2	0.2	1				
	ARDO3	Artemisia douglasiana	33	0.1	0.2	0.2				
	CAAL2	Calochortus albus	33	0.1	0.2	0.2				
	CAOL	Cardamine oligosperma	33	0.1	0.2	0.2				
	CEGL2	Cerastium glomeratum	33	0.1	0.2	0.2				Χ
	CHPO3	Chlorogalum pomeridianum	33	0.1	0.2	0.2				
	DICAC5	Dichelostemma capitatum subsp. capitatum	33	0.1	0.2	0.2				
	DIVO	Dichelostemma volubile	33	0.1	0.2	0.2				
	LITHO2	Lithophragma	33	0.1	0.2	0.2				
	POCA26	Polypodium calirhiza	33	0.1	0.2	0.2				
	RONA2	Rorippa nasturtium-aquaticum	33	0.1	0.2	0.2				
	RUCR	Rumex crispus	33	0.1	0.2	0.2				Χ
	SABI2	Sanicula bipinnata	33	0.1	0.2	0.2				
Cryptoga	ım									
	MOSS	Moss	50	0.7	1	2				

Alnus rhombifolia Woodland/Forest Alliance White Alder Woodland/Forest Alliance

As defined in the state, *Alnus rhombifolia* is dominant or co-dominant in tree canopy with *Acer macrophyllum*, *Chamaecyparis lawsoniana*, *Fraxinus latifolia*, *Lithocarpus densiflorus*, *Platanus racemosa*, *Populus fremontii*, *P. balsamifera* subsp. *trichocarpa*, *Pseudotsuga menziesii*, *Quercus lobata*, and *Salix* spp. The canopy is open to continuous. The shrub layer is sparse to continuous and the herbaceous layer is variable. Stands occur along riparian corridors, incised canyons, seeps, stream banks, mid-channel bars, floodplains, and terraces.

In the study area, six associations of the White Alder Alliance were classified and are described below. Additional variation in five stands (SNNR0497, SNNR1237, SNNR1273, SNNR0711, SNNR0289) was due to co-dominance with the non-native *Ficus carica*, overstory presence of *Umbellularia californica* or *Cornus sericea*, or understory presence by the non-native invasives *Rubus discolor* or *Vinca major*. These stands were classified to the alliance level only.

Alnus rhombifolia - Quercus chrysolepis Association White Alder - Canyon Live Oak Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Alnus rhombifolia* at 2-51% cover. *Quercus chrysolepis* was characteristically present in the overstory. The shrub layer was open to continuous with *Rubus discolor*, *Toxicodendron diversilobum*, and *Vitis californica* often present. The herbaceous layer was open with *Darmera peltata*, *Melica torreyana*, *Torilis arvensis*, and *Woodwardia fimbriata* occurring occasionally.

This association was sampled commonly in the study area with decreasing frequency in the northern Sierra Nevada Foothills, High Cascade Range, and Cascade Range Foothills Subregions (Hickman 1993). Stands sometimes occurred on volcanic (including basalt) and on metamorphic, and infrequently on granitic, mixed alluvium, or sedimentary substrates. They occupied bottom to middle slopes that were flat to steep. These White Alder - Canyon Live Oak stands occurred along riparian corridors and flood plains.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, Calaveras, Nevada, Placer, Shasta, and Tehama Counties and the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	71.8	46-92	-
Herb	5.9	0-20	variable
Shrub	35.5	15-79	<5
Low Tree/Tall Shrub	3.2	0-20	5-10
Hardwood	46.7	16-85	5-20
Conifer	1.9	0-8	10-35
Relative non-native to native cover	16.2	0-54	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (4), W (3), Variable (3), S (2), NW (1), NE (1), Flat (1)

Macrotopography: bottom (11), bottom to lower slope (1), middle slope (3)

Microtopography: concave (9), flat (3), undulating (3)

Parent Material: volcanic (5), metamorphic (3), mixed alluvium (3), granitic (2), basalt (1),

sedimentary (1)

Soil Texture: sand (10), silt or silt loam (2), loam or sandy loam (1)

	Mean	Range
Elevation	1575 ft.	694-2267 ft.
Slope	6.4°	0-32°
Large rock cover	21.7%	<1-45%
Small rock cover	18%	<1-45%
Bare ground cover	10.4%	1-33%
Litter cover	33.7%	5-93%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=15)

Rapid Assessments: SNNR0267, SNNR0353, SNNR0430, SNNR0506, SNNR0515, SNNR0582, SNNR0638, SNNR0749, SNNR1125, SNNR1243, SNNR1251, SNNR1260, SNNR1301, SNNR1364, SNNR1391

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills, but it may also occur in the Klamath Mountains and the North Coast Ranges of California. Potter (2005) describes a *Quercus chrysolepis / Toxicodendron diversilobum* Association from the central and southern Sierra Foothills region, which he considers riparian. His type is broader (stands reach above the immediate riparian zone in many cases) and is largely dominated by *Q. chrysolepis*, with around one-third of the plots containing *A. rhombifolia*; however, it shares many species and characteristics with this association.

STAND TABLE
Alnus rhombifolia - Quercus chrysolepis Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	ALRH2-T	Alnus rhombifolia	100	27.4	2	51		Χ	Χ	
	QUCH2-T	Quercus chrysolepis	93	11.1	1	40			Χ	
	UMCA-T	Umbellularia californica	47	6.3	2	30				
	ACMA3-T	Acer macrophyllum	47	1.6	1	9				
	CADE27-T	Calocedrus decurrens	47	0.4	0.2	3				
	AECA-M	Aesculus californica	47	0.3	0.2	2				
	SALA3-T	Salix laevigata	40	0.6	0.2	5				
	QUKE-T	Quercus kelloggii	33	1.2	0.2	8				
	PIPO-T	Pinus ponderosa	33	0.7	0.2	5				
	FRLA-T	Fraxinus latifolia	27	1.7	1	10				
Shrub										
	TODI	Toxicodendron diversilobum	80	4.8	0.2	14			Χ	
	RUDI2	Rubus discolor	73	14.3	0.2	52				Χ
	VICA5	Vitis californica	60	4.2	0.2	25				
	CAOC5	Calycanthus occidentalis	40	2.7	1	15				
	RUUR	Rubus ursinus	40	1.7	0.2	20				
	PHLE4	Philadelphus lewisii	33	0.4	0.2	2				
	HEAR5	Heteromeles arbutifolia	27	0.6	0.2	7				
Herb										
	TOAR	Torilis arvensis	40	0.2	0.2	1				Χ
	DAPE	Darmera peltata	27	0.3	0.2	3				
	METO	Melica torreyana	27	0.2	0.2	1				
	WOFI	Woodwardia fimbriata	27	0.1	0.2	1				

Alnus rhombifolia - Salix laevigata Association White Alder - Red Willow Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Alnus rhombifolia* at 1-50% cover. *Salix laevigata* was characteristically present in the overstory. The shrub layer was open to continuous with *Rubus discolor* dominant and with *Vitis californica* often present. The herbaceous layer was open to continuous with *Artemisia douglasiana*, *Juncus effusus*, *Melilotus albus*, and *Mentha* sp. occurring occasionally.

In the study area, this association was sampled most commonly within the northern Sierra Nevada Foothills and less commonly in the central Sierra Nevada Foothills, Cascade Range Foothills and High Cascade Range Subregions (Hickman 1993). Stands occurred most often on igneous (including volcanic and granitic), sometimes on metamorphic, and less frequently on mixed rock, sedimentary (including limestone), or mixed alluvium substrates. These White Alder - Red Willow stands occurred along riparian corridors and flood plains, including washes and terraces. They occupied bottom to middle slope positions that were gentle to moderately steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, Mariposa, Placer, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Tuscan Flows (M261Fa), and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	62.2	18-95	-
Herb	14.7	1-80	variable
Shrub	35.1	0-69	<5
Low Tree/Tall Shrub	10.4	0-50	5-10
Hardwood	28.6	4-70	5-20
Conifer	<1	0-2	5-35
Relative non-native to native cover	27.1	1-72	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (4), S (3), SE (2), Flat (2), W (1), NW (1), NE (1), E (1)

Macrotopography: bottom (8), lower slope (2), lower to middle slope (1), middle slope (1), terrace (2), wash (1)

Microtopography: flat (6), undulating (4), concave (4), convex (1)

Parent Material: metamorphic (4), volcanic (3), igneous (2), mixed rock (2), granitic (1), limestone (1), mixed alluvium (1), sedimentary (1)

Soil Texture: sand (6), clay or clay loam (3), loam or sandy loam (1)

	Mean	Range
Elevation	1208 ft.	247-2711 ft.
Slope	3.1°	1-9°
Large rock cover	23.3%	<1-50%
Small rock cover	19.4%	1.2-50%
Bare ground cover	14.6%	5-56%
Litter cover	30.4%	7-84%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=15)

Rapid Assessments: SNNR0182, SNNR0247, SNNR0295, SNNR0304, SNNR0345, SNNR0384, SNNR0589, SNNR0712, SNNR1044, SNNR1146, SNNR1185, SNNR1279

Relevés: SNFN0109, SNFN0566, SNFN0583

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills. Potter (2005) defined this association from the central and southern Sierra Nevada. His sampling included stands in the foothills and montane zones, from elevations up to 4680 ft. Stands of this association may exist in other parts of cismontane California and Oregon.

STAND TABLE Alnus rhombifolia - Salix laevigata Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	ALRH2-T	Alnus rhombifolia	87	18.5	1	50		Χ	Χ	
	SALA3-T	Salix laevigata	87	10.9	1	45			Χ	
	ALRH2-M	Alnus rhombifolia	40	2.3	2	9				
	QUWI2-T	Quercus wislizeni	33	3.4	0.2	40				
	POFR2-T	Populus fremontii	33	0.6	0.2	5				
	QULO-T	Quercus lobata	27	1.6	3	10				
	QUCH2-T	Quercus chrysolepis	27	1.0	1	8				
	AECA-M	Aesculus californica	27	0.9	1	6				
	FRLA-T	Fraxinus latifolia	27	0.5	0.2	4				
Shrub										
	RUDI2	Rubus discolor	80	19.3	0.2	60	Χ		Χ	Χ
	VICA5	Vitis californica	73	3.3	0.2	10				
	SALA6	Salix lasiolepis	47	4.6	0.2	26				
	FICA	Ficus carica	33	0.6	0.2	5				Χ
	BRCA3	Brickellia californica	33	0.1	0.2	1				
	SAEX	Salix exigua	27	1.0	0.2	8				
Herb										
	ARDO3	Artemisia douglasiana	47	0.5	0.2	6				
	JUEF	Juncus effusus	27	0.5	0.2	6				
	MEAL2	Melilotus albus	27	0.2	0.2	2				Χ
	MENTH	Mentha	27	0.1	0.2	0.2				Χ

Alnus rhombifolia - Salix laevigata - Platanus racemosa Association White Alder - Red Willow - California Sycamore Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Alnus rhombifolia* at 4-55% cover. Other trees such as *Platanus racemosa* and *Salix laevigata* were characteristically present. The shrub layer was open to intermittent with *Calycanthus occidentalis* and *Rubus discolor* dominant and with *Ficus carica* and *Vitis californica* often present. The herbaceous layer was open and often included *Darmera peltata*.

In the study area, this association was sampled more commonly within the Cascade Range Foothills, and infrequently in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands sometimes occurred on sandy alluvium, metamorphic, or volcanic, and less frequently on mixed alluvium substrates. They usually occupied gentle slopes in canyon bottoms. These White Alder - Red Willow - California Sycamore stands occurred along riparian corridors and flood plains.

DISTRIBUTION IN STUDY AREA

This association was sampled in Placer, Tehama, and Yuba Counties and the Lower Foothills Metamorphic Belt (M261Fb), within the Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	73.5	47-90	-
Herb	5.8	1-19	variable
Shrub	36.4	15-61	1-5
Low Tree/Tall Shrub	12	0-45	5-15
Hardwood	36.4	6-70	5-35
Conifer	0.4	0-2	5-35
Relative non-native to native cover	22.6	8-33	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (3), W (2), SE (1), S (1), NW (1) Macrotopography: bottom (7), terrace (1)

Microtopography: concave (3), flat (3), undulating (2)

Parent Material: sandy alluvium (3), metamorphic (2), volcanic (2), mixed alluvium (1)

Soil Texture: sand (4)

	Mean	Range
Elevation	519 ft.	220-960 ft.
Slope	2°	1-4°
Large rock cover	13.9%	0-50%
Small rock cover	22.3%	0-76%
Bare ground cover	10.6%	4-20%
Litter cover	34.1%	5-90%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=8)

Rapid Assessments: SNNR0248, SNNR1277, SNNR1281, SNNR1343, SNNR1345,

SNNR1349, SNNR1352 Relevés: SNFN0256

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and adjacent low elevations of the Sierra Nevada Mountains. Potter (2005) described this association - his samples extend from the foothills to 3200 ft. elevation. This association may occur in some of the southern California Mountains, but it is unlikely that it extends beyond its sampled range.

STAND TABLE

Alnus rhombifolia - Salix laevigata - Platanus racemosa Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	ALRH2-T	Alnus rhombifolia	88	25.1	4	55		Χ	Χ	
	SALA3-M	Salix laevigata	88	4.5	0.2	17			Χ	
	PLRA-T	Platanus racemosa	75	7.0	1	15			Χ	
	SALA3-T	Salix laevigata	75	5.4	0.2	15			Χ	
	POFR2-T	Populus fremontii	38	4.0	3	25				
	QULO-T	Quercus lobata	38	1.9	3	8				
	PISA2-T	Pinus sabiniana	38	0.5	1	2				
	FRLA-T	Fraxinus latifolia	25	1.1	1	8				
	PLRA-M	Platanus racemosa	25	1.1	2	7				
	QULO-L	Quercus lobata	25	0.1	0.2	0.2				
Shrub										
	VICA5	Vitis californica		11.8	0.2	58			Χ	
	RUDI2	Rubus discolor	88	17.6	0.4	35		Χ	Χ	Χ
	CAOC5	Calycanthus occidentalis	75	5.2	0.2	30			Χ	
	FICA	Ficus carica	50	3.8	0.2	20				Χ
	SALA6	Salix lasiolepis	25	1.4	3	8				
	CEOCC2	Cephalanthus occidentalis var. californicus	25	0.2	0.2	1.2				
	TODI	Toxicodendron diversilobum	25	0.2	0.2	1				
Herb										
	DAPE	Darmera peltata	50	0.3	0.2	2				
	TOAR	Torilis arvensis	38	1.0	1	6				Χ
	ARDO3	Artemisia douglasiana	38	0.3	0.2	2				
	EPGI	Epipactis gigantea	38	0.3	0.2	2				
	CYEC	Cynosurus echinatus	38	0.2	0.2	1				Χ
	BRDI3	Bromus diandrus	25	8.0	2	4				Χ
	CAREX	Carex	25	0.2	0.2	1				
	LOMU	Lolium multiflorum	25	0.2	0.2	1				Χ
	PAAC5	Panicum acuminatum	25	0.1	0.2	0.2				

Alnus rhombifolia / Carex Association White Alder / Sedge Association

SUMMARY

In the stands sampled, the canopy was typically open to continuous and dominated by *Alnus rhombifolia* at 2-70% combined cover in the tree and/or shrub overstory. Other trees such as *Fraxinus latifolia* and *Salix laevigata* were occasionally present. The shrub layer was open to continuous with *Rubus discolor*, *Salix lasiolepis*, *Toxicodendron diversilobum*, and *Vitis californica* often present. The herbaceous layer was open and often included *Carex nudata*.

In the study area, this association was sampled and observed commonly in the northern Sierra Nevada Foothills and Cascade Range Foothills, and infrequently in the High Cascade Range Subregions (Hickman 1993). Stands often occurred on igneous (volcanic, basalt and gabbro), sometimes on mixed alluvium, and infrequently on sedimentary (including limestone) substrates. White Alder / Sedge stands occurred along riparian corridors and flood plains, usually on bottomlands that were gentle to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Nevada, Placer, Shasta, Tehama, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	57.8	17-89	-
Herb	10	2-17	variable
Shrub	28.6	2-91	<5
Low Tree/Tall Shrub	3.7	0-40	5-10
Hardwood	25.8	0-74	5-20
Conifer	<1	0-2	5-20
Relative non-native to native cover	11.5	0-42	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (5), S (4), W (3), N (3), Flat (3), NW (2), NE (2), SE (1)

Macrotopography: bottom (16), bottom to lower slope (2), lower slope (1), lower to middle slope (1), upper slope (1), terrace (2)

Microtopography: concave (11), undulating (8), flat (4)

Parent Material: mixed alluvium (9), volcanic (6), basalt (3), gabbro (2), igneous (1), limestone (1), sedimentary (1)

Soil Texture: sand (18), loam or sandy loam (1)

	Mean	Range
Elevation	1228 ft.	267-2829 ft.
Slope	2.70	1-13°
Large rock cover	31%	1-78%
Small rock cover	24.1%	0-70%
Bare ground cover	14%	0-68%
Litter cover	16.5%	0-52%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=23)

Rapid Assessments: SNNR0016, SNNR0241, SNNR0290, SNNR0292, SNNR0294, SNNR0324, SNNR0461, SNNR0523, SNNR0529, SNNR0563, SNNR0597, SNNR0601, SNNR0602, SNNR0629, SNNR0642, SNNR0837, SNNR1213, SNNR1218, SNNR1310, SNNR1332, SNNR1335 **Relevés:** SNFN0107, SNFN0376

Rank: G4S4

GLOBAL DISTRIBUTION

The name of the association, including the genus *Carex*, is derived from Potter's (2005) description, which allows for several caespitose sedge species. Samples in our data set contain *Carex nudata* as the principal sedge species. This association has been described for the Sierra Nevada Foothills and lower portions of the Sierra Nevada Mountains. Potter (2005) defined this association from samples he collected through the northern, central, and southern Sierra Nevada Foothills and lower elevations of the northern, central, and southern Sierra Nevada High regions (Hickman 1993). It appears to be one of the most widespread of the several *Alnus rhombifolia* plant associations in the study area.

STAND TABLE

Alnus rhombifolia / Carex Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	ALRH2-T	Alnus rhombifolia	87	30.7	0.2	70	Χ		Χ	
	FRLA-T	Fraxinus latifolia	35	1.0	0.2	6				
	ALRH2-M	Alnus rhombifolia	30	3.0	0.2	25				
	SALA3-T	Salix laevigata	30	0.8	1	4				
	QULO-T	Quercus lobata	22	0.6	0.2	7				
	POFR2-T	Populus fremontii	22	0.4	0.2	7				
Shrub										
	RUDI2	Rubus discolor	74	5.3	0.2	37				Χ
	SALA6	Salix lasiolepis	61	6.0	1	35				
	VICA5	Vitis californica	52	3.1	0.2	35				
	TODI	Toxicodendron diversilobum	52	1.0	0.2	5				
	CEOCC2	Cephalanthus occidentalis var. californicus	39	1.1	0.2	7				
	CAOC5	Calycanthus occidentalis	22	1.3	0.2	19				
Herb										
	CANU5	Carex nudata	70	3.8	1	12				
	ARDO3	Artemisia douglasiana	39	0.5	0.2	5				
	PAAC5	Panicum acuminatum	30	0.3	0.2	2				
	CYEC	Cynosurus echinatus	30	0.2	0.2	2				Χ
	MIGU	Mimulus guttatus	26	0.1	0.2	0.2				
	MURI2	Muhlenbergia rigens	22	0.5	0.2	5				
	EQAR	Equisetum arvense	22	0.2	0.2	2				

Alnus rhombifolia / Darmera peltata Association White Alder / Indian Rhubarb Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Alnus rhombifolia* at 30-45% cover. Other trees such as *Fraxinus latifolia* and *Quercus lobata* were characteristically present in the overstory and/or understory. The shrub layer was open with *Vitis californica* dominant. The herbaceous layer was open to intermittent and dominated by *Darmera peltata*, and it also included other taxa such as *Carex nudata*, *Lotus corniculatus*, *Melilotus albus*, and *Paspalum* in the two stands sampled.

This association was sampled infrequently in the study area and only within the Cascade Range Foothills Subregion (Hickman 1993). Stands usually occurred on mixed alluvium or sandstone substrates. These White Alder / Indian Rhubarb stands occurred along riparian corridors and flood plains on flat to gentle slopes. Stands may be actively flooded with patchy and regenerating, small alders.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte Counties and the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	62.5	55-70	-
Herb	35	30-40	>0.3
Shrub	11	10-12	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	37.5	30-45	5-10
Conifer	0	-	-
Relative non-native to native cover	2.9	1-4	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (1), S (1)

Macrotopography: bottom (2) Microtopography: flat (2)

Parent Material: mixed alluvium (1), sandstone (1) Soil Texture: loam or sandy loam (1), sand (1)

	Mean	Range
Elevation	815 ft.	690-940 ft.
Slope	0.5°	0-1°
Large rock cover	37.5%	25-50%
Small rock cover	25%	25-25%
Bare ground cover	20%	10-30%
Litter cover	12.5%	10-15%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR0541, SNNR0566

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Mountains and Foothills. It was the most frequently sampled of the *Alnus rhombifolia* Associations by Potter (2005). The few samples collected only in the northernmost positions of our study area underscore the predilection of this association to occur in cooler riparian sites, generally higher in elevation than those of our study area. It has also been observed in the Klamath and North Coast Range Mountains of California, where Cheng (2004) has noted it in several Forest Service Research Natural Areas.

STAND TABLE

Alnus rhombifolia | Darmera peltata Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	ALRH2-T	Alnus rhombifolia	100	37.5	30	45	Χ		Χ	
	FRLA-T	Fraxinus latifolia	100	0.6	0.2	1			Χ	
	QULO-T	Quercus lobata	100	0.6	0.2	1			Χ	
	SALA3-M	Salix laevigata	50	2.5	5	5				
	PLRA-T	Platanus racemosa	50	0.5	1	1				
	UMCA-T	Umbellularia californica	50	0.1	0.2	0.2				
Shrub										
	VICA5	Vitis californica	100	7.5	5	10		Χ	Χ	
	BRCA3	Brickellia californica	50	2.5	5	5				
	CAOC5	Calycanthus occidentalis	50	2.5	5	5				
	SALA6	Salix lasiolepis	50	2.5	5	5				
	CEOCC2	Cephalanthus occidentalis var. californicus	50	0.1	0.2	0.2				
	CLLI2	Clematis ligusticifolia	50	0.1	0.2	0.2				
	RUDI2	Rubus discolor	50	0.1	0.2	0.2				Χ
	RUUR	Rubus ursinus	50	0.1	0.2	0.2				
Herb										
	DAPE	Darmera peltata	100	17.5	15	20	Χ		Χ	
	CANU5	Carex nudata	100		1	20			Χ	
	MEAL2	Melilotus albus	100	2.5	1	4			Χ	Χ
	LOCO6	Lotus corniculatus	100	0.6	0.2	1			Χ	
	PASPA2	Paspalum	100	0.2	0.2	0.2			Χ	Χ
	MIGU	Mimulus guttatus	50	1.0	2	2				
	MURI2	Muhlenbergia rigens	50	1.0	2	2				
	EPGI	Epipactis gigantea	50	0.1	0.2	0.2				
	EQUIS	Equisetum	50	0.1	0.2	0.2				
	PAAC5	Panicum acuminatum	50	0.1	0.2	0.2				
	PRVUL2	Prunella vulgaris subsp. lanceolata	50	0.1	0.2	0.2				

Alnus rhombifolia / Salix exigua Association White Alder / Narrow-leaf Willow Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Alnus rhombifolia* at 2-55% cover. Other trees such as *Fraxinus latifolia*, *Populus fremontii*, and *Salix laevigata* were often present in the overstory and/or understory. The shrub layer was open to intermittent with *Salix exigua* dominant and with *Salix lasiolepis* and *Vitis californica* often present. The herbaceous layer was open to intermittent and often included *Artemisia douglasiana*.

In the study area, this association was sampled commonly in the northern Sierra Nevada Foothills but infrequently in the central Sierra Nevada Foothills, Cascade Range Foothills, and High Cascade Range Subregions (Hickman 1993). Stands usually occurred on mixed alluvium and occasionally on gabbro, granitic, limestone, or ultramafic substrates. These White Alder / Narrow-leaf Willow stands occurred along riparian corridors and flood plains on flat to gentle slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, Calaveras, El Dorado, Nevada, Placer, Tehama, Tuolumne, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	59.3	26-90	-
Herb	10.1	1-35	variable
Shrub	33.7	6-62	<5
Low Tree/Tall Shrub	10	0-60	5-15
Hardwood	27.8	3-60	5-35
Conifer	0	-	10-20
Relative non-native to native cover	19.1	0-41	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (5), Flat (4), W (2), S (2), SE (1), NW (1)

Macrotopography: bottom (15)

Microtopography: undulating (8), flat (6), concave (1)

Parent Material: mixed alluvium (9), gabbro (3), granitic (1), limestone (1), ultramafic (1)

Soil Texture: sand (8), silt or silt loam (3), loam or sandy loam (1)

	Mean	Range
Elevation	828 ft.	382-2100 ft.
Slope	1.1°	0-2°
Large rock cover	21.9%	0-60%
Small rock cover	18.1%	1-53%
Bare ground cover	23.4%	3-74%
Litter cover	24.4%	3-89%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=15)

Rapid Assessments: SNNR0227, SNNR0329, SNNR0478, SNNR0591, SNNR0592, SNNR0593, SNNR0621, SNNR0645, SNNR1031, SNNR1056, SNNR1254, SNNR1271,

SNNR1356, SNNR1402 Relevés: SNFN0017

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Mountains and Foothills by Potter (2005). He considers it a low elevation expression of the *Alnus rhombifolia* Alliance. The average elevation of his samples was 2300 ft. Our samples extend further downslope than his study area. A similar *Alnus rhombifolia / Salix exigua* (- *Rosa californica*) Association was defined from the Sacramento-San Joaquin River Delta of the Central Valley (Hickson and Keeler-Wolf 2007), with an average elevation below 100 ft. It differs in species composition and lacks the coarse rocky substrate when compared to this association.

STAND TABLE

Alnus rhombifolia / Salix exigua Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	ALRH2-T	Alnus rhombifolia	100	22.5	2	55	Χ		Χ	
	FRLA-T	Fraxinus latifolia	47	2.1	0.2	8				
	SALA3-T	Salix laevigata	40	3.7	3	20				
	POFR2-T	Populus fremontii	40	2.3	0.2	20				
	ALRH2-M	Alnus rhombifolia	33	0.5	0.2	4				
	FRLA-M	Fraxinus latifolia	33	0.3	1	1				
	POFR2-M	Populus fremontii	27	0.4	0.2	5				
Shrub										
	SAEX	Salix exigua	100	15.6	2	40		Χ	Χ	
	RUDI2	Rubus discolor	93	14.1	2	40		Χ	Χ	Χ
	VICA5	Vitis californica	73	5.0	0.2	23				
	SALA6	Salix lasiolepis	67	5.1	1	16				
	CEOCC2	Cephalanthus occidentalis var. californicus	40	1.3	0.2	12				
	CYSC4	Cytisus scoparius	27	0.4	0.2	3				Χ
	ROCA2	Rosa californica	27	0.3	0.2	3				
Herb										
	ARDO3	Artemisia douglasiana	73	1.2	0.2	6				
	EUOC4	Euthamia occidentalis	33	0.1	0.2	1				

Arbutus menziesii Woodland/Forest Alliance Pacific Madrone Woodland/Forest Alliance

As defined in the state, *Arbutus menziesii* is the dominant tree in the canopy with *Lithocarpus densiflorus*, *Quercus chrysolepis*, *Q. wislizeni*, *Q. kelloggii*, and *Umbellularia californica*. The tree canopy is continuous, the shrub layer is sparse to intermittent, and the herbaceous layer is sparse. Stands of *Arbutus menziesii* are found on stream terraces, upland slopes on productive soils, or on steep or shallow, rocky, infertile soils. Pacific Madrone stands are typically somewhat mesic, occurring on northerly facing slopes or on sites recently disturbed by natural or human causes.

In the study area, one stand was classified to the alliance level only (SNNR1359). It lacked *Lithocarpus densiflorus* but had *Quercus kelloggii*, *Pinus ponderosa*, and *Umbellularia californica*. The shrub cover was intermittent with *Heteromeles arbutifolia* and *Toxicodendron diversilobum*.

Arbutus menziesii Alliance (no Associations defined) Pacific Madrone Alliance

SUMMARY

In the one stand sampled, the overstory tree canopy was intermittent and dominated by *Arbutus menziesii* at 40% cover. Other trees such as *Acer macrophyllum*, *Pinus ponderosa*, *Quercus chrysolepis*, *Quercus kelloggii*, and *Umbellularia californica* were present. The shrub layer was intermittent with *Toxicodendron diversilobum* and *Heteromeles arbutifolia* co-dominant and with *Lonicera hispidula*, *Philadelphus lewisii*, *Rubus ursinus*, and *Vitis californica* present. The herbaceous layer was open and dominated by *Cynosurus echinatus* and *Torilis arvensis*.

Because the alliance was sampled once in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993), we placed the stand at the alliance level. The stand occurred on a granitic substrate. It occupied the lower to middle portion of a steep slope, where California Bay became dense on the lowest portion of the slope. This stand was riparian influenced and likely had recent disturbance.

DISTRIBUTION IN STUDY AREA

This association was sampled in Nevada County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	77	77-77	-
Herb	4	4-4	0-0
Shrub	47	47-47	1-2
Low Tree/Tall Shrub	3	3-3	5-10
Hardwood	64	64-64	10-20
Conifer	2	2-2	20-35
Relative non-native to native cover	1.5	2-2	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (1)

Macrotopography: lower to middle slope (1)

Microtopography: flat (1) Parent Material: granitic (1)

Soil Texture: loam or sandy loam (1)

	Mean	Range
Elevation	0 ft.	- ft.
Slope	30°	30-30°
Large rock cover	2%	2-2%
Small rock cover	5%	5-5%
Bare ground cover	10%	10-10%
Litter cover	80%	80-80%

SAMPLES USED TO DESCRIBE ALLIANCE (n=1)

Rapid Assessments: SNNR1359

Rank: G4S4

GLOBAL DISTRIBUTION

This *Arbutus menziesii* Alliance has been described for the Sierra Nevada, Klamath Mountains, and North Coast Range sections of California (Sawyer et al. 2007 MS). However, no formal associations have been defined from the Sierra Nevada Foothills. More stands are likely to occur at slightly higher elevations in the southern Cascades and northern Sierra Nevada.

STAND TABLE

Arbutus menziesii Alliance

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	ARME-T	Arbutus menziesii	100	40.0	40	40		Χ	Χ	
	UMCA-T	Umbellularia californica	100	22.0	22	22			Χ	
	QUKE-T	Quercus kelloggii	100	8.0	8	8			Χ	
	QUCH2-T	Quercus chrysolepis	100	6.0	6	6			Χ	
	ACMA3-T	Acer macrophyllum	100	3.0	3	3			Χ	
	PIPO-T	Pinus ponderosa	100	2.0	2	2			Χ	
Shrub										
	TODI	Toxicodendron diversilobum	100	20.0	20	20		Χ	Χ	
	HEAR5	Heteromeles arbutifolia	100	16.0	16	16		Χ	Χ	
	PHLE4	Philadelphus lewisii	100	4.0	4	4			Χ	
	RUUR	Rubus ursinus	100	4.0	4	4			Χ	
	LOHIV	Lonicera hispidula var. vacillans	100	2.0	2	2			Χ	
	VICA5	Vitis californica	100	1.0	1	1			Χ	
Herb										
	CYEC	Cynosurus echinatus	100	1.0	1	1		Χ	Χ	Χ
	TOAR	Torilis arvensis	100	1.0	1	1		Χ	Χ	Χ
	BRLA3	Bromus laevipes	100	0.2	0.2	0.2			Χ	
	ELGL	Elymus glaucus	100	0.2	0.2	0.2			Χ	
	IRIS	Iris	100	0.2	0.2	0.2			Χ	
	METO	Melica torreyana	100	0.2	0.2	0.2			Χ	

Calocedrus decurrens Woodland/Forest Alliance Incense-cedar Woodland/Forest Alliance

Calocedrus decurrens is dominant in the tree layer with Abies concolor, Pinus contorta subsp. murrayana, P. coulteri, P. lambertiana, P. jeffreyi, P. ponderosa, Pseudotsuga menziesii, Quercus chrysolepis, and Q. kelloggii. The tree canopy is open to continuous and the shrub and herbaceous layers are variable. Stands occur on raised stream benches and terraces, around wet meadows, and on upper slopes and ridges above 250 m in elevation. Stands grow on a wide variety of parent materials, commonly occurring on unproductive sites as well as well-drained productive ones.

In the study area, stands of this alliance are found along riparian corridors. One association was classified in the study area and is described below. One additional stand (SNFN0260) was classified to the alliance level only. It contained *Quercus* spp., *Salix laevigata*, and *Umbellularia californica* at low cover in the understory.

Calocedrus decurrens - Alnus rhombifolia Association Incense-cedar - White Alder Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Calocedrus decurrens* at 21-30% cover. *Alnus rhombifolia* was often present in the overstory. The shrub layer was open with *Toxicodendron diversilobum* dominant and with *Aristolochia californica*, *Lonicera hispidula* var. *vacillans*, and *Vitis californica* characteristically present. The herbaceous layer was open and included a variety of native and non-native grasses and forbs (see stand table below).

In the study area, this association was sampled twice, once in the Cascade Range Foothills and once in northern Sierra Nevada Foothills Subregions (Hickman 1993). The stands occurred on mixed alluvium or volcanic substrates. The Incense-cedar - White Alder stands occurred along riparian corridors and flood plains with gentle slopes on canyon bottoms or terraces.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and El Dorado Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	58	46-70	-
Herb	8.5	7-10	variable
Shrub	15	15-15	<1-2
Low Tree/Tall Shrub	2.5	0-5	5-10
Hardwood	12.5	11-14	10-20
Conifer	33	21-45	10-20
Relative non-native to native cover	18.1	5-31	_

Aspect: SE (1), E (1)

Macrotopography: bottom (1), terrace (1)

Microtopography: undulating (2)

Parent Material: mixed alluvium (1), volcanic (1) Soil Texture: loam or sandy loam (1), sand (1)

	Mean	Range
Elevation	788 ft.	725-850 ft.
	Mean	Range
Slope	1º	1-10
	Mean	Range
Large rock cover	7.1%	5-9.2%
Small rock cover	5.1%	5-5.2%
Bare ground cover	10%	6-14%
Litter cover	72.5%	70-75%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR0537 Relevés: SNFN0002

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada by Potter (2005). He considers it to be a common riparian association of the mid-elevation, western slopes of the Sierra Nevada with an average elevation of 3925 ft. Stands in our study area represent the low elevation extent of the association. This association is also likely to occur in other mountains of California. Similar stands with co-dominance of *A. rhombifolia* and *C. decurrens* have been described from the San Jacinto Mountains of western Riverside County, as part of the *Alnus rhombifolia* Alliance and Association (Klein and Evens 2006).

STAND TABLE

Calocedrus decurrens - Alnus rhombifolia Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	CADE27-T	Calocedrus decurrens	100	25.5		30	Χ		Χ	
	CADE27-L	Calocedrus decurrens	100	0.6	0.2	1			Χ	
	ALRH2-T	Alnus rhombifolia	50	5.0	10	10				
	PIPO-T	Pinus ponderosa	50	5.0	10	10				
	PSME-T	Pseudotsuga menziesii	50	5.0	10	10				
	QUCH2-T	Quercus chrysolepis	50	5.0	10	10				
	ACMA3-T	Acer macrophyllum	50	2.0	4	4				
	QUKE-T	Quercus kelloggii	50	0.5	1	1				
	UMCA-M	Umbellularia californica	50	0.5	1	1				
	ALRH2-M	Alnus rhombifolia	50	0.1	0.2	0.2				
	FRLA-M	Fraxinus latifolia	50	0.1	0.2	0.2				
	FRLA-T	Fraxinus latifolia	50	0.1	0.2	0.2				
	PIPO-L	Pinus ponderosa	50	0.1	0.2	0.2				
	PIPO-M	Pinus ponderosa	50	0.1	0.2	0.2				
	QULO-T	Quercus lobata	50	0.1	0.2	0.2				
	QUWI2-M	Quercus wislizeni	50	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	100		1.2	8		X	Χ	
	VICA5	Vitis californica	100	1.1	1	1.2			Χ	
	ARCA10	Aristolochia californica	100		0.2	1			Χ	
	LOHIV	Lonicera hispidula var. vacillans	100	0.6	0.2	1			X	
	RUDI2	Rubus discolor	50	6.0	12	12				Χ
	RHTR	Rhus trilobata	50	1.0	2	2				
	SALIX	Salix	50	0.5	1	1				
	BAPI	Baccharis pilularis	50	0.1	0.2	0.2				
	CEOCO	Cercis occidentalis	50	0.1	0.2	0.2				
	CLLI2	Clematis ligusticifolia	50	0.1	0.2	0.2				
	COSE16	Cornus sericea	50	0.1	0.2	0.2				
	RHTO6	Rhamnus tomentella	50	0.1	0.2	0.2				
	SHRBAC	Shrub spp type unknown	50	0.1	0.2	0.2				
	SYALL	Symphoricarpos albus var. laevigatus	50	0.1	0.2	0.2				

STAND TABLE continued Calocedrus decurrens - Alnus rhombifolia Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	BRDI3	Bromus diandrus	50	3.0	6	6				Χ
	NEPA	Nemophila parviflora	50	1.5	3	3				
	CYEC	Cynosurus echinatus	50	1.0	2	2				X
	TORIL	Torilis	50	1.0	2	2				X
	TOAR	Torilis arvensis	50	1.0	2	2				Χ
	ARDO3	Artemisia douglasiana	50	0.5	1	1				
	HIAL2	Hieracium albiflorum	50	0.5	1	1				
	BRASS2	Brassica	50	0.1	0.2	0.2				Χ
	CAAL2	Calochortus albus	50	0.1	0.2					
	CARDA	Cardamine	50	0.1	0.2					
	CAPY2	Carduus pycnocephalus	50	0.1	0.2					X
	CEGL2	Cerastium glomeratum	50	0.1	0.2					X
	CHPO3	Chlorogalum pomeridianum	50	0.1	0.2	0.2				
	CLPE	Claytonia perfoliata	50	0.1	0.2	0.2				
	COHE	Collinsia heterophylla	50	0.1	0.2					
	CYPER	Cyperus	50	0.1	0.2					
	DAPU3	Daucus pusillus	50	0.1	0.2	0.2				
	ELGL	Elymus glaucus	50	0.1	0.2	0.2				
	EPILO	Epilobium	50	0.1	0.2	0.2				
	GAAP2	Galium aparine	50	0.1	0.2	0.2				
	GEDI	Geranium dissectum	50	0.1	0.2	0.2				Χ
	ISOC3	Isopyrum occidentale	50	0.1	0.2	0.2				
	JUEF	Juncus effusus	50	0.1	0.2	0.2				
	LAAM	Lamium amplexicaule	50	0.1	0.2	0.2				Χ
	LOPE	Lolium perenne	50	0.1	0.2	0.2				Χ
	MADIA	Madia	50	0.1	0.2	0.2				
	MEOF2	Melissa officinalis	50	0.1	0.2	0.2				Χ
	MENTH	Mentha	50	0.1	0.2	0.2				Χ
	OSCH	Osmorhiza chilensis	50	0.1	0.2	0.2				
	PLLA	Plantago lanceolata	50	0.1	0.2	0.2				Χ
	POGL9	Potentilla glandulosa	50	0.1	0.2	0.2				
	RAOC	Ranunculus occidentalis	50	0.1	0.2	0.2				
	RONA2	Rorippa nasturtium-aquaticum	50	0.1	0.2	0.2				
	RUMEX	Rumex	50	0.1	0.2	0.2				
	SABI3	Sanicula bipinnatifida	50	0.1	0.2	0.2				
	SACR2	Sanicula crassicaulis	50	0.1	0.2	0.2				
	SOCA5	Solidago californica	50	0.1	0.2	0.2				
	TRIFO	Trifolium	50	0.1	0.2	0.2				
	VISA	Vicia sativa	50	0.1	0.2	0.2				Χ
Cryptoga										
	MOSS	Moss	50	1.0	2	2				
	LIVER	Liverwort	50	0.1	0.2	0.2				

Cupressus macnabiana Woodland/Forest Alliance McNab Cypress Woodland/Forest Alliance

As defined in the state, *Cupressus macnabiana* is dominant in the tree or shrub canopy with *Cupressus sargentii*, *Pinus attenuata*, *P. sabiniana*, *Quercus douglasii*, and *Q. wislizeni*. The tree canopy is open to continuous and the shrub layer is sparse to intermittent. The herbaceous layer is sparse. Stands are on open slopes and ridges. Soils are typically derived from basalt, conglomerate, gabbro, greenstone, or serpentine substrates, and are generally sterile.

The McNab Cypress Alliance is uncommon in the study area, although it is the most abundant and widespread cypress species in the state. One association was classified and is described below.

Cupressus macnabiana / Arctostaphylos viscida Association (Provisional) McNab Cypress / Whiteleaf Manzanita Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Cupressus macnabiana* at 30-45% cover. Other trees such as *Pinus ponderosa* and *Quercus kelloggii* were often present. The shrub layer was open to intermittent with *Arctostaphylos viscida* dominant and with *Ceanothus lemmonii*, *Quercus garryana* var. *breweri*, and *Rhamnus ilicifolia* often present. The herbaceous layer was open, with *Carex brainerdii* dominant and with *Chlorogalum pomeridianum* and *Salvia sonomensis* often present.

This association was sampled infrequently in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on gabbro substrates. They occupied middle to upper slopes that were gentle to moderate. Two of the three stands followed a drainage and were subject to seasonal flooding.

DISTRIBUTION IN STUDY AREA

This association was sampled in Yuba County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997). Observations of this association also include upper slopes on serpentine in the Nevada City area in Nevada County (T. Keeler-Wolf pers. obs. 2003). Some stands occur in the north (M262Fa) on volcanic substrate (Griffin and Critchfield 1976), and additional stands also occur on serpentine in the study area (Alexander et al. 2006); however, such sites were not available for access.

	Mean %	Range %	Height (m)
Total vegetation cover	63.3	49-74	-
Herb	16	7-25	variable
Shrub	34	20-62	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	1	0-2	5-20
Conifer	27.7	3-45	5-10
Relative non-native to native cover	1.4	0-3	-

Aspect: E (2), SW (1)

Macrotopography: middle slope (1), middle to upper slope (1), upper slope (1)

Microtopography: undulating (1), concave (1), convex (1)

Parent Material: gabbro (3)

Soil Texture: loam or sandy loam (2), clay or clay loam (1)

	Mean	Range
Elevation	2337 ft.	2295-2366 ft.
Slope	6°	4-10°
Large rock cover	7.1%	<1-20%
Small rock cover	29%	20-37%
Bare ground cover	23.7%	20-26%
Litter cover	36.3%	30-44%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: SNNR0125, SNNR0132 Relevés: SNFN0332

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills. It is also likely to be present in the Northern California Interior Coast Ranges. Similar stands have been sampled in Napa County, with *Adenostoma fasciculatum* and *Arctostaphylos viscida* in the understory with *Cupressus macnabiana* (CNPS 2006). More stands should be sampled in the Sierra Nevada Foothills to enable a better understanding of the regional variation of this alliance.

STAND TABLE

Cupressus macnabiana / Arctostaphylos viscida Association (Provisional)

Cupressus	macnabiana	l Arctostaphylos viscida Asso	ciatio	n (Pro	ovisi	onal)				
Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	CUMA	Cupressus macnabiana	100	36.7	30	45	Χ		Χ	
	PIPO-T	Pinus ponderosa	67	1.3	1	3				
	QUKE-T	Quercus kelloggii	67	1.0	1	2				
	QUCH2-M	Quercus chrysolepis	33	1.7	5	5				
	PISA2-T	Pinus sabiniana	33	0.1	0.2	0.2				
Shrub										
	ARVI4	Arctostaphylos viscida		25.0		30	X		Χ	
	QUGAB	Quercus garryana var. breweri	100	3.7	0.2	6			Χ	
	CELE	Ceanothus lemmonii	67	1.0	1	2				
	RHIL	Rhamnus ilicifolia	67	1.0	1	2				
	PIMO5	Pickeringia montana	33	0.3	1	1				
	RHTO6	Rhamnus tomentella	33	0.3	1	1				
	ERCA6	Eriodictyon californicum	33	0.1	0.2	0.2				
	FREMO2	Fremontodendron	33	0.1	0.2	0.2				
	HEAR5	Heteromeles arbutifolia	33	0.1	0.2	0.2				
Herb	04557	0 1 : "	400	400		4-				
	CABR7	Carex brainerdii		10.3	4	15	Χ		X	
	SASO	Salvia sonomensis	100	6.7	1	12			Χ	
	CHPO3	Chlorogalum pomeridianum	67	0.1	0.2	0.2				
	GAVE3	Gastridium ventricosum	33	0.3	1	1				Χ
	TRHY3	Triteleia hyacinthina	33	0.3	1	1				.,
	VUBR	Vulpia bromoides	33	0.3	1	1				X
	VUMY	Vulpia myuros	33	0.3	1	1				Χ
	WYBO	Wyethia bolanderi	33	0.3	1	1				
	CAOCO	Calystegia occidentalis subsp. occidentalis	33	0.1	0.4	0.4				
	AICA	Aira caryophyllea	33	0.1	0.2	0.2				X
	COUM	Comandra umbellata	33	0.1	0.2	0.2				
	DIMU5	Dichelostemma multiflorum	33	0.1	0.2					
	ERLA6	Eriophyllum lanatum	33	0.1	0.2	0.2				
	FIGA	Filago gallica	33	0.1	0.2	0.2				X
	FRITI	Fritillaria	33	0.1	0.2	0.2				
	GAAP2	Galium aparine	33	0.1	0.2	0.2				
	GIPU2	Githopsis pulchella	33	0.1	0.2	0.2				
	LEVI8	Lessingia virgata	33	0.1	0.2	0.2				
	LILIXX	Liliaceae	33	0.1	0.2	0.2				
	MAEX	Madia exigua	33	0.1	0.2	0.2				
	PEDU2	Petrorhagia dubia	33	0.1	0.2	0.2				Χ
	TRBR7	Triteleia bridgesii	33	0.1	0.2	0.2				
	VUMI	Vulpia microstachys	33	0.1	0.2	0.2				
	WYAN	Wyethia angustifolia	33	0.1	0.2	0.2				
	WYRE	Wyethia reticulata	33	0.1	0.2	0.2				

Fraxinus latifolia Woodland/Forest Alliance Oregon Ash Woodland/Forest Alliance

As defined in the state, *Fraxinus latifolia* is dominant or co-dominant in the tree canopy with *Acer macrophyllum*, *Alnus rhombifolia*, *Calocedrus decurrens*, *Pinus ponderosa*, *Quercus kelloggii*, *Q. wislizeni*, and *Salix laevigata*. The tree canopy is open to continuous and the shrub layer is sparse to intermittent. *Fraxinus latifolia* stands form in riparian corridors, incised canyons, seeps, stream banks, and on stream terraces.

One association of the Oregon Ash Alliance was classified in the study area and is described below. Six stands (SNNR0062, SNNR1255, SNNR0617, SNNR0627, SNNR1215, SNNR0909) showed additional variation and were classified to the alliance level only. Two of these stands shared dominance with *Salix laevigata*, and one stand contained *Salix gooddingii* and *Platanus racemosa*. Another contained variation with *Quercus lobata*. Other stands had non-native invasives such as *Ailanthus altissima* and *Rubus discolor* dominant in the understory.

Fraxinus latifolia - Alnus rhombifolia Association White Alder - Oregon Ash Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Fraxinus latifolia* at <1-25% cover. Other trees such as *Alnus rhombifolia* and *Salix laevigata* were often present. The shrub layer was open to continuous with *Rubus discolor* dominant and with *Vitis californica* often present. The herbaceous layer was open and often included *Artemisia douglasiana*.

In the study area, this association was sampled commonly within the northern Sierra Nevada Foothills and infrequently in the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands often occurred on mixed alluvium, and less frequently occured on volcanic, gravelly alluvium, metamorphic, sedimentary (including limestone), or gabbro substrates. They usually occupied bottom (occasionally lower to middle) slopes that were flat to steep. Stands of White Alder - Oregon Ash occurred along riparian corridors and flood plains.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras, El Dorado, Nevada, Shasta, Tehama, Tuolumne, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

Mean %	Range %	Height (m)
51.1	17-94	-
11.5	2-26	variable
31.9	10-85	<5
0.9	0-13	5-10
28.2	0-54	5-20
<1	0-2	10-35
21.6	0-61	-
	51.1 11.5 31.9 0.9 28.2 <1	51.1 17-94 11.5 2-26 31.9 10-85 0.9 0-13 28.2 0-54 <1 0-2

Aspect: SW (3), NW (3), Flat (3), W (2), SE (1), S (1), E (1)

Macrotopography: bottom (11), bottom to lower slope (1), middle slope (1), wash (1)

Microtopography: flat (6), concave (4), undulating (4)

Parent Material: mixed alluvium (6), volcanic (3), gabbro (1), gravelly alluvium (1), limestone (1),

metamorphic (1), sedimentary (1)

Soil Texture: sand (10), clay or clay loam (1), silt or silt loam (1)

	Mean	Range
Elevation	972 ft.	329-1643 ft.
Slope	4.30	0-40°
Large rock cover	23.6%	0-60%
Small rock cover	20.5%	1-72%
Bare ground cover	10.3%	3-22%
Litter cover	23.1%	0-92%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=14)

Rapid Assessments: SNNR0051, SNNR0217, SNNR0293, SNNR0362, SNNR0616, SNNR0819, SNNR0868, SNNR0907, SNNR1046, SNNR1226, SNNR1272, SNNR1322

Relevés: SNFN0015, SNFN0163

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada by Potter (2005). His samples reflect a Sierra Nevada foothill and montane distribution, including east of our study area boundary, with an average elevation of 2454 ft. and a range as high as 4100 ft. Beyond the Sierra Nevada, this association may exist in the Northern California Coast Ranges and needs substantiation elsewhere.

STAND TABLE Fraxinus latifolia - Alnus rhombifolia Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	FRLA-T	Fraxinus latifolia	100	11.0	0.2	25		Χ	Χ	
	ALRH2-T	Alnus rhombifolia	64	12.2	1	28				
	SALA3-T	Salix laevigata	64	8.7	1	35				
	FRLA-M	Fraxinus latifolia	43	1.4	0.2	6				
	QULO-T	Quercus lobata	43	0.8	0.2	4				
	ALRH2-M	Alnus rhombifolia	36	1.2	0.2	5				
	SALA3-M	Salix laevigata	29	0.9	1	5				
	QUWI2-T	Quercus wislizeni	21	0	0.2	0.2				
Shrub										
	RUDI2	Rubus discolor	86	12.4	0.2	35		Χ	Χ	Χ
	VICA5	Vitis californica	71	5.0	1	25				
	CAOC5	Calycanthus occidentalis	29	2.5	1	23				
	TODI	Toxicodendron diversilobum	21	0.3	1	2				
Herb										
	ARDO3	Artemisia douglasiana	71	1.7	0.2	15				
	CANU5	Carex nudata	36	0.9	0.2	6				
	RUCR	Rumex crispus	21	0.4	0.2	5				Χ
	HOMA4	Hoita macrostachya	21	0.4	0.2	3				
	POACXX	Poaceae	21	0.2	0.4	1.2				
	MEAL2	Melilotus albus	21	0.2	0.2	2				Χ
	CYEC	Cynosurus echinatus	21	0.2	0.2	1				Χ
	LOMU	Lolium multiflorum	21	0.2	0.2	1				Χ
	TOAR	Torilis arvensis	21	0.1	0.2	1				Χ

Juglans hindsii Woodland/Forest Semi-Natural Stands Hind's Walnut Woodland/Forest Semi-Natural Stands

As defined in the state, *Juglans hindsii* is dominant in the tree canopy with *Populus fremontii*, *Quercus lobata*, *Salix exigua*, and *Sambucus mexicana*. The shrub and herb layers may contain riparian or upland species. Stands are found along intermittently flooded or saturated riparian corridors, floodplains, stream and river banks, and terraces. *J. hindsii* is taxonomically and ecologically confused. The species is closely related to *Juglans californica*, and in *The Jepson Manual*, it is considered a variety (*Juglans californica* var. *hindsii*).

The natural range of the Hind's Walnut Alliance is assumed to be restricted, but it has been planted in northern California and commonly used for rootstock for *J. regia*. Native Americans may have planted it in prehistoric times (Thompson 1961). Only one stand (SNNR0846) of Hind's Walnut was sampled in the study area. This stand was not classified to the association level, as it is an introduced or planted feature in the study area.

Juglans hindsii Woodland Semi-Natural Stands (no Associations defined) Hind's Walnut Woodland Semi-Natural Stands

SUMMARY

In the one stand sampled, the overstory tree canopy was open and dominated by *Juglans hindsii* at 17% cover. Other trees such as *Fraxinus latifolia*, *Robinia pseudoacacia*, and *Salix laevigata* were present. *Aristolochia californica*, *Rubus discolor*, and *Vitis californica* were present in the shrub layer. The herbaceous layer was open and included mostly non-native forbs and grasses (see stand table below).

This semi-natural type was sampled once in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). The stand occurred on mixed alluvium substrate, on a bottom with a moderate slope. This stand of Hind's walnut was along a riparian corridor.

DISTRIBUTION IN STUDY AREA

This type was sampled in El Dorado County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	27	27	-
Herb	7	7	>0.3
Shrub	8	8	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	20	20	10-20
Conifer	0	-	-
Relative non-native to native cover	35.4	35.4	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (1)

Macrotopography: bottom (1) Microtopography: concave (1)

Parent Material: mixed alluvium (1)

Soil Texture: sand (1)

	Mean	Range
Elevation	649 ft.	649 ft.
Slope	7°	7°
Large rock cover	2%	2%
Small rock cover	5%	5%
Bare ground cover	30%	30%
Litter cover	55%	55%

SAMPLES USED TO DESCRIBE STANDS (n=1)

Rapid Assessments: SNNR0846

Rank: Unranked, non-native type

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada and the Central Valley of California (Vaghti 2003, Hickson and Keeler-Wolf 2007). Stands are mostly adventive and of mixed genetic stock (Kirk 2003). They appear to be increasing in distribution along in many riparian settings throughout the California Central Valley (Vaghti and Greco 2007).

STAND TABLE

Juglans hindsii Woodland/Forest Semi-Natural Stands

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	JUHI-T	Juglans hindsii	100	17.0	17	17	Χ		Χ	
	ROPS	Robinia pseudoacacia	100	3.0	3	3			Χ	Χ
	FRLA-T	Fraxinus latifolia	100	2.0	2	2			Χ	
	JUHI-M	Juglans hindsii	100	2.0	2	2			Χ	
	SALA3-T	Salix laevigata	100	2.0	2	2			Χ	
	SALA3-M	Salix laevigata	100	1.0	1	1			Χ	
Shrub										
	RUDI2	Rubus discolor	100	4.0	4	4	Χ		Χ	Χ
	ARCA10	Aristolochia californica	100	0.2	0.2	0.2			Χ	
	VICA5	Vitis californica	100	0.2	0.2	0.2			Χ	
Herb										
	BRDI3	Bromus diandrus	100	3.0	3	3		Χ	Χ	Χ
	BRHO2	Bromus hordeaceus	100	1.0	1	1			Χ	Χ
	GEDI	Geranium dissectum	100	1.0	1	1			Χ	Χ
	HOMU	Hordeum murinum	100	1.0	1	1			Χ	Χ
	ARDO3	Artemisia douglasiana	100	0.2	0.2	0.2			Χ	
	CAPY2	Carduus pycnocephalus	100	0.2	0.2	0.2			Χ	Χ
	PLBR6	Plectritis brachystemon	100	0.2	0.2	0.2			Χ	
	TOAR	Torilis arvensis	100	0.2	0.2	0.2			Χ	Χ
	VISA	Vicia sativa	100	0.2	0.2	0.2			Χ	Χ

Pinus ponderosa Woodland/Forest Alliance Ponderosa Pine Woodland/Forest Alliance

As defined in the state, *Pinus ponderosa* is the dominant or co-dominant in the tree canopy with *Abies concolor, Calocedrus decurrens, Juniperus occidentalis, Lithocarpus densiflorus, Pinus contorta* subsp. *murrayana, P. coulteri, P. jeffreyi, P. lambertiana, Pseudotsuga menziesii, Quercus chrysolepis, Q. kelloggii,* and *Q. wislizeni.* The canopy and shrub layers are open to continuous. The herbaceous layer is sparse, abundant, or grassy. Stands occupy all upland topography, floodplains, low-gradient deposits along streams, and raised benches.

In the study area, Ponderosa pine stands occur on upland slopes (all aspects) and raised stream terraces with well-drained soils. *P. ponderosa* is strongly associated with *Quercus kelloggii* and to a lesser extent, *Q. wislizeni* and *Q. chrysolepis* (some stands with a co-dominance of oaks are treated in the respective oak alliances). Two associations of the Ponderosa Pine Alliance were classified in the study area and are described below. Please note that many stands in the Sierra Nevada Foothills, with low to high absolute cover (0.2 to 40% cover) of Ponderosa pine, also have high absolute cover (to 55% cover) of Black oak. In the current classification, these stands are members of the Black Oak Alliance (see page 123).

Pinus ponderosa Stream Terrace Association (Provisional) Ponderosa Pine Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Pinus ponderosa* at 18-40% cover. Other trees such as *Quercus chrysolepis* and *Quercus kelloggii* were characteristically present. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant. The herbaceous layer was open and often included *Cynosurus echinatus*, *Elymus glaucus*, and *Torilis arvensis*.

This association was sampled infrequently in the study area within the High Cascade Range and, northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on volcanic (including basalt), or metamorphic substrates. They occupied gentle, bottom to middle slopes on stream terraces. Stands of this type are more typical of slightly higher elevations above the Foothills belt, as defined in this report (see Potter 2005 and note below). The majority of stands are restricted to the cooler, moister northern portion of the study area.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Nevada, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

	Mean %	Range %	Height (m)
Total vegetation cover	52	45-65	-
Herb	15.6	3-30	variable
Shrub	12.6	2-40	<1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	6.2	1-10	5-20
Conifer	31.6	18-50	10-35
Relative non-native to native cover	20.9	1-44	-

Aspect: Variable (1), SW (1), SE (1), S (1), E (1) Macrotopography: bottom (3), lower slope (2)

Microtopography: undulating (4), flat (1)

Parent Material: volcanic (3), basalt (1), metamorphic (1)

Soil Texture: loam or sandy loam (3), sand (1), silt or silt loam (1)

	Mean	Range
Elevation	1829 ft.	897-2300 ft.
Slope	1.8°	1-4°
Large rock cover	1.8%	<1-4%
Small rock cover	1.4%	<1-3%
Bare ground cover	10.6%	5-17%
Litter cover	82.4%	75-90%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=5)

Rapid Assessments: SNNR0323, SNNR0333, SNNR0354, SNNR0596, SNNR1194

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada solely from this study region. A similar type, the *Pinus ponderosa - Alnus rhombifolia* Association, has been defined by Potter (2005). It is likely to encompass in part, the refined concept described here. Potter's version is more common at elevations higher than our study area (mean elevation 3664 ft.), but typically occupies stream terraces with *Alnus rhombifolia* and other riparian species. In Potter's plots, 59% contain *A. rhombifolia*, 38% contain *Quercus chrysolepis*, and 69% contain *Calocedrus decurrens*. Such variation may exist because of the variable width of the stream terrace, and the positioning of plots for sampling, such that they excluded the immediate riparian zone where *A. rhombifolia* may occur.

STAND TABLE

Pinus ponderosa Stream Terrace Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
Tree										
	PIPO-T	Pinus ponderosa	100	28.2	18	40	Χ		Χ	
	QUCH2-T	Quercus chrysolepis	100	3.8	1	9			Χ	
	QUKE-T	Quercus kelloggii	80	1.1	0.2	4			Χ	
	CADE27-T	Calocedrus decurrens	40	1.2	1	5				
	QUCH2-M	Quercus chrysolepis	40	1.0	0.2	5				
	QUCH2-L	Quercus chrysolepis	40	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	80	3.8	1	8.2		Χ	Χ	
	ARVI4	Arctostaphylos viscida	40	1.0	1	4				
	RHTO6	Rhamnus tomentella	40	0.2	0.2	1				
	LOHIV	Lonicera hispidula var. vacillans	40	0.1	0.2	0.2				
Herb										
	CYEC	Cynosurus echinatus	100	5.6	0.2	10			Χ	Χ
	TOAR	Torilis arvensis	80	3.0	0.2	8			Χ	Χ
	ELGL	Elymus glaucus	60	0.5	0.2	2				
	VISA	Vicia sativa	40	0.6	0.2	3				Χ
	BRCA5	Bromus carinatus	40	0.6	1	2				
	SACR2	Sanicula crassicaulis	40	0.4	0.2	2				

Pinus ponderosa / Arctostaphylos viscida Association (Provisional) Ponderosa Pine / Whiteleaf Manzanita Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Pinus ponderosa* at 5-30% cover. *Quercus wislizeni* was characteristically present as a tree and/or shrub. The shrub layer was intermittent with *Arctostaphylos viscida* dominant and with *Heteromeles arbutifolia* and *Toxicodendron diversilobum* often present. The herbaceous layer was open and often included *Aira caryophyllea*, *Galium porrigens*, *Luzula comosa*, and *Polygala cornuta* var. *cornuta*.

This association was sampled infrequently in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands usually occurred on metamorphic but also on sedimentary substrates. They occupied middle to upper slopes (and one ridgetop) that were gentle to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador and Placer Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	60.4	55-68	-
Herb	5.6	0-16	< 0.3
Shrub	42.2	35-51	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	3.2	0-10	5-10
Conifer	21	12-34	10-35
Relative non-native to native cover	2.5	1-5	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (2), NE (2), NW (1)

Macrotopography: middle slope (2), middle to upper slope (2), ridgetop (1)

Microtopography: convex (3), flat (2)

Parent Material: metamorphic (4), sedimentary (1)

Soil Texture: clay or clay loam (3), loam or sandy loam (1)

	Mean	Range
Elevation	1758 ft.	850-2040 ft.
Slope	17.3°	2-28°
Large rock cover	0.7%	0-2%
Small rock cover	12.8%	2-34.2%
Bare ground cover	7%	1-15%
Litter cover	77%	50-95%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=5)

Rapid Assessments: SNNR0756, SNNR0759, SNNR0763 Relevés: SNFN0183, SNFN0296

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada solely from data collected for this project. It is likely that this association also occurs beyond the study area in the Klamath Mountains and in the North Coast Ranges of California. Thorne et al. (2007) mapped the apparent shift upward of *Pinus ponderosa* stands over the past 70 years in the central Sierra Nevada. This association is probably the most typical, low elevation extension of the alliance in the Sierra Foothills; although stands of the *Quercus kelloggii - Pinus ponderosa* Association and *Quercus kelloggii - Pinus ponderosa / Arctostaphylos viscida* Association are also common at low elevations, and they may carry relatively higher cover of *P. ponderosa*. Average cover and size of *P. ponderosa* from our samples in these three associations suggest that stands are small and do not have a closed canopy. Upon reviewing the mapping techniques reported by Thorne et al., these low elevation stands may have gone without previous detection.

STAND TABLE

Pinus ponderosa | Arctostaphylos viscida Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PIPO-T	Pinus ponderosa	100	12.2	5	30		Χ	Χ	
	QUWI2-M	Quercus wislizeni	80	1.6	0.2	5			Χ	
	QUKE-L	Quercus kelloggii	60	0.1	0.2	0.2				
	QUWI2-L	Quercus wislizeni	60	0.1	0.2	0.2				
	PIPO-M	Pinus ponderosa	40	6.4	10	22				
	QUWI2-T	Quercus wislizeni	40	1.2	0.2	6				
Shrub										
	ARVI4	Arctostaphylos viscida		32.2		38	Х		Χ	
	HEAR5	Heteromeles arbutifolia	100	11.0	1	22.2			Χ	
	TODI	Toxicodendron diversilobum	80	0.9	0.4	2			Χ	
Herb										
	POCOC	Polygala cornuta var. cornuta	60	0.3	0.2	1				
	AICA	Aira caryophyllea	60	0.1	0.2	0.2				Χ
	GAPO	Galium porrigens	60	0.1	0.2	0.2				
	LUCO6	Luzula comosa	60	0.1	0.2	0.2				
	VUMY	Vulpia myuros	40	0.4	0.2	2				Χ
	BRDI2	Brachypodium distachyon	40	0.1	0.2	0.2				Χ
	CYEC	Cynosurus echinatus	40	0.1	0.2	0.2				Χ
	ELGL	Elymus glaucus	40	0.1	0.2	0.2				
	FIGA	Filago gallica	40	0.1	0.2	0.2				Χ
	GAAP2	Galium aparine	40	0.1	0.2	0.2				
	LASU	Lathyrus sulphureus	40	0.1	0.2	0.2				
	LOMI	Lotus micranthus	40	0.1	0.2	0.2				
	TOAR	Torilis arvensis	40	0.1	0.2	0.2				Χ
Cryptoga										
	MOSS	Moss	80	4.2	3	12	Χ		Χ	

Pinus sabiniana Woodland/Forest Alliance Foothill Pine Woodland/Forest Alliance

As defined in the state, *Pinus sabiniana* is dominant in the canopy or emergent over chaparral species. It may also grow with oaks, including *Quercus chrysolepis*, *Q. douglasii*, *Q. durata*, *Q. berberidifolia*, *Q. kelloggii*, and *Q. wislizeni*. The shrub layer may contain *Adenostoma fasciculatum*, *Heteromeles arbutifolia*, *Arctostaphylos* spp., *Cercocarpus betuloides*, and *Rhamnus* spp. The herb layer is grassy or sparse. Stands typically occur on gentle to steep slopes, sometimes on serpentine soils. Because foothill pine is vulnerable to high intensity fire, stands with foothill pine usually denote areas that have had refuge from fire or areas that have not had recent disturbance (Schwilk and Keeley 2006) - such as in open and rocky serpentine areas that may not carry intense fires as often as on other substrates.

As described below, five associations of the Foothill Pine Alliance were classified in the study area. Four stands (SNNR0654, SNNR0548, SNNR1034, SNFN0576) showed additional variation and were classified to the alliance level only, where *Quercus berberidifolia* or various grass and forb species occurred in the understory.

Pinus sabiniana / Adenostoma fasciculatum Association Foothill Pine / Chamise Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated solely by *Pinus sabiniana* at 7-35% cover. The shrub layer was open to intermittent with *Adenostoma fasciculatum* dominant and with *Arctostaphylos viscida*, *Ceanothus cuneatus*, and *Heteromeles arbutifolia* often present. The herbaceous layer was open to intermittent and often included non-native grasses *Aira caryophyllea*, *Avena barbata*, and *Bromus madritensis*.

In the study area, this association was sampled commonly, within the central Sierra Nevada Foothills, and less commonly, within the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic, but were also found occasionally on ultramafic, limestone, or serpentine substrates. They occupied lower to upper slopes that were moderate to steep, often on north- or west-facing slopes.

Other associations, such as the *Adenostoma fasciculatum* Association of the *A. fasciculatum* Alliance, contain similar cover and composition of shrubs, but do not have an open overstory of *Pinus sabiniana*. Differences in fire return interval may play a key role in differentiating these types.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras, Mariposa, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

	Mean %	Range %	Height (m)
Total vegetation cover	64.4	53-78	-
Herb	22.8	4-45	variable
Shrub	42.1	18-66	<5
Low Tree/Tall Shrub	0	-	-

Hardwood	2	0-15	5-20
Conifer	16.1	0-35	5-20
Relative non-native to native cover	16	1-34	-

Aspect: NW (3), NE (2), W (1), Variable (1), SW (1), S (1), N (1)

Macrotopography: lower slope (2), lower to middle slope (3), lower to upper slope (1), middle

slope (1), middle to upper slope (1), upper slope (2) Microtopography: undulating (5), flat (3), convex (1)

Parent Material: metamorphic (6), ultramafic (2), limestone (1), serpentine (1) Soil Texture: clay or clay loam (4), loam or sandy loam (2), silt or silt loam (2)

	Mean	Range
Elevation	1564 ft.	821-3074 ft.
Slope	19°	8-30°
Large rock cover	6.7%	<1-20%
Small rock cover	20.3%	4-60%
Bare ground cover	14.3%	5-25%
Litter cover	55.1%	20-81%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=10)

Rapid Assessments: SNNR0036, SNNR0105, SNNR0145, SNNR0359, SNNR0368,

SNNR0372, SNNR1090, SNNR1155, SNNR1225 Relevés: SNFN0142

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described solely for the Sierra Nevada Foothills area as a result of the data collected for this study. However, similar stands have been observed in the Inner North Coast Ranges (T. Keeler-Wolf, pers. obs. 2007), and similar stands have been sampled on serpentinite substrate in Napa and Colusa Counties (CNPS 2002).

STAND TABLE Pinus sabiniana / Adenostoma fasciculatum Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PISA2-T	Pinus sabiniana	100	16.8	7	35	Χ		Χ	
	PISA2-M	Pinus sabiniana	40	1.7	0.2	8				
Shrub										
	ADFA	Adenostoma fasciculatum	100	27.1	3	60	Χ		Χ	
	HEAR5	Heteromeles arbutifolia	100	5.0	0.2	16			Χ	
	CECU	Ceanothus cuneatus	70	3.5	0.2	15				
	ARVI4	Arctostaphylos viscida	60	1.7	0.2	7				
	RHIL	Rhamnus ilicifolia	40	0.4	0.2	2				
Herb										
	BRMA3	Bromus madritensis	50	2.2	0.2	10				Χ
	AVBA	Avena barbata	50	1.3	1	4				Χ
	AICA	Aira caryophyllea	50	0.9	0.2	6				Χ

STAND TABLE continued

Pinus sabiniana / Adenostoma fasciculatum Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
	VUMI	Vulpia microstachys	40	1.8	0.2	15				
	HYGL2	Hypochaeris glabra	40	0.1	0.2	0.2				Χ
	BRDI2	Brachypodium distachyon	30	2.9	2	18				Χ
	BRHO2	Bromus hordeaceus	30	0.6	0.2	4				Χ
	GAPO	Galium porrigens	30	0.4	0.2	4				
	PETR7	Pentagramma triangularis	30	0.3	0.2	3				
	MECA2	Melica californica	30	0.2	0.2	2				
Cryptoga	am									
	MOSS	Moss	40	1.1	0.2	5				

Pinus sabiniana / Arctostaphylos viscida Association (Provisional) Foothill Pine / Whiteleaf Manzanita Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open and dominated solely by *Pinus sabiniana* at 10-23% cover. The shrub layer was open to intermittent with *Arctostaphylos viscida* dominant and with *Adenostoma fasciculatum*, *Ceanothus cuneatus*, *Heteromeles arbutifolia*, *Rhamnus ilicifolia*, and *Toxicodendron diversilobum* often present. The herbaceous layer was open to intermittent and often included *Aira caryophyllea*, *Bromus madritensis*, *Galium porrigens*, and *Salvia sonomensis*.

This association was sampled commonly in the study area, within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands often occurred on gabbro substrate, and occasionally occurred on metamorphic, serpentine, or other ultramafic substrates. They occupied lower slopes to ridgetops that were gentle to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, Calaveras, El Dorado Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997). It is largely associated with the gabbro outcrops of the Pine Hill area and surrounding foothills, and frequently contains some of the endemic plants from this area.

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	59.6	35-78	-
Herb	21.6	3-35	variable
Shrub	37.3	19-65	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	1.4	0-7	5-10
Conifer	17.4	10-30	5-20
Relative non-native to native cover	13.1	0-27	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (4), Variable (1), SE (1), S (1), E (1)

Macrotopography: lower to middle slope (1), lower to upper slope (1), middle slope (1), middle to upper slope (1), middle slope to ridgetop (1), upper slope (3)

Microtopography: undulating (4), convex (3), flat (1)

Parent Material: gabbro (4), metamorphic (2), serpentine (1), ultramafic (1) Soil Texture: loam or sandy loam (3), silt or silt loam (2), clay or clay loam (1)

	Mean	Range
Elevation	1564 ft.	818-2127 ft.
Slope	14.6°	3-28°
Large rock cover	8.5%	<1-45%
Small rock cover	8.3%	1-20%
Bare ground cover	15%	3-57%
Litter cover	65.4%	27-85%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=8)

Rapid Assessments: SNNR0150, SNNR0400, SNNR0401, SNNR0501, SNNR0701,

SNNR0752, SNNR0784, SNNR0988

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills area as a result of the data collected for this study. It also occurs in the North Coast Ranges with stands sampled in Lake, Napa, and Sonoma Counties on serpentinite substrates (CNPS 2002).

STAND TABLE Pinus sabiniana / Arctostaphylos viscida Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	, Min	Max	D	сD	С	N
Tree										
	PISA2-T	Pinus sabiniana	100	15.9	10	23	Χ		Χ	
	PISA2-M	Pinus sabiniana	63	2.2	0.2	10				
	QUWI2-T	Quercus wislizeni	25	0.6	1	4				
	QUWI2-M	Quercus wislizeni	25	0.3	0.2	2				
	PISA2-L	Pinus sabiniana	25	0.1	0.2	0.2				
Shrub										
	ARVI4	Arctostaphylos viscida	100	18.4	3	30		Χ	Χ	
	HEAR5	Heteromeles arbutifolia	63	3.3	2	11				
	TODI	Toxicodendron diversilobum	63	0.9	0.2	3				
	ADFA	Adenostoma fasciculatum	50	7.3	6	22				
	CECU	Ceanothus cuneatus	50	1.5	1	6				
	RHIL	Rhamnus ilicifolia	50	1.1	1	5				
	CEOCO	Cercis occidentalis	38	1.6	1	10				
	ERCA6	Eriodictyon californicum	38	1.6	0.2	12				
	RHTO6	Rhamnus tomentella	38	8.0	0.2	5				
	CERO4	Ceanothus roderickii	25	2.4	7	12				
	BAPI	Baccharis pilularis	25	1.0	3	5				
Herb										
	BRMA3	Bromus madritensis	63	2.0	0.2	8				Χ
	SASO	Salvia sonomensis	50	4.6	3	25				
	AICA	Aira caryophyllea	50	0.5	0.2	2				Χ
	GAPO	Galium porrigens	50	0.2	0.2	1				
	BRDI2	Brachypodium distachyon	38	3.9	4	15				Χ
	MECA2	Melica californica	38	1.8	1	10				
	VUMY	Vulpia myuros	38	0.9	2	3				Χ
	LETA	Leontodon taraxacoides	38	0.2	0.2	1				Χ
	CYEC	Cynosurus echinatus	25	8.0	1	5				Χ
	GAVE3	Gastridium ventricosum	25	0.6	2	3				Χ
	CHGR3	Chlorogalum grandiflorum	25	0.3	0.2	2				
	ELGL	Elymus glaucus	25	0.3	1	1				
	ELEL5	Elymus elymoides	25	0.1	0.2	0.2				
Cryptog	am									
	MOSS	Moss	25	0.4	1	2				

Pinus sabiniana / Ceanothus cuneatus Association Foothill Pine / Wedgeleaf Ceanothus Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated solely by *Pinus sabiniana* at 7-35% cover. The shrub layer was open to intermittent with *Ceanothus cuneatus* dominant and with *Arctostaphylos manzanita*, *Heteromeles arbutifolia*, and *Toxicodendron diversilobum* often present. The herbaceous layer was open to intermittent and often included *Avena barbata*, *Bromus diandrus*, *Bromus hordeaceus*, *Bromus madritensis*, *Cynosurus echinatus*, *Galium porrigens*, *Trifolium hirtum*, and *Trifolium microcephalum*.

This association was sampled throughout the study area within the central Sierra Nevada Foothills, Cascade Range Foothills, High Cascade Range, and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on volcanic, metamorphic, mixed metamorphic, or ultramafic substrates. They occupied a variety of slope positions, though usually middle to upper slopes, which were flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in seven counties: Amador, Butte, Calaveras, El Dorado, Shasta, Tehama and Tuolumne - within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	64.6	49-85	-
Herb	30.1	12-60	variable
Shrub	37.8	4-65	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	2	0-6	5-10
Conifer	18.5	7-35	5-35
Relative non-native to native cover	26.2	11-69	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: E (3), W (1), Variable (1), SW (1), S (1), NW (1), NE (1), Flat (1)

Macrotopography: bottom to upper slope (1), lower slope (1), middle slope (3), middle to upper slope (1), upper slope (3), ridgetop (1)

Microtopography: undulating (4), flat (4), concave (1)

Parent Material: volcanic (4), metamorphic (3), ultramafic (2), mixed metamorphic (1)

Soil Texture: loam or sandy loam (4), clay or clay loam (3), silt or silt loam (1)

	Mean	Range
Elevation	1537 ft.	525-2933 ft.
Slope	12.9°	0-28°
Large rock cover	2.6%	<1-7%
Small rock cover	10.6%	<1-36%
Bare ground cover	12.9%	3-28%
Litter cover	69%	31-93%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=10)

Rapid Assessments: SNNR0024, SNNR0045, SNNR0425, SNNR0459, SNNR0786,

SNNR1245, SNNR1289, SNNR1415 Relevés: SNFN0188, SNFN0316

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described solely for the Sierra Nevada Foothills as a result of this study.

STAND TABLE Pinus sabiniana / Ceanothus cuneatus Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree	PISA2-T	Pinus sabiniana	100	18.6	7	35	Χ		Х	
	QUDO-T	Quercus douglasii	50	1.5	0.2	6				
	PISA2-M	Pinus sabiniana	40	0.1	0.2	0.2				
	PISA2-L	Pinus sabiniana	30	0.1	0.2	0.2				
Shrub										
	CECU	Ceanothus cuneatus	100	20.0	0.2	52	Χ		Χ	
	TODI	Toxicodendron diversilobum	70	3.0	0.2	20				
	HEAR5	Heteromeles arbutifolia	50	3.3	0.4	10				
	ARMA	Arctostaphylos manzanita	50	2.4	0.2	17				
	CEBE3	Cercocarpus betuloides	40	2.0	0.2	16				
	RHIL	Rhamnus ilicifolia	40	0.2	0.2	1				
	ERCA6	Eriodictyon californicum	30	0.2	0.2	1				
Herb										
	AVBA	Avena barbata	80	2.1	0.2	8			Χ	Χ
	TRHI4	Trifolium hirtum	60	3.0	1	10				Χ
	CYEC	Cynosurus echinatus	60	1.2	0.2	7				Χ
	GAPO	Galium porrigens	60	0.6	0.2	2				
	BRHO2	Bromus hordeaceus	50	4.2	0.2	20				Χ
	TRMI4	Trifolium microcephalum	50	1.3	0.2	11				
	BRDI3	Bromus diandrus	50	1.2	0.2	6				Χ
	BRMA3	Bromus madritensis	50	8.0	0.2	4				Χ
	BRDI2	Brachypodium distachyon	40	5.7	2	50				Χ
	TOAR	Torilis arvensis	40	0.7	1	2				Χ
	GAPA5	Galium parisiense	40	0.4	0.2	3				Χ
	HYGL2	Hypochaeris glabra	40	0.3	0.2	2				Χ
	AICA	Aira caryophyllea	40	0.2	0.2	1				Χ
	DAPU3	Daucus pusillus	40	0.2	0.2	1				
	VUBR	Vulpia bromoides	30	1.2	0.2	8				Χ
	VUMY	Vulpia myuros	30	1.2	1	9				Χ
	MECA2	Melica californica	30	1.1	0.2	6				
	PETR7	Pentagramma triangularis	30	0.7	0.2	7				
	TRWI3	Trifolium willdenovii	30	0.2	0.2	1				
	MADIA	Madia	30	0.1	0.2	1				

Pinus sabiniana / Ceanothus cuneatus / Plantago erecta Serpentine Association (Provisional)

Foothill Pine / Wedgeleaf Ceanothus / Dwarf Plantain Serpentine Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open and dominated solely by *Pinus sabiniana* at 7-12% cover. The shrub layer was open with *Ceanothus cuneatus* dominant and with *Heteromeles arbutifolia* often present. The herbaceous layer was open to intermittent and dominated by *Plantago erecta*, with abundant and characteristic taxa such as *Bromus hordeaceus*, *Daucus pusillus*, and *Vulpia microstachys*.

This association was sampled seven times in the study area, only in the central Sierra Nevada Foothills Subregion (Hickman 1993). Stands usually occurred on ultramafic, especially serpentine, substrates. They occupied lower to upper slopes that were gentle to steep. Stands were sampled in the vicinities of the Peoria Wildlife Area, the nearby Red Hills, and Lake McClure.

DISTRIBUTION IN STUDY AREA

This association was sampled in Mariposa and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	58.9	25-80	-
Herb	39.6	13-65	variable
Shrub	17	2-25	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	5-10
Conifer	9	7-12	10-35
Relative non-native to native cover	24.1	3-53	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (2), N (2), NW (1), NE (1), E (1)

Macrotopography: entire slope (1), lower slope (1), middle slope (3), middle to upper slope (1), upper slope (1)

Microtopography: undulating (4), convex (2), concave (1)

Parent Material: serpentine (6), ultramafic (1)

Soil Texture: loam or sandy loam (5), silt or silt loam (1)

	Mean	Range
Elevation	1085 ft.	934-1232 ft.
Slope	15.9°	4-28°
Large rock cover	11%	0-27%
Small rock cover	31.8%	0.4-60%
Bare ground cover	16.7%	6-26%
Litter cover	36.7%	10-90%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=7)

Rapid Assessments: SNNR1101, SNNR1495 Relevés: SNFN0086, SNFN0585, SNFN0592, SNFN0600, SNFN0692

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described solely for the central Sierra Nevada Foothills area as a result of the data collected for this and a previous study (Evens et al. 2004). It appears restricted to serpentine areas with a high diversity of native species in the understory.

STAND TABLE

Pinus sabiniana / Ceanothus cuneatus / Plantago erecta Serpentine Association
(Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	PISA2-T	Pinus sabiniana	100	9.0	7	12	Χ		Χ	
	PISA2-M	Pinus sabiniana	43	0.1	0.2					
	PISA2-L	Pinus sabiniana	43	0.1	0.2					
	QUDO-L	Quercus douglasii	29	0.1	0.2	0.2				
Shrub	0=011		400						.,	
	CECU	Ceanothus cuneatus		13.6			Х		Χ	
	HEAR5	Heteromeles arbutifolia	57	2.7	0.2					
	ERCA6	Eriodictyon californicum	43	1.0	0.2					
	ERLAG	Eriophyllum lanatum var. grandiflorum	43	0.6	0.2	4				
Herb										
	PLER3	Plantago erecta	100	2.9	0.2				X	
	BRHO2	Bromus hordeaceus	86	21.5					Χ	Χ
	DAPU3	Daucus pusillus	86	4.2	0.2				Χ	
	VUMI	Vulpia microstachys	86	4.1	0.2				Χ	
	GAPO	Galium porrigens	71	1.9	0.2					
	LACA7	Lasthenia californica	71	1.2	0.2					
	TRWI3	Trifolium willdenovii	71	0.9	0.2					
	TRMI4	Trifolium microcephalum	71	8.0	0.2					
	DICAC5	Dichelostemma capitatum subsp. capitatum	71	0.1	0.2	0.2				
	AICA	Aira caryophyllea	57	3.8	0.2	25				Χ
	PETRT	Pentagramma triangularis subsp. triangularis	57	2.2	0.2	15				
	HYGL2	Hypochaeris glabra	57	0.9	0.2	6				Χ
	MECA2	Melica californica	57	0.5	0.2	1				
	CAAT25	Castilleja attenuata	57	0.1	0.2	0.2				
	POSE	Poa secunda	57	0.1	0.2	0.2				
	LENE3	Lessingia nemaclada	43	1.2	0.2	8				
	BRDI3	Bromus diandrus	43	8.0	0.2	5				Χ
	AVBA	Avena barbata	43	0.6	1	2				Χ
	ESCA	Eschscholzia caespitosa	43	0.5	0.2	3				
	BRMA3	Bromus madritensis	43	0.3	0.2	1				Χ
	CEME2	Centaurea melitensis	43	0.3	0.2	1				Χ
	CHLOR3	Chlorogalum	43	0.2	0.2	1				
	SABI3	Sanicula bipinnatifida	43	0.2	0.2	1				

STAND TABLE continued Pinus sabiniana / Ceanothus cuneatus / Plantago erecta Serpentine Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	URLI5	Uropappus lindleyi	43	0.2	0.2	1				
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	43	0.1	0.2	0.2				
	THCU	Thysanocarpus curvipes	43	0.1	0.2	0.2				
	CAOCO	Calystegia occidentalis subsp. occidentalis	29	1.2	0.2	8				
	LICI	Linanthus ciliatus	29	1.1	1	7				
	PETR7	Pentagramma triangularis	29	1.0	3	4				
	LOWR2	Lotus wrangelianus	29	0.5	0.2	3				
	PSHE	Pseudobahia heermannii	29	0.3	0.2	2				
	BRDI2	Brachypodium distachyon	29	0.2	0.2	1				Χ
	LOCO3	Lomatium congdonii	29	0.2	0.2	1				
	PTDR	Pterostegia drymarioides	29	0.2	0.2	1				
	VUMY	Vulpia myuros	29	0.2	0.2	1				Χ
	ASTEXX	Asteraceae	29	0.1	0.2	0.4				Χ
	AVFA	Avena fatua	29	0.1	0.2	0.2				Χ
	DUCYC3	Dudleya cymosa subsp.	29	0.1	0.2	0.2				
	ERNUP4	Eriogonum nudum var. pubiflorum	29	0.1	0.2	0.2				
	GAVE3	Gastridium ventricosum	29	0.1	0.2	0.2				Χ
	LOMAT	Lomatium	29	0.1	0.2	0.2				
	MADIA	Madia	29	0.1	0.2	0.2				
	MICA	Micropus californicus	29	0.1	0.2	0.2				
	PLAGI	Plagiobothrys	29	0.1	0.2	0.2				
	PLNO	Plagiobothrys nothofulvus	29	0.1	0.2	0.2				
Cryptoga	m									
	MOSS	Moss	43	2.0	1	8				
	LICHEN	Lichen	29	3.0	1	20				

Pinus sabiniana / Rhamnus tomentella Association (Provisional) Foothill Pine - Hoary Coffeeberry Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Pinus sabiniana* at 4-32% cover. *Quercus wislizeni* was characteristically present as a tree and/or shrub. The shrub layer was open to intermittent with *Rhamnus tomentella* and *Toxicodendron diversilobum* dominant. The herbaceous layer was open to intermittent and often included *Bromus diandrus*, *Cynosurus echinatus*, *Daucus pusillus*, *Eriophyllum lanatum*, *Sanicula bipinnatifida*, *Torilis arvensis*, and *Trifolium hirtum*.

In the study area, this association was sampled six times, most commonly within the northern Sierra Nevada Foothills and once in the Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates. They occupied bottom to middle slopes or ridgetops on flat to somewhat steep slopes. Stands were sampled primarily at Daugherty Hill and Spenceville Wildlife Areas on north-facing slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tehama and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	68.5	60-78	-
Herb	34.2	21-46	variable
Shrub	32.5	7-58	<5
Low Tree/Tall Shrub	1.7	0-10	5-10
Hardwood	8.3	4-11	5-20
Conifer	17.7	5-32	5-20
Relative non-native to native cover	24.9	8-35	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NE (3), N (1), Flat (1), E (1)

Macrotopography: bottom (1), middle slope (3), ridgetop (2)

Microtopography: flat (4), convex (1), undulating (1) Parent Material: metamorphic (5), volcanic (1) Soil Texture: clay or clay loam (3), silt or silt loam (2)

	Mean	Range
Elevation	1186 ft.	440-1578 ft.
Slope	12.6°	0-21°
Large rock cover	11.5%	<1-31.2%
Small rock cover	6.4%	<1-17%
Bare ground cover	11%	2-25%
Litter cover	67.7%	48-90%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=6)

Rapid Assessments: SNNR0156, SNNR0157, SNNR1613, SNNR1651, SNNR1652 Relevés:

SNFN0322

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described solely for the Sierra Nevada Foothills as a result of the data collected for this project.

STAND TABLE Pinus sabiniana / Rhamnus tomentella Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PISA2-T	Pinus sabiniana		15.0		32		Χ	Χ	
	PISA2-L	Pinus sabiniana	83	4.0	0.2	21			Χ	
	QUWI2-M	Quercus wislizeni	83	1.5	0.2	5			Χ	
	QUWI2-T	Quercus wislizeni	67	3.2	1	9				
	PISA2-M	Pinus sabiniana	67	1.5	0.2	6				
	QUKE-T	Quercus kelloggii	50	2.8	2	10				
	PIPO-T	Pinus ponderosa	50	1.3	1	5				
	AECA-L	Aesculus californica	50	0.1	0.2	0.2				
	QUWI2-L	Quercus wislizeni	50	0.1	0.2	0.2				
	QUDO-T	Quercus douglasii	33	0.5	0.2	3				
	AECA-M	Aesculus californica	33	0.5	1	2				
Shrub										
	TODI	Toxicodendron diversilobum		15.3		21		Χ	Χ	
	RHTO6	Rhamnus tomentella		14.9		37		Χ	Χ	
	RHIL	Rhamnus ilicifolia	33	0.2	0.2	1				
Herb		_								
	CYEC	Cynosurus echinatus	83	9.2	3	20			Χ	X
	BRDI3	Bromus diandrus	67	5.3	4	14				Χ
	TOAR	Torilis arvensis	67	2.0	0.2	9				X
	DAPU3	Daucus pusillus	67	0.7	0.2	2				
	TRHI4	Trifolium hirtum	50	3.7	2	14				X
	SABI3	Sanicula bipinnatifida	50	0.9	0.2	4				
	ERLA6	Eriophyllum lanatum	50	0.2	0.2	1				
	CESO3	Centaurea solstitialis	33	1.0	2	4				Χ
	HOMU	Hordeum murinum	33	1.0	2	4				Χ
	VISA	Vicia sativa	33	8.0	2	3				Χ
	TRMI4	Trifolium microcephalum	33	0.4	0.2	2				
	AICA	Aira caryophyllea	33	0.2	0.2	1				Χ
	AVBA	Avena barbata	33	0.2	0.2	1				Χ
	CLARK	Clarkia	33	0.2	0.2	1				
	HYGL2	Hypochaeris glabra	33	0.2	0.2	1				Χ
	AGGR	Agoseris grandiflora	33	0.1	0.2	0.2				
	CAAL2	Calochortus albus	33	0.1	0.2	0.2				
	DIVO	Dichelostemma volubile	33	0.1	0.2	0.2				

Platanus racemosa Woodland/Forest Alliance California Sycamore Woodland/Forest Alliance

As defined in the state, *Platanus racemosa* is dominant or co-dominant in the tree canopy with *Alnus rhombifolia*, *Populus fremontii*, *Quercus agrifolia*, *Q. lobata*, *Salix exigua*, *S. gooddingii*, *S. laevigata*, *S. lasiolepis*, *S. lutea*, and *Umbellularia californica*. The canopy is open. The shrub layer is sparse to intermittent and the herbaceous layer is sparse to grassy. Stands form in gullies, intermittent streams, springs, seeps, stream and riverbanks, and terraces adjacent to floodplains that are subject to high-intensity flooding. Soils are alluvial, rocky or cobbly with permanent moisture at depth. Stands often occur in the coastal ranges and drainages of southern and central California, inland to the San Joaquin and northern Central Valley.

In the study area, all three samples of the California Sycamore Alliance (SNFN0325, SNNR0270, SNNR0274) were classified to the alliance level only. Two stands had a mixture of trees and shrubs in the overstory and understory, including *Umbellularia californica* and *Aesculus californica* as co-dominants, and the other stand had strong presence of *Platanus racemosa* in the overstory and *Salix lasiolepis* in the understory. *Vitis californica* typically occurred in all layers of the canopy. Sometimes *Sambucus mexicanus*, *Cercis occidentalis*, *Calycanthus occidentalis*, and *Rubus discolor* were present as understory shrubs. The ground layer was grassy.

Platanus racemosa Alliance (no Associations defined) California Sycamore Alliance

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Platanus racemosa* at 10-16% cover. Other trees such as *Aesculus californica*, *Fraxinus latifolia*, and *Umbellularia californica* were characteristically present. The shrub layer was open with *Vitis californica* dominant and with *Aristolochia californica*, *Cercis occidentalis*, *Sambucus mexicana*, and *Toxicodendron diversilobum* often present. The herbaceous layer was variable and often included *Artemisia douglasiana*, *Bromus hordeaceus*, *Cynosurus echinatus*, and *Torilis arvensis*.

This alliance was sampled infrequently in the study area, only in the Cascade Range Foothills Subregion (Hickman 1993). Stands occurred on volcanic substrates. They occupied bottoms or washes with gentle slopes along riparian corridors. They were sampled along creeks that feed into the Sacramento River, at City of Chico's Bidwell Park and Payne's Creek Recreation Area.

DISTRIBUTION IN STUDY AREA

This alliance was sampled within Butte and Tehama Counties, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

	Mean %	Range %	Height (m)
Total vegetation cover	74	60-85	-
Herb	45	15-70	>0.3
Shrub	22	20-25	1-5
Low Tree/Tall Shrub	23.3	0-35	5-10
Hardwood	28.7	18-40	10-20
Conifer	1.3	0-4	10-20
Relative non-native to native cover	12	6-19	-

Aspect: W (1), SW (1), S (1)

Macrotopography: bottom (2), wash (1) Microtopography: undulating (3)

Parent Material: volcanic (3)

Soil Texture: sand (1), silt or silt loam (1)

	Mean	Range
Elevation	325 ft.	308-335 ft.
Slope	1.7°	1-2°
Large rock cover	0%	-%
Small rock cover	0%	-%
Bare ground cover	3.5%	2-5%
Litter cover	94%	92-96%

SAMPLES USED TO DESCRIBE ALLIANCE (n=3)

Rapid Assessments: SNNR0270, SNNR0274 Relevés: SNFN0325

Rank: G3S3

GLOBAL DISTRIBUTION

Potter (2005) defined a *Platanus racemosa / Toxicodendron diversilobum* Association from lower elevations of the southern Sierra Nevada Foothills area. *Platanus racemosa* stands are sporadic in the central and northern Foothills and appear to be more common and widespread to the south of our study area. The few stands sampled are similar to Potter's (2005) association.

STAND TABLE

Platanus racemosa Alliance

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PLRA-T	Platanus racemosa	100	13.7	10	16		Χ	Χ	
	AECA-T	Aesculus californica	67	11.7	12	23				
	UMCA-T	Umbellularia californica	67	6.7	5	15				
	FRLA-T	Fraxinus latifolia	67	5.7	7	10				
	UMCA-M	Umbellularia californica	33	6.7	20	20				
	AECA-M	Aesculus californica	33	3.3	10	10				
	POFR2-T	Populus fremontii	33	3.3	10	10				
	QUWI2-T	Quercus wislizeni	33	1.7	5	5				
	PISA2-T	Pinus sabiniana	33	1.3	4	4				
	ACMA3-T	Acer macrophyllum	33	1.0	3	3				
	SALA3-T	Salix laevigata	33	0.7	2	2				
	SALA3-M	Salix laevigata	33	0.3	1	1				
	PLRA-L	Platanus racemosa	33	0.1	0.2	0.2				
	PLRA-M	Platanus racemosa	33	0.1	0.2	0.2				
	QULO-M	Quercus lobata	33	0.1	0.2	0.2				
	QUWI2-L	Quercus wislizeni	33	0.1	0.2	0.2				

STAND TABLE continued Platanus racemosa Alliance

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Shrub	VICA5	Vitis californica	100	10.3	4	14		Х	Х	
	TODI	Toxicodendron diversilobum	67	3.3	2	8			, ,	
	ARCA10	Aristolochia californica	67	2.7	4	4				
	CEOCO	Cercis occidentalis	67	2.0	3	3				
	SAME5	Sambucus mexicana	67	1.7	2	3				
	SALA6	Salix lasiolepis	33	4.7		14.2				
	RULE	Rubus leucodermis	33	4.0	12	12				
	RUDI2	Rubus discolor	33	1.7	5	5				Χ
	CAOC5	Calycanthus occidentalis	33	1.1	3.2	3.2				
	PHLE4	Philadelphus lewisii	33	0.3	1	1				
	RHTO6	Rhamnus tomentella	33	0.3	1	1				
	ROSA5	Rosa	33	0.1	0.2	0.2				
Herb										
	TOAR	Torilis arvensis	100	2.4	0.2	4			Χ	Χ
	BRHO2	Bromus hordeaceus	67	5.1	0.2	15				Χ
	ARDO3	Artemisia douglasiana	67	3.0	4	5				
	CYEC	Cynosurus echinatus	67	1.7	0.2	5				Χ
	CABA4	Carex barbarae	33	8.7	26	26				
	TYDO	Typha domingensis	33	6.7	20	20				
	ANGLS	Andropogon glomeratus var. scabriglumis	33	4.0	12	12				
	BRMA3	Bromus madritensis	33	3.3	10	10				Χ
	EUOC4	Euthamia occidentalis	33	2.0	6	6				
	VIVI	Vicia villosa	33	1.0	3	3				Χ
	CANU5	Carex nudata	33	0.7	2	2				
	HEPU2	Helenium puberulum	33	0.7	2	2				
	ELMO2	Eleocharis montevidensis	33	0.3	1	1				
	GAAP2	Galium aparine	33	0.3	1	1				
	LEOR	Leersia oryzoides	33	0.3	1	1				
	AMAR2	Ambrosia artemisiifolia	33	0.1	0.2	0.2				Χ
	ASTEXX	Asteraceae	33	0.1	0.2	0.2				X
	BRDI3	Bromus diandrus	33	0.1	0.2	0.2				X
	CEMU2	Centaurium muehlenbergii	33	0.1	0.2	0.2				
	CIVU	Cirsium vulgare	33	0.1	0.2	0.2				X
	EPCI	Epilobium ciliatum	33	0.1	0.2	0.2				
	GAPA5	Galium parisiense	33	0.1	0.2	0.2				X
	HYAN2	Hypericum anagalloides	33	0.1	0.2	0.2				
	HYPE	Hypericum perforatum	33	0.1	0.2	0.2				X
	JUNE	Juncus nevadensis	33	0.1	0.2	0.2				
	NAPU4	Nassella pulchra	33	0.1	0.2	0.2				
	POTAM	Potamogeton	33	0.1	0.2	0.2				
	RAMU2	Ranunculus muricatus	33	0.1	0.2	0.2				Χ

STAND TABLE continued Platanus racemosa Alliance

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	RUCR	Rumex crispus	33	0.1	0.2	0.2				Χ
	SOAS	Sonchus asper	33	0.1	0.2	0.2				Χ
	VEPEX2	Veronica peregrina subsp. xalapensis	33	0.1	0.2	0.2				
Cryptog	am									
	MOSS	Moss	33	0.7	2	2				

Populus fremontii Woodland/Forest Alliance Fremont Cottonwood Woodland/Forest Alliance

As defined in the state, *Populus fremontii* is dominant or co-dominant in the tree canopy with *Acer negundo, Fraxinus latifolia, Juglans hindsii* and hybrids, *Platanus racemosa, Salix exigua, S. gooddingii, S. laevigata, S. lasiolepis, S. lucida* subsp. *lasiandra*, and *S. lutea*. The canopy is open to continuous. The shrub layer is open to intermittent and the herbaceous layer is variable. Stands form on floodplains, along low-gradient rivers and perennial or seasonally intermittent streams, near springs, in lower canyons in desert mountains, on alluvial fans, and in valleys with a dependable sub-surface water supply that may vary considerably during the year.

In the study area, two associations of the Fremont Cottonwood Alliance were classified and are described below. Two stands (SNNR0612, SNNR0853) showed additional variation due to the presence of *Salix gooddingii* and were classified to the alliance level only.

Populus fremontii - Salix laevigata Association Fremont Cottonwood - Red Willow Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Populus fremontii* at 5-35% cover. *Salix laevigata* was characteristically present in the overstory. The shrub layer was open to continuous with *Rubus discolor* dominant and with *Vitis californica* often present. The herbaceous layer was open to intermittent and often included *Artemisia douglasiana*.

In the study area, this association was sampled commonly within the northern Sierra Nevada Foothills, and infrequently in the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands often occurred on metamorphic or granitic substrates, and occurred with decreasing frequency on mixed alluvium, volcanic, gravelly alluvium, or limestone substrates. They usually occupied flat to gentle, bottom slopes along riparian corridors and stream terraces, often with rocky surfaces.

DISTRIBUTION IN STUDY AREA

This association was sampled in ten counties - Amador, Calaveras, El Dorado, Madera, Mariposa, Nevada, Placer, Tehama, Tuolumne, and Yuba Counties - and within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

	Mean %	Range %	Height (m)
Total vegetation cover	62.6	12-87	-
Herb	11.9	0-44	variable
Shrub	30.6	6-78	1-5
Low Tree/Tall Shrub	9	0-37	5-15
Hardwood	29	5-59	5-35
Conifer	0.8	0-10	5-35
Relative non-native to native cover	28.2	0-59	-

Aspect: W (5), Variable (4), Flat (4), NW (3), SW (2), N (2), S (1), NE (1), E (1), (0)

Macrotopography: bottom (21), lower slope (4)

Microtopography: concave (9), undulating (8), flat (6), convex (1)

Parent Material: metamorphic (8), granitic (7), mixed alluvium (4), volcanic (4), gravelly alluvium

(1), limestone (1)

Soil Texture: sand (9), clay or clay loam (2), loam or sandy loam (1), muck (1), silt or silt loam (1), unknown (1)

	Mean	Range
Elevation	825 ft.	187-1591 ft.
Slope	1.3°	0-3°
Large rock cover	9.6%	0-60%
Small rock cover	19.3%	2-85%
Bare ground cover	23.2%	2-82%
Litter cover	36%	1-89%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=25)

Rapid Assessments: SNNR0021, SNNR0202, SNNR0230, SNNR0239, SNNR0586, SNNR0588, SNNR0603, SNNR0630, SNNR0808, SNNR0878, SNNR0888, SNNR0891, SNNR0892, SNNR0896, SNNR0900, SNNR0908, SNNR1041, SNNR1043, SNNR1053,

SNNR1143, SNNR1209, SNNR1253, SNNR1268, SNNR1283

Relevés: SNFN0413

Rank: G4S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada by Potter (2005) for the northern, central, and southern Sierra Nevada Foothills, the lower elevations of the southern High Sierra Nevada, and the Tehachapi Mountains. Stands occur on both the east and west sides of the southern Sierra Nevada and range as high as 3400 ft.

STAND TABLE Populus fremontii - Salix laevigata Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	POFR2-T	Populus fremontii	100	15.3	5	35		Χ	Χ	
	SALA3-T	Salix laevigata	96	10.4	0.2	45			Χ	
	ALRH2-T	Alnus rhombifolia	48	3.7	0.2	25				
	FRLA-T	Fraxinus latifolia	48	2.2	1	10				
	QULO-T	Quercus lobata	44	2.8	0.2	18				
	AIAL	Ailanthus altissima	36	1.7	0.2	20				Χ
Shrub										
	RUDI2	Rubus discolor	88	19.5	0.2	60	Χ		Χ	Χ
	VICA5	Vitis californica	56	3.4	0.4	23				
	SALA6	Salix lasiolepis	48	2.3	0.2	15				
	SAEX	Salix exigua	44	3.1	0.2	25.2				
	CEOCC2	Cephalanthus occidentalis var. californicus	24	0.3	0.2	3				
Herb										
	ARDO3	Artemisia douglasiana	52	0.6	0.2	3				
	TOAR	Torilis arvensis	24	0.5	0.2	10				Χ
	EUOC4	Euthamia occidentalis	24	0.1	0.2	1				

Populus fremontii / Vitis californica Association Fremont Cottonwood / California Wild Grape Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Populus fremontii* at 5-35% cover. Other trees such as *Fraxinus latifolia*, *Platanus racemosa*, and *Pinus sabiniana* were often present. The shrub layer was open to intermittent with *Vitis californica* dominant and with *Rhamnus tomentella* characteristically present. The herbaceous layer was variable and often included *Juncus effusus*, *Juncus xiphioides*, *Melilotus*, *Mimulus guttatus*, *Rumex*, *Torilis arvensis*, and *Vicia villosa* subsp. *varia*.

This association was sampled twice in the study area, once in the Cascade Range Foothills and once in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on mixed alluvium or volcanic substrates. They occupied flat bottoms areas. Stands of Fremont Cottonwood / California Wild Grape occurred along riparian corridors and floodplains.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Nevada Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	65	45-85	-
Herb	19	3-35	>0.3
Shrub	35	20-50	1-5
Low Tree/Tall Shrub	17.5	0-35	5-10
Hardwood	37.5	5-70	5-20
Conifer	2	0-4	5-10
Relative non-native to native cover	6.7	7-7	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (1), Flat (1) Macrotopography: bottom (2)

Microtopography: undulating (1), flat (1)

Parent Material: mixed alluvium (1), volcanic (1)

Soil Texture: sand (1)

	Mean	Range
Elevation	462 ft.	354-570 ft.
Slope	00	_0
Large rock cover	70%	70-70%
Small rock cover	10%	10-10%
Bare ground cover	10%	10-10%
Litter cover	8%	8-8%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR0273, SNNR1381

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills, based on data collected for this project, and from the Sacramento River (Vaghti 2003) where *Cephalanthus occidentalis* and *Vitis californica* are typical indicator species. It is found on older floodplains. Stands lack cover of *Salix laevigata*, though they may be similar to the association with this tree species.

STAND TABLE Populus fremontii / Vitis californica Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	POFR2-T	Populus fremontii	100	20.0	5	35			Χ	
	POFR2-M	Populus fremontii	100	10.0	5	15		Χ	Χ	
	FRLA-T	Fraxinus latifolia	50	10.0	20	20				
	QULO-T	Quercus lobata	50	10.0	20	20				
	PLRA-T	Platanus racemosa	50	6.0	12	12				
	FRLA-M	Fraxinus latifolia	50	5.0	10	10				
	PLRA-M	Platanus racemosa	50	3.0	6	6				
	PISA2-T	Pinus sabiniana	50	2.0	4	4				
	QULO-M	Quercus lobata	50	2.0	4	4				
	ROPS	Robinia pseudoacacia	50	1.0	2	2				Χ
Shrub										
	VICA5	Vitis californica		21.0		25		Χ	Χ	
	RHTO6	Rhamnus tomentella	100		1	7			Χ	
	RUUR	Rubus ursinus	50	6.0	12	12				
	CEOCC2	Cephalanthus occidentalis var. californicus	50	5.0	10	10				
	ARCA10	Aristolochia californica	50	3.0	6	6				
	CEOCO	Cercis occidentalis	50	1.5	3	3				
	BAPI	Baccharis pilularis	50	1.0	2	2				
	RUDI2	Rubus discolor	50	1.0	2	2				Χ
	SALA6	Salix lasiolepis	50	1.0	2	2				
	SAEX	Salix exigua	50	0.5	1	1				
Herb										
	TOAR	Torilis arvensis	50	4.0	8	8				Χ
	VIVIV8	Vicia villosa subsp. varia	50	2.0	4	4				Χ
	JUEF	Juncus effusus	50	0.1	0.2	0.2				
	JUXI	Juncus xiphioides	50	0.1	0.2	0.2				
	MELIL	Melilotus	50	0.1	0.2	0.2				Χ
	MIGU	Mimulus guttatus	50	0.1	0.2	0.2				
	RUMEX	Rumex	50	0.1	0.2	0.2				

Pseudotsuga menziesii Woodland/Forest Alliance Douglas-fir Woodland/Forest Alliance

As defined in the state, *Pseudotsuga menziesii* is dominant or co-dominant in the tree canopy with *Abies concolor, Acer macrophyllum, Calocedrus decurrens, Chrysolepis chrysophylla, Cornus nuttallii, Pinus lambertiana, Quercus garryana*, and *Q. kelloggii.* The canopy is continuous or intermittent, and it may be two-tiered. Shrubs are infrequent or common. The herbaceous layer is sparse to abundant. Stands occur on raised stream benches and terraces, and on slopes and ridges of all aspects. Soils are deep and well drained.

The Douglas-fir Alliance is uncommon in the study area, occurring on mesic slopes, often with *Quercus kelloggii*, *Q. chrysolepis*, *Pinus ponderosa*, or *Umbellularia californica*. Two associations were classified in the study area and are described below.

Pseudotsuga menziesii Association Douglas-fir Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically intermittent to continuous and dominated by *Pseudotsuga menziesii* at 27-75% cover. Other trees such as *Pinus ponderosa*, *Quercus chrysolepis*, *Quercus kelloggii*, and *Umbellularia californica* were characteristically present. The shrub layer was open with *Toxicodendron diversilobum* dominant and with *Ceanothus integerrimus*, *Ribes roezlii*, and *Symphoricarpos albus* var. *laevigatus* often present. The herbaceous layer was open to intermittent and often included *Galium aparine*, *Iris macrosiphon*, *Melica harfordii*, *Osmorhiza chilensis*, and *Torilis arvensis*.

This association was sampled infrequently in the study area, within the Cascade Range Foothills, High Cascade Range, and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt) and infrequently on metamorphic substrates. They occupied lower slopes to ridgetops that were somewhat steep. Stands of Douglas-fir occurred in the northern part of the study area, at higher altitudes or on cooler north- or east-facing slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Nevada and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Shingletown-Paradise (M261Dl), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	75	68-85	-
Herb	17.6	0-38	variable
Shrub	14.3	8-20	<5
Low Tree/Tall Shrub	1	0-4	5-10
Hardwood	5.8	5-8	10-35
Conifer	53.8	28-75	20-35
Relative non-native to native cover	1.4	0-3	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: E (2), NW (1), N (1)

Macrotopography: lower slope (1), lower to middle slope (2), upper slope to ridgetop (1)

Microtopography: flat (3), undulating (1)

Parent Material: volcanic (2), basalt (1), metamorphic (1) Soil Texture: clay or clay loam (3), loam or sandy loam (1)

	Mean	Range
Elevation	1978 ft.	440-3670 ft.
Slope	29.8°	20-36°
Large rock cover	0.9%	<1-2%
Small rock cover	2.3%	<1-5%
Bare ground cover	5.1%	<1-15%
Litter cover	89%	75-95%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=4)

Rapid Assessments: SNNR0419, SNNR0599, SNNR0720, SNNR1121

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada based upon data collected for this study. Other stands of this association have been identified at Castle Crags State Park in Shasta County (Stuart et al. 1996) and at Mount Tamalpais in Marin County (Evens and Kentner 2006). Several other forest associations, with *Pseudotsuga menziesii* as a dominant or co-dominant, have been described from higher elevations in the northern Sierra Nevada and adjacent southern Cascades by Fites (1993), and were later re-interpreted by Sawyer et al. (2007 MS). This association represents the lowest elevation expression of the alliance within the Sierra Nevada region.

STAND TABLE Pseudotsuga menziesii Association

	ifeform.	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
T	ree	DOME T	Dec dete en en en 'en''	400	54.0	07	7-			V	
		PSME-T	Pseudotsuga menziesii		51.8		75 -	Х		X	
		QUKE-T	Quercus kelloggii	75 	3.0	2	5			X	
		QUCH2-T	Quercus chrysolepis	75	2.3	0.2	5			X	
		PIPO-T	Pinus ponderosa	75	2.3	1	7			X	
		UMCA-M	Umbellularia californica	75	1.8	2	3			Χ	
		QUCH2-M	Quercus chrysolepis	75	0.4	0.2				Χ	
		PSME-M	Pseudotsuga menziesii	50	1.3	0.2					
		UMCA-T	Umbellularia californica	50	0.6	0.2					
		AECA-T	Aesculus californica	25	0.5	2	2				
		AECA-M	Aesculus californica	25	0.5	2	2				
		ACMA3-T	Acer macrophyllum	25	0.3	1	1				
		CADE27-M	Calocedrus decurrens	25	0.1	0.2	0.2				
		PIPO-M	Pinus ponderosa	25	0.1	0.2	0.2				
		QUCH2-L	Quercus chrysolepis	25	0.1	0.2	0.2				
		QUKE-L	Quercus kelloggii	25	0.1	0.2	0.2				
		UMCA-L	Umbellularia californica	25	0.1	0.2	0.2				
S	Shrub										
		TODI	Toxicodendron diversilobum	75	4.3	2	13		Χ	Χ	
		SYALL	Symphoricarpos albus var. laevigatus	50	1.3	2	3				
		CEIN3	Ceanothus integerrimus	50	8.0	0.2	3				
		RIRO	Ribes roezlii	50	0.1	0.2	0.2				
		HEAR5	Heteromeles arbutifolia	25	1.8	7	7				
		LOIN4	Lonicera interrupta	25	0.8	3	3				
		LOHIV	Lonicera hispidula var. vacillans	25	0.3	1	1				
		ARCA10	Aristolochia californica	25	0.1	0.2	0.2				
		RHCA	Rhamnus californica	25	0.1	0.2	0.2				
		RHRU	Rhamnus rubra	25	0.1	0.2	0.2				
H	lerb										
		MEHA2	Melica harfordii	75	0.2	0.2	0.2			Χ	
		GAAP2	Galium aparine	50	0.5	1	1				
		IRMA	Iris macrosiphon	50	0.5	1	1				
		OSCH	Osmorhiza chilensis	50	0.5	1	1				
		TOAR	Torilis arvensis	50	0.5	1	1				Χ

STAND TABLE continued Pseudotsuga menziesii Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	MELIC	Melica	25	4.5	18	18				
	FEOC	Festuca occidentalis	25	2.5	10	10				
	ADJO	Adiantum jordanii	25	1.5	6	6				
	ELGL	Elymus glaucus	25	1.3	5	5				
	BROMU	Bromus	25	8.0	3	3				Χ
	VILOL2	Viola lobata subsp. lobata	25	0.5	2	2				
	CACA39	Cardamine californica	25	0.3	1	1				
	DRAR3	Dryopteris arguta	25	0.3	1	1				
	NEHE	Nemophila heterophylla	25	0.3	1	1				
	SACR2	Sanicula crassicaulis	25	0.3	1	1				
	TAUSC	Tauschia	25	0.3	1	1				
	ASHA	Asarum hartwegii	25	0.1	0.2	0.2				
	BROR2	Bromus orcuttianus	25	0.1	0.2	0.2				
	CYEC	Cynosurus echinatus	25	0.1	0.2	0.2				Χ
	FRITI	Fritillaria	25	0.1	0.2	0.2				
	HIAL2	Hieracium albiflorum	25	0.1	0.2	0.2				
	IRIS	Iris	25	0.1	0.2	0.2				
	LILIU	Lilium	25	0.1	0.2	0.2				
	PETR7	Pentagramma triangularis	25	0.1	0.2	0.2				
	PIEL4	Piperia elongata	25	0.1	0.2	0.2				
	POGL9	Potentilla glandulosa	25	0.1	0.2	0.2				
	STREP2	Streptanthus	25	0.1	0.2	0.2				
Cryptoga	ım									
	MOSS	Moss	50	1.8	2	5				

Pseudotsuga menziesii - Quercus chrysolepis Association Canyon Live Oak - Douglas-fir Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically intermittent to continuous and codominated by *Quercus chrysolepis* at 25-67% cover and *Pseudotsuga menziesii* at 12-45% cover. *Pinus ponderosa* was often present in the overstory. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant and with *Lonicera hispidula* var. *vacillans* often present. The herbaceous layer was open and often included *Sanicula crassicaulis* and *Torilis arvensis*.

This association was sampled infrequently in the study area within the High Cascade Range and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on volcanic, metamorphic, or mixed rock substrates. They occupied bottom to middle slopes, that were gentle to steep (often north-facing), on stream benches or terraces, sometimes in canyon bottoms near streams. They typically occurred in cool settings and higher altitudes within the study area.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado, Nevada, Placer, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Shingletown-Paradise (M261Dl), Tuscan Flows (M261Fa), and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	76.8	60-97	-
Herb	6.4	1-17	variable
Shrub	18.2	1-40	<5
Low Tree/Tall Shrub	4.2	0-15	5-10
Hardwood	45.4	25-77	10-20
Conifer	29.4	12-55	10-20
Relative non-native to native cover	0.5	0-2	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: E (2), S (1), NE (1), (0)

Macrotopography: bottom (1), lower slope (2), lower to middle slope (1), middle slope (1)

Microtopography: undulating (4), flat (1)

Parent Material: volcanic (2), basalt (1), metamorphic (1), mixed rock (1)

Soil Texture: clay or clay loam (1), sand (1), silt or silt loam (1)

	Mean	Range
Elevation	1676 ft.	740-2721 ft.
Slope	26.8°	4-40°
Large rock cover	7.4%	0.6-25%
Small rock cover	19.6%	0.4-66%
Bare ground cover	7%	1-12%
Litter cover	60.5%	3-88%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=5)

Rapid Assessments: SNNR0422, SNNR0505, SNNR0600 Relevés: SNFN0186, SNFN0574

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and Montane zones. Fites (1993) described a *Pseudotsuga menziesii* - (mixed conifer) - *Quercus chrysolepis / Polystichum munitum* Association from the northern Sierra Nevada and adjacent southern Cascades (between 3000 and 4400 ft. elevation) that resembles our association in the co-dominance of the two nominate trees. The principal differences lie in the absence of sword-fern (*Polystichum munitum*), and the trees *Pinus lambertiana*, *Abies concolor*, and *Quercus kelloggii* from our samples. Fites' association indicates cooler and perhaps wetter mid elevations. Taylor and Teare (1979) also described a *P. menziesii* - *Quercus chrysolepis* association from Manzanita Creek RNA in Trinity Co. However, this association differs from ours in the co-dominance of *Arbutus menziesii* and *Acer macrophyllum* (Cheng 2004). NatureServe et al. (2003b) described a *P. menziesii* - *Q. chrysolepis* association with a co-dominance of the two nominate trees, which is essentially the same as ours, although ranging to higher elevations (up to 5300 ft.). They place it in the *P. menziesii* alliance, and we are adhering to this alliance placement per Sawyer et al. (2007 MS).

STAND TABLE

Pseudotsuga menziesii - Quercus chrysolepis Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUCH2-T	Quercus chrysolepis	100	39.6	25	67	Χ		Χ	
	PSME-T	Pseudotsuga menziesii	100	25.2	12	45		Χ	Χ	
	PIPO-T	Pinus ponderosa	60	2.8	2	9				
	PSME-M	Pseudotsuga menziesii	60	2.6	3	5				
	AECA-M	Aesculus californica	60	0.4	0.2	1				
	QUCH2-M	Quercus chrysolepis	60	0.4	0.2	1				
	UMCA-T	Umbellularia californica	40	0.6	1	2				
	CADE27-M	Calocedrus decurrens	40	0.2	0.2	1				
	UMCA-M	Umbellularia californica	40	0.2	0.2	1				
	PSME-L	Pseudotsuga menziesii	40	0.1	0.2	0.2				
	QUCH2-L	Quercus chrysolepis	40	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	100	14.4	0.2	35	Χ		Χ	
	LOHIV	Lonicera hispidula var. vacillans	60	2.9	0.2	14				
	PHLE4	Philadelphus lewisii	40	1.0	0.2	5				
	RHIL	Rhamnus ilicifolia	40	0.4	0.2	2				
	RHRU	Rhamnus rubra	40	0.1	0.2	0.4				
Herb										
	TOAR	Torilis arvensis	80	0.2	0.2	0.2			Χ	Χ
	SACR2	Sanicula crassicaulis	60	0.1	0.2	0.2				
	ADJO	Adiantum jordanii	40	2.4	0.2	12				
	METO	Melica torreyana	40	1.0	1	4				
	CAAL2	Calochortus albus	40	0.1	0.2	0.2				
	GAAP2	Galium aparine	40	0.1	0.2	0.2				
	MEHA2	Melica harfordii	40	0.1	0.2	0.2				

Quercus chrysolepis Woodland/Forest Alliance Canyon Live Oak Woodland/Forest Alliance

As defined in the state, *Quercus chrysolepis* is dominant or co-dominant with other hardwoods in the tree canopy, such as *Abies concolor*, *Acer macrophyllum*, *Arbutus menziesii*, *Calocedrus decurrens*, *Lithocarpus densiflorus*, *Pinus coulteri*, *P. lambertiana*, *P. ponderosa*, *P. monophylla*, *Pseudotsuga menziesii*, *P. macrocarpa*, *Quercus garryana*, *Q. kelloggii*, *Q. wislizeni*, and *Umbellularia californica*. The canopy is continuous to intermittent. The shrub layer is intermittent to infrequent and the herbaceous layer is sparse. Stands occur on stream benches and terraces, in canyon bottoms, near streams, and on upland slopes on steep, shallow, rocky, infertile soils.

Nine associations of the Canyon Live Oak Alliance were classified in the study area and are described below. Four stands (SNNR0414, SNNR0303, SNNR1217, SNNR0636) showed additional variation and were classified to the alliance level only. The stands contained *Aesculus californica* in the understory and other shrubs such as *Cercocarpus betuloides* and *Heteromeles arbutifolia*. Several associations with a co-dominance of *Q. chrysolepis* and other trees may have been classified previously as associations of different alliances, such as the *Pinus ponderosa* or *Quercus kelloggii* Alliances (please see key and descriptions for details).

Quercus chrysolepis Association Canyon Live Oak Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus chrysolepis* at 13-60% cover. *Aesculus californica* was often present in the overstory. The shrub layer was open to intermittent with *Ceanothus integerrimus*, *Cercocarpus betuloides*, *Heteromeles arbutifolia*, *Lonicera interrupta*, and *Toxicodendron diversilobum* often present. The herbaceous layer was open and often included non-natives *Cynosurus echinatus* and *Torilis arvensis*.

In the study area, this association was sampled four times in the High Cascade Range and four times in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands more commonly occurred on volcanic substrates, and occasionally on, metamorphic, mixed metamorphic, gabbro, or slate substrates. They occupied lower to upper slopes that were moderate to steep, on raised stream benches and terraces, sometimes in canyon bottoms near streams.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, El Dorado, Placer, Tehama, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	72.1	53-90	-
Herb	6.5	1-15	variable
Shrub	34.4	15-55	<5
Low Tree/Tall Shrub	1.4	0-10	5-10
Hardwood	41.5	15-60	5-20

Conifer	2.1	0-10	10-35
Relative non-native to native cover	2.9	0-7	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (2), N (2), E (2), S (1), NW (1)

Macrotopography: lower slope (2), middle slope (3), upper slope (3)

Microtopography: undulating (5), flat (2), convex (1)

Parent Material: volcanic (4), gabbro (1), metamorphic (1), mixed metamorphic (1), slate (1)

Soil Texture: silt or silt loam (3), clay or clay loam (2), loam or sandy loam (2)

	Mean	Range
Elevation	2427 ft.	1170-3710 ft.
Slope	25.1°	12-34°
Large rock cover	12.9%	<1-45%
Small rock cover	7.4%	<1-25%
Bare ground cover	12.4%	2-46%
Litter cover	63.6%	30-90%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=8)

Rapid Assessments: SNNR0127, SNNR0327, SNNR0331, SNNR0420, SNNR0488,

SNNR0622, SNNR0748, SNNR0771

Rank: G5S5

GLOBAL DISTRIBUTION

This association has been described for the Foothills of the Sierra Nevada and southern Cascade ranges from the data collected for this project. Other *Q. chrysolepis* associations have been defined from the California Coast Ranges and from western Riverside County (Klein and Evens 2006, Evens and Keeler-Wolf 2006, Evens and Kentner 2006). They are all similar in their strong dominance by *Q. chrysolepis*, although minor floristic differences occur. At this point, we do not have complete evidence to substantiate different associations, as most of the more frequent species are found widely in the state. However, shrubs such as *Ceanothus integerrimus*, *Rhus trilobata*, and *Cercis occidentalis* may be more indicative of central and northern regions, such as the Central and North Coast Ranges, Sierra Nevada, and southern Cascades.

STAND TABLE Quercus chrysolepis Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUCH2-T	Quercus chrysolepis	100	40.0		60	Χ		Χ	
	QUCH2-M	Quercus chrysolepis	63	3.1	0.2	14				
	AECA-M	Aesculus californica	50	1.2	0.2	8				
	QUKE-T	Quercus kelloggii	38	0.4	0.2	2				
	PIPO-T	Pinus ponderosa	38	0.2	0.2	1				
	PISA2-T	Pinus sabiniana	25	1.3	0.2	10				
Shrub										
	TODI	Toxicodendron diversilobum		10.8		35			Χ	
	CEIN3	Ceanothus integerrimus	88	5.3	0.2	30			Χ	
	HEAR5	Heteromeles arbutifolia	50	1.7	0.2	9				
	CEBE3	Cercocarpus betuloides	50	1.3	1	5				
	LOIN4	Lonicera interrupta	50	0.7	0.2	4				
	CEOCO	Cercis occidentalis	38	2.2	0.2	12				
	RHTR	Rhus trilobata	38	1.0	1	5				
	SYALL	Symphoricarpos albus var. laevigatus	25	7.5	20	40				
	QUGAB	Quercus garryana var. breweri	25	1.5	5	7				
	PTCR3	Ptelea crenulata	25	0.9	1	6				
	ARMA	Arctostaphylos manzanita	25	0.7	0.2	5				
	RHTO6	Rhamnus tomentella	25	0.5	1	3				
	RHIL	Rhamnus ilicifolia	25	0.2	0.2	1				
	BEAQD	Berberis aquifolium var. dictyota	25	0.1	0.2	0.2				
Herb										
	TOAR	Torilis arvensis	75	0.9	0.2	2			Χ	Χ
	CYEC	Cynosurus echinatus	50	1.2	0.2	4				Χ
	CLRH	Clarkia rhomboidea	38	0.3	0.2	1				
	GAPO	Galium porrigens	38	0.3	0.2	1				
	VUMI	Vulpia microstachys	25	1.0	0.2	8				
	CAAL2	Calochortus albus	25	0.1	0.2	0.2				
	ERLA6	Eriophyllum lanatum	25	0.1	0.2	0.2				
	PETR7	Pentagramma triangularis	25	0.1	0.2	0.2				
	SACR2	Sanicula crassicaulis	25	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	25	6.3	5	45				

Quercus chrysolepis / Arctostaphylos viscida Association Canyon Live Oak / Whiteleaf Manzanita Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Quercus chrysolepis* at 16-65% cover. Other trees often present were *Pinus ponderosa* and *Quercus kelloggii*. The shrub layer was open to continuous, where *Arctostaphylos viscida* was usually dominant and *Heteromeles arbutifolia* and *Toxicodendron diversilobum* were often present. The herbaceous layer was open and included a variety of forbs and grasses (see stand table below).

This association was sampled commonly in the study area, only in the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands usually occurred on metamorphic substrates, but also occurred on gabbro, granitic, mixed rock, slate, and other sedimentary substrates. They most frequently occupied middle and upper slopes, but also occupied lower slopes and ridgetops. Slopes were moderate to steep and typically of cooler, northeast to southeast-facing aspects.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, El Dorado, Placer, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	64.9	30-92	-
Herb	5.5	0-18	variable
Shrub	30.6	9-83	<5
Low Tree/Tall Shrub	1.9	0-23	5-10
Hardwood	48.8	20-70	5-20
Conifer	1	0-6	5-35
Relative non-native to native cover	2.4	0-18	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: E (4), SE (3), NE (3), NW (1), N (1)

Macrotopography: lower slope (2), lower to middle slope (1), middle slope (3), middle to upper slope (2), upper slope (3), upper slope to ridgetop (1)

Microtopography: undulating (8), flat (3), concave (1)

Parent Material: metamorphic (7), gabbro (1), granitic (1), mixed rock (1), sedimentary (1), slate (1)

Soil Texture: clay or clay loam (4), silt or silt loam (4), loam or sandy loam (2)

	Mean	Range
Elevation	1684 ft.	850-2359 ft.
Slope	20.5°	7-40°
Large rock cover	3.6%	<1-25%
Small rock cover	3.8%	<1-12%
Bare ground cover	10.5%	1-34%
Litter cover	78.9%	50-94%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=12)

Rapid Assessments: SNNR0131, SNNR0177, SNNR0662, SNNR0747, SNNR0760,

SNNR0764, SNNR0766, SNNR1130, SNNR1190, SNNR1297

Relevés: SNFN0145, SNFN0568

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and lower elevations of the Sierra Nevada Montane zone (NatureServe et al. 2003b). In Yosemite National Park, stands have been sampled from elevations of up to 6000 ft. Stands may also exist in the Klamath Mountains of California.

STAND TABLE

Quercus chrysolepis / Arctostaphylos viscida Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUCH2-T	Quercus chrysolepis	100	45.5	16	65	Χ		Χ	
	PIPO-T	Pinus ponderosa	67	1.0	0.2	6				
	QUKE-T	Quercus kelloggii	58	3.4	0.2	30				
	QUWI2-T	Quercus wislizeni	42	0.9	0.2	5				
	QUCH2-L	Quercus chrysolepis	42	0.1	0.2	0.2				
	QUCH2-M	Quercus chrysolepis	33	0.4	0.2	2				
	QUWI2-M	Quercus wislizeni	33	0.3	0.2	2				
	QUKE-L	Quercus kelloggii	25	0.1	0.2	0.2				
	QUWI2-L	Quercus wislizeni	25	0.1	0.2	0.2				
Shrub										
	ARVI4	Arctostaphylos viscida	100	12.4	1	35		Χ	Χ	
	HEAR5	Heteromeles arbutifolia	100	7.2	0.2	27			Χ	
	TODI	Toxicodendron diversilobum	83	7.1	0.2	45			Χ	
	RHIL	Rhamnus ilicifolia	33	0.7	1	5.2				
	LOHIV	Lonicera hispidula var. vacillans	33	0.1	0.2	1				
	CECU	Ceanothus cuneatus	25	0.3	0.2	3				
Herb										
	TOAR	Torilis arvensis	42	0.3	0.2	3				Χ
	LUCO6	Luzula comosa	42	0.1	0.2	0.2				
	GAPO	Galium porrigens	33	0.1	0.2	0.2				
	POCOC	Polygala cornuta var. cornuta	33	0.1	0.2	0.2				
	SACR2	Sanicula crassicaulis	33	0.1	0.2	0.2				
	BRDI3	Bromus diandrus	25	0.5	1	4				Χ
	GAAP2	Galium aparine	25	0.1	0.2	1				
	PETR7	Pentagramma triangularis	25	0.1	0.2	1				
	AICA	Aira caryophyllea	25	0.1	0.2	0.2				Χ
	ERLA6	Eriophyllum lanatum	25	0.1	0.2	0.2				
	LOMI	Lotus micranthus	25	0.1	0.2	0.2				
	TRMI4	Trifolium microcephalum	25	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	42	1.9	2	15				

Quercus chrysolepis - Pinus ponderosa Association Canyon Live Oak - Ponderosa Pine Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically intermittent to continuous and dominated by *Quercus chrysolepis* at 13-60% cover. *Pinus ponderosa* was characteristically present in the overstory. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant and with *Heteromeles arbutifolia* often present. The herbaceous layer was variable and often included *Hieracium albiflorum*, *Sanicula crassicaulis*, and *Torilis arvensis*.

This association was sampled commonly in the study area in the northern Sierra Nevada Foothills, and infrequently in the central Sierra Nevada Foothills and Cascade Range Foothills, Subregions (Hickman 1993). Stands often occurred on metamorphic, and infrequently on volcanic, granitic, or mixed metamorphic substrates. They occupied bottom to upper slopes that were gentle to steep (often north-facing), on stream benches or terraces, and sometimes in canyon bottoms near streams.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, El Dorado, Placer, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	76	60-83	-
Herb	7.6	1-20	variable
Shrub	38.3	15-53	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	47.9	30-65	10-20
Conifer	15.1	7-34	10-35
Relative non-native to native cover	5.7	0-29	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (3), Variable (1), SE (1), NW (1), NE (1)

Macrotopography: bottom (1), lower slope (1), lower to middle slope (1), middle slope (3), upper slope (1)

Microtopography: undulating (3), flat (2), concave (2)

Parent Material: metamorphic (4), granitic (1), mixed metamorphic (1), volcanic (1)

Soil Texture: clay or clay loam (3), loam or sandy loam (2), sand (1)

	Mean	Range
Elevation	1483 ft.	1147-1675 ft.
Slope	20.80	1-32°
Large rock cover	2.9%	<1-7%
Small rock cover	4.7%	1-10%
Bare ground cover	12.8%	6-20%
Litter cover	76.3%	66-85%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=7)

Rapid Assessments: SNNR0518, SNNR0667, SNNR0686, SNNR1128, SNNR1140,

SNNR1189, SNNR1224

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and the lower elevations of the Sierra Nevada Montane zone, in Yosemite and Sequoia National Parks (NatureServe et al. 2003b, S Haultain, pers. comm. 2004). Stands in Yosemite were sampled up to 6100 ft. elevation.

STAND TABLE Quercus chrysolepis - Pinus ponderosa Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUCH2-T	Quercus chrysolepis		45.7		65	X		Χ	
	PIPO-T	Pinus ponderosa	100	8.0	0.2	17			Χ	
	CADE27-T	Calocedrus decurrens	57	3.7	5	7				
	CADE27-M	Calocedrus decurrens	43	2.7	1	16				
	QUKE-T	Quercus kelloggii	43	0.2	0.2	1				
	PSME-T	Pseudotsuga menziesii	29	2.0	2	12				
	PISA2-T	Pinus sabiniana	29	1.2	0.2	8				
	QUCH2-M	Quercus chrysolepis	29	0.3	0.2	2				
	QUCH2-L	Quercus chrysolepis	29	0.1	0.2	0.2				
Shrub									.,	
	TODI	Toxicodendron diversilobum	100			30		Х	X	
	HEAR5	Heteromeles arbutifolia	86	7.1	1	20			Χ	
	ARCA10	Aristolochia californica	29	0.2	0.2	1				
	KEBR	Keckiella breviflora	29	0.1	0.2	0.2				
Herb	TOAD	Tavilia amanaia	74	0.0	0.0	40				V
	TOAR	Torilis arvensis	71	2.2	0.2	10				Χ
	HIAL2	Hieracium albiflorum	57	0.2	0.2	1				
	SACR2	Sanicula crassicaulis	57	0.1	0.2	0.2				
	PETR7	Pentagramma triangularis	43	0.1	0.2	0.2				
	POCOC	Polygala cornuta var. cornuta	43	0.1	0.2	0.2				V
	VISA	Vicia sativa	29	1.0	1	6				X
	CYEC	Cynosurus echinatus	29	0.7	1	4				Χ
	BRLA3	Bromus laevipes	29	0.3	1	1				
	IRHA	Iris hartwegii	29	0.3	1	1				
	ELGL	Elymus glaucus	29	0.2	0.2	1				
	METO	Melica torreyana	29	0.2	0.2	1				
	OSCH	Osmorhiza chilensis	29	0.2	0.2	1				
	CAAL2	Calochortus albus	29	0.1	0.2	0.2				
	GAPO	Galium porrigens	29	0.1	0.2	0.2				
	IRIS	Iris	29	0.1	0.2	0.2				
	LUCO6	Luzula comosa	29	0.1	0.2	0.2				
Cryptoga		Mana	40	0.4	_	4-				
	MOSS	Moss	43	3.1	2	15				

Quercus chrysolepis - Quercus kelloggii Association Canyon Live Oak - Black Oak Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically intermittent to continuous and dominated by *Quercus chrysolepis* at 20-66% cover. *Quercus kelloggii* was characteristically present in the overstory. The shrub layer was open to continuous with *Toxicodendron diversilobum* dominant and with *Heteromeles arbutifolia* often present. The herbaceous layer was open with *Cynosurus echinatus*, *Elymus glaucus*, *Galium porrigens*, *Sanicula crassicaulis*, and *Torilis arvensis* occurring occasionally.

In the study area, this association was sampled commonly within the northern Sierra Nevada Foothills and less frequently the Cascade Range Foothills and High Cascade Range Subregions (Hickman 1993). Stands occurred commonly on metamorphic, sometimes on igneous and volcanic, and infrequently on sedimentary substrates. They occupied lower to upper slopes that were moderate to steep, often on stream benches or terraces, sometimes in canyon bottoms near streams. Most stands were sampled north of the Mokulumne River on mesic, northeast to east-facing slopes, or near streams.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Placer, Shasta, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	74.4	55-87	-
Herb	7.5	2-20	variable
Shrub	32.5	9-73	<5
Low Tree/Tall Shrub	2.2	0-20	5-10
Hardwood	53.4	29-71	10-20
Conifer	5.7	0-25	10-35
Relative non-native to native cover	1.9	0-13	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (5), Variable (2), S (2), NW (2), E (2), W (1)

Macrotopography: lower slope (5), lower to middle slope (1), lower to upper slope (1), middle slope (4), upper slope (1)

Microtopography: flat (4), undulating (4), convex (1), concave (1)

Parent Material: metamorphic (7), igneous (3), volcanic (3), sedimentary (1)

Soil Texture: loam or sandy loam (6), clay or clay loam (1), silt or silt loam (1), unknown (1)

	Mean	Range
Elevation	1412 ft.	331-3428 ft.
Slope	25.8°	10-35°
Large rock cover	8.5%	0-60%
Small rock cover	2.8%	0-10%
Bare ground cover	8.6%	1-35%
Litter cover	76.3%	22-94%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=14)

Rapid Assessments: SNNR0460, SNNR0479, SNNR0510, SNNR0643, SNNR0647,

SNNR0730, SNNR0796, SNNR0820, SNNR1184, SNNR1193, SNNR1287

Relevés: SNFN0062, SNFN0181, SNFN0182

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the northern Sierra Nevada Foothills and elsewhere in the Sierra Nevada and Klamath Mountains (Allen et al. 1991). No samples of this association have been collected in either Yosemite or Sequoia and Kings Canyon National Parks, suggesting that this is a relatively lower elevation type associated mainly with the northern Sierra Nevada Foothills and lower montane zones.

STAND TABLE *Quercus chrysolepis - Quercus kelloggii* Association

440,040 0.	, 00.0,0.0	querous noneggn rissociation								
Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUCH2-T	Quercus chrysolepis	100	39.2	20	66	Χ		Χ	
	QUKE-T	Quercus kelloggii	100	15.7	3	45			Χ	
	PIPO-T	Pinus ponderosa	64	2.5	0.2	7				
	PISA2-T	Pinus sabiniana	64	1.6	0.2	5				
	QUWI2-T	Quercus wislizeni	50	2.0	0.2	14				
	AECA-M	Aesculus californica	50	0.9	0.2	5				
	CADE27-T	Calocedrus decurrens	29	1.3	0.2	11				
	QUCH2-L	Quercus chrysolepis	29	0.1	0.2	1				
	PSME-T	Pseudotsuga menziesii	21	0.6	0.2	8				
	QUCH2-M	Quercus chrysolepis	21	0.5	0.2	5				
	QUDO-T	Quercus douglasii	21	0.2	0.2	2				
	UMCA-M	Umbellularia californica	21	0.1	0.2	1				
	QUKE-L	Quercus kelloggii	21	0	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	93	12.8	0.2	45		Χ	Χ	
	HEAR5	Heteromeles arbutifolia	50	8.2	0.2	60.2				
	ARCA10	Aristolochia californica	36	0.2	0.2	2				
	CEIN3	Ceanothus integerrimus	29	8.0	2	4				
	LOHIV	Lonicera hispidula var. vacillans	29	0.5	0.2	5				
	RHTO6	Rhamnus tomentella	29	0.4	0.2	4				
	VICA5	Vitis californica	29	0.2	0.2	1				
	ARVI4	Arctostaphylos viscida	21	0.6	2	5				
	PHLE4	Philadelphus lewisii	21	0.4	0.2	5				
	RIRO	Ribes roezlii	21	0.2	0.2	3				
Herb										
	TOAR	Torilis arvensis	43	0.3	0.2	2				Χ
	GAPO	Galium porrigens	36	0.1	0.2	0.2				
	CYEC	Cynosurus echinatus	29	0.9	0.2	9				Χ

STAND TABLE continued *Quercus chrysolepis - Quercus kelloggii* Association

Lifeform Code	Species Nan	ne Coi	n Avg	Min	Max	D	сD	С	Ν
Herb									
ELGL	Elymus glau	icus 29	0.2	0.2	2				
CAAL	2 Calochortus	albus 21	0.1	0.2	1				
SACF	2 Sanicula cra	nssicaulis 29	0.1	0.2	1				
METO	Melica torrey	yana 21	0.3	0.2	2				
BRLA	3 Bromus laev	ripes 21	0.1	0.2	1				
PETR	7 Pentagramn	na triangularis 21	0.1	0.2	1				
CYG	Cynoglossui	m grande 21	0	0.2	0.2				
DRAF	3 Dryopteris a	rguta 21	0	0.2	0.2				
GAAF	2 Galium apar	rine 21	0	0.2	0.2				
Cryptogam									
MOS	S Moss	29	4.1	1	50				

Quercus chrysolepis - Quercus kelloggii - Acer macrophyllum Association (Provisional) Canyon Live Oak - Black Oak - Big-leaf Maple Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically intermittent to continuous and dominated by *Quercus chrysolepis* at 25-55% cover. Other trees such as *Acer macrophyllum* and *Quercus kelloggii* were characteristically present. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant and with *Heteromeles arbutifolia* and *Symphoricarpos albus* var. *laevigatus* often present. The herbaceous layer was open and often included *Bromus laevipes* and *Torilis arvensis*.

In the study area, this association was sampled most commonly in the northern Sierra Nevada Foothills, and once in the Cascade Range Foothills Subregions (Hickman 1993). Stands often occurred on igneous substrates (basalt, gabbro, or granitic), occasionally on metamorphic, and infrequently on limestone substrates. They occupied bottom to upper slopes that were gentle to steep and somewhat cool (north-facing, higher altitudes, northern latitudes). Stands of Canyon Live Oak - Black Oak - Big-leaf Maple often occurred on stream terraces or benches, on springfed slopes, and sometimes in canyon bottoms near streams.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, Calaveras, and Nevada Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	81.7	70-92	-
Herb	6	3-10	variable
Shrub	39.7	17-65	<1-5
Low Tree/Tall Shrub	7.3	0-26	5-10
Hardwood	58.7	35-75	10-35
Conifer	7.4	0-17	10-35
Relative non-native to native cover	5.9	0-18	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (2), N (2), Variable (1), SW (1), SE (1)

Macrotopography: bottom (1), lower slope (1), lower to middle slope (3), middle slope (1), upper slope (1)

Microtopography: undulating (3), flat (2), convex (1), concave (1)

Parent Material: basalt (2), metamorphic (2), gabbro (1), granitic (1), limestone (1)

Soil Texture: loam or sandy loam (2), silt or silt loam (2), sand (1)

	Mean	Range
Elevation	1307 ft.	564-2029 ft.
Slope	25.3°	3-45°
Large rock cover	5.1%	1-15%
Small rock cover	9.3%	<1-30%
Bare ground cover	9.2%	<1-25%
Litter cover	68.6%	18-94%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=7)

Rapid Assessments: SNNR0533, SNNR0761, SNNR0765, SNNR0774, SNNR1057,

SNNR1357, SNNR1379

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely on data collected for this project. We predict that this association also occurs in the eastern Klamath Mountains at lower elevations.

STAND TABLE

Quercus chrysolepis - Quercus kelloggii - Acer macrophyllum Association (Provisional)

	X X X
	Χ
	X
X	X
	Χ
	X
	X

Quercus chrysolepis - Quercus Iobata / Vitis californica Association Canyon Live Oak - Valley Oak / California Wild Grape Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Quercus chrysolepis* at 14-65% cover. *Quercus lobata* was characteristically present in the overstory. The shrub layer was open to continuous with *Toxicodendron diversilobum* dominant and with *Aristolochia californica* and *Vitis californica* often present. The herbaceous layer was open and often included non-natives *Cynosurus echinatus* and *Torilis arvensis*.

In the study area, this association was sampled commonly in the Cascade Range Foothills and northern Sierra Nevada Foothills, and less frequently in the High Cascade Range Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt) substrates, and less frequently on limestone, shale, mixed alluvium, mixed rock, and metamorphic substrates. They occupied mostly bottom to lower slopes (occasionally found on middle to upper slopes), that were gentle to steep. Stands of Canyon Live Oak - Valley Oak / California Wild Grape occurred along riparian corridors or stream terraces.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, Calaveras, Nevada, Tehama, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections.

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	73.9	53-90	-
Herb	6.7	0-25	variable
Shrub	29	6-70	<5
Low Tree/Tall Shrub	8.6	0-30	5-10
Hardwood	45.9	18-70	5-20
Conifer	2.1	0-16	5-20
Relative non-native to native cover	10	0-47	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SE (3), NW (3), W (2), Variable (2), S (2), N (2), SW (1)

Macrotopography: bottom (4), bottom to lower slope (1), lower slope (5), lower to middle slope (1), middle slope (1), upper slope (2)

Microtopography: undulating (6), concave (5), convex (2)

Parent Material: volcanic (6), basalt (2), gabbro (1), igneous (1), limestone (1), metamorphic (1), mixed alluvium (1), mixed rock (1), shale (1)

Soil Texture: loam or sandy loam (4), clay or clay loam (3), silt or silt loam (3), sand (2)

	Mean	Range
Elevation	1329 ft.	476-2724 ft.
Slope	9.5°	2-30°
Large rock cover	7.4%	1-25%
Small rock cover	8.1%	<1-25%
Bare ground cover	10.3%	1-30%
Litter cover	69.8%	42-93%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=15)

Rapid Assessments: SNNR0175, SNNR0185, SNNR0269, SNNR0446, SNNR0514, SNNR0521, SNNR0522, SNNR0539, SNNR0551, SNNR0570, SNNR0743, SNNR1207, SNNR1216, SNNR1267, SNNR1377

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills solely based on data collected for this project. Similar stands may occur in the Inner North Coast Ranges.

STAND TABLE

Quercus chrysolepis - Quercus lobata / Vitis californica Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	QUCH2-T	Quercus chrysolepis	100	35.3	14	65	Χ		Χ	
	QULO-T	Quercus lobata	73	7.6	3	20				
	PISA2-T	Pinus sabiniana	47	0.9	0.2	10				
	ACMA3-T	Acer macrophyllum	33	1.3	0.2	5				
	QUCH2-M	Quercus chrysolepis	27	1.1	2	7				
	AECA-M	Aesculus californica	27	0.9	1	5				
	QUKE-T	Quercus kelloggii	27	0.6	0.2	5				
	QUDO-T	Quercus douglasii	27	0.5	1	3				
Shrub										
	TODI	Toxicodendron diversilobum	93	9.8	3	25		Χ	Χ	
	VICA5	Vitis californica	60	5.8	1	35				
	ARCA10	Aristolochia californica	53	0.7	0.2	3				
	RUDI2	Rubus discolor	40	5.9	1	50				Χ
	HEAR5	Heteromeles arbutifolia	40	1.1	0.2	5				
	RHTO6	Rhamnus tomentella	33	0.8	0.2	5				
	CAOC5	Calycanthus occidentalis	27	1.5	0.2	12				
	RHTR	Rhus trilobata	27	0.3	0.2	2				
Herb										
	TOAR	Torilis arvensis	80	1.4	0.2	5			Χ	Χ
	CYEC	Cynosurus echinatus	67	1.9	0.2	10				Χ
Cryptoga	am									
	MOSS	Moss	33	2.7	2	15				

Quercus chrysolepis - Quercus wislizeni Association Canyon Live Oak - Interior Live Oak Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Quercus chrysolepis* at 7-60% cover. *Quercus wislizeni* was characteristically present as a tree and/or shrub. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant and with *Heteromeles arbutifolia* often present. The herbaceous layer was open and often included non-native *Cynosurus echinatus*.

In the study area, this association was sampled commonly within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands often occurred on igneous (especially granitic) substrates, occasionally on sedimentary, and infrequently on mixed alluvium and mixed rock substrates. They more commonly occupied lower slopes, but also occupied middle to upper slopes, that were gentle to steep. They occurred on a variety of aspects in the study area, in dry to mesic settings, with sandy or loamy soils.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras, El Dorado, Nevada, and Placer Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	67.9	35-95	-
Herb	8.3	4-17	variable
Shrub	20.3	7-35	<5
Low Tree/Tall Shrub	2.2	0-20	5-10
Hardwood	46.6	13-90	5-20
Conifer	1.1	0-3	10-35
Relative non-native to native cover	8.1	0-22	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (2), NW (2), N (2), SW (1), SE (1), S (1), NE (1)

Macrotopography: lower slope (5), lower to middle slope (1), lower to upper slope (1), middle slope (3)

Microtopography: undulating (4), flat (3), concave (2), convex (1)

Parent Material: granitic (4), sedimentary (3), igneous (1), mixed alluvium (1), mixed rock (1)

Soil Texture: loam or sandy loam (3), clay or clay loam (1), sand (1)

	Mean	Range
Elevation	1039 ft.	616-1740 ft.
Slope	23.9°	5-32°
Large rock cover	15.4%	0-75%
Small rock cover	5.4%	<1-15%
Bare ground cover	11.1%	1-53%
Litter cover	64.4%	18-93%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=10)

Rapid Assessments: SNNR0264, SNNR0464, SNNR0490, SNNR0559, SNNR0606,

SNNR0639, SNNR1270, SNNR1378, SNNR1389 Relevés: SNFN0575

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and the adjacent lower elevation mountains (NatureServe et al. 2003b). It was a called a *Quercus wislizeni* - *Q. chrysolepis* Association of the *Q. wislizeni* Alliance in the NatureServe report; however, we now have more data from the Foothills to place this association more confidently in the *Q. chrysolepis* Alliance. The association also has been observed in Sequoia and Kings Canyon National Parks at low elevations on the western side of the Sierra Nevada.

STAND TABLE Quercus chrysolepis - Quercus wislizeni Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUCH2-T	Quercus chrysolepis	100	35.9	7	60	Χ		Χ	
	QUWI2-T	Quercus wislizeni	100	11.0	3	35			Χ	
	QUWI2-M	Quercus wislizeni	50	1.0	1	5				
	AECA-M	Aesculus californica	50	8.0	0.2	3				
	PIPO-T	Pinus ponderosa	40	0.6	0.2	3				
	PISA2-T	Pinus sabiniana	40	0.5	0.2	3				
	ARME-M	Arbutus menziesii	40	0.3	0.2	2				
	AECA-T	Aesculus californica	30	1.4	0.2	12				
Shrub										
	TODI	Toxicodendron diversilobum	100	6.6	2	15.2		Χ	Χ	
	HEAR5	Heteromeles arbutifolia	90	5.6	0.2	15			Χ	
	RHIL	Rhamnus ilicifolia	40	0.2	0.2	1				
	RUDI2	Rubus discolor	30	1.9	1	15				Χ
	PHLE4	Philadelphus lewisii	30	1.2	0.2	7				
	KEBR	Keckiella breviflora	30	0.5	0.2	3				
Herb										
	CYEC	Cynosurus echinatus	60	2.8	1	10				Χ
	TOAR	Torilis arvensis	40	0.5	0.2	4				Χ
	PETR7	Pentagramma triangularis	40	0.1	0.2	0.2				
	CLBI	Clarkia biloba	30	0.2	0.2	2				
	ADJO	Adiantum jordanii	30	0.1	0.2	0.2				
	MECA2	Melica californica	30	0.1	0.2	0.2				
Cryptog	am									
	MOSS	Moss	40	5.8	3	20				

Quercus chrysolepis - Umbellularia californica Association Canyon Live Oak - California Bay Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically intermittent to continuous and dominated by *Quercus chrysolepis* at 30-72% cover. *Umbellularia californica* was characteristically present in the overstory at low cover, and *Q. kelloggii* and *Pseudotsuga menziesii* were often present at low cover. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant and with *Heteromeles arbutifolia* often present. The herbaceous layer was open to intermittent and often included *Torilis arvensis*.

This association was sampled commonly in the study area within the northern Sierra Nevada Foothills and infrequently in the Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic substrates, but also on greenstone and other metamorphic substrates. They occupied lower to upper slopes and benches, that were somewhat steep to steep. Stands were often mesic and north-facing.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Placer Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Shingletown-Paradise (M261Dl), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	67.4	40-90	-
Herb	6.8	0-35	variable
Shrub	22.8	2-50	<5
Low Tree/Tall Shrub	2.1	0-12	5-10
Hardwood	55.8	33-72	10-35
Conifer	1.2	0-5	10-35
Relative non-native to native cover	1	0-4	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (4), SW (2), NW (2), Variable (1)

Macrotopography: lower slope (1), lower to middle slope (1), lower to upper slope (1), middle slope (2), middle to upper slope (1), upper slope (2), bench (1)

Microtopography: undulating (5), convex (2), flat (2)

Parent Material: volcanic (6), greenstone (1), igneous (1), metamorphic (1)

Soil Texture: loam or sandy loam (5), silt or silt loam (2)

	Mean	Range
Elevation	1486 ft.	477-2222 ft.
Slope	23.4°	16-35°
Large rock cover	5.8%	0-40%
Small rock cover	4.2%	<1-10%
Bare ground cover	5.8%	<1-15%
Litter cover	80.7%	28-95%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=9)

Rapid Assessments: SNNR0688, SNNR0715, SNNR0717, SNNR0719, SNNR0780,

SNNR0793, SNNR1122 Relevés: SNFN0095, SNFN0097

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills in this report and by NatureServe et al. (2003b) from the lower elevations of Yosemite National Park. It appears to be well sampled and common in Yosemite, ranging up to 5300 ft elevation. It is also known from Sequoia and Kings Canyon National Parks (S. Haultain, pers. comm. 2004).

STAND TABLE *Quercus chrysolepis - Umbellularia californica* Association

Lifeform	•	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUCH2-T	Quercus chrysolepis	100	49.6	30	72	Χ		Χ	
	UMCA-M	Umbellularia californica	89	5.2	0.2	20			Χ	
	QUKE-T	Quercus kelloggii	67	2.5	0.2	10				
	QUCH2-M	Quercus chrysolepis	56	0.9	0.2	5				
	PSME-M	Pseudotsuga menziesii	56	0.6	0.2	4				
	UMCA-T	Umbellularia californica	44	2.5	0.2	10				
	CADE27-M	Calocedrus decurrens	44	0.5	0.2	3				
	QUCH2-L	Quercus chrysolepis	44	0.3	0.2	1				
	PSME-T	Pseudotsuga menziesii	33	8.0	0.2	5				
	AECA-M	Aesculus californica	33	0.6	0.2	5				
	QUKE-L	Quercus kelloggii	33	0.1	0.2	0.2				
	AECA-T	Aesculus californica	22	1.7	0.2	15				
	CADE27-L	Calocedrus decurrens	22	0.1	0.2	1				
	PIPO-T	Pinus ponderosa	22	0.1	0.2	1				
	QUKE-M	Quercus kelloggii	22	0	0.2	0.2				
	UMCA-L	Umbellularia californica	22	0	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	100	13.3	0.2	26	Χ		Χ	
	HEAR5	Heteromeles arbutifolia	78	1.2	0.2	7			Χ	
	RHTO6	Rhamnus tomentella	44	0.4	0.2	2				
	ARCA10	Aristolochia californica	44	0.1	0.2	0.2				
	COSE16	Cornus sericea	22	0.5	0.2	4				
	CEOCO	Cercis occidentalis	22	0.0	0.2	0.2				
	RIRO	Ribes roezlii	22	0.0	0.2	0.2				
Herb										
	TOAR	Torilis arvensis	67	0.2	0.2	1				Χ
	ADJO	Adiantum jordanii	44	1.4	0.2	6				
	DRAR3	Dryopteris arguta	44	0.1	0.2	0.2				
	GAAP2	Galium aparine	44	0.1	0.2	0.2				
Herb										
	CYGR	Cynoglossum grande	33	0.4	0.2	2				
	METO	Melica torreyana	33	0.2	0.2	1				
	MEHA2	Melica harfordii	33	0.1	0.2	0.2				
	POCA26	Polypodium calirhiza	33	0.1	0.2	0.2				
	SACR2	Sanicula crassicaulis	33	0.1	0.2	0.2				
	CYEC	Cynosurus echinatus	22	0.6	2	3				Χ
	PETR7	Pentagramma triangularis	22	0.1	0.2	1				
	GEMO	Geranium molle	22	0.0	0.2					Χ
	POMU	Polystichum munitum	22	0.0	0.2	0.2				
Cryptoga			~-							
	MOSS	Moss	67	6.6	1	37				

Quercus chrysolepis - Umbellularia californica / Vitis californica Riparian Association Canyon Live Oak – California Bay / California Wild Grape Riparian Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated or co-dominated by *Quercus chrysolepis* at 10-68% cover. *Umbellularia californica* was characteristically present in the overstory at low to moderate cover, and *Alnus rhombifolia* was often present at low to moderate cover. The shrub layer was open to continuous with *Toxicodendron diversilobum* co-dominant, with *Vitis californica* characteristically present, and with *Calycanthus occidentalis* often present. The herbaceous layer was open to intermittent and often included non-natives *Cynosurus echinatus* and *Torilis arvensis*.

In the study area, this association was sampled commonly in the Cascade Range Foothills and High Cascade Range, and only once in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic substrates (including basalt) but occasionally occurred on mixed alluvium, limestone, and sandstone substrates. They usually occupied bottom and lower slopes, but also occupied middle to upper slopes, that were flat to steep. Stands of Canyon Live Oak - California Bay / California Wild Grape occurred along riparian corridors and flood plains.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, Shasta, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	71.8	20-90	-
Herb	11	0-40	variable
Shrub	30.6	5-70	<5
Low Tree/Tall Shrub	6.7	0-43	5-10
Hardwood	50.3	15-72	5-20
Conifer	0.9	0-12	5-35
Relative non-native to native cover	10.2	0-65	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SE (5), S (5), NW (4), Variable (2), SW (2), N (2), NE (1), Flat (1)

Macrotopography: bottom (4), bottom to lower slope (1), bottom to middle slope (1), lower slope (8), lower to middle slope (3), middle slope (3), middle to upper slope (1), upper slope (1)

Microtopography: undulating (13), concave (5), flat (2), convex (2)

Parent Material: volcanic (17), mixed alluvium (2), basalt (1), limestone (1), sandstone (1) Soil Texture: loam or sandy loam (7), clay or clay loam (5), silt or silt loam (5), sand (1)

	Mean	Range
Elevation	1573 ft.	630-2550 ft.
Slope	14.7°	0-45°
Large rock cover	26.5%	1-65%
Small rock cover	12.5%	2-50%
Bare ground cover	12.6%	2-41%
Litter cover	42.3%	11-83%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=22)

Rapid Assessments: SNNR0180, SNNR0350, SNNR0379, SNNR0380, SNNR0382, SNNR0385, SNNR0416, SNNR0423, SNNR0432, SNNR0540, SNNR0568, SNNR1221, SNNR1239, SNNR1242, SNNR1246, SNNR1248, SNNR1250, SNNR1252, SNNR1308, SNNR1309, SNNR1319, SNNR1353

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills solely from the data collected for this project. We classified this type separately from the *Quercus chrysolepis - Umbellularia californica* Association, because it lacked *Vitis californica* and other common riparian associates, including *A. rhombifolia*, *Acer macrophyllum*, and *Calycanthus occidentalis*. Potter's (2005) *Quercus chrysolepis / Toxicodendron diversilobum* Association is similar and likely includes (or is equal to) this more finely divided association (see comments under the *Alnus rhombifolia - Quercus chrysolepis* Association). We perceive this association as largely lacking significant cover of *A. rhombifolia*, but it still maintains a riparian character indicated by the high constancy of other riparian woody species .

STAND TABLE *Quercus chrysolepis - Umbellularia californica | Vitis californica* Riparian Association

l ifoform	yodropio	Species Name			•	May	D	aO	_	NI.
Lifeform -	Code	Species Name	Con	Avg	IVIIN	wax	D	сD	С	N
Tree	OLICUA T	Oversus abrasalania	0.5	40.0	40	CO	Х		V	
	QUCH2-T	Quercus chrysolepis	95	40.0		68	۸		X	
	UMCA-T	Umbellularia californica	95	13.8		35			Χ	
	ALRH2-T	Alnus rhombifolia	55	3.2	0.2	21				
	ACMA3-T	Acer macrophyllum	45	1.3	0.2	10				
	UMCA-M	Umbellularia californica	41	1.6	0.2	12				
	AECA-M	Aesculus californica	32	0.2	0.2	2				
	QUCH2-M	, ,	32	0.1	0.2	1				
	CADE27-T		27	8.0	0.2	12				
	AECA-T	Aesculus californica	27	0.7	0.2	6				
	UMCA-L	Umbellularia californica	27	0.1	0.2	1				
Shrub										
	TODI	Toxicodendron diversilobum	91	12.7	1	47		Χ	X	
	VICA5	Vitis californica	82	5.4	0.4	16			Χ	
	CAOC5	Calycanthus occidentalis	55	4.2	0.2	40				
	RUDI2	Rubus discolor	41	5.8	0.2	68.2				Χ
	LOHIV	Lonicera hispidula var. vacillans	36	1.2	0.2	14				
	ARCA10	Aristolochia californica	36	1.0	0.2	14				
Herb										
	TOAR	Torilis arvensis	73	1.3	0.2	6				Χ
	CYEC	Cynosurus echinatus	64	2.1	0.2	15				Χ
	ADJO	Adiantum jordanii	27	1.2	0.2	10				
	POCA26	Polypodium calirhiza	27	0.3	0.2	2				
	WOFI	Woodwardia fimbriata	27	0.1	0.2	1				
	CYGR	Cynoglossum grande	27	0.1	0.2	1				
	SACR2	Sanicula crassicaulis	27	0.1	0.2	0.2				
	GAPO	Galium porrigens	23	0.1	0.2	1				
	BRLA3	Bromus laevipes	23	0.0	0.2	0.2				
Cryptoga	am	-								
	MOSS	Moss	36	9.9	0.2	60				

Quercus douglasii Woodland/Forest Alliance Blue Oak Woodland/Forest Alliance

As defined in the state, *Quercus douglasii* is usually dominant or sometimes co-dominant in the tree canopy with *Juniperus californica*, *Pinus sabiniana*, *Quercus agrifolia*, *Q. lobata*, and *Q. wislizeni*. The canopy is continuous, intermittent, or savanna-like. The shrub layer is sparse to intermittent and *Ceanothus cuneatus* or *Arctostaphylos viscida* may occur. The herbaceous layer is sparse or grassy, and forbs are present seasonally. Stands form on valley bottoms, foothills, and rock outcrops. Stands typically occur on shallow, often rocky, infertile soils with moderate to excessive drainage, in upland valleys and on steep to gentle slopes.

Perhaps the most widespread foothill tree alliance in the study area, stands of the *Quercus douglasii* Alliance form open savannas or intermittent woodlands with generally low shrub cover and grassy understories. Eleven associations were described for the Blue Oak Alliance in the study area. Four stands (SNFN0654, SNNR0376, SNNR0378, SNNR1339) showed additional variation and were classified to the alliance level only; one had high cover of *Toxicodendron diversilobum* with *Aesculus californica*, and three had low cover of *Quercus douglasii*.

Quercus douglasii | Annual Grass - Forb Sub-Alliance Blue Oak / Annual Grass - Forb Sub-Alliance

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated solely by *Quercus douglasii* at 1-75% cover. *Toxicodendron diversilobum* was present occasionally in the shrub layer. The herbaceous layer was open to continuous and often included non-natives *Avena barbata*, *Bromus diandrus*, *Bromus hordeaceus*, *Carduus pycnocephalus*, *Cynosurus echinatus*, *Lolium multiflorum*, *Torilis arvensis*, and *Trifolium hirtum*.

One of the most frequently sampled types, this sub-alliance was common throughout the study area within the central Sierra Nevada Foothills, Cascade Range Foothills, High Cascade Range (uncommon), northern Sierra Nevada Foothills, and Sacramento Valley Subregions (Hickman 1993). Stands often occurred on metamorphic (greenstone, slate, serpentine, or mixed metamorphic), sometimes on igneous (including volcanic, basalt, granitic, and gabbro) and infrequently on sedimentary (sandstone), mixed rock, or clayey alluvium substrates. They occupied all aspects and slope positions, most frequently middle and upper slopes. They infrequently occupied toeslopes, benchs, and plateaus. Slopes varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This sub-alliance was sampled within thirteen counties of the study area: Amador, Butte, Calaveras, El Dorado, Madera, Mariposa, Nevada, Placer, Sacramento, Shasta, Tehama, Tuolumne, and Yuba Counties. It occurred in the Camanche Terraces (262Ao), Lower Foothills Meta-morphic Belt (M261Fb), Lower Granitic Foothills (M261Fc), Tuscan Flows (M261Fa), and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	73	34-100	-
Herb	60.6	21-95	variable
Shrub	2	0-30	<5

Low Tree/Tall Shrub	0	-	5-10
Hardwood	26	3-75	5-20
Conifer	0.5	0-35	5-35
Relative non-native to native cover	64.5	0-91	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (41), SW (25), NE (21), SE (16), S (16), NW (14), W (13), E (13), N (11), Flat (7), (0)

Macrotopography: entire slope (3), bottom (10), bottom to lower slope (2), bottom to middle slope (2), lower slope (24), lower to middle slope (11), lower to upper slope (10), middle slope (40), middle to upper slope (4), middle slope to ridgetop (4), upper slope (26), upper slope to ridgetop (7), bench (1), mesa/plateau (1), ridgetop (14), terrace (1), toeslope (1)

Microtopography: undulating (105), flat (24), convex (22), concave (9)

Parent Material: metamorphic (76), volcanic (37), sedimentary (28), slate (12), basalt (6), mixed metamorphic (4), serpentine (4), ultramafic (4), mixed rock (3), clayey alluvium (1), gabbro (1), granitic (1), greenstone (1), igneous (1), sandstone (1)

Soil Texture: loam or sandy loam (47), silt or silt loam (47), clay or clay loam (46), sand (2), unknown (2)

	Mean	Range
Elevation	1038 ft.	284-2800 ft.
Slope	10.9°	0-40°
Large rock cover	4.1%	0-55%
Small rock cover	3.3%	0-30%
Bare ground cover	17.8%	1-82%
Litter cover	71.1%	6-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=180)

Rapid Assessments: SNNR0010, SNNR0032, SNNR0039, SNNR0042, SNNR0044, SNNR0053, SNNR0059, SNNR0060, SNNR0073, SNNR0083, SNNR0093, SNNR0097, SNNR0118, SNNR0160, SNNR0161, SNNR0172, SNNR0191, SNNR0197, SNNR0215, SNNR0268, SNNR0319, SNNR0344, SNNR0474, SNNR0482, SNNR0483, SNNR0673, SNNR0736, SNNR0742, SNNR0745, SNNR0767, SNNR0812, SNNR0815, SNNR0816, SNNR0825, SNNR0832, SNNR0856, SNNR0861, SNNR0862, SNNR0866, SNNR0885, SNNR0890, SNNR0901, SNNR0929, SNNR0933, SNNR0942, SNNR0946, SNNR0950, SNNR0953, SNNR0962, SNNR0963, SNNR0968, SNNR0969, SNNR0971, SNNR0990, SNNR0998, SNNR1005, SNNR1010, SNNR1020, SNNR1024, SNNR1037, SNNR1063, SNNR1070, SNNR1074, SNNR1077, SNNR1081, SNNR1082, SNNR1083, SNNR11110, SNNR1113, SNNR1115, SNNR1116, SNNR1147, SNNR1156, SNNR1157, SNNR1179, SNNR1203, SNNR1211, SNNR1228, SNNR1238, SNNR1290, SNNR1294, SNNR1342, SNNR1351, SNNR1403, SNNR1406, SNNR1410, SNNR1416, SNNR1418, SNNR1420, SNNR1421, SNNR1424, SNNR1425, SNNR1434, SNNR1437, SNNR1444, SNNR1445, SNNR1450, SNNR1455, SNNR1458, SNNR1461, SNNR1474, SNNR1478, SNNR1491, SNNR1499, SNNR1605, SNNR1606, SNNR1607, SNNR1609, SNNR1611, SNNR1616, SNNR1618, SNNR1619, SNNR1622, SNNR1623, SNNR1625, SNNR1626, SNNR1629, SNNR1635, SNNR1636, SNNR1637, SNNR1638, SNNR1643, SNNR1644, SNNR1649, SNNR1666, SNNR1667, SNNR1668

Relevés: SNFN0016, SNFN0019, SNFN0024, SNFN0027, SNFN0035, SNFN0046, SNFN0050, SNFN0059, SNFN0063, SNFN0136, SNFN0149, SNFN0166, SNFN0209, SNFN0215, SNFN0236, SNFN0255, SNFN0278, SNFN0315, SNFN0399, SNFN0478, SNFN0480, SNFN0484, SNFN0485, SNFN0486, SNFN0488, SNFN0489, SNFN0490, SNFN0493, SNFN0544, SNFN0545, SNFN0554, SNFN0555, SNFN0556, SNFN0557, SNFN0559,

SNFN0560, SNFN0562, SNFN0563, SNFN0580, SNFN0582, SNFN0612, SNFN0613, SNFN0618, SNFN0622, SNFN0625, SNFN0626, SNFN0627, SNFN0628, SNFN0630, SNFN0642, SNFN0646, SNFN0659, SNFN0662

Rank: Unranked, multiple associations. We had a preponderence of Rapid Assessment samples conducted from both field seasons for this type. Because samples were collected in different seasons (spring and summer), often without full species lists, we were not able to detect the ecologically significant native annual plants that would represent good differential species (or indicators) defining plant associations through predictable variation in the understory. This classification unit, a sub-alliance, is defined in much the same way that Allen et al. (1989, 1991) identified the Blue Oak / Grass Sub-series. Further sampling at the appropriate time of year (spring to early summer), with full species lists collected in plot-based surveys, would allow us to identify various associations of understory annual herb indicators in the study area.

GLOBAL DISTRIBUTION

This sub-alliance has been described for the Sierra Nevada Foothills, Inner North Coast Range, and central Coast Ranges of California (Allen et al. 1989, 1991).

STAND TABLE

Quercus douglasii / Annual Grass - Forb Sub-Alliance

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUDO-T	Quercus douglasii	100	25.2	1	75	Χ		Χ	
	QUDO-L	Quercus douglasii	51	0.1	0.2	2				
	QUDO-M	Quercus douglasii	36	0.5	0.2	15				
	PISA2-T	Pinus sabiniana	30	0.3	0.2	3				
Shrub										
	TODI	Toxicodendron diversilobum	37	1.0	0.2	15				
Herb										
	BRHO2	Bromus hordeaceus	87	14.0					Χ	Χ
	TRHI4	Trifolium hirtum	73	5.4	0.2					Χ
	BRDI3	Bromus diandrus	72	7.3	0.2					Χ
	TOAR	Torilis arvensis	63	1.6	0.2					Χ
	AVBA	Avena barbata	59	5.2	0.2					X
	LOMU	Lolium multiflorum	58	5.0	0.2	55				Χ
	CYEC	Cynosurus echinatus	52	3.7	0.2	35				Χ
	CAPY2	Carduus pycnocephalus	51	1.9	0.2	40				Χ
	AVFA	Avena fatua	37	3.1	0.2	57				Χ
	HYGL2	Hypochaeris glabra	34	0.9	0.2	15				Χ
	DAPU3	Daucus pusillus	34	0.3	0.2	6				
	GAPA5	Galium parisiense	33	0.2	0.2	4				Χ
	GEMO	Geranium molle	32	1.3	0.2	45				Χ
	TRDU2	Trifolium dubium	32	0.3	0.2	6				Χ
	BRDI2	Brachypodium distachyon	27	2.7	0.2	60				Χ
	TRMI4	Trifolium microcephalum	26	0.2	0.2	5				
	BRELE	Brodiaea elegans subsp.	26	0.1	0.2	3				
	BRMA3	Bromus madritensis	22	0.7	0.2	12				Χ
	AICA	Aira caryophyllea	21	0.2	0.2	6				Χ

Quercus douglasii / Perennial Grass - Forb Sub-Alliance Blue Oak / Perennial Grass - Forb Sub-Alliance

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus douglasii* at 10-40% cover. *Toxicodendron diversilobum* occasionally occurred in a sparse shrub layer. The herbaceous layer was open to continuous, often including *Avena barbata*, *Cynosurus echinatus*, *Elymus glaucus*, *Torilis arvensis*, and *Trifolium hirtum*.

This sub-alliance was sampled somewhat commonly in the study area within the Cascade Range Foothills, High Cascade Range, and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic, but were sometimes found on igneous (including granitic) substrates. They occupied all aspects and areas of the slope, but most frequently the middle slope. The slopes varied from gentle to steep. Stands typically occur on low fertility or shallow soils.

DISTRIBUTION IN STUDY AREA

This sub-alliance was sampled within Butte, Nevada, Tehama Counties and the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	63.1	35-85	-
Herb	47.5	20-85	variable
Shrub	2.1	0-6	<5
Low Tree/Tall Shrub	0	-	5-10
Hardwood	25.2	10-40	5-20
Conifer	0.7	0-3	5-20
Relative non-native to native cover	45.1	23-76	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (3), S (3), NW (2), W (1), SW (1), SE (1), N (1), E (1)

Macrotopography: bottom (1), lower slope (2), lower to upper slope (1), middle slope (6), middle

to upper slope (1), upper slope (1), ridgetop (1) Microtopography: undulating (8), convex (3), flat (2)

Parent Material: volcanic (10), igneous (2), granitic (1)

Soil Texture: loam or sandy loam (4), silt or silt loam (4), clay or clay loam (2)

	Mean	Range
Elevation	1410 ft.	170-3181 ft.
Slope	14.5°	2-28°
Large rock cover	3.5%	<1-20%
Small rock cover	5.9%	1-17%
Bare ground cover	19.8%	2-70%
Litter cover	66.4%	2-95%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=13)

Rapid Assessments: SNNR0072, SNNR0261, SNNR0326, SNNR0341, SNNR0383, SNNR0434, SNNR0437, SNNR0519, SNNR0554, SNNR0935, SNNR1385, SNNR1400, SNNR1518

Rank: Unranked, multiple associations (see note under rank for the *Quercus douglasii* / Annual Grass - Forb Sub-Alliance).

GLOBAL DISTRIBUTION

This sub-alliance has been described for the Sierra Nevada Foothills solely from data collected for this project. This sub-alliance is indicative of blue oak woodlands that have a persistent, but not necessarily dominant, component of native perennial grasses in the understory. *Elymus glaucus*, *Nassella pulchra*, *Melica californica*, and other native perennial grasses frequently have less cover than non-native annual herbs, yet their presence sets them apart from other stands. These stands typically occurred on poor, shallow soils that are less conducive to invasion by non-native annuals and are more likely to support a higher perennial native grass component.

STAND TABLE

Quercus douglasii / Perennial Grass - Forb Sub-Alliance

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUDO-T	Quercus douglasii	100	24.8	10	40	Χ		Χ	
	PISA2-T	Pinus sabiniana	31	0.5	0.2	3				
Shrub										
	TODI	Toxicodendron diversilobum	46	8.0	0.2	5				
Herb	01/-0				_				.,	
	CYEC	Cynosurus echinatus	92	11.0		37			X	X
	TRHI4	Trifolium hirtum	77	7.2	1	30			Χ	Χ
	AVBA	Avena barbata	69	4.1	1	15				Χ
	TOAR	Torilis arvensis	69	1.9	0.2	9				Χ
	ELGL	Elymus glaucus	62	1.2	0.2	9				
	NAPU4	Nassella pulchra	46	3.1	1	15				
	BRDI3	Bromus diandrus	38	1.0	0.2	7				Χ
	BRMA3	Bromus madritensis	38	0.7	0.2	5				Χ
	MECA2	Melica californica	38	0.6	0.2	5				
	BRELE	Brodiaea elegans subsp.	38	0.1	0.2	1				
	BRDI2	Brachypodium distachyon	31	1.2	2	8				Χ
	BRHO2	Bromus hordeaceus	31	8.0	1	7				Χ
	ELEL5	Elymus elymoides	31	0.6	0.2	4				
	GAPA5	Galium parisiense	31	0.1	0.2	1				Χ
	SABI3	Sanicula bipinnatifida	31	0.1	0.2	1				
	LOMU	Lolium multiflorum	23	2.4	1	20				Χ
	VUMI	Vulpia microstachys	23	0.9	1	8				
	TACA8	Taeniatherum caput-medusae	23	0.6	0.2	4				Χ
	TRDU2	Trifolium dubium	23	0.6	0.2	6				Χ
	CESO3	Centaurea solstitialis	23	0.3	0.2	3				Χ
	DAPU3	Daucus pusillus	23	0.2	0.2	2				
	ACMI2	Achillea millefolium	23	0.2	0.2	1				
	CHPO3	Chlorogalum pomeridianum	23	0.1	0.2	1				
	GAPO	Galium porrigens	23	0.1	0.2	1				
	PEDU2	Petrorhagia dubia	23	0.1	0.2	1				Χ

Quercus douglasii / Selaginella hansenii - Navarretia pubescens Association (Provisional) Blue Oak / Hansen's Spikemoss - Downy Pincushionplant Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open and dominated solely by *Quercus douglasii* at 5-16% cover. The shrub layer was open with *Ceanothus cuneatus* often present. *Selaginella hansenii* was characteristically present in the cryptogam layer. The herbaceous layer was variable and often included *Avena barbata*, *Bromus hordeaceus*, *Calycadenia truncata*, *Centaurium muehlenbergii*, *Clarkia purpurea*, *Galium parisiense*, *Navarretia pubescens*, *Petrorhagia dubia*, and *Trifolium hirtum*.

In the study area, this association was sampled commonly but only in the Cascade Range Foothills Subregion (Hickman 1993). Stands occurred on volcanic, including basalt, substrates. They occupied bottom to upper slopes, that were moderate to somewhat steep. Stands were sampled primarily at Dye Creek Preserve and Tehama Wildlife Area, on thin, rocky volcanics.

DISTRIBUTION IN STUDY AREA

This association was sampled only within Tehama County, in the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	53.8	36-70	-
Herb	41.8	22-60	variable
Shrub	9.6	0-22	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	8.8	0-15	5-10
Conifer	0	-	-
Relative non-native to native cover	40.8	29-53	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (2), SE (2), S (2), NW (2), Variable (1)

Macrotopography: bottom to lower slope (1), lower slope (1), lower to middle slope (1), middle slope (4), middle to upper slope (1), upper slope (1)

Microtopography: undulating (7), convex (2) Parent Material: volcanic (8), basalt (1)

Soil Texture: loam or sandy loam (3), clay or clay loam (1)

	Mean	Range
Elevation	1025 ft.	720-2202 ft.
Slope	17.7°	12-25°
Large rock cover	9.3%	2-20%
Small rock cover	8.1%	3-20%
Bare ground cover	13.8%	3-40%
Litter cover	63.9%	38-80%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=9)

Rapid Assessments: SNNR0027, SNNR0028, SNNR0031, SNNR0076, SNNR0084, SNNR0087, SNNR0198, SNNR0236, SNNR0317

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills (including the adjacent southern Cascade Foothills) solely from data collected for this project. It is likely to occur only on volcanics. The relatively low cover of non-native species is notable and probably the result of the poor, shallow volcanic soils. These stands are among the most open of the blue oak woodlands, with the overstory oaks being smaller and stunted.

STAND TABLE

Quercus douglasii / Selaginella hansenii - Navarretia pubescens Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	Ď	cD	С	N
Tree										
	QUDO-T	Quercus douglasii	89	8.8	5	16	Χ		Χ	
	QUDO-M	Quercus douglasii	33	1.1	1	5				
Shrub										
	CECU	Ceanothus cuneatus	67	4.1	1	20				
	RHIL	Rhamnus ilicifolia	44	1.8	0.2	7				
	JUCA7	Juniperus californica	44	8.0	1	3				
	ARMA	Arctostaphylos manzanita	22	1.0	1	8				
	TODI	Toxicodendron diversilobum	22	0.2	1	1				
Herb										
	AVBA	Avena barbata	100		2	16			Χ	Χ
	BRHO2	Bromus hordeaceus	89	5.8	4	10			Χ	Χ
	TRHI4	Trifolium hirtum	78	6.0	0.2	25			Χ	Χ
	NAPU2	Navarretia pubescens	78	3.6	3	7			Χ	
	PEDU2	Petrorhagia dubia	67	1.8	0.2	10				Χ
	CEMU2	Centaurium muehlenbergii	67	1.1	0.2	5				
	GAPA5	Galium parisiense	67	0.6	0.2	1				Χ
	CLPU2	Clarkia purpurea	56	1.3	0.2	7				
	CATR3	Calycadenia truncata	56	0.3	0.2	1				
	VUMI	Vulpia microstachys	44	0.6	0.2	2				
	BRELE	Brodiaea elegans subsp.	44	0.2	0.2	1				
	BRMA3	Bromus madritensis	33	1.2	2	5				Χ
	CALU9	Calochortus luteus	33	0.9	0.2	8				
	CESO3	Centaurea solstitialis	33	0.4	1	2				Χ
	DAPU3	Daucus pusillus	22	0.9	3	5				
	AICA	Aira caryophyllea	22	0.3	1	2				Χ
	TOAR	Torilis arvensis	22	0.3	1	2				Χ
	PLER3	Plantago erecta	22	0.2	0.2	2				
	CYEC	Cynosurus echinatus	22	0.2	1	1				Χ
	HYGL2	Hypochaeris glabra	22	0.0	0.2	0.2				Χ
Cryptog	am									
	SEHA2	Selaginella hansenii	89	6.9	3	25	Χ		Χ	

Quercus douglasii / Arctostaphylos manzanita / Herbaceous Association Blue Oak / Common Manzanita / Herbaceous Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus douglasii* at 11-55% cover. *Pinus sabininiana* was often present in the overstory. The shrub layer was open to intermittent with *Arctostaphylos manzanita* dominant and with *Toxicodendron diversilobum* often present. The herbaceous layer was open to intermittent and often included non-natives *Cynosurus echinatus*, *Torilis arvensis*, and *Trifolium hirtum*.

In the study area, this association was sampled commonly in the Cascade Range Foothills, and infrequently in the central and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt) substrates, but also occured on metamorphic (including slate) and sedimentary substrates. They occupied all areas of the slope, most frequently the middle and upper slopes. The slopes varied from gentle to steep. This association may occur in rocky areas without recent burn history, where the pine, *P. sabiniana*, and particularly the long-lived obligate seeding, *A. manzanita*, are able to establish in the overstory and understory, and where *Q. douglasii* is able to establish higher average cover.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, Mariposa, Shasta, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	63	30-80	-
Herb	39.3	15-60	variable
Shrub	21.7	5-40	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	24.4	11-60	5-20
Conifer	2.3	0-14	5-20
Relative non-native to native cover	30.5	6-57	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (4), Variable (3), SW (3), SE (1), NW (1)

Macrotopography: lower slope (2), lower to middle slope (1), middle slope (4), middle to upper slope (1), upper slope (3), ridgetop (1)

Microtopography: undulating (6), convex (2), concave (2), flat (2) Parent Material: volcanic (8), metamorphic (2), basalt (1), slate (1)

Soil Texture: clay or clay loam (6), silt or silt loam (3), loam or sandy loam (1)

Mean	Range
1122 ft.	448-2300 ft.
17.9°	1-30°
5%	0-20%
12.2%	1-90%
16%	1-37%
63.3%	<1-87%
	17.9° 5% 12.2% 16%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=12)

Rapid Assessments: SNNR0122, SNNR0187, SNNR0718, SNNR0823, SNNR0840,

SNNR0884, SNNR1165, SNNR1182, SNNR1188, SNNR1517

Relevés: SNFN0158, SNFN0327

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon data collected for this project. The relatively high cover of woody shrubs is distinctive. This association is clearly related to other shrub associations of the Blue Oak Alliance, such as the *Q. douglasii / Ceanothus cuneatus* and the *Q. douglasii / Juniperus californica - Ceanothus cuneatus* Associations. However, the presence of *A. manzanita* and the absence of *C. cuneatus* distinguish it from these types.

STAND TABLE *Quercus douglasii | Arctostaphylos manzanita |* Herbaceous Association

Lifeform	•	Species Name		Avg	Min	Max	D	сD	С	N
Tree										
	QUDO-T	Quercus douglasii	100	23.3	11	55	Χ		Χ	
	PISA2-T	Pinus sabiniana	58	2.1	0.2	14				
	PISA2-M	Pinus sabiniana	42	0.4	0.2	3				
	QUWI2-T	Quercus wislizeni	33	1.5	0.2	8				
	QUDO-L	Quercus douglasii	25	0.1	0.2	1				
Shrub										
	ARMA	Arctostaphylos manzanita		15.2		35	Χ		X	
	TODI	Toxicodendron diversilobum	83	5.7	0.2	22			X	
	RHIL	Rhamnus ilicifolia	42	0.2	0.2	1.2				
	LOHIV	Lonicera hispidula var. vacillans	33	0.7	0.2	4				
	JUCA7	Juniperus californica	25	0.5	1	3				
Herb										
	CYEC	Cynosurus echinatus	75	5.3	1	17			Χ	Χ
	TOAR	Torilis arvensis	67	3.4	0.2	14				Χ
	TRHI4	Trifolium hirtum	58	5.7	0.2	26				Χ
	GAPO	Galium porrigens	42	0.2	0.2	1				
	NAPU4	Nassella pulchra	42	0.2	0.2	1				
	MECA2	Melica californica	42	0.1	0.2	0.2				
	AVBA	Avena barbata	33	2.1	4	9				Χ
	BRHO2	Bromus hordeaceus	33	1.4	0.2	10				Χ
	AVFA	Avena fatua	33	1.1	0.2	8				Χ
	BRDI3	Bromus diandrus	33	1.0	0.2	6				Χ
	SACR2	Sanicula crassicaulis	33	0.1	0.2	1				
	DIMU5	Dichelostemma multiflorum	33	0.1	0.2	0.2				
	BRDI2	Brachypodium distachyon	25	2.6	0.2	24				Χ
	BRST2	Bromus sterilis	25	1.8	2	16				Χ
	GEMO	Geranium molle	25	0.9	0.2	10				Χ
	LOMU	Lolium multiflorum	25	8.0	0.2	6				Χ
	VISA	Vicia sativa	25	8.0	0.2	6				Χ
	AICA	Aira caryophyllea	25	0.5	0.2	3				Χ
	TRDU2	Trifolium dubium	25	0.3	0.2	2				Χ
	GAAP2	Galium aparine	25	0.2	0.2	2				
	GAPA5	Galium parisiense	25	0.2	0.2	2				Χ
	MAGR3	Madia gracilis	25	0.1	0.2	1				
	VUMI	Vulpia microstachys	25	0.1	0.2	1				
	BRCA5	Bromus carinatus	25	0.1	0.2	0.2				
	PETR7	Pentagramma triangularis	25	0.1	0.2	0.2				
	PEDU2	Petrorhagia dubia	25	0.1	0.2	0.2				Χ
Cryptoga					_	_				
	MOSS	Moss	33	1.3	1	6				

Quercus douglasii / Ceanothus cuneatus / Herbaceous Association Blue Oak / Wedgeleaf Ceanothus / Herbaceous Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open and dominated by *Quercus douglasii* at 6-24% cover. *Pinus sabiniana* was characteristically present in the overstory. The shrub layer was open to intermittent with *Ceanothus cuneatus* dominant. The herbaceous layer was open to continuous, with *Bromus hordeaceus* dominant and with *Avena barbata*, *Erodium botrys*, *Hypochaeris glabra*, and *Torilis arvensis* often present.

This association was sampled infrequently throughout the study area within the central Sierra Nevada Foothills, Cascade Range Foothills, High Cascade Range, northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred often on metamorphic (including greenstone and slate) and volcanic substrates, and rarely on sedimentary substrates. They occupied lower slopes to ridgetops, that were gentle to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Mariposa, Shasta, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	59.5	46-77	-
Herb	43.9	17-70	variable
Shrub	20	4-40	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	15.5	6-24	5-20
Conifer	0.7	0-3	10-20
Relative non-native to native cover	49.4	25-65	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (2), SW (2), E (2), S (1), N (1)

Macrotopography: lower slope (1), lower to upper slope (1), middle slope (3), middle to upper slope (1), upper slope (1), upper slope to ridgetop (1)

Microtopography: undulating (6), concave (1), convex (1)

Parent Material: volcanic (3), metamorphic (2), greenstone (1), sedimentary (1), slate (1)

Soil Texture: clay or clay loam (3), loam or sandy loam (3), silt or silt loam (1)

	Mean	Range
Elevation	1511 ft.	862-2215 ft.
Slope	11.6°	5-18°
Large rock cover	9.3%	1-30%
Small rock cover	4%	<1-10%
Bare ground cover	23.3%	5-40%
Litter cover	59.9%	20-81.8%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=8)

Rapid Assessments: SNNR0429, SNNR0801, SNNR0859, SNNR0860, SNNR1086,

SNNR1096, SNNR1180, SNNR1288

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and lower montane zone previously by Allen et al. (1989, 1991) and by NatureServe et al. (2003b). Stands range up to 3800 ft elevation in the Yosemite region. They are also is likely to occur at relatively higher elevations on the western side of Sequoia National Park (S. Haultain, pers. comm. 2004).

STAND TABLE

Quercus douglasii / Ceanothus cuneatus / Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUDO-T	Quercus douglasii	100	15.1	6	24	Χ		Χ	
	PISA2-T	Pinus sabiniana	75	0.7	0.2	3			Χ	
	QUDO-M	Quercus douglasii	63	2.6	0.2	20				
	QUWI2-T	Quercus wislizeni	38	0.7	0.2	5				
Shrub										
	CECU	Ceanothus cuneatus		15.9		40	Χ		X	
	RHIL	Rhamnus ilicifolia	25	0.2	0.2	1				
Herb										
	BRHO2	Bromus hordeaceus	88	14.0		22		X	Χ	Χ
	TOAR	Torilis arvensis	75	2.0	0.2	10			Χ	Χ
	AVBA	Avena barbata	63	2.8	0.2	10				Χ
	HYGL2	Hypochaeris glabra	50	1.9	0.2	14				Χ
	ERBO	Erodium botrys	50	1.8	0.2	6				Χ
	CYEC	Cynosurus echinatus	38	4.3	1	30				Χ
	BRDI3	Bromus diandrus	38	2.7	0.2	18				Χ
	CESO3	Centaurea solstitialis	38	1.5	1	10				Χ
	TRHI4	Trifolium hirtum	38	1.3	0.2	6				Χ
	GEMO	Geranium molle	38	0.7	0.2	5				Χ
	VUBR	Vulpia bromoides	25	8.0	0.2	6				Χ
	DAPU3	Daucus pusillus	25	0.8	2	4				
	DIMU5	Dichelostemma multiflorum	25	0.2	0.2	1				
	MAGR3	Madia gracilis	25	0.2	0.2	1				
	SABI3	Sanicula bipinnatifida	25	0.2	0.2	1				
	AMMEI2	Amsinckia menziesii var. intermedia	25	0.1	0.2	0.2				
	DICAC5	Dichelostemma capitatum subsp. capitatum	25	0.1	0.2	0.2				
	MECA2	Melica californica	25	0.1	0.2	0.2				
Cryptoga										
	SEHA2	Selaginella hansenii	25	1.4	5	6				

Quercus douglasii / Juniperus californica - Ceanothus cuneatus Association (Provisional) Blue Oak / California Juniper - Wedgeleaf Ceanothus Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to and dominated solely by *Quercus douglasii* at 10-15% cover. Other trees such as *Pinus sabiniana* and *Quercus wislizeni* were often present. The shrub layer was open to intermittent with *Juniperus californica* dominant and with *Ceanothus cuneatus* and *Toxicodendron diversilobum* often present. The herbaceous layer was open to intermittent, with abundant and characteristic taxa such as *Aira caryophyllea*, *Avena barbata*, *Brodiaea elegans* subsp. *elegans*, and *Bromus hordeaceus*.

This association was sampled infrequently in the study area, within the Cascade Range Foothills Subregion and only once in the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on volcanic substrates. They occupied bottoms to middle slopes and ridgetops that were flat to somewhat steep. Two of four stands occurred on terraces above or along a (intermittent) creek.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Shasta, and Tehama Counties, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	62.3	52-73	-
Herb	39.8	17-60	variable
Shrub	23	15-37	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	10.5	0-17	5-10
Conifer	1.3	0-4	10-20
Relative non-native to native cover	43.7	30-73	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (2), N (1), Flat (1)

Macrotopography: bottom (1), lower slope (1), lower to middle slope (1), ridgetop (1)

Microtopography: flat (3), undulating (1)

Parent Material: volcanic (4)

Soil Texture: loam or sandy loam (3), clay or clay loam (1)

	Mean	Range
Elevation	1061 ft.	400-1546 ft.
Slope	12.5°	0-26°
Large rock cover	6.7%	4.7-10%
Small rock cover	8.1%	5-10%
Bare ground cover	23.9%	8-52%
Litter cover	57.8%	30-70%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=4)

Rapid Assessments: SNNR0238, SNNR0928, SNNR1305, SNNR1321

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills, including the volcanic subsection that is technically part of the southern Cascades. The data comes solely from this project. This association may also exist in the Inner North Coast Range section in western Shasta, Tehama, Glenn, and Colusa Counties. A similar association of *Q. douglasii / Juniperus californica* has been identified in Monterey County at Pinnacles National Monument, on volcanics with low cover but high constancy of *C. cuneatus* (NatureServe 2007b); it is likely that these stands are equivalent. The relative scarcity of *J. californica* in the Sierra Nevada Foothills suggests that this association, if validated with more sampling and mapping, is relatively rare.

Other similar associations have been identified in the Central Coast Ranges in San Benito and western Fresno Counties on sedimentary substrates (Evens et al. 2006). However, these stands have higher cover and constancy of other tall chaparral shrubs (either *Cercocarpus betuloides* or *Quercus john-tuckeri*) and/or higher cover of *J. californica*.

STAND TABLE

Quercus douglasii / Juniperus californica - Ceanothus cuneatus Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUDO-T	Quercus douglasii	75	9.8	10	15	Χ		Χ	
	PISA2-T	Pinus sabiniana	50	8.0	1	2				
	QUWI2-T	Quercus wislizeni	50	0.5	1	1				
	QUDO-M	Quercus douglasii	25	1.0	4	4				
	PISA2-M	Pinus sabiniana	25	0.1	0.2	0.2				
Shrub										
	JUCA7	Juniperus californica	100	12.8	10	19	Χ		Χ	
	CECU	Ceanothus cuneatus	100	7.8	1	14			Χ	
	TODI	Toxicodendron diversilobum	75	2.5	3	4			Χ	
	CEBE3	Cercocarpus betuloides	25	1.3	5	5				
	LOHIV	Lonicera hispidula var. vacillans	25	0.3	1	1				
	RHIL	Rhamnus ilicifolia	25	0.1	0.2	0.2				
Herb										
	BRHO2	Bromus hordeaceus	100	7.5	5	12			Χ	Χ
	AVBA	Avena barbata	100	7.1	0.2	17			Χ	Χ
	AICA	Aira caryophyllea	75	2.5	1	8			Χ	Χ
	BRELE	Brodiaea elegans subsp.	75	0.2	0.2	0.2			Χ	
	CYEC	Cynosurus echinatus	50	5.0	2	18				Χ
	VUMI	Vulpia microstachys	50	8.0	1	2				
	BRMA3	Bromus madritensis	50	0.3	0.2	1				Χ
	HOMA2	Hordeum marinum	50	0.3	0.2	1				Χ
	TRHI4	Trifolium hirtum	50	0.3	0.2	1				Χ
	HEFI	Hemizonia fitchii	50	0.1	0.2	0.2				

STAND TABLE continued

Quercus douglasii / Juniperus californica - Ceanothus cuneatus Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	C	N
Herb										
	LEVI8	Lessingia virgata	50	0.1	0.2	0.2				
	BRDI2	Brachypodium distachyon	25	9.5	38	38				Χ
	TACA8	Taeniatherum caput-medusae	25	2.5	10	10				Χ
	MAGR3	Madia gracilis	25	1.0	4	4				
	ERLA6	Eriophyllum lanatum	25	0.8	3	3				
	BRDI3	Bromus diandrus	25	0.5	2	2				Χ
	CLPU2	Clarkia purpurea	25	0.5	2	2				
	DAPU3	Daucus pusillus	25	0.5	2	2				
	MELIC	Melica	25	0.5	2	2				
	AETR	Aegilops triuncialis	25	0.3	1	1				Χ
	ALAM2	Allium amplectens	25	0.1	0.2	0.2				
	CAMU3	Calycadenia multiglandulosa	25	0.1	0.2	0.2				
	DIMU5	Dichelostemma multiflorum	25	0.1	0.2	0.2				
	GAPA5	Galium parisiense	25	0.1	0.2	0.2				Χ
	GAPO	Galium porrigens	25	0.1	0.2	0.2				
	GAVE3	Gastridium ventricosum	25	0.1	0.2	0.2				Χ
	HYGL2	Hypochaeris glabra	25	0.1	0.2	0.2				Χ
	PETR7	Pentagramma triangularis	25	0.1	0.2	0.2				
	PEDU2	Petrorhagia dubia	25	0.1	0.2	0.2				Χ
	PLER3	Plantago erecta	25	0.1	0.2	0.2				
	TRDE	Trifolium depauperatum	25	0.1	0.2	0.2				
	TRDU2	Trifolium dubium	25	0.1	0.2	0.2				Χ
	WYAN	Wyethia angustifolia	25	0.1	0.2	0.2				
Cryptoga	ım									
	SEHA2	Selaginella hansenii	50	0.3	0.2	1				

Quercus douglasii - Aesculus californica / Herbaceous Association Blue Oak - California Buckeye / Herbaceous Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus douglasii* at 6-37% cover. *Aesculus californica* and *Quercus wislizeni* were often present as trees and/or shrubs. The shrub layer was open to intermittent with *Rhamnus ilicifolia* and *Toxicodendron diversilobum* often present. The herbaceous layer was open to continuous and often included non-natives *Avena fatua*, *Bromus diandrus*, *Bromus hordeaceus*, *Cynosurus echinatus*, and *Torilis arvensis*.

In the study area, this association was sampled commonly within the central Sierra Nevada Foothills Subregion and infrequently in the Cascade Range Foothills and High Cascade Range Subregions (Hickman 1993). Stands occurred on metamorphic, volcanic (including basalt), sedimentary, and/or ultramafic substrates. They occupied upper slopes most frequently, but also occupied bottom to middle slopes that were flat to steep. Occasionally, stands of Blue Oak - California Buckeye / Herbaceous occurred along riparian corridors and on terraces. Stands usually occurred in mesic settings as compared to other blue oak associations.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Mariposa, Shasta, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	71.9	45-90	-
Herb	55.7	30-85	variable
Shrub	24.5	1-47	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	29.5	7-50	5-20
Conifer	1.4	0-5	10-35
Relative non-native to native cover	39.7	13-68	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (3), N (3), Flat (2), Variable (1), S (1), NE (1)

Macrotopography: bottom to lower slope (1), lower slope (2), lower to upper slope (2), middle slope (2), upper slope (4)

Microtopography: undulating (6), concave (4), flat (1)

Parent Material: metamorphic (3), volcanic (4), sedimentary (2), ultramafic (1), basalt (1)

Soil Texture: clay or clay loam (5), loam or sandy loam (3), silt or silt loam (2)

	Mean	Range
Elevation	1249 ft.	892-1576 ft.
Slope	15.9°	0-30°
Large rock cover	20%	4-55%
Small rock cover	6.5%	2-10%
Bare ground cover	8%	2-15%
Litter cover	61.5%	28-83%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=11)

Rapid Assessments: SNNR0080, SNNR0251, SNNR0735, SNNR1312, SNNR1485, SNNR1486, SNNR1515 **Relevés:** SNFN0162, SNFN0645, SNFN0657, SNFN0658

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills previously by Evens et al. (2004), in a study conducted in Tuolumne County. This current description expands the range across much of the Sierra Nevada Foothills area. Stands have been observed outside the study area as far south as Sequoia National Park (S. Haultain, pers. comm. 2004).

STAND TABLE *Quercus douglasii - Aesculus californica |* Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUDO-T	Quercus douglasii	100	21.8	6	37	Χ		Χ	
	AECA-T	Aesculus californica	73	10.2	3	24				
	AECA-M	Aesculus californica	64	5.3	0.2	30				
	QUWI2-T	Quercus wislizeni	64	3.4	0.2	15				
	PISA2-T	Pinus sabiniana	36	0.9	1	5				
	AECA-L	Aesculus californica	27	0.1	0.2	0.2				
	QUDO-L	Quercus douglasii	27	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	64	9.8	0.2	45				
	RHIL	Rhamnus ilicifolia	55	0.6	0.2	4				
	LOHIV	Lonicera hispidula var. vacillans	36	0.1	0.2	0.2				
	CECU	Ceanothus cuneatus	27	8.0	0.2	8				
Herb										
	BRDI3	Bromus diandrus	64	6.5	1	30				X
	TOAR	Torilis arvensis	64	3.5	1	10				X
	BRHO2	Bromus hordeaceus	55	12.6		45				Х
	AVFA	Avena fatua	55	8.5	5	25				Χ
	CYEC	Cynosurus echinatus	55	2.7	0.2	16				Χ
	TRHI4	Trifolium hirtum	45	2.3	0.2					Χ
	DIVO	Dichelostemma volubile	45	0.1	0.2					
	BRMA3	Bromus madritensis	36	1.0	0.2	8				Χ
	VIVI	Vicia villosa	36	0.9	0.2	5				X
	MAGR3	Madia gracilis	36	0.1	0.2	0.2				
	TRMI4	Trifolium microcephalum	36	0.1	0.2	0.2				
	TRLA16	Triteleia laxa	36	0.1	0.2					
	MEPO3	Medicago polymorpha	27	0.4	0.2	3				Χ
	GAPA5	Galium parisiense	27	0.1	0.2	1				Χ
	MICAC2	Micropus californicus var. californicus	27	0.1	0.2	1				
	TRWI3	Trifolium willdenovii	27	0.1	0.2	1				
	VUMI	Vulpia microstachys	27	0.1	0.2	1				
	AICA	Aira caryophyllea	27	0.1	0.2	0.2				Χ
	CAPY2	Carduus pycnocephalus	27	0.1	0.2	0.2				Χ
	GAAP2	Galium aparine	27	0.1	0.2	0.2				
	GAVE3	Gastridium ventricosum	27	0.1	0.2	0.2				Χ
	SAGR5	Sanicula graveolens	27	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	45	3.7	0.2	22				

Quercus douglasii - Pinus sabiniana / Arctostaphylos viscida / Herbaceous Association Blue Oak - Foothill Pine / Whiteleaf Manzanita / Herbaceous Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus douglasii* at 11-35% cover. *Pinus sabiniana* was characteristically present in the overstory. The shrub layer was open to intermittent with *Arctostaphylos viscida* dominant and with *Rhamnus ilicifolia* and *Toxicodendron diversilobum* often present. The herbaceous layer was open to intermittent and often included *Avena barbata*, *Brachypodium distachyon*, *Bromus hordeaceus*, *Cynosurus echinatus*, *Pentagramma triangularis*, and *Torilis arvensis*.

In the study area, this association was sampled more commonly in the northern Sierra Nevada Foothills, less commonly in the the central Sierra Nevada Foothills, and infrequently in the Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic and volcanic substrates (including granitic) and occasionally on gabbro substrates. They occupied middle to upper slopes and ridgetops. Slopes were gentle to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, Mariposa, Nevada, Shasta, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	63.4	47-85	-
Herb	37.1	18-55	variable
Shrub	23.1	2-55	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	21.7	12-37	5-20
Conifer	9.6	0-17	5-35
Relative non-native to native cover	33	12-43	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (2), N (2), Variable (1), SW (1), NW (1), NE (1), E (1)

Macrotopography: middle slope (3), upper slope (3), upper slope to ridgetop (1), ridgetop (2)

Microtopography: undulating (6), convex (1), flat (1)

Parent Material: metamorphic (4), volcanic (3), gabbro (1), granitic (1)

Soil Texture: clay or clay loam (4), loam or sandy loam (2), silt or silt loam (1)

	Mean	Range
Elevation	1274 ft.	677-2619 ft.
Slope	14.10	5-30°
Large rock cover	5.1%	<1-15%
Small rock cover	3.2%	0-17%
Bare ground cover	9%	<1-33%
Litter cover	78.6%	54-97%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=9)

Rapid Assessments: SNNR0085, SNNR0112, SNNR0206, SNNR0208, SNNR1382

Relevés: SNFN0061, SNFN0382, SNFN0411, SNFN0420

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills, including by Allen et al. (1989, 1991) who described it primarily from the Sierra Nevada Foothills. It is unlikely to occur in much of the southern Sierra Foothills region due to the lack of *Pinus sabiniana* from that area.

STAND TABLE

Quercus douglasii - Pinus sabiniana / Arctostaphylos viscida / Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUDO-T	Quercus douglasii	100	21.1	11	35	Χ		Χ	
	PISA2-T	Pinus sabiniana	100	9.5	0.2	17			Χ	
	QUDO-M	Quercus douglasii	44	1.0	0.2	5				
	QUWI2-T	Quercus wislizeni	44	0.3	0.2	1				
	AECA-M	Aesculus californica	33	1.1	0.2	9				
	PISA2-L	Pinus sabiniana	33	0.4	0.2	3				
	PISA2-M	Pinus sabiniana	22	0.1	0.2	1				
	QUDO-L	Quercus douglasii	22	0.0	0.2	0.2				
Shrub										
	ARVI4	Arctostaphylos viscida		13.7		40	Χ		Χ	
	TODI	Toxicodendron diversilobum	100	5.9	0.2	21			Χ	
	RHIL	Rhamnus ilicifolia	78	2.1	0.2	11			Χ	
	LOHIV	Lonicera hispidula var. vacillans	44	0.3	0.2	1.2				
	CECU	Ceanothus cuneatus	33	2.2	0.4	15				
	HEAR5	Heteromeles arbutifolia	22	2.5	10	12.2				
	LOIN4	Lonicera interrupta	22	0.2	0.2	2				
Herb										
	TOAR	Torilis arvensis	89	1.3	0.2	5			Χ	Χ
	BRDI2	Brachypodium distachyon	67	10.7	5	27				Χ
	CYEC	Cynosurus echinatus	67	8.7	0.2	35				Χ
	AVBA	Avena barbata	67	2.8	0.2	13				Χ
	BRHO2	Bromus hordeaceus	56	2.6	0.2	12				Χ
	PETR7	Pentagramma triangularis	56	0.3	0.2	2				
	BRMA3	Bromus madritensis	44	1.8	0.2	15				Χ
	SACR2	Sanicula crassicaulis	44	0.3	0.2	2				
	DIVO	Dichelostemma volubile	44	0.2	0.2	1				
	SABI3	Sanicula bipinnatifida	44	0.2	0.2	1				
	TRHI4	Trifolium hirtum	44	0.2	0.2	1				Χ
	GAAP2	Galium aparine	44	0.1	0.2	0.2				
	GAPO	Galium porrigens	44	0.1	0.2	0.2				
	HYGL2	Hypochaeris glabra	44	0.1	0.2	0.2				Χ

STAND TABLE continued *Quercus douglasii - Pinus sabiniana | Arctostaphylos viscida |* Herbaceous Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
TICID	GEMO	Geranium molle	33	1.3	0.2	11				Χ
	MECA2	Melica californica	33	0.6	1	2				
	CHPO3	Chlorogalum pomeridianum	33	0.1	0.2	0.2				
	ELEL5	Elymus elymoides	33	0.1	0.2	0.2				
	LUCO6	Luzula comosa	33	0.1	0.2	0.2				
	LOMU	Lolium multiflorum	22	0.9	1	7	Χ			
	BRDI3	Bromus diandrus	22	0.4	1	3				Χ
	RAOC	Ranunculus occidentalis	22	0.4	0.2	3				
	MICA	Micropus californicus	22	0.2	0.2	2				
	BRODI	Brodiaea	22	0.1	0.2	1				
	NAPU2	Navarretia pubescens	22	0.1	0.2	1				
	VUMY	Vulpia myuros	22	0.1	0.2	1				Χ
	CAAL2	Calochortus albus	22	0.0	0.2	0.2				
	CEGL2	Cerastium glomeratum	22	0.0	0.2	0.2				Χ
	DICAC5	Dichelostemma capitatum subsp. capitatum	22	0.0	0.2	0.2				
	DIMU5	Dichelostemma multiflorum	22	0.0	0.2	0.2				
	DOHE	Dodecatheon hendersonii	22	0.0	0.2	0.2				
	LIBI	Linanthus bicolor	22	0.0	0.2	0.2				
	MADIA	Madia	22	0.0	0.2	0.2				
	PIPER2	Piperia	22	0.0	0.2	0.2				
	STME2	Stellaria media	22	0.0	0.2	0.2				Χ
	TRWI3	Trifolium willdenovii	22	0.0	0.2	0.2				
	VISA	Vicia sativa	22	0.0	0.2	0.2				Χ
Cryptoga										
	MOSS	Moss	44	0.9	0.2	5				

Quercus douglasii - Pinus sabiniana / Herbaceous Association Blue Oak - Foothill Pine / Herbaceous Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus douglasii* at 6-52% cover. *Pinus sabiniana* was characteristically present in the overstory. The shrub layer was open to intermittent with *Toxicodendron diversilobum* often present at low, but variable cover. The herbaceous layer was open to continuous and often included non-natives *Avena barbata*, *Bromus diandrus*, *Bromus hordeaceus*, *Cynosurus echinatus*, *Torilis arvensis*, and *Trifolium hirtum*.

This association was sampled commonly throughout the study area within the central Sierra Nevada Foothills, Cascade Range Foothills, High Cascade Range, and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic (including slate) substrates, sometimes on igneous (including volcanic and gabbro) or sedimentary substrates, and infrequently on ultramafic (including serpentine) substrates. They most frequently occupied middle slopes to ridgetops, but occasionally occupied bottom to lower slopes. Stand slopes ranged from flat to steep. Stands usually occurred in mesic settings (more than half the samples occur on north- or east-facing slopes) with well-developed silt or clay loam soils - where *P. sabiniana* and *Q. douglasii* become established with higher average cover, as compared to the drier settings of the *Q. douglasii* / Grass Sub-alliance.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, Mariposa, Nevada, Shasta, Tehama, Tuolumne, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	71.9	42-96	-
Herb	49.6	12-95	variable
Shrub	10.2	0-61	<5
Low Tree/Tall Shrub	0.1	0-2	5-15
Hardwood	24.8	0-52	5-35
Conifer	7.8	0-35	5-35
Relative non-native to native cover	49.5	10-81	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NE (9), N (7), Flat (7), E (6), S (4), Variable (3), W (2), SW (2), SE (2), NW (1) Macrotopography: entire slope (1), bottom (2), bottom to lower slope (1), lower slope (3), lower to middle slope (1), lower to upper slope (1), middle slope (16), middle slope to ridgetop (1), upper slope (3), upper slope to ridgetop (1), ridgetop (13)

Microtopography: undulating (26), flat (9), convex (5), concave (3)

Parent Material: metamorphic (20), volcanic (12), sedimentary (5), slate (2), gabbro (1), igneous (1), serpentine (1), ultramafic (1)

Soil Texture: silt or silt loam (21), clay or clay loam (12), loam or sandy loam (7)

	Mean	Range
Elevation	1201 ft.	466-2921 ft.
Slope	8.3°	0-27°
Large rock cover	3.6%	0-23.6%

Small rock cover	4.1%	<1-15%
Bare ground cover	15.4%	1-85%
Litter cover	73%	10-95%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=43)

Rapid Assessments: SNNR0008, SNNR0141, SNNR0144, SNNR0183, SNNR0184, SNNR0192, SNNR0313, SNNR0528, SNNR0803, SNNR0813, SNNR0824, SNNR0991, SNNR1003, SNNR1084, SNNR1094, SNNR1109, SNNR1167, SNNR1168, SNNR1233, SNNR1235, SNNR1313, SNNR1330, SNNR1428, SNNR1480, SNNR1489, SNNR1615, SNNR1621, SNNR1627, SNNR1628, SNNR1630, SNNR1632, SNNR1641, SNNR1656, SNNR1672, SNNR1678, SNNR1684 Relevés: SNFN0056, SNFN0172, SNFN0218, SNFN0244, SNFN0247, SNFN0606, SNFN0656

Rank: G5S5

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and the southern Coast Ranges (Allen et al. 1898, 1991). It is also likely to occur in the Inner North Coast and Central Coast Ranges. Since most data collected were Rapid Assessments, additional variation in the understory herb layer could be clarified with full species lists collected in plots.

STAND TABLE *Quercus douglasii - Pinus sabiniana |* Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUDO-T	Quercus douglasii	100	24.5	6	52	Χ		Χ	
	PISA2-T	Pinus sabiniana	95	7.9	0.2	35			Χ	
	QUDO-L	Quercus douglasii	53	0.1	0.2	1				
	QUDO-M	Quercus douglasii	47	2.0	0.2	15				
	PISA2-L	Pinus sabiniana	30	0.1	0.2	2				
	QUWI2-T	Quercus wislizeni	23	0.4	1	5				
	PISA2-M	Pinus sabiniana	23	0.2	0.2	2				
Shrub										
	TODI	Toxicodendron diversilobum	56	4.2	0.2	60				
	CECU	Ceanothus cuneatus	40	1.8	0.2	20.2				
	RHIL	Rhamnus ilicifolia	23	0.3	0.2	3				
	LOHIV	Lonicera hispidula var. vacillans	21	0.0	0.2	0.2				
Herb										
	BRHO2	Bromus hordeaceus	79	9.2	0.2	45			Χ	Χ
	TOAR	Torilis arvensis	67	2.2	0.2	12				Χ
	AVBA	Avena barbata	65	3.2	0.2	20				Χ
	TRHI4	Trifolium hirtum	63	3.3	0.2	23				Χ
	BRDI3	Bromus diandrus	56	4.3	0.2	25				Χ
	CYEC	Cynosurus echinatus	53	6.0	0.2	36				Χ
	CAPY2	Carduus pycnocephalus	49	2.0	0.2	20				Χ
	DAPU3	Daucus pusillus	42	0.3	0.2	4				
	LOMU	Lolium multiflorum	40	3.8	0.2	31				Χ
	AICA	Aira caryophyllea	35	0.4	0.2	6				Χ
	AVFA	Avena fatua	33	2.1	0.2	35				Χ
	HYGL2	Hypochaeris glabra	30	0.7	0.2	12				Χ
	BRDI2	Brachypodium distachyon	26	3.2	0.2	35				Χ
	BRMA3	Bromus madritensis	26	1.9	0.2	40				Χ
	SABI3	Sanicula bipinnatifida	26	0.4	0.2	5				
	BRELE	Brodiaea elegans subsp.	26	0.1	0.2	0.2				
	VUMY	Vulpia myuros	23	8.0	0.2	9				Χ
	NAPU2	Navarretia pubescens	23	0.2	0.2	5				
	DIVO	Dichelostemma volubile	23	0.0	0.2	0.2				
	GEMO	Geranium molle	21	1.3	0.2	18				Χ
	GAPO	Galium porrigens	21	0.1	0.2	4				
	SABI2	Sanicula bipinnata	21	0.1	0.2	3				
	CLPU2	Clarkia purpurea	21	0.1	0.2	1				

Quercus douglasii - Quercus Iobata / Herbaceous Association Blue Oak - Valley Oak / Herbaceous Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent, with co-dominants *Quercus douglasii* at 13-23% cover and *Quercus lobata* at 12-15% cover. *Pinus sabiniana* was characteristically present. The shrub layer was open with *Arctostaphylos viscida*, and *Toxicodendron diversilobum* often present. The herbaceous layer was variable with abundant and characteristic taxa such as the non-native grasses *Bromus hordeaceus* and *Lolium multiflorum*.

This association was sampled infrequently in the study area within the Cascade Range Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on metamorphic and basalt substrates. They occupied lower to upper slopes that were gentle to somewhat steep. Because they were close to wetlands, ponds, or riparian areas, this association may have a higher soil water demand as compared to others of this alliance. Soils were well-developed silt or clay loam.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras, Nevada, and Shasta Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	77	70-82	-
Herb	52.7	28-75	variable
Shrub	6.3	1-16	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	37	27-44	10-20
Conifer	2.3	1-3	10-20
Relative non-native to native cover	53.6	27-70	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: E (2), S (1)

Macrotopography: lower slope (1), middle slope (1), middle to upper slope (1)

Microtopography: undulating (2), concave (1) Parent Material: metamorphic (2), basalt (1)

Soil Texture: silt or silt loam (2), clay or clay loam (1)

	Mean	Range
Elevation	688 ft.	466-874 ft.
Slope	14.7°	3-230
Large rock cover	4.5%	1-8%
Small rock cover	9%	3-15%
Bare ground cover	46.5%	20-73%
Litter cover	36.5%	20-53%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: SNNR0977, SNNR1162, SNNR1631

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills, including by Allen et al. (1989, 1991) from the Central Coast Ranges and the Sierra Nevada Foothills (in Placer and Calaveras Counties). Data from this project expand the range north to Nevada and Shasta Counties. Some stands of *Q. douglasii* mixed with *Q. lobata* on river terraces near El Portal in the western portion of Yosemite are likely to be classified in this association (NatureServe et al. 2003b). Other occurrences of this association are likely to occur in the Central Valley and in the South Coast Ranges. However, the association is likely to be limited in distribution.

STAND TABLE *Quercus douglasii - Quercus Iobata |* Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree	QUDO-T	Quercus douglasii	100	16.7	13	23		Х	Х	
	QULO-T	Quercus lobata		13.3		15		X	Х	
	PISA2-T	Pinus sabiniana	100		1	3		,,	Х	
	QUWI2-T	Quercus wislizeni	67	6.0	6	12			•	
	PISA2-L	Pinus sabiniana	33	0.3	1	1				
	QUDO-M	Quercus douglasii	33	0.3	1	1				
	QUDO-L	Quercus douglasii	33	0.1	0.2					
	QULO-L	Quercus lobata	33	0.1	0.2					
Shrub										
	ARVI4	Arctostaphylos viscida	67	2.7	0.2	8				
	TODI	Toxicodendron diversilobum	67	0.7	0.2	2				
	ARMA	Arctostaphylos manzanita	33	1.7	5	5				
	CECU	Ceanothus cuneatus	33	0.3	1	1				
	LOHIV	Lonicera hispidula var. vacillans	33	0.3	1	1				
	FRCA6	Fremontodendron californicum	33	0.1	0.2	0.2				
Herb										
	LOMU	Lolium multiflorum	100	18.0	3	46			Χ	Χ
	BRHO2	Bromus hordeaceus	100	7.0	1	13			Χ	Χ
	BRDI3	Bromus diandrus	67	5.7	7	10				Χ
	CYEC	Cynosurus echinatus	67	5.3	7	9				Χ
	TRHI4	Trifolium hirtum	67	4.0	5	7				Χ
	TOAR	Torilis arvensis	67	2.7	0.2					Χ
	CAPY2	Carduus pycnocephalus	67	2.7	3	5				Χ
	AVBA	Avena barbata	67	2.0	1	5				Χ
	OXLA8	Oxalis laxa	33	3.3	10	10				Χ
	ANAR	Anagallis arvensis	33	1.7	5	5				Χ
	GEMO	Geranium molle	33	1.7	5	5				Χ
	TRDU2	Trifolium dubium	33	1.3	4	4				Χ
	HOMA2	Hordeum marinum	33	0.7	2	2				Χ
	JUTE	Juncus tenuis	33	0.7	2	2				
	BRMI2	Briza minor	33	0.3	1	1				Χ
	GEDI	Geranium dissectum	33	0.3	1	1				Χ
	TACA8	Taeniatherum caput-medusae	33	0.3	1	1				Χ
	WYAN	Wyethia angustifolia	33	0.3	1	1				
	RAMU2	Ranunculus muricatus	33	0.1	0.2					Χ
	RAOC	Ranunculus occidentalis	33	0.1	0.2					
	RUSA	Rumex salicifolius	33	0.1	0.2					
	SACR2	Sanicula crassicaulis	33	0.1	0.2					
	TRBR7	Triteleia bridgesii	33	0.1	0.2	0.2				

Quercus douglasii - Quercus wislizeni / Herbaceous Association Blue Oak - Interior Live Oak / Herbaceous Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus douglasii* at 4-45% cover. *Quercus wislizeni* was characteristically present in the overstory. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant. The herbaceous layer was open to continuous and often included nonnatives *Avena barbata*, *Bromus diandrus*, *Bromus hordeaceus*, *Carduus pycnocephalus*, *Cynosurus echinatus*, and *Trifolium hirtum*.

In the study area, this association was sampled commonly in the northern Sierra Nevada Foothills and infrequently in the Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates (including greenstone, slate, and semi-schist), but were also found on igneous (including volcanic, basalt, and granitic), sedimentary, or mixed alluvium substrates. They usually occupied middle and upper slopes, but also occurred on bottoms, lower slopes, and ridgetops.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Nevada, Shasta, Tehama, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Tehama Terraces (M261Cb), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	68.6	34-84	-
Herb	43.7	0-72	variable
Shrub	9.8	0-46	<5
Low Tree/Tall Shrub	<1	0-6	5-10
Hardwood	29.1	5-52	5-20
Conifer	2	0-21	5-35
Relative non-native to native cover	46.9	0-88	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (9), N (8), S (6), NW (5), W (4), Variable (4), NE (4), SE (3)

Macrotopography: bottom (5), lower slope (6), lower to middle slope (5), middle slope (12), middle to upper slope (2), upper slope (11), ridgetop (2)

Microtopography: undulating (33), flat (3), convex (3), concave (3)

Parent Material: metamorphic (31), volcanic (5), basalt (1), granitic (1), greenstone (1), mixed alluvium (1), semi-schist (1), slate (1), water (1)

Soil Texture: silt or silt loam (30), clay or clay loam (7), loam or sandy loam (4), sand (1)

Mean	Range
933 ft.	305-1627 ft.
10.6°	0-32°
2.1%	0-6%
3.9%	1-20%
17%	4-62%
73.7%	35-90%
	933 ft. 10.6° 2.1% 3.9% 17%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=43)

Rapid Assessments: SNNR0003, SNNR0082, SNNR0086, SNNR0155, SNNR0546, SNNR0651, SNNR0657, SNNR0669, SNNR0847, SNNR0926, SNNR0941, SNNR0974, SNNR0980, SNNR1154, SNNR1158, SNNR1164, SNNR1363, SNNR1603, SNNR1617, SNNR1624, SNNR1633, SNNR1640, SNNR1642, SNNR1645, SNNR1647, SNNR1648, SNNR1650, SNNR1654, SNNR1655, SNNR1661, SNNR1663, SNNR1664, SNNR1665, SNNR1669, SNNR1670, SNNR1671, SNNR1673, SNNR1677, SNNR1679, SNNR1680, SNNR1688, SNNR1690, SNNR1691

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills by Allen et al. (1989, 1991) and has been identified as high as 2100 ft. elevation in the Yosemite area (NatureServe et al. 2003b).

STAND TABLE

Quercus douglasii - Quercus wislizeni / Herbaceous Association

С	N
V	
Х	
Χ	
	Χ
	Χ
	Χ
	Χ
	Χ
	Χ
	Χ
	Χ
	Х
	Х
	X X

Quercus kelloggii Woodland/Forest Alliance Black Oak Woodland/Forest Alliance

As defined in the state, *Quercus kelloggii* is dominant in the tree canopy with *Abies concolor*, *Arbutus menziesii*, *Calocedrus decurrens*, *Pinus attenuata*, *P. ponderosa*, *Pseudotsuga macrocarpa*, *P. menziesii*, *Quercus agrifolia*, *Q. chrysolepis*, *Q. garryana*, *Q. lobata*, and *Umbellularia californica*. Stands that have a co-dominance with *Pinus ponderosa* are also placed in this alliance (see discussion under the *Quercus kelloggii - Pinus ponderosa* Association description). The canopy is savanna-like to continuous. The shrub layer is open to intermittent. The herbaceous layer is sparse or grassy. These stands are found on all aspects and topographic settings. Soils are moderately to excessively well-drained.

Foothill stands of the *Quercus kelloggii* Alliance tend to be open to continuous and may contain *Heteromeles arbutifolia*, *Rhamnus tomentella*, and *Toxicodendron diversilobum*. Eight associations were described for the Black oak Alliance in the study area. Eight stands showed additional variation (SNNR0607, SNNR0258, SNNR1300, SNNR0396, SNFN0334, SNNR1059, SNNR1360, SNNR1264) in riparian settings or in upland woodlands mixed with shrubs. These stands were classified to the alliance level only. In the riparian stands, one included codominance of *Acer macrophyllum*, another had *A. macrophyllum* and *Symphoricarpos albus* var. *laevigatus*, another had *Alnus rhombifolia* with high cover of *Rubus discolor*, and another had *Rhus trilobata*. In the upland stands, one contained high cover of *Quercus garryana* var. *brewer*, another had *Quercus douglasii* and moss, another had co-dominance of *Pinus sabiniana* with *Quercus kelloggii* and an understory of *Aesculus californica*, another was distinguished by *Heteromeles arbutifolia* and *Philadelphus lewisii*, and another contained significant cover of *Arbutus menziesii*.

Quercus kelloggii / Arctostaphylos viscida Association (Provisional) Black Oak / Whiteleaf Manzanita Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus kelloggii* at 1-35% cover. Other trees such as *Pinus sabiniana* and *Quercus wislizeni* were often present. The shrub layer was usually well-developed with intermittent cover, with *Heteromeles arbutifolia* being co-dominant with *Arctostaphylos viscida* and *Toxicodendron diversilobum*. *Cercis occidentalis* was often present at low cover. The herbaceous layer was open and often included *Galium porrigens* and *Wyethia reticulata*.

In the study area, this association was sampled commonly in the northern Sierra Nevada Foothills and once in the central Sierra Nevada Foothills Subregions (Hickman 1993). Stands often occurred on gabbro substrates, occasionally on metamorphic (including greenstone), and infrequently on granitic substrates. They occupied lower to upper slopes. These slopes were typically northerly facing, mesic, and moderate to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, Mariposa, and Placer Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	55.2	35-75	-
Herb	9.6	1-22	variable
Shrub	40	9-60	<5
Low Tree/Tall Shrub	<1	0-2	5-10
Hardwood	25.3	1-35	5-20
Conifer	1	0-2	5-20
Relative non-native to native cover	1.2	0-5	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (5), NE (2), NW (1), E (1)

Macrotopography: lower slope (2), lower to upper slope (1), middle slope (2), middle to upper

slope (1), upper slope (3)

Microtopography: flat (5), undulating (3)

Parent Material: gabbro (5), metamorphic (2), granitic (1), greenstone (1)

Soil Texture: clay or clay loam (3), silt or silt loam (2)

	Mean	Range
Elevation	1358 ft.	504-1969 ft.
Slope	22.1°	10-34°
Large rock cover	0.8%	0-3%
Small rock cover	0.8%	<1-3%
Bare ground cover	20.6%	1-45%
Litter cover	74.5%	50-93%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=9)

Rapid Assessments: SNNR0494, SNNR0495, SNNR0499, SNNR0915, SNNR1009,

SNNR1123, SNNR1176, SNNR1514, SNNR1597

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely on the data collected for this project. It is likely to also occur in the eastern Klamath Mountains.

STAND TABLE *Quercus kelloggii | Arctostaphylos viscida* Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUKE-T	Quercus kelloggii	100	22.2		35	Χ		Χ	
	QUWI2-T	Quercus wislizeni	67	2.6	0.2	9				
	PISA2-T	Pinus sabiniana	56	0.4	0.2	2				
	PIPO-T	Pinus ponderosa	44	0.2	0.2	1				
	QUWI2-M	Quercus wislizeni	33	2.2	3	13				
	QUKE-M	Quercus kelloggii	22	0.7	0.2	6				
Shrub										
	HEAR5	Heteromeles arbutifolia		13.1	2	30		Χ	Χ	
	TODI	Toxicodendron diversilobum		10.1	1	40			Χ	
	ARVI4	Arctostaphylos viscida	100		1	17			Χ	
	CEOCO	Cercis occidentalis	56	0.6	0.2	2				
	RHTO6	Rhamnus tomentella	44	0.6	0.2	2				
	RHIL	Rhamnus ilicifolia	33	1.3	2	7				
	CLLA3	Clematis lasiantha	22	0.4	1	3				
	CYSC4	Cytisus scoparius	22	0.2	0.2	2				Χ
	SYALL	Symphoricarpos albus var. laevigatus	22	0.0	0.2	0.2				
Herb		_								
	WYRE	Wyethia reticulata	56	1.8	2	5				
	GAPO	Galium porrigens	56	0.4	0.2	3				
	MECA2	Melica californica	44	0.3	0.2	2				
	TOAR	Torilis arvensis	44	0.3	0.2	1				Χ
	POACXX	Poaceae	33	1.2	0.2	10				
	CHPO3	Chlorogalum pomeridianum	33	0.2	0.2	1				
	GACAS	Galium californicum subsp. sierrae	33	0.2	0.2	1				
	CYEC	Cynosurus echinatus	22	0.1	0.2	1				Χ
	MOVI2	Monardella villosa	22	0.1	0.2	1				
	RAOC	Ranunculus occidentalis	22	0.1	0.2	1				
	WYAN	Wyethia angustifolia	22	0.1	0.2	1				
	HYPE	Hypericum perforatum	22	0.0	0.2	0.2				Χ
	LUCO6	Luzula comosa	22	0.0	0.2	0.2				
	PETR7	Pentagramma triangularis	22	0.0	0.2	0.2				
Cryptoga										
711 3	MOSS	Moss	67	4.9	0.2	35				

Quercus kelloggii / Ceanothus integerrimus Association Black Oak / Deerbrush Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus kelloggii* at 20-55% cover. Other trees such as *Pinus ponderosa*, *Pinus sabiniana*, *Quercus douglasii*, and *Quercus wislizeni* were often present. The shrub layer was intermittent to continuous with *Ceanothus integerrimus* dominant and with *Heteromeles arbutifolia*, *Keckiella breviflora*, *Lonicera hispidula* var. *vacillans*, *Rhamnus ilicifolia*, and *Toxicodendron diversilobum* often present. The herbaceous layer was variable and included a variety of native and non-native grasses and forbs (see stand table below). This association is likely to be driven by recent fire and is closely related to the two following associations in the *Quercus kelloggii* Alliance (see pages 128-133). These types were all formerly described by Allen et al. (1991), but may, upon closer inspection, be considered a related suite of phases included in a larger, over-arching association of Black oak and poison oak.

This association was sampled infrequently in the study area, occurring in the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on granitic or metamorphic substrates. They occupied lower to upper slopes that were steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Nevada County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	82.5	80-85	-
Herb	18	12-24	>0.3
Shrub	66	45-87	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	41.5	20-63	5-20
Conifer	0.6	0-1	10-35
Relative non-native to native cover	7.7	5-10	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (2)

Macrotopography: lower to middle slope (1), upper slope (1)

Microtopography: concave (1), flat (1)

Parent Material: granitic (1), metamorphic (1)

Soil Texture: clay or clay loam (1), loam or sandy loam (1)

	Mean	Range
Elevation	1043 ft.	891-1194 ft.
Slope	30°	30-30°
Large rock cover	2.5%	2-3%
Small rock cover	4%	3-5%
Bare ground cover	17.5%	5-30%
Litter cover	73%	60-86%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR1369, SNNR1370

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada by Allen et al. (1991). It is also likely to occur in the Klamath Mountains and the North Coast Ranges.

STAND TABLE

Quercus kelloggii / Ceanothus integerrimus Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUKE-T	Quercus kelloggii	100	37.5	20	55	Χ		Χ	
	QUWI2-T	Quercus wislizeni	100	5.0	2	8			Χ	
	ARME-L	Arbutus menziesii	50	11.0	22	22				
	PISA2-T	Pinus sabiniana	50	0.5	1	1				
	QUDO-T	Quercus douglasii	50	0.5	1	1				
	PIPO-T	Pinus ponderosa	50	0.1	0.2	0.2				
Shrub										
	CEIN3	Ceanothus integerrimus		31.0		37	X		Χ	
	TODI	Toxicodendron diversilobum		14.0		14			Χ	
	HEAR5	Heteromeles arbutifolia		13.5		18			Χ	
	LOHIV	Lonicera hispidula var. vacillans	100	1.5	1	2			X	
	KEBR	Keckiella breviflora	50	1.0	2	2				
	RHIL	Rhamnus ilicifolia	50	1.0	2	2				
Herb										
	CYEC	Cynosurus echinatus	100	6.0	2	10		Χ	Χ	Χ
	ELGL	Elymus glaucus	100	2.6	0.2	5			Χ	
	TOAR	Torilis arvensis	50	2.0	4	4				Χ
	VUMY	Vulpia myuros	50	1.5	3	3				Χ
	CAOC6	Calystegia occidentalis	50	1.0	2	2				
	IRIS	Iris	50	1.0	2	2				
	AICA	Aira caryophyllea	50	0.5	1	1				Χ
	BRCA5	Bromus carinatus	50	0.1	0.2	0.2				
	BRLA3	Bromus laevipes	50	0.1	0.2	0.2				
	CLBI	Clarkia biloba	50	0.1	0.2	0.2				
	CRAN11	Crucianella angustifolia	50	0.1	0.2	0.2				Χ
	ERLA6	Eriophyllum lanatum	50	0.1	0.2	0.2				
	GAPO	Galium porrigens	50	0.1	0.2	0.2				
	HYPE	Hypericum perforatum	50	0.1	0.2					Χ
	LETA	Leontodon taraxacoides	50	0.1	0.2					Χ
	RAOC	Ranunculus occidentalis	50	0.1	0.2	0.2				
	SCCA3	Scutellaria californica	50	0.1	0.2	0.2				

Quercus kelloggii / Toxicodendron diversilobum - Styrax officinalis / Triteleia laxa Association

Black Oak / Poison-oak - Styrax / Grass Nut Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus kelloggii* at 20-35% cover. Other trees such as *Pinus sabiniana* and *Pinus ponderosa* were infrequently present in the overstory. The shrub layer was open to intermittent with *Styrax officinalis* var. *redivivus* dominant and with *Heteromeles arbutifolia*, *Rhamnus tomentella*, *Symphoricarpos albus* var. *laevigatus*, and *Toxicodendron diversilobum* often present. The herbaceous layer was open and often included *Calochortus*, *Dryopteris arguta*, *Galium porrigens*, *Melica torreyana*, *Potentilla glandulosa*, and *Torilis arvensis*.

This association was sampled infrequently in the study area, in the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on gabbro substrates. They occupied bottom to middle slopes that were gentle to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	55.7	37-72	-
Herb	14.3	6-22	variable
Shrub	31.3	16-58	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	30.7	27-35	10-20
Conifer	1.7	0-5	5-20
Relative non-native to native cover	2.5	0-6	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NE (1), N (1), E (1)

Macrotopography: bottom (1), lower slope (1), lower to middle slope (1)

Microtopography: flat (2), concave (1)

Parent Material: gabbro (3)

Soil Texture: clay or clay loam (1), sand (1), silt or silt loam (1)

	Mean	Range
Elevation	668 ft.	560-810 ft.
Slope	14.3°	5-19°
Large rock cover	6.9%	<1-20%
Small rock cover	1.9%	<1-5%
Bare ground cover	7.3%	1-20%
Litter cover	80%	50-97%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: SNNR0335, SNNR0340 Relevés: SNFN0013

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada by Allen et al. (1989, 1991). It is also likely to occur in the eastern Klamath Mountains. It is clearly related to the following *Q. kelloggii / Toxicodendron diversilobum /* Grass association, but ranges into more mesic settings.

STAND TABLE

Quercus kelloggii / Toxicodendron diversilobum - Styrax officinalis / Triteleia laxa

Association

	orm Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree	QUKE-T	Quercus kelloggii	100	27.3	20	35	Х		Х	
	UMCA-T	Umbellularia californica	33	3.3	10	10	^		^	
	PIPO-T	Pinus ponderosa	33	1.7	5	5				
	PISA2-M	Pinus sabiniana	33	0.1	0.2	0.2				
	QUDO-M	Quercus douglasii	33	0.1	0.2	0.2				
	QUKE-L	Quercus kelloggii	33	0.1	0.2	0.2				
	QUWI2-M	Quercus wislizeni	33	0.1	0.2	0.2				
Shru	ıb									
	STOFR	Styrax officinalis var. redivivus	100	12.7	6	25.2		Χ	Χ	
	HEAR5	Heteromeles arbutifolia	100	6.8	0.2	19.2			Χ	
	TODI	Toxicodendron diversilobum	100	6.5	1	15.2			Χ	
	SYALL	Symphoricarpos albus var. laevigatus	67	2.4	0.2	7				
	RHTO6	Rhamnus tomentella	67	1.7	0.2	5				
	RUDI2	Rubus discolor	33	1.0	3	3				Χ
	RHOC	Rhododendron occidentale	33	0.7	2	2				
	VICA5	Vitis californica	33	0.4	1.2	1.2				
	RUUR	Rubus ursinus	33	0.3	1	1				
	CEOCO	Cercis occidentalis	33	0.1	0.2	0.2				
	CLLA3	Clematis lasiantha	33	0.1	0.2	0.2				
	RHCA	Rhamnus californica	33	0.1	0.2	0.2				
	ROSA5	Rosa	33	0.1	0.2	0.2				
Herb										
	METO	Melica torreyana	67	4.3	1	12				
	POGL9	Potentilla glandulosa	67	0.4	0.2	1				
	ASTEXX	Asteraceae	67	0.1	0.2	0.2				Χ
	CALOC	Calochortus	67	0.1	0.2	0.2				
	DRAR3	Dryopteris arguta	67	0.1	0.2	0.2				
	GAPO	Galium porrigens	67	0.1	0.2	0.2				
	TOAR	Torilis arvensis	67	0.1	0.2	0.2				Χ
	ASRA	Aster radulinus	33	1.7	5	5				
	CHPO3	Chlorogalum pomeridianum	33	0.7	2	2				
	WOFI	Woodwardia fimbriata	33	0.7	2	2				

STAND TABLE continued

Quercus kelloggii / Toxicodendron diversilobum - Styrax officinalis / Triteleia laxa

Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	APCA	Apocynum cannabinum	33	0.3	1	1				
	BRLA3	Bromus laevipes	33	0.3	1	1				
	ELGLG IRIS	Elymus glaucus subsp. glaucus Iris	33	0.3 0.3	1 1	1 1				
	LASU	Lathyrus sulphureus	33	0.3	1	1				
	POCOC	Polygala cornuta var. cornuta	33	0.3	1	1				
	ADJO	Adiantum jordanii	33	0.1	0.2	0.2				
	AQFO	Aquilegia formosa	33	0.1	0.2	0.2				
	BROMU	Bromus	33	0.1	0.2	0.2				Χ
	CACAC3	Cardamine californica var. californica	33	0.1	0.2	0.2				
	CLPA5	Claytonia parviflora	33	0.1	0.2	0.2				
	ELGL	Elymus glaucus	33	0.1	0.2	0.2				
	GAAP2	Galium aparine	33	0.1	0.2	0.2				
	LIHUH	Lilium humboldtii subsp. humboldtii	33	0.1	0.2	0.2				
	LIPA	Lilium pardalinum	33	0.1	0.2	0.2				
	LOTUS	Lotus	33	0.1	0.2	0.2				
	MECA2	Melica californica	33	0.1	0.2	0.2				
	RAOC	Ranunculus occidentalis	33	0.1	0.2	0.2				
	SABI3	Sanicula bipinnatifida	33	0.1	0.2	0.2				
	SEAR4	Senecio aronicoides	33	0.1	0.2	0.2				
Cryptoga	m									
•	MOSS	Moss	33	0.1	0.2	0.2				

Quercus kelloggii / Toxicodendron diversilobum / Grass Association Black Oak / Poison-oak / Grass Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus kelloggii* at 5-55% cover. *Pinus sabiniana* was often present in the overstory. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant. The herbaceous layer was open to intermittent and often included *Cynosurus echinatus*, *Elymus glaucus*, and *Torilis arvensis*.

This association was sampled commonly throughout the study area within the Cascade Range Foothills, High Cascade Range, northern Sierra Nevada Foothills, and once in the central Sierra Nevada Foothills Subregions (Hickman 1993). Stands often occurred on igneous substrates (including gabbro, volcanic, or basalt), sometimes on metamorphic (including slate) substrates, and infrequently on sedimentary substrates. They occupied bottom to ridgetop slope positions, that varied from gentle to steep, in draws or on terraces.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, El Dorado, Nevada, Placer, Shasta, Tehama, Tuolumne, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997). This is one of the most commonly encountered types of black oak woodland in the study area, and it ranges into higher elevations of the region. Further study may differentiate specific understory herb species as diagnostic.

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	66.8	46-98	-
Herb	22.2	0-60	variable
Shrub	29.4	1-65	<5
Low Tree/Tall Shrub	1.5	0-20	5-10
Hardwood	37.7	5-60	5-35
Conifer	2.5	0-10	5->35
Relative non-native to native cover	13.9	0-47	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (16), NW (5), NE (5), W (1), SE (1), E (1)

Macrotopography: bottom (1), lower slope (1), lower to middle slope (1), lower to upper slope (1), middle slope (8), middle to upper slope (3), upper slope (9), upper slope to ridgetop (1), draw (1), ridgetop (2), terrace (1)

Microtopography: undulating (12), flat (7), concave (5), convex (5)

Parent Material: volcanic (11), metamorphic (7), basalt (4), igneous (3), gabbro (1), sedimentary (1), slate (1), water (1)

Soil Texture: clay or clay loam (8), loam or sandy loam (6), silt or silt loam (6)

	Mean	Range
Elevation	1571 ft.	555-3563 ft.
Slope	19.6°	3-37°
Large rock cover	2.2%	0-20%
Small rock cover	2.2%	<1-6.2%
Bare ground cover	8%	1-20%
Litter cover	83.4%	69-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=29)

Rapid Assessments: SNNR0090, SNNR0092, SNNR0095, SNNR0158, SNNR0189, SNNR0252, SNNR0334, SNNR0388, SNNR0447, SNNR0458, SNNR0573, SNNR0676, SNNR0729, SNNR0772, SNNR0829, SNNR0966, SNNR1058, SNNR1061, SNNR1230, SNNR1368, SNNR1614 **Relevés:** SNFN0026, SNFN0049, SNFN0103, SNFN0108, SNFN0144, SNFN0190, SNFN0193, SNFN0331

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada by Allen et al. (1989, 1991). It also likely occurs in the Klamath and North Coast Range mountains.

STAND TABLE

Quercus kelloggii / Toxicodendron diversilobum / Grass Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUKE-T	Quercus kelloggii	97	35.0	5	55	Χ		Χ	
	PISA2-T	Pinus sabiniana	59	1.6	0.2	10				
	AECA-M	Aesculus californica	41	2.6	0.2	30				
	PISA2-M	Pinus sabiniana	41	0.3	0.2	3				
	QUWI2-T	Quercus wislizeni	38	0.9	0.2	7				
	QUKE-L	Quercus kelloggii	38	0.1	0.2	0.2				
	QUWI2-M	Quercus wislizeni	34	0.3	0.2	2				
	PIPO-T	Pinus ponderosa	31	0.6	0.2	8				
	QUDO-T	Quercus douglasii	28	8.0	0.2	6				
Shrub										
	TODI	Toxicodendron diversilobum		17.9		55	Χ		Χ	
	RHTO6	Rhamnus tomentella	38	1.3	0.2	10				
	ARCA10	Aristolochia californica	28	0.4	0.2	8				
	HEAR5	Heteromeles arbutifolia	24	3.5	1	60.2				
	LOHIV	Lonicera hispidula var.	24	0.1	0.2	2				
		vacillans								
Herb										
	TOAR	Torilis arvensis	83	3.8	0.2	15			Х	Χ
	CYEC	Cynosurus echinatus	66	3.3	0.2	19				Χ
	ELGL	Elymus glaucus	59	1.0	0.2	12				
	BRDI3	Bromus diandrus	48	1.8	0.2	15				Χ
	GAAP2	Galium aparine	41	0.2	0.2	1				
	GAPO	Galium porrigens	38	0.2	0.2	2				
	DIVO	Dichelostemma volubile	34	0.1	0.2	0.2				
	MECA2	Melica californica	31	1.0	0.2	25				
	LUCO6	Luzula comosa	31	0.1	0.2	1				
	BRLA3	Bromus laevipes	28	0.1	0.2	1				
	SACR2	Sanicula crassicaulis	28	0.1	0.2	1				
	VISA	Vicia sativa	24	1.1	1	14				Χ
	TRHI4	Trifolium hirtum	24	0.7	0.2	14	Χ	L	ASU	
	Lathyrus sul		24	0.2	0.2	2				
	SABI3	Sanicula bipinnatifida	24	0.1	0.2	2				
	PETR7	Pentagramma triangularis	24	0.1	0.2	1				
	CHPO3	Chlorogalum pomeridianum	21	0.1	0.2	1				
	RAOC	Ranunculus occidentalis	21	0.1	0.2	1				
Cryptoga										
	MOSS	Moss	28	2.2	0.2	35				

Quercus kelloggii - Pinus ponderosa Association Black Oak - Ponderosa Pine Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and codominated by *Pinus ponderosa* at 4-34% cover and *Quercus kelloggii* at 7-47% cover. Other trees such as *Calocedrus decurrens*, *Pinus sabiniana*, and *Quercus chrysolepis* occurred occasionally. The shrub layer was open to intermittent, with *Toxicodendron diversilobum* often present. The herbaceous layer was open to intermittent with *Achnatherum lemmonii*, *Aira caryophyllea*, *Bromus laevipes*, *Chlorogalum pomeridianum*, *Cynosurus echinatus*, *Elymus glaucus*, *Sanicula bipinnatifida*, and *Torilis arvensis* occurring occasionally.

This association may be perceived as a Ponderosa pine forest or woodland type due to the conspicuous and common presence of co-dominant tree *Pinus ponderosa* (e.g. see *Pinus ponderosa* - *Quercus kelloggii / Arctostaphylos viscida* Woodland Association in NatureServe et al. 2003b). However, analysis of plots in this study suggests that this type and the closely related *Quercus kelloggii - Pinus ponderosa / Arctostaphylos viscida* Association (see page 136) are more similar to other associations within the *Q. kelloggii* Alliance. The current paucity of mature *P. ponderosa*-dominated stands in the Sierra Nevada Foothills and lower western slope has been recently pointed out by Thorne et al. (2006). It is possible that pre-European *Pinus ponderosa* Alliance stands were much more widespread in the area, but current stands share more similarity with *Q. kelloggii* Alliance stands.

In the study area, this association was sampled occasionally in the northern Sierra Nevada Foothills and High Cascade Range, and only once in the Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on igneous and volcanic (including basalt) substrates, and infrequently on mixed rock or metamorphic substrates. They occupied lower to upper slopes and ridgetops. Slopes varied from gentle to steep. Stands usually occurred in more mesic settings on north-facing aspects or in wetter, higher elevations of the study area.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	51.7	40-68	-
Herb	12.2	0-35	variable
Shrub	14	1-43	<5
Low Tree/Tall Shrub	1.3	0-10	5-10
Hardwood	23.5	10-47	5-20
Conifer	20.2	8-35	5-35
Relative non-native to native cover	8.4	0-32	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (5), SE (2), W (1), Variable (1), N (1)

Macrotopography: lower slope (2), lower to middle slope (1), lower to upper slope (1), middle slope (1), upper slope (3), ridgetop (2)

Microtopography: convex (4), undulating (3), flat (2)

Parent Material: volcanic (5), mixed rock (2), basalt (1), igneous (1), metamorphic (1)

Soil Texture: loam or sandy loam (4), silt or silt loam (3)

	Mean	Range
Elevation	1724 ft.	416-3268 ft.
Slope	13.7°	2-35°
Large rock cover	1.1%	0-4%
Small rock cover	1.6%	<1-5%
Bare ground cover	5.9%	1-30%
Litter cover	88.4%	65-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=10)

Rapid Assessments: SNNR0069, SNNR0070, SNNR0255, SNNR0328, SNNR0392,

SNNR0393, SNNR0512, SNNR0721, SNNR0795, SNNR1192

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada based solely on the data collected for this project.

STAND TABLE *Quercus kelloggii - Pinus ponderosa* Association

Lifeform	Code	Species Name	Con Avg Min Max		Max	D	сD	С	N	
Tree										
	QUKE-T	Quercus kelloggii	100	22.0	7	47		Χ	Χ	
	PIPO-T	Pinus ponderosa	100	19.3	4	34		Χ	Χ	
	PISA2-T	Pinus sabiniana	40	8.0	1	4				
	PIPO-M	Pinus ponderosa	30	1.1	1	7				
	QUCH2-T	Quercus chrysolepis	30	0.3	0.2	2				
	CADE27-T	Calocedrus decurrens	30	0.1	0.2	1				
Shrub										
	TODI	Toxicodendron diversilobum	70	5.5	0.2	31				
	RHTO6	Rhamnus tomentella	40	0.3	0.2	2				
	CEOCO	Cercis occidentalis	30	0.1	0.2	0.2				
Herb										
	TOAR	Torilis arvensis	40	0.7	0.2	3				Χ
	CYEC	Cynosurus echinatus	30	2.3	1	20				Χ
	ELGL	Elymus glaucus	30	0.5	0.2	3				
	ACLE8	Achnatherum lemmonii	30	0.4	0.2	2				
	AICA	Aira caryophyllea	30	0.1	0.2	1				Χ
	CHPO3	Chlorogalum pomeridianum	30	0.1	0.2	1				
	BRLA3	Bromus laevipes	30	0.1	0.2	0.2				
	SABI3	Sanicula bipinnatifida	30	0.1	0.2	0.2				

Quercus kelloggii - Pinus ponderosa / Arctostaphylos viscida Association Black Oak - Ponderosa Pine / Whiteleaf Manzanita Association

SUMMARY

In the stands sampled, the overstory tree canopy was open to continuous and co-dominated by *Pinus ponderosa* at 1-37% cover and *Quercus kelloggii* at 5-55% cover. Other trees such as *Pinus sabiniana*, *Quercus chrysolepis*, and *Quercus wislizeni* were present occasionally. The shrub layer was open to continuous, with *Heteromeles arbutifolia* co-dominant with *Arctostaphylos viscida* and *Toxicodendron diversilobum*. The herbaceous layer was open and often included *Elymus glaucus*, *Galium porrigens*, and *Torilis arvensis*. For justification of the placement of this association in the *Q. kelloggii* Alliance, see discussion in the previous association description.

In the study area, this association was sampled commonly in the northern Sierra Nevada Foothills, but only once in the High Cascade Range Subregions (Hickman 1993). Stands usually occurred on metamorphic subtrates, but were also found on igneous (including granitic, gabbro, and basalt) substrates. They occupied all slope positions from lower slopes to ridgetops. Slopes varied from gentle to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, El Dorado, Nevada, Placer, Shasta, and Yuba Counties, within the Granitic and Metamorphic Foothills (M261Ef), Lower Foothills Metamorphic Belt (M261Fb), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	68.7	49-82	-
Herb	12.6	0-33	variable
Shrub	36.1	5-70	<5
Low Tree/Tall Shrub	3.1	0-28	5-10
Hardwood	25.5	5-55	5-20
Conifer	14.7	2-37	5->35
Relative non-native to native cover	5	0-27	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (11), NE (6), W (2), Variable (2), E (2), SW (1)

Macrotopography: lower slope (1), lower to upper slope (1), middle slope (12), middle to upper slope (2), upper slope (5), upper slope to ridgetop (1), ridgetop (2)

Microtopography: flat (13), undulating (9), convex (1), concave (1)

Parent Material: metamorphic (10), granitic (5), gabbro (3), mixed metamorphic (2), basalt (1), igneous (1), slate (1), volcanic (1)

Soil Texture: silt or silt loam (8), clay or clay loam (6), loam or sandy loam (6), sand (1)

	Mean	Range
Elevation	1538 ft.	756-2386 ft.
Slope	20.5°	2-34°
Large rock cover	1.9%	0-15%
Small rock cover	1.8%	<1-10%
Bare ground cover	7.1%	0-28%
Litter cover	85.8%	54-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=24)

Rapid Assessments: SNNR0129, SNNR0163, SNNR0263, SNNR0656, SNNR0665, SNNR0671, SNNR0679, SNNR0769, SNNR0782, SNNR0783, SNNR0822, SNNR1124, SNNR1135, SNNR1136, SNNR1137, SNNR1138, SNNR1139, SNNR1259, SNNR1372, SNNR1376, SNNR1383, SNNR1384, SNNR1399 **Relevés:** SNFN0330

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based on data from NatureServe et al. (2003b) and this project. It may also occur in the eastern Klamath Mountains of California.

STAND TABLE Quercus kelloggii - Pinus ponderosa / Arctostaphylos viscida Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUKE-T	Quercus kelloggii	100	21.4	5	55		Χ	Χ	
	PIPO-T	Pinus ponderosa	100	14.0	1	37		Χ	Χ	
	QUWI2-M	Quercus wislizeni	46	1.1	0.2	10				
	PISA2-T	Pinus sabiniana	46	0.4	0.2					
	QUKE-L	Quercus kelloggii	42	0.2	0.2	1				
	QUWI2-T	Quercus wislizeni	38	1.7	2	12				
	PIPO-M	Pinus ponderosa	38	0.7	0.2	6				
	PIPO-L	Pinus ponderosa	38	0.1	0.2	0.2				
	QUCH2-T	Quercus chrysolepis	25	3.0	2	30				
	QUKE-M	Quercus kelloggii	25	0.3	0.2	3				
Shrub										
	TODI	Toxicodendron diversilobum	96	7.1	0.2	23			Χ	
	ARVI4	Arctostaphylos viscida	92	11.8	1	47		Χ	Χ	
	HEAR5	Heteromeles arbutifolia	92	11.6	0.2	30		Χ	Χ	
	LOHIV	Lonicera hispidula var. vacillans	29	0.3	0.2	5				
	CEIN3	Ceanothus integerrimus	25	3.1	0.2	40				
	RHTO6	Rhamnus tomentella	21	8.0	1	12				
Herb										
	ELGL	Elymus glaucus	75	1.4	0.2	7			Χ	
	GAPO	Galium porrigens	63	0.2	0.2	1				
	TOAR	Torilis arvensis	50	8.0	0.2	7				Χ
	CYEC	Cynosurus echinatus	46	2.7	0.2	17				Χ
	LUCO6	Luzula comosa	42	0.1	0.2	1				
	BRCA5	Bromus carinatus	33	0.1	0.2	1				
	AICA	Aira caryophyllea	33	0.1	0.2	0.2				Χ
	HYPE	Hypericum perforatum	29	0.2	0.2	2				Χ
	SABI3	Sanicula bipinnatifida	29	0.2	0.2	1				
	SACR2	Sanicula crassicaulis	29	0.1	0.2	1				
	VUMY	Vulpia myuros	25	0.2	0.2	1				Χ
	CAAL2	Calochortus albus	25	0.1	0.2	0.2				
	POCOC	Polygala cornuta var. cornuta	25	0.1	0.2	0.2				
	BRLA3	Bromus laevipes	21	0.3	0.2	3				
	ACMI2	Achillea millefolium	21	0.2	0.2	3				
	SIMA2	Sidalcea malviflora	21	0.2	0.2	3				
	DIVO	Dichelostemma volubile	21	0.1	0.2	1				
	IRIS	Iris	21	0.1	0.2	1				
Cryptoga										
	MOSS	Moss	38	1.6	0.2	12				

Quercus kelloggii - Pinus ponderosa / Ceanothus integerrimus Association Black Oak - Ponderosa Pine / Deerbrush Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and usually dominated by *Quercus kelloggii* at 5-55% cover (average 33%). *Pinus ponderosa* was characteristically present in the overstory at 0.2-40% (8% average). The shrub layer was open to intermittent with *Ceanothus integerrimus* dominant and with *Toxicodendron diversilobum* codominant. The herbaceous layer was open to intermittent and often included native herbs *Clarkia rhomboidea*, *Elymus glaucus*, and *Vulpia microstachys*. This association may be related to the more mesic and/or cooler stands in the *Pinus ponderosa - Calocedrus decurrens* Alliance, as suggested by the presence of *Calocedrus* at low cover in some of the samples. *Ceanothus integerrimus* is likely to fluctuate in cover and abundance as a direct result of fire history. Stands that do not burn for long periods are likely to have low cover of *C. integerrimus*.

In the study area, this association was sampled commonly within the High Cascade Range, and infrequently in the northern Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands often occurred on volcanic substrates and infrequently on metamorphic and sedimentary substrates. They occupied lower to upper slope positions. The slopes varied from gentle to steep, and they varied in aspect. Stands occurred particularly at higher elevations in the study area, on mesic northerly or easterly slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Shasta, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	69.8	59-80	-
Herb	20.6	10-40	variable
Shrub	30.5	1-70	<5
Low Tree/Tall Shrub	0.7	0-9	5-10
Hardwood	34.8	5-58	5-20
Conifer	9.5	0-45	5-35
Relative non-native to native cover	6.3	0-21	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (4), W (2), SE (2), NW (2), Variable (1), NE (1), E (1)

Macrotopography: lower slope (3), lower to middle slope (1), lower to upper slope (1), middle slope (4), middle to upper slope (1), upper slope (3)

Microtopography: flat (6), undulating (4), concave (2)

Parent Material: volcanic (9), metamorphic (2), sedimentary (2)

Soil Texture: loam or sandy loam (8), clay or clay loam (2), sand (1), silt or silt loam (1)

	Mean	Range
Elevation	2709 ft.	1061-3842 ft.
Slope	13.6°	2-30°
Large rock cover	1.3%	0-5%
Small rock cover	3.1%	<1-8%
Bare ground cover	10.4%	1-30%
Litter cover	81.5%	60-93%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=13)

Rapid Assessments: SNNR0347, SNNR0394, SNNR0421, SNNR0449, SNNR0452, SNNR0487, SNNR0492, SNNR0516, SNNR0781, SNNR0787, SNNR1285, SNNR1286

Relevés: SNFN0333

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and lower mountains by Allen et al. (1989, 1991).

STAND TABLE

Quercus kelloggii - Pinus ponderosa / Ceanothus integerrimus Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUKE-T	Quercus kelloggii	100	31.9	5	55	Χ		Χ	
	PIPO-T	Pinus ponderosa	85	8.4	0.2	40			Χ	
	QUKE-L	Quercus kelloggii	38	0.5	0.2	5				
	QUCH2-T	Quercus chrysolepis	31	0.7	0.2	4				
	CADE27-T	Calocedrus decurrens	23	1.5	4	10				
	PISA2-T	Pinus sabiniana	23	0.2	0.2	1				
	QUKE-M	Quercus kelloggii	23	0.2	0.2	1				
Shrub										
	CEIN3	Ceanothus integerrimus		16.2		45	Χ		Χ	
	TODI	Toxicodendron diversilobum	85	12.4	3	33		Χ	Χ	
	RHTR	Rhus trilobata	46	1.3	0.2	10				
	CEBE3	Cercocarpus betuloides	23	2.0	0.2	24.2				
Herb										
	ELGL	Elymus glaucus	69	1.1	0.2	6				
	CLRH	Clarkia rhomboidea	62	1.2	0.2	8				
	VUMI	Vulpia microstachys	62	0.5	0.2	4				
	TOAR	Torilis arvensis	54	1.0	0.2	6				Χ
	CYEC	Cynosurus echinatus	46	2.0	0.2	10				Χ
	BRTE	Bromus tectorum	38	0.3	0.2	2				Χ
	BRCA5	Bromus carinatus	38	0.2	0.2	1				
	CAMU5	Carex multicaulis	38	0.2	0.2	1				
	GAAP2	Galium aparine	31	0.3	0.2	2				
	AGGR	Agoseris grandiflora	31	0.1	0.2	0.2				
	SABI3	Sanicula bipinnatifida	31	0.1	0.2	0.2				
	GAPO	Galium porrigens	23	0.5	1	5				
	MEAR3	Melica aristata	23	0.2	0.2	2				
	ACLE8	Achnatherum lemmonii	23	0.2	0.2	1				
	TONO	Torilis nodosa	23	0.1	0.2	1				Χ

Quercus kelloggii - Pseudotsuga menziesii - Umbellularia californica Association (Provisional)

Black Oak - Douglas-fir - California Bay Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically intermittent to continuous and dominated by *Quercus kelloggii* at 18-62% cover. *Pseudotsuga menziesii* was characteristically present while *Umbellularia californica*, *Pinus ponderosa* and *Calocedrus decurrens* were often present in the overstory. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant and with *Rhamnus rubra* often present. The herbaceous layer was open and often included *Melica harfordii*.

This association was sampled infrequently in the study area, exclusively within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands usually occurred on igneous substrates (including volcanic and basalt), and infrequently on ultramafic substrates. They occupied middle slopes to ridgetops, with slopes that were gentle to somewhat steep. Stands were on neutral to mesic slopes, found particularly in Butte County near Paradise.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte County, within the Lower Foothills Metamorphic Belt (M261Fb), Shingletown-Paradise (M261Dl), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	83.2	73-89	-
Herb	2.9	0-10	variable
Shrub	37.5	17-55	<5
Low Tree/Tall Shrub	11	0-30	5-15
Hardwood	41.3	18-62	10-35
Conifer	24.3	0-46	10-35
Relative non-native to native cover	0.1	0-1	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (2), SE (2), S (1), NE (1)

Macrotopography: middle slope (3), middle slope to ridgetop (2), ridgetop (1)

Microtopography: flat (3)

Parent Material: volcanic (3), basalt (1), igneous (1), ultramafic (1)

Soil Texture: loam or sandy loam (2), silt or silt loam (2), clay or clay loam (1)

	Mean	Range
Elevation	2098 ft.	1903-2212 ft.
Slope	16°	2-240
Large rock cover	<1%	2%
Small rock cover	0.6%	<1-2%
Bare ground cover	5.3%	2-15%
Litter cover	90%	80-94%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=6)

Rapid Assessments: SNNR0777, SNNR0778, SNNR0779, SNNR0788, SNNR1118,

SNNR1119

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the northern Sierra Nevada Foothills based solely on the data collected for this study. It is likely to occur in the Klamath Mountains and in the North Coast Ranges. This association is related to other stands in the *P. menziesii* Alliance that occur in slightly higher and more mesic settings, such as the *Pseudotsuga menziesii / Corylus cornuta / Adenocaulon bicolor* Association (Fites 1993).

STAND TABLE

Quercus kelloggii - Pseudotsuga menziesii - Umbellularia californica Association
(Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree	01 II / E T		400		4.0				.,	
	QUKE-T	Quercus kelloggii		39.7		62		Χ	X	
	PSME-T	Pseudotsuga menziesii	83	17.5		35			Χ	
	UMCA-T	Umbellularia californica	67	10.7		19				
	PIPO-T	Pinus ponderosa	67	6.2	3	16				
	PSME-M	Pseudotsuga menziesii	50	1.5	2	5				
	CADE27-T	Calocedrus decurrens	50	1.0	1	3				
	QUCH2-L	Quercus chrysolepis	50	0.2	0.2	1				
	CADE27-M	Calocedrus decurrens	33	1.7	0.2	10				
	UMCA-M	Umbellularia californica	33	1.2	2	5				
	PIPO-M	Pinus ponderosa	33	8.0	1	4				
	QUCH2-T	Quercus chrysolepis	33	0.7	0.2	4				
	UMCA-L	Umbellularia californica	33	0.5	1	2				
	ACMA3-M	Acer macrophyllum	33	0.2	0.2	1				
	PSME-L	Pseudotsuga menziesii	33	0.1	0.2	0.2				
	QUCH2-M	Quercus chrysolepis	33	0.1	0.2	0.2				
	QUKE-L	Quercus kelloggii	33	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	100	26.5	13	55	Χ		Χ	
	RHRU	Rhamnus rubra	67	1.7	0.2	5				
	HEAR5	Heteromeles arbutifolia	33	4.8	2	27				
	LOIN4	Lonicera interrupta	33	8.0	2	3				
	LOHIV	Lonicera hispidula var. vacillans	33	0.5	1	2				
	RIRO	Ribes roezlii	33	0.2	0.2	1				
	RIBES	Ribes	33	0.1	0.2	0.2				
Herb										
	MEHA2	Melica harfordii	67	0.3	0.2	1				
	TRLA6	Trientalis latifolia	33	0.7	0.2	4				
	ASHA	Asarum hartwegii	33	0.3	1	1				
	OSCH	Osmorhiza chilensis	33	0.1	0.2	0.2				
	TOAR	Torilis arvensis	33	0.1	0.2	0.2				Χ

Quercus kelloggii - Quercus chrysolepis / Toxicodendron diversilobum Association Black Oak - Canyon Live Oak / Poison-oak Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically intermittent and dominated by *Quercus kelloggii* at 35-40% cover. Other trees such as *Pinus sabiniana* and *Quercus chrysolepis* were characteristically present at lower cover in the overstory. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant and with *Aristolochia californica*, *Ceanothus integerrimus*, *Heteromeles arbutifolia*, and *Rhamnus tomentella* often present. The herbaceous layer was open and often included *Cynosurus echinatus*, *Elymus glaucus*, and *Torilis arvensis*.

This association was sampled infrequently in the study area, within the Cascade Range Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on igneous and volcanic (including basalt) substrates. They occupied lower to upper slopes, that were flat to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Calaveras Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	73	67-80	-
Herb	13	8-16	>0.3
Shrub	29.3	16-42	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	50.7	45-57	10-20
Conifer	4.3	1-7	5-35
Relative non-native to native cover	6.7	4-8	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (2), Flat (1)

Macrotopography: lower to upper slope (1), middle slope (1)

Microtopography: undulating (2), flat (1)

Parent Material: basalt (1), igneous (1), volcanic (1) Soil Texture: clay or clay loam (1), loam or sandy loam (1)

	Mean	Range
Elevation	989 ft.	640-1351 ft.
Slope	10°	0-20°
Large rock cover	1.5%	1-2%
Small rock cover	4%	3-5%
Bare ground cover	14.5%	14-15%
Litter cover	72.5%	70-75%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: SNNR0530, SNNR0536, SNNR0646

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and lower mountains and the Central Coast Range by Allen et al. (1989, 1991), on elevations up to 7200 ft. A similar association (*Q. chrysolepis* - *Q. kelloggii*) also has been defined by Allen et al. (1989, 1991) and this project, but Allen's type has higher cover of *Q. chrysolepis*.

STAND TABLE

Quercus kelloggii - Quercus chrysolepis / Toxicodendron diversilobum Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUKE-T	Quercus kelloggii		38.3		40	Χ		Χ	
	QUCH2-T	Quercus chrysolepis	100	7.3	5	12			Χ	
	PISA2-T	Pinus sabiniana	100	0.7	0.2	1			Χ	
	PIPO-T	Pinus ponderosa	67	3.3	5	5				
	ACMA3-T	Acer macrophyllum	33	1.7	5	5				
	QUWI2-T	Quercus wislizeni	33	1.3	4	4				
	CADE27-M	Calocedrus decurrens	33	0.3	1	1				
	CADE27-T	Calocedrus decurrens	33	0.3	1	1				
	PISA2-M	Pinus sabiniana	33	0.3	1	1				
	UMCA-T	Umbellularia californica	33	0.3	1	1				
	UMCA-M	Umbellularia californica	33	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	100	8.7	6	10		Χ	Χ	
	RHTO6	Rhamnus tomentella	100	5.7	0.2	14			Χ	
	HEAR5	Heteromeles arbutifolia	67	9.0	12	15				
	CEIN3	Ceanothus integerrimus	67	5.0	5	10				
	ARCA10	Aristolochia californica	67	2.0	2	4				
	RHIL	Rhamnus ilicifolia	33	0.7	2	2				
	CEOCO	Cercis occidentalis	33	0.1	0.2	0.2				
	RHRU	Rhamnus rubra	33	0.1	0.2	0.2				
Herb										
	CYEC	Cynosurus echinatus	100		2	4			Χ	Χ
	TOAR	Torilis arvensis	67	2.0	2	4				Χ
	ELGL	Elymus glaucus	67	0.7	1	1				
	BRDI2	Brachypodium distachyon	33	1.7	5	5				Χ
	MEHA2	Melica harfordii	33	1.7	5	5				
	WOFI	Woodwardia fimbriata	33	0.7	2	2				
	AGRE	Agoseris retrorsa	33	0.3	1	1				
	BRLA3	Bromus laevipes	33	0.3	1	1				
	IRIS	Iris	33	0.3	1	1				
	SACR2	Sanicula crassicaulis	33	0.3	1	1				
	SCUTE	Scutellaria	33	0.3	1	1				
	ADJO	Adiantum jordanii	33	0.1	0.2	0.2				
	METO	Melica torreyana	33	0.1	0.2	0.2				
	PETR7	Pentagramma triangularis	33	0.1	0.2	0.2				

Quercus Iobata Woodland/Forest Alliance Valley Oak Woodland/Forest Alliance

As defined in the state, *Quercus lobata* is dominant or co-dominant in the tree canopy with *Acer negundo*, *Alnus rhombifolia*, *Fraxinus latifolia*, *Platanus racemosa*, *Quercus agrifolia*, *Q. douglasii*, *Q. kelloggii*, *Salix gooddingii*, and *S. lasiolepis*. The canopy is open, intermittent, or continuous. Shrubs are common to occasional, including lianas *Aristolochia californica* and *Vitis californica*. The herbaceous layer may be grassy. *Quercus lobata* stands are found in valley bottoms, lower slopes, or summit valleys with seasonally saturated soils that may flood intermittently. Soils are alluvial or residual.

In the Foothills study area, *Quercus lobata* stands form woodlands and (rarely) forests along floodplains and terraces in seasonally saturated soils. *Quercus wislizeni* is the most frequent overstory species found with *Q. lobata*, while *Pinus sabiniana*, *Salix laevigata*, *Platanus racemosa* and other species of *Quercus* are found occasionally. Common understory trees are *Aesculus californica*, *Quercus wislizeni*, and *Salix* spp.

Five associations were described for the Valley Oak Alliance in the study area and are described below. Three stands sampled (SNFN0091, SNFN0070, SNNR0552) showed additional variation, with cover of *Arbutus menziesii* and/or *Aesculus californica* or *Salix lasiolepis*. These were only classified to the alliance level. Potter (2005) in his riparian classification of the Sierra Nevada, did not collect sufficient samples from the *Q. lobata* Alliance to describe any associations. Thus, all of these associations are described for the first time from this region.

Quercus Iobata / Herbaceous Semi-Riparian Association Valley Oak / Herbaceous Semi-Riparian Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Quercus lobata* at 6-68% cover. *Pinus sabiniana*, *Quercus douglasii*, and *Quercus wislizeni* were occasionally present in the overstory. The shrub layer was open to intermittent with *Rubus discolor* and *Toxicodendron diversilobum* often present. The herbaceous layer was open to intermittent and often included non-natives *Bromus diandrus*, *Bromus hordeaceus*, *Cynosurus echinatus*, and *Torilis arvensis*.

In the study area, this association was sampled commonly in the Cascade Range Foothills and northern Sierra Nevada Foothills but infrequently in the central Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on igneous substrates including volcanic (basalt), sometimes on metamorphic or mixed metamorphic, and infrequently on clayey or mixed alluvium, or sedimentary substrates. They occupied bottom and lower slopes and occasionally middle to upper slopes and ridgetops. Slopes varied from flat to somewhat steep. Stands are considered semi-riparian as they lacked other typical wetland plants, though many occurred on stream terraces above a riparian corridor.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, Calaveras, El Dorado, Mariposa, Nevada, Shasta, Tehama, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	65.6	45-87	-
Herb	40.2	20-66	variable
Shrub	12.1	0-45	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	27.8	6-68	5-20
Conifer	0.3	0-2	10-35
Relative non-native to native cover	50.1	12-81	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (3), S (3), N (3), Variable (2), SE (2), Flat (2), SW (1)

Macrotopography: bottom (5), bottom to lower slope (1), lower slope (7), middle slope (1), upper slope (1), ridgetop (1)

Microtopography: undulating (10), flat (5), concave (1)

Parent Material: metamorphic (5), volcanic (3), granitic (2), basalt (1), clayey alluvium (1), igneous (1), mixed alluvium (1), mixed metamorphic (1), sedimentary (1)

Soil Texture: silt or silt loam (7), clay or clay loam (4), loam or sandy loam (4)

	Mean	Range
Elevation	841 ft.	303-1824 ft.
Slope	4.10	0-20°
Large rock cover	0.7%	0-3%
Small rock cover	1.8%	0-5%
Bare ground cover	12.2%	2-33%
Litter cover	80.9%	60-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=16)

Rapid Assessments: SNNR0271, SNNR0272, SNNR0480, SNNR0526, SNNR0660, SNNR0731, SNNR0804, SNNR0854, SNNR0970, SNNR0986, SNNR1131, SNNR1144.

SNNR1327, SNNR1657, SNNR1659 Relevés: SNFN0038

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada based solely upon data collected for this project. It is likely to be endemic to this area. The association appears similar to the *Q. lobata /* Grass Association defined by Allen et al. (1989, 1991) from the North and Central Coast Ranges (from Mendocino to Los Angeles Counties).

STAND TABLE Quercus Iobata / Herbaceous Semi-Riparian Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QULO-T	Quercus lobata	100	26.4	6	68	Χ		Χ	
	QULO-L	Quercus lobata	56	0.3	0.2	3				
	QULO-M	Quercus lobata	38	0.4	0.2	2				
	QUWI2-T	Quercus wislizeni	31	0.6	0.2	4				
	QUDO-T	Quercus douglasii	31	0.5	0.2	5				
	PISA2-T	Pinus sabiniana	25	0.3	0.2	2				
	QUWI2-M	Quercus wislizeni	25	0.1	0.2	1				
Shrub										
	TODI	Toxicodendron diversilobum	50	2.8	0.2	12				
	RUDI2	Rubus discolor	50	1.4	0.2					Χ
	RHTO6	Rhamnus tomentella	38	2.6	0.2	19				
	ARCA10	Aristolochia californica	31	2.1	0.2					
	VICA5	Vitis californica	31	1.1	0.2					
	SAME5	Sambucus mexicana	25	0.2	0.2	1				
Herb	07/20		7.5	- 0	0.0	00			V	V
	CYEC	Cynosurus echinatus	75	5.8	0.2				Χ	X
	BRDI3	Bromus diandrus	69	6.3	0.2	26				X
	TOAR	Torilis arvensis	63	3.9	1	16				X
	BRHO2	Bromus hordeaceus	56	4.1	0.2	22				X
	LOMU	Lolium multiflorum	44	2.5	0.2					X
	CESO3	Centaurea solstitialis	38	4.2	0.2					X
	CAPY2	Carduus pycnocephalus	38	0.8	1	5				X
	TRHI4	Trifolium hirtum	31	0.9	0.2					X
	VIVI	Vicia villosa	25	2.6	0.2	35				X
	AVBA	Avena barbata	25	0.5	0.2	5				Χ
	SACR2	Sanicula crassicaulis	25	0.5	0.2					
	PLLA	Plantago lanceolata	25	0.4	0.2	5				Χ
	ELGL	Elymus glaucus	25	0.3	0.2					
	HYPE	Hypericum perforatum	25	0.1	0.2	0.2				Χ

Quercus Iobata / Rhus trilobata Association (Provisional) Valley Oak / Skunkbush Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus lobata* at 17-62% cover. *Quercus chrysolepis* was occasionally present in the overstory. The shrub layer was open to intermittent with *Rhus trilobata* dominant and with *Rhamnus tomentella* and *Toxicodendron diversilobum* often present. The herbaceous layer was open to intermittent and often included *Avena barbata*, *Cynosurus echinatus*, *Elymus glaucus*, and *Trifolium hirtum*.

In the study area, this association was sampled commonly, but only in the Cascade Range Foothills Subregion (Hickman 1993). Stands usually occurred on volcanic (including basalt) and infrequently on sandstone substrates. They usually occupied lower slopes and stream terraces that were flat to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Tehama Counties, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	73.1	65-80	-
Herb	35.3	8-60	variable
Shrub	31.4	7-70	<5
Low Tree/Tall Shrub	1.4	0-10	5-10
Hardwood	38.1	17-65	10-35
Conifer	0.5	0-2	5-20
Relative non-native to native cover	28.6	6-48	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (2), S (2), SW (1), NW (1), Flat (1) Macrotopography: bottom (1), lower slope (6) Microtopography: undulating (5), flat (2)

Parent Material: volcanic (4), sandstone (2), basalt (1)

Soil Texture: loam or sandy loam (3), clay or clay loam (1), silt or silt loam (1)

	Mean	Range
Elevation	1162 ft.	550-1509 ft.
Slope	6.3°	0-18°
Large rock cover	0.9%	0-3%
Small rock cover	3%	<1-11%
Bare ground cover	10%	<1-30%
Litter cover	80.4%	60-94%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=7)

Rapid Assessments: SNNR0058, SNNR0242, SNNR0508, SNNR0513, SNNR0524, SNNR0542, SNNR0648

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada based solely upon the data collected for this project. It is likely to be restricted to this region.

STAND TABLE

Quercus lobata | Rhus trilobata Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QULO-T	Quercus lobata	100	36.7	17	62	Χ		Χ	
	QUCH2-T	Quercus chrysolepis	43	1.0	1	5				
Shrub										
	RHTR	Rhus trilobata	100	18.9	1	55		Χ	X	
	TODI	Toxicodendron diversilobum	100	3.9	1	6			Χ	
	RHTO6	Rhamnus tomentella	71	1.5	0.2	5				
	VICA5	Vitis californica	43	5.0	4	16				
	ARCA10	Aristolochia californica	43	1.9	0.2	12				
	ROCA2	Rosa californica	29	1.0	0.2	7				
	RIRO	Ribes roezlii	29	0.2	0.2	1				
Herb										
	CYEC	Cynosurus echinatus	100	10.6	1	25			Χ	Χ
	ELGL	Elymus glaucus	86	1.0	0.2	2			Χ	
	AVBA	Avena barbata	57	4.6	1	12				Χ
	TRHI4	Trifolium hirtum	57	3.5	0.2	13				Χ
	TOAR	Torilis arvensis	43	4.1	3	20				Χ
	BRDI3	Bromus diandrus	29	1.7	0.2	12				Χ
	TONO	Torilis nodosa	29	1.0	2	5				Χ
	ARDO3	Artemisia douglasiana	29	0.2	0.2	1				
	BRELE	Brodiaea elegans subsp.	29	0.2	0.2	1				
	CAOC6	Calystegia occidentalis	29	0.1	0.2	0.2				

Quercus Iobata / Rubus discolor Association Valley Oak / Himalayan Blackberry Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Quercus lobata* at 8-60% cover. *Quercus wislizeni* was characteristically present as a tree and/or shrub. The shrub layer was open to continuous with *Rubus discolor* dominant and with *Toxicodendron diversilobum* and *Vitis californica* often present. The herbaceous layer was open to intermittent with *Elymus glaucus*, *Torilis arvensis*, and *Artemisia douglasiana* occasionally present. The preponderance of the non-native *R. discolor* in the understory of this riparian association indicates the ubiquity of "semi-natural" conditions in this Foothills zone. In the Sacramento-San Joaquin River Delta (Hickson and Keeler-Wolf 2007), a close ecological relationship between *Rosa californica* and *Rubus discolor* has been demonstrated. It is likely that *Rosa californica* may have been more common in these foothill settings prior to European colonization.

In the study area, this association was sampled commonly in the northern Sierra Nevada Foothills and infrequently in the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on igneous (including volcanic, basalt, granitic, or gabbro) and metamorphic substrates (including slate), and infrequently on sedimentary or mixed alluvium substrates. They usually occupied bottoms and lower slopes, but sometimes occupied middle and upper slopes. Stands were usually along riparian corridors and stream terraces, that varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Calaveras, El Dorado, Nevada, Placer, Shasta, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	79.1	55-95	-
Herb	8.5	0-35	variable
Shrub	51.9	20-80	<1-5
Low Tree/Tall Shrub	9.6	0-24	5-20
Hardwood	32.9	15-75	10-35
Conifer	8.0	8-0	5->35
Relative non-native to native cover	47.1	7-66	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (4), SE (3), W (2), Variable (2), SW (2), S (2), Flat (1)

Macrotopography: bottom (6), bottom to lower slope (2), lower slope (4), middle slope (2), upper slope (1)

Microtopography: concave (10), undulating (4), flat (1), convex (1)

Parent Material: granitic (3), metamorphic (3), basalt (2), igneous (2), mixed alluvium (2), gabbro (1), sedimentary (1), slate (1), volcanic (1)

Soil Texture: loam or sandy loam (4), sand (4), silt or silt loam (2), clay or clay loam (1)

	Mean	Range
Elevation	949 ft.	233-1565 ft.
Slope	9.80	0-340

Large rock cover	3.4%	0-22%
Small rock cover	3.9%	0-17%
Bare ground cover	17%	1-60%
Litter cover	72.3%	32-95%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=16)

Rapid Assessments: SNNR0061, SNNR0287, SNNR0404, SNNR0615, SNNR0618, SNNR0635, SNNR0685, SNNR0810, SNNR0897, SNNR0898, SNNR1052, SNNR1206, SNNR1223, SNNR1269, SNNR1274, SNNR1334

Rank: G3S3 (Note: Despite the dominance by non-natives in the understory, the general conservation value rank has been applied considering overall "nativity" in most structural components of this association. This association's natural restriction to riparian foothill settings, suggests that it should be considered a relatively highly ranked community).

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely on the data collected for this project.

STAND TABLE *Quercus Iobata | Rubus discolor* Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QULO-T	Quercus lobata	100	27.9	8	60	Χ		Χ	
	QUWI2-T	Quercus wislizeni	75	2.0	0.2	6			Χ	
	SALA3-T	Salix laevigata	50	2.4	1	10				
	AECA-T	Aesculus californica	31	2.4	3	12				
	QULO-M	Quercus lobata	31	0.9	1	5				
	QUWI2-M	Quercus wislizeni	31	0.5	0.2	5				
	AECA-M	Aesculus californica	31	0.1	0.2	0.2				
	ALRH2-T	Alnus rhombifolia	25	1.1	1	8				
	POFR2-T	Populus fremontii	25	0.8	0.2	10				
	QUDO-T	Quercus douglasii	25	0.3	1	2				
Shrub										
	RUDI2	Rubus discolor	100	43.1	7	75	Χ		Χ	Χ
	VICA5	Vitis californica	56	6.9	1	80				
	TODI	Toxicodendron diversilobum	50	1.0	0.2	5				
	RHTO6	Rhamnus tomentella	25	0.3	0.2	3				
	ARCA10	Aristolochia californica	25	0.1	0.2	0.2				
Herb										
	ELGL	Elymus glaucus	44	0.7	0.2	8				
	TOAR	Torilis arvensis	44	0.6	0.2	3				Χ
	ARDO3	Artemisia douglasiana	31	0.2	0.2	1				
	CYEC	Cynosurus echinatus	25	1.4	1	15				Χ
	BRHO2	Bromus hordeaceus	25	1.1	1	10				Χ
	LOMU	Lolium multiflorum	25	0.7	0.2	10				Χ

Quercus Iobata - Alnus rhombifolia Association Valley Oak - White Alder Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated by *Quercus lobata* at 15-45% cover. *Alnus rhombifolia* was characteristically present and *Salix laevigata* was often present in the overstory, while *Fraxinus latifolia*, *Populus fremontii*, and *Quercus chrysolepis* were occasionally present. The shrub layer was open to continuous with *Rubus discolor* dominant and with *Vitis californica* often present. The herbaceous layer was open to intermittent and often included *Artemisia douglasiana*.

This association was sampled commonly in the study area from the Cascade Range Foothills, High Cascade Range, and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on igneous (including granitic or volcanic) substrates, and infrequently on metamorphic or sedimentary substrates. They usually occupied slope bottom positions along riparian corridors and stream terraces, found along many creeks in the study area that were seasonally to perennially flooded. Slopes were flat to gentle. These stands are usually restricted to the immediate vicinity of stream and riverbanks from narrow stream channels. It is unlikely that this association occurs on broad terraces.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Nevada, Placer, Shasta, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	71.9	18-90	-
Herb	15.2	2-50	variable
Shrub	32.5	3-75	<1-5
Low Tree/Tall Shrub	12.5	0-40	5-15
Hardwood	39	15-60	10-35
Conifer	0.6	0-7	10-35
Relative non-native to native cover	22.6	0-53	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (3), NW (3), W (2), SW (2), S (2), Flat (2), SE (1)

Macrotopography: bottom (11), lower slope along creeks (2), flats along creeks (2)

Microtopography: undulating (5), concave (5), flat (5)

Parent Material: volcanic (8), metamorphic (3), granitic (2), igneous (1), sedimentary (1)

Soil Texture: sand (6), clay or clay loam (3), silt or silt loam (3), loam or sandy loam (1), unknown (1)

	Mean	Range
Elevation	1179 ft.	377-2115 ft.
Slope	1.10	0-3°
Large rock cover	10%	<1-45%
Small rock cover	11.5%	2-60%
Bare ground cover	17%	2-44%
Litter cover	47.7%	11-82%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=15)

Rapid Assessments: SNNR0214, SNNR0240, SNNR0244, SNNR0585, SNNR0838, SNNR0893, SNNR0894, SNNR1129, SNNR1145, SNNR1236, SNNR1256, SNNR1275, SNNR1284, SNNR1324, SNNR1325

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon data collected for this project.

STAND TABLE *Quercus lobata - Alnus rhombifolia* Association

Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
0111 0 7		400				.,		.,	
	-, -, -, -, -, -, -, -, -, -, -, -, -, -					Х			
								Х	
	· ·								
FRLA-T	Fraxinus latifolia	33	1.5	2	10				
POFR2-T	Populus fremontii	33	1.0	0.2	5				
QUCH2-T	Quercus chrysolepis	33	1.0	0.2	8				
AECA-M	Aesculus californica	33	0.3	0.2	2				
ALRH2-M	Alnus rhombifolia	27	8.0	0.2	10				
JUCA-T	Juglans californica	27	0.1	0.2	1				
RUDI2	Rubus discolor	80	15.7	2	52	Χ		Χ	Χ
VICA5	Vitis californica	80	6.6	0.2	20.2			Χ	
SALA6	Salix lasiolepis	47	1.5	0.2	10				
COSE16	Cornus sericea	40	3.1	1	26				
RUUR	Rubus ursinus	33	2.4	0.2	15				
TODI	Toxicodendron diversilobum	33	2.1	1	20				
CAOC5	Calycanthus occidentalis	27	2.4	4	16				
RHTO6	Rhamnus tomentella	27	1.0	0.2	12				
ARCA10	Aristolochia californica	27	0.3	0.2	3.2				
ARDO3	Artemisia douglasiana	60	1.7	0.2	10				
ELGL	Elymus glaucus	47	0.3	0.2	1				
JUEF	Juncus effusus	33	0.4	0.2	2				
CYEC	Cynosurus echinatus	27	0.9	2	6				Χ
CYER	Cyperus eragrostis	27	0.6	0.2	5				
TOAR	Torilis arvensis	27	0.4	0.2	3				Χ
	QULO-T ALRH2-T SALA3-T FRLA-T POFR2-T QUCH2-T AECA-M ALRH2-M JUCA-T RUDI2 VICA5 SALA6 COSE16 RUUR TODI CAOC5 RHTO6 ARCA10 ARDO3 ELGL JUEF CYEC CYER	QULO-T Quercus lobata ALRH2-T Alnus rhombifolia SALA3-T Salix laevigata FRLA-T Fraxinus latifolia POFR2-T Populus fremontii QUCH2-T Quercus chrysolepis AECA-M Aesculus californica ALRH2-M Alnus rhombifolia JUCA-T Juglans californica RUDI2 Rubus discolor VICA5 Vitis californica SALA6 Salix lasiolepis COSE16 Cornus sericea RUUR Rubus ursinus TODI Toxicodendron diversilobum CAOC5 Calycanthus occidentalis RHTO6 Rhamnus tomentella ARCA10 Aristolochia californica ARDO3 Artemisia douglasiana ELGL Elymus glaucus JUEF Juncus effusus CYEC Cynosurus echinatus CYER Cyperus eragrostis	QULO-T Quercus lobata 100 ALRH2-T Alnus rhombifolia 93 SALA3-T Salix laevigata 53 FRLA-T Fraxinus latifolia 33 POFR2-T Populus fremontii 33 QUCH2-T Quercus chrysolepis 33 AECA-M Aesculus californica 33 ALRH2-M Alnus rhombifolia 27 JUCA-T Juglans californica 27 RUDI2 Rubus discolor 80 VICA5 Vitis californica 80 SALA6 Salix lasiolepis 47 COSE16 Cornus sericea 40 RUUR Rubus ursinus 33 TODI Toxicodendron diversilobum 33 CAOC5 Calycanthus occidentalis 27 RHTO6 Rhamnus tomentella 27 ARCA10 Aristolochia californica 27 ARDO3 Artemisia douglasiana 60 ELGL Elymus glaucus 47 JUEF Juncus effusus 33 CYEC Cynosurus echinatus 27 CYER Cyperus eragrostis 27	QULO-T Quercus lobata 100 28.7 ALRH2-T Alnus rhombifolia 93 12.9 SALA3-T Salix laevigata 53 1.9 FRLA-T Fraxinus latifolia 33 1.5 POFR2-T Populus fremontii 33 1.0 QUCH2-T Quercus chrysolepis 33 1.0 AECA-M Aesculus californica 33 0.3 ALRH2-M Alnus rhombifolia 27 0.8 JUCA-T Juglans californica 27 0.1 RUDI2 Rubus discolor 80 15.7 VICA5 Vitis californica 80 6.6 SALA6 Salix lasiolepis 47 1.5 COSE16 Cornus sericea 40 3.1 RUUR Rubus ursinus 33 2.4 TODI Toxicodendron diversilobum 33 2.4 COSE16 Calycanthus occidentalis 27 2.4 RHT06 Rhamnus tomentella 27 1.0 ARCA10 Aristolochia californica 27 0.3 ARDO3 Artemisia douglasiana 60 1.7 ELGL Elymus glaucus 47 0.3	QULO-T Quercus lobata 100 28.7 15 ALRH2-T Alnus rhombifolia 93 12.9 0.2 SALA3-T Salix laevigata 53 1.9 0.2 FRLA-T Fraxinus latifolia 33 1.5 2 POFR2-T Populus fremontii 33 1.0 0.2 QUCH2-T Quercus chrysolepis 33 1.0 0.2 AECA-M Aesculus californica 33 0.3 0.2 ALRH2-M Alnus rhombifolia 27 0.8 0.2 JUCA-T Juglans californica 27 0.1 0.2 RUDI2 Rubus discolor 80 6.6 0.2 SALA6 Salix lasiolepis 47 1.5 0.2 COSE16 Cornus sericea 40 3.1 1 RUUR Rubus ursinus 33 2.4 0.2 TODI Toxicodendron diversilobum 33 2.1 1 CAOC5 Calycanthus occidentalis 27 2.4 4 RHTO6 Rhamnus tomentella 27 1.0 0.2 ARCA10 Aristolochia californica 27 0.3 0.2 ARDO3 Artemisia douglasiana 60 1.7 0.2 ELGL Elymus glaucus 47 0.3 0.2 JUEF Juncus effusus 33 0.4 0.2 CYEC	QULO-T Quercus lobata 100 28.7 15 45 ALRH2-T Alnus rhombifolia 93 12.9 0.2 40 SALA3-T Salix laevigata 53 1.9 0.2 11 FRLA-T Fraxinus latifolia 33 1.5 2 10 POFR2-T Populus fremontii 33 1.0 0.2 5 QUCH2-T Quercus chrysolepis 33 1.0 0.2 8 AECA-M Aesculus californica 33 0.3 0.2 2 ALRH2-M Alnus rhombifolia 27 0.8 0.2 10 JUCA-T Juglans californica 27 0.1 0.2 1 RUDI2 Rubus discolor 80 15.7 2 52 VICA5 Vitis californica 80 6.6 0.2 20.2 SALA6 Salix lasiolepis 47 1.5 0.2 10 COSE16 Cornus sericea 40 3.1 1 26 RUUR Rubus ursinus 33 2.4 0.2 15 TODI Toxicodendron diversilobum 33 2.1 1 20 CAOC5 Calycanthus occidentalis 27 2.4 4 16 RHT06 Rhamnus tomentella 27 1.0 0.2 12 ARCA10 Aristolochia californica 27 0.3 0.2 3.2 ARDO3 Artemisia douglasiana 60 1.7 0.2 10 ELGL Elymus glaucus 4	QULO-T Quercus lobata 100 28.7 15 45 X ALRH2-T Alnus rhombifolia 93 12.9 0.2 40 SALA3-T Salix laevigata 53 1.9 0.2 11 FRLA-T Fraxinus latifolia 33 1.5 2 10 POFR2-T Populus fremontii 33 1.0 0.2 5 QUCH2-T Quercus chrysolepis 33 1.0 0.2 8 AECA-M Aesculus californica 33 0.3 0.2 2 ALRH2-M Alnus rhombifolia 27 0.8 0.2 10 JUCA-T Juglans californica 27 0.1 0.2 1 RUDI2 Rubus discolor 80 15.7 2 52 X VICA5 Vitis californica 80 6.6 0.2 20.2 SALA6 Salix lasiolepis 47 1.5 0.2 10 COSE16 Cornus sericea 40 3.1 1 26 RUUR Rubus ursinus 33 2.4 0.2 15 TODI Toxicodendron diversilobum 33 2.1 1 20 CAOC5 Calycanthus occidentalis 27 2.4 4 16 RHTO6 Rhamnus tomentella 27 1.0 0.2 12 ARCA10 Aristolochia californica 27 0.3 0.2 3.2 ARDO3 Artemisia douglasiana	QULO-T Quercus lobata 100 28.7 15 45 X ALRH2-T Alnus rhombifolia 93 12.9 0.2 40 SALA3-T Salix laevigata 53 1.9 0.2 11 FRLA-T Fraxinus latifolia 33 1.5 2 10 POFR2-T Populus fremontii 33 1.0 0.2 5 QUCH2-T Quercus chrysolepis 33 1.0 0.2 8 AECA-M Aesculus californica 33 0.3 0.2 2 ALRH2-M Alnus rhombifolia 27 0.8 0.2 10 JUCA-T Juglans californica 27 0.1 0.2 1 RUDI2 Rubus discolor 80 15.7 2 52 X VICA5 Vitis californica 80 6.6 0.2 20.2 SALA6 Salix lasiolepis 47 1.5 0.2 10 COSE16 Cornus sericea 40 3.1 1 26 RUUR Rubus ursinus 33 2.4 0.2 15 TODI Toxicodendron diversilobum 33 2.1 1 20 CAOC5 Calycanthus occidentalis 27 2.4 4 16 RHTO6 Rhamnus tomentella 27 1.0 0.2 12 ARCA10 Aristolochia californica 27 0.3 0.2 3.2 ARDO3 Artemisia douglasiana 60 1.7 0.2 10 ELGL Elymus glaucus 47 0.3 0.2 1 JUEF Juncus effusus 27 0.9 2 6 CYEC Cynosurus echinatus 27 0.9 2 6 CYEC Cyperus eragrostis 27 0.6 0.2 5	QULO-T Quercus lobata 100 28.7 15 45 X X ALRH2-T Alnus rhombifolia 93 12.9 0.2 40 X SALA3-T Salix laevigata 53 1.9 0.2 11 FRLA-T Fraxinus latifolia 33 1.5 2 10 POFR2-T Populus fremontii 33 1.0 0.2 5 QUCH2-T Quercus chrysolepis 33 1.0 0.2 8 AECA-M Aesculus californica 33 0.3 0.2 2 ALRH2-M Alnus rhombifolia 27 0.8 0.2 10 JUCA-T Juglans californica 27 0.1 0.2 1 RUDI2 Rubus discolor 80 15.7 2 52 X X VICA5 Vitis californica 80 6.6 0.2 20.2 X SALA6 Salix lasiolepis 47 1.5 0.2 10 COSE16 Cornus sericea 40 3.1 1 26 RUUR Rubus ursinus 33 2.4 0.2 15 TODI Toxicodendron diversilobum 33 2.1 1 20 CAOC5 Calycanthus occidentalis 27 2.4 4 16 RHT06 Rhamnus tomentella 27 1.0 0.2 12 ARCA10 Aristolochia californica 27 0.3 0.2 3.2 ARDO3 Artemisia douglasiana 60 1.7 0.2 10

Quercus Iobata - Quercus wislizeni Association Valley Oak - Interior Live Oak Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Quercus lobata* at 6-67% cover. *Quercus wislizeni* was characteristically present as a tree and/or shrub, though other trees were occasionally present, including *Pinus sabiniana* and *Platanus racemosa*. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant. The herbaceous layer was open to intermittent and often included non-natives *Cynosurus echinatus* and *Torilis arvensis*.

This association was sampled commonly in the study area within the Cascade Range Foothills and central and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on igneous (including volcanic and granitic) or metamorphic (including phyllite and slate) substrates and occasionally on mixed alluvium or sedimentary substrates. They usually occupied bottoms to lower slopes, along riparian corridors and stream terraces that were intermittently to seasonally flooded. Slopes varied from flat to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Calaveras, El Dorado, Mariposa, Tehama, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Lower Granitic Foothills (M261Fc), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	69.5	43-85	-
Herb	22.1	2-40	variable
Shrub	23.2	5-47	<5
Low Tree/Tall Shrub	4.3	0-40	5-15
Hardwood	36.3	20-72	10-35
Conifer	2.8	0-20	10-35
Relative non-native to native cover	16.3	0-29	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (3), Variable (3), SW (3), Flat (3), NW (2), N (2), S (1), E (1)

Macrotopography: bottom (11), bottom to lower slope (3), lower slope (2), terrace (2)

Microtopography: concave (6), undulating (5), convex (4), flat (3)

Parent Material: volcanic (7), metamorphic (4), igneous (2), granitic (1), mixed alluvium (1),

phyllite (1), sedimentary (1), slate (1)

Soil Texture: clay or clay loam (4), loam or sandy loam (4), sand (4), silt or silt loam (2)

	Mean	Range
Elevation	1047 ft.	339-2157 ft.
Slope	2°	0-12°
Large rock cover	8.9%	0-45%
Small rock cover	10.3%	0-35%
Bare ground cover	18.6%	2-65%
Litter cover	54.3%	4.7-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=18)

Rapid Assessments: SNNR0022, SNNR0168, SNNR0246, SNNR0256, SNNR0472, SNNR0477, SNNR0732, SNNR0733, SNNR0739, SNNR0843, SNNR0920, SNNR1011, SNNR1045, SNNR1303, SNNR1346, SNNR1347 **Relevés:** SNFN0251, SNFN0326

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely on the data collected for this project. It is likely to be restricted to this area.

STAND TABLE

Quercus lobata - Quercus wislizeni Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	QULO-T	Quercus lobata	100	22.5	6	67		Χ	Χ	
	QUWI2-T	Quercus wislizeni	100	12.2	1	30			Χ	
	AECA-M	Aesculus californica	33	2.8	0.2	37				
	PISA2-T	Pinus sabiniana	33	2.5	0.2	20				
	QUWI2-M	Quercus wislizeni	33	0.9	0.2	7				
	PLRA-T	Platanus racemosa	28	1.7	0.2	20				
	QULO-L	Quercus lobata	22	0.6	0.2	11				
	QULO-M	Quercus lobata	22	0.1	0.2	1				
Shrub										
	TODI	Toxicodendron diversilobum	94	8.3	0.2			Χ	Χ	
	RUDI2	Rubus discolor	44	1.6	0.2					X
	RHTO6	Rhamnus tomentella	39	1.9	1	15				
	VICA5	Vitis californica	33	4.0	1	35				
	CEOCO	Cercis occidentalis	22	0.9	1	8				
	RUUR	Rubus ursinus	22	0.3	0.2	4				
	RHTR	Rhus trilobata	22	0.3	0.2	3				
Herb										
	CYEC	Cynosurus echinatus	67	4.4	0.2					Χ
	TOAR	Torilis arvensis	56	1.8	0.2					Χ
	LOMU	Lolium multiflorum	39	1.8	2	10				Χ
	BRDI3	Bromus diandrus	39	1.2	0.2	5				Χ
	CAPY2	Carduus pycnocephalus	28	0.6	0.2	6				Χ
	VISA	Vicia sativa	28	0.2	0.2					Χ
	MIGU	Mimulus guttatus	22	8.0	3	5				
	TRHI4	Trifolium hirtum	22	0.7	0.2	6				Χ
	AVBA	Avena barbata	22	0.3	0.2	4				Χ
	ARDO3	Artemisia douglasiana	22	0.1	0.2	1				
	ELGL	Elymus glaucus	22	0.0	0.2	0.2				

Quercus wislizeni Woodland/Forest Alliance Interior Live Oak Woodland/Forest Alliance

As defined in the state, *Quercus wislizeni* is dominant or co-dominant in the tree canopy with *Arbutus menziesii*, *Lithocarpus densiflorus*, *Pinus sabiniana*, *Quercus douglasii*, and *Quercus kelloggii*. The canopy is continuous, intermittent, or savanna-like. The shrub layer is open to intermittent and may contain *Heteromeles arbutifolia*, *Arctostaphylos viscida*, and or *A. manzanita*. The herbaceous layer is sparse or grassy. Stands of *Quercus wislizeni* are found on upland slopes, valley bottoms, and terraces. Soils are shallow and moderately to excessively drained. This alliance is greatly indicative of the Sierra Foothills environment, just like the Blue Oak Alliance. Although it is described from other parts of the state, the range of natural variability of the true woodland type (excluding shrub interior live oak associations, considered members of a different alliance) is unsurpassed in the Foothills. Local stands express a range from mesic associations that affiliate with the northwestern California "mixed evergreen forest", to relatively xeric associations that are found primarily in the scrubby California chaparral environment.

In the study area, thirteen associations of the Interior live oak Alliance were classified and are described below. Seven stands showed additional variation and were classified to the alliance level only (SNNR0681, SNNR0734, SNNR1296, SNFN0495, SNNR0113, SNNR0171, SNNR0773). Three of these stands had a well-developed herbaceous understory, including one with *Tuberaria guttata* and moss. One stand contained *Fraxinus dipetala*, another had *Quercus douglasii* and *Q. kelloggii*, and two stands contained *Umbellularia californica* and *Aesculus californica*.

Quercus wislizeni / Arctostaphylos viscida Association Interior Live Oak / Whiteleaf Manzanita Association

SUMMARY

In the stands sampled, the canopy was typically open to continuous and dominated by *Quercus wislizeni* at 4-71% combined cover in the tree and/or shrub overstory. Other trees such as *Pinus sabiniana* and *Quercus kelloggii* were often present. The shrub layer was open to continuous with *Arctostaphylos viscida* dominant and with *Heteromeles arbutifolia* and *Toxicodendron diversilobum* characteristically present. The herbaceous layer was open and often included *Elymus glaucus*, *Galium porrigens*, and *Torilis arvensis*.

In the study area, this association was sampled commonly in the northern Sierra Nevada Foothills and infrequently in the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic (including slate) substrates, occasionally on sedimentary (including shale), and infrequently on igneous (including granitic), and mixed rock substrates. They occupied slope positions from lower slopes to ridgetops (preferring middle and upper slopes). Slopes varied from gentle to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, Calaveras, El Dorado, Nevada, Placer, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Tuscan Flows (M261Fa), and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	69.1	35-81	-
Herb	8.1	0-23	variable
Shrub	33.9	0-72	<5
Low Tree/Tall Shrub	1.3	0-20	5-10
Hardwood	36.2	0-72	5-20
Conifer	2.7	0-9	5-35
Relative non-native to native cover	6.5	0-36	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (4), E (4), W (2), SW (2), SE (1), S (1), NW (1), NE (1)

Macrotopography: entire slope (1), lower slope (1), lower to middle slope (1), middle slope (4), middle to upper slope (3), upper slope (3), upper slope to ridgetop (2), ridgetop (1)

Microtopography: convex (7), undulating (7)

Parent Material: metamorphic (8), sedimentary (3), granitic (1), igneous (1), mixed rock (1), shale (1), slate (1)

Soil Texture: clay or clay loam (6), loam or sandy loam (3), silt or silt loam (3)

	Mean	Range
Elevation	1407 ft.	670-2859 ft.
Slope	20.6°	2-30°
Large rock cover	0.7%	0-3%
Small rock cover	3.4%	0-17%
Bare ground cover	7.4%	1-25%
Litter cover	85%	62-98%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=16)

Rapid Assessments: SNNR0300, SNNR0560, SNNR0575, SNNR0576, SNNR0653, Relevés:

SNFN0004, SNFN0261, SNFN0581

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills by Allen et al. (1989, 1991). It is likely to be restricted to this area, but is locally widespread and common.

STAND TABLE

Quercus wislizeni | Arctostaphylos viscida Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni	88	31.5	4	71	Χ		Χ	
	QUWI2-M	Quercus wislizeni	69	6.7	0.2	42				
	PISA2-T	Pinus sabiniana	69	2.1	0.2	8				
	QUKE-T	Quercus kelloggii	56	1.4	0.2	8				
	PIPO-T	Pinus ponderosa	44	0.7	0.2	4				
	QUDO-T	Quercus douglasii	38	0.6	0.2	4				
	QUWI2-L	Quercus wislizeni	38	0.1	0.2	0.2				
	PISA2-M	Pinus sabiniana	31	0.1	0.2	1				
	AECA-M	Aesculus californica	25	0.4	0.2	4				
Shrub										
	ARVI4	Arctostaphylos viscida	100	12.2	4.2	25		Χ	Χ	
	HEAR5	Heteromeles arbutifolia	100	8.2	0.2	30			Χ	
	TODI	Toxicodendron diversilobum	94	5.5	0.2	15			Χ	
	LOHIV	Lonicera hispidula var. vacillans	31	0.1	0.2	0.4				
Herb										
	GAPO	Galium porrigens	75	0.4	0.2	3			Χ	
	TOAR	Torilis arvensis	56	0.5	0.2	3				Χ
	ELGL	Elymus glaucus	50	0.5	0.2	3				
	CYEC	Cynosurus echinatus	38	1.6	0.2	14				Χ
	SACR2	Sanicula crassicaulis	38	0.2	0.2	1				
	AICA	Aira caryophyllea	31	0.1	0.2	0.2				Χ
	BRDI2	Brachypodium distachyon	25	1.1	1	10				Χ
	AVBA	Avena barbata	25	0.2	0.2	1				Χ
	SABI3	Sanicula bipinnatifida	25	0.1	0.2	1				
Cryptoga										
	MOSS	Moss	50	3.3	0.2	20				

Quercus wislizeni / Heteromeles arbutifolia Association Interior Live Oak / Toyon Association

SUMMARY

In the stands sampled, the canopy was typically open to continuous and dominated by *Quercus wislizeni* at 6-70% combined cover in the tree and/or shrub layers. *Pinus sabiniana* was often present in the tree overstory. The shrub layer was open to continuous with *Heteromeles arbutifolia* dominant and with *Toxicodendron diversilobum* characteristically present. The herbaceous layer was open to continuous with *Galium porrigens* and *Torilis arvensis* often present.

In the study area, this association was sampled commonly within the central and northern Sierra Nevada Foothills, and infrequently in the Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic (including slate and serpentine) or igneous (including granitic, basalt, and gabbro) substrates, and less frequently on sedimentary (including limestone), mixed metamorphic, ultramafic, or conglomerate substrates. They occupied all aspects and slope positions from bottom to upper slopes and draws (preferring middle to upper slopes). Slopes varied from gentle to steep. This was the most common association of Interior Live Oak sampled in the region.

DISTRIBUTION IN STUDY AREA

This association was sampled in nine counties: Amador, Butte, Calaveras, El Dorado, Mariposa, Nevada, Placer, Tehama, and Tuolumne - within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	70.5	45-95	-
Herb	14.1	0-70	variable
Shrub	39.5	2-89	<5
Low Tree/Tall Shrub	1	0-51	5-10
Hardwood	34.8	0-85	5-20
Conifer	1.5	0-10	5-35
Relative non-native to native cover	12.3	0-44	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (11), NW (10), W (7), SW (5), S (5), N (5), E (5), SE (4), NE (3) Macrotopography: entire slope (1), bottom to lower slope (1), lower slope (9), lower to middle

slope (7), lower to upper slope (5), middle slope (14), middle to upper slope (4), upper slope (13), draw (1)

Microtopography: undulating (33), flat (11), convex (7), concave (4)

Parent Material: metamorphic (18), volcanic (10), sedimentary (6), slate (5), granitic (3), basalt (2), gabbro (2), igneous (2), ultramafic (2), conglomerate (1), limestone (1), mixed metamorphic (1), serpentine (1), water (1)

Soil Texture: clay or clay loam (20), loam or sandy loam (15), silt or silt loam (11), sand (3)

	Mean	Range
Elevation	1226 ft.	219-2798 ft.
Slope	20.7°	1-45°
Large rock cover	3.3%	0-50%
Small rock cover	4.7%	0-30%

Bare ground cover 11.8% <1-48% Litter cover 76.4% 27-97%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=55)

Rapid Assessments: SNNR0099, SNNR0137, SNNR0142, SNNR0148, SNNR0231, SNNR0262, SNNR0275, SNNR0276, SNNR0301, SNNR0305, SNNR0360, SNNR0411, SNNR0412, SNNR0538, SNNR0544, SNNR0555, SNNR0579, SNNR0637, SNNR0672, SNNR0870, SNNR0876, SNNR0937, SNNR0948, SNNR0954, SNNR1001, SNNR1013, SNNR1089, SNNR1091, SNNR1099, SNNR1102, SNNR1117, SNNR1141, SNNR1175, SNNR1177, SNNR1191, SNNR1195, SNNR1198, SNNR1208, SNNR1227, SNNR1257, SNNR1262, SNNR1358, SNNR1392, SNNR1398, SNNR1467, SNNR1468 Relevés: SNFN0022, SNFN0044, SNFN0067, SNFN0092, SNFN0146, SNFN0435, SNFN0672,

SNFN0681, SNFN0682

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada by Allen et al. (1989, 1991) and Evens et al. (2004). This is one of the most widespread of the interior live oak associations in the study area. Another association of Q. wislizeni with Heteromeles arbutifolia has been described from Marin Co. (Evens and Kentner 2006). However, that association is shrubby and considered part of the Interior Live Oak Shrub Alliance.

STAND TABLE

Quercus wislizeni / Heteromeles arbutifolia Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree	QUWI2-T	Quercus wislizeni	93	30.5	0.2	70	X		Х	
	PISA2-T	Pinus sabiniana	67	1.5	0.2		^		^	
	QUWI2-M	Quercus wislizeni	47	5.4	0.2					
	QUDO-T	Quercus douglasii	35	0.5	0.2					
	QUWI2-L	Quercus wislizeni	29	0.5	0.2					
	AECA-M	Aesculus californica	27	1.3	0.2					
	QUKE-T	Quercus kelloggii	27	0.9	0.2	11				
Shrub	QUIL-1	Quercus Kelloggii	21	0.5	0.2	1.1				
Siliub	HEAR5	Heteromeles arbutifolia	100	19.9	1	60.2	Χ		Χ	
	TODI	Toxicodendron diversilobum	93	11.7	0.2	50			Χ	
	ARVI4	Arctostaphylos viscida	40	1.0	0.2	7				
	RHIL	Rhamnus ilicifolia	33	0.4	0.2	5				
	ARMA	Arctostaphylos manzanita	27	0.5	0.2	6				
	LOHIV	Lonicera hispidula var. vacillans	27	0.5	0.2	15.2				
Herb										
	TOAR	Torilis arvensis	71	1.7	0.2	10				Χ
	GAPO	Galium porrigens	56	0.2	0.2	1				
	CYEC	Cynosurus echinatus	47	1.6	0.2	20				Χ
	BRDI2	Brachypodium distachyon	38	3.5	0.2	45				Χ
	SACR2	Sanicula crassicaulis	38	0.2	0.2	3				
	BRDI3	Bromus diandrus	35	0.6	0.2	7				Χ
	BRHO2	Bromus hordeaceus	33	1.4	0.2	15				Χ
	PETR7	Pentagramma triangularis	31	0.1	0.2	1				
	AVBA	Avena barbata	29	0.9	0.2	15				Χ
	TRHI4	Trifolium hirtum	22	0.3	0.2	4				Χ
Cryptoga										
	MOSS	Moss	31	2.8	0.2	50				

Quercus wislizeni / Toxicodendron diversilobum Association Interior Live Oak / Poison Oak Association

SUMMARY

In the stands sampled, the canopy was typically open to continuous and dominated by *Quercus wislizeni* at 10-70% combined cover in the tree overstory and/or understory layers. *Pinus sabiniana* was often present as an overstory tree. The shrub layer was open to continuous with *Toxicodendron diversilobum* dominant and with *Heteromeles arbutifolia* often present at low cover. The herbaceous layer was open to continuous and often included *Cynosurus echinatus*, *Galium porrigens*, and *Torilis arvensis*.

This association was sampled commonly throughout most of the study area within the central and northern Sierra Nevada Foothills and Cascade Range Foothills Subregions, but only once in the High Cascade Range Subregion (Hickman 1993). Stands often occurred on metamorphic (including mixed metamorphic, greenstone and slate) or on igneous (including volcanic, basalt, gabbro, and granitic) substrates, and less frequently on sedimentary (including sandstone), ultramafic, and mixed rock substrates. They occupied all aspects on lower slopes to ridgetops, preferring middle slope positions. The slopes varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in ten counties: Amador, Butte, Calaveras, El Dorado, Mariposa, Placer, Shasta, Tehama, Tuolumne, and Yuba - within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	70.1	32-95	-
Herb	22.8	0-70	variable
Shrub	24.8	0-68	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	46.2	0-70	5-20
Conifer	0.9	0-4	5-35
Relative non-native to native cover	16.6	0-39	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NE (8), W (7), SE (5), N (5), E (5), Variable (4), SW (4), S (1), NW (1), Flat (1), (0) Macrotopography: lower slope (7), lower to middle slope (1), lower to upper slope (2), middle slope (21), middle to upper slope (4), upper slope (5), ridgetop (3) Microtopography: undulating (25), flat (9), convex (6), concave (2)

Parent Material: metamorphic (16), sedimentary (7), volcanic (6), basalt (2), gabbro (2), igneous (2), ultramafic (2), granitic (1), greenstone (1), mixed metamorphic (1), mixed rock (1), sandstone (1), slate (1)

Soil Texture: clay or clay loam (12), silt or silt loam (12), loam or sandy loam (10), unknown (1)

	Mean	Range
Elevation	1160 ft.	400-2205 ft.
Slope	17.7°	0-45°
Large rock cover	6.2%	0-83%
Small rock cover	3.2%	<1-25.2%
Bare ground cover	12.3%	<1-86%
Litter cover	74.9%	10-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=43)

Rapid Assessments: SNNR0050, SNNR0100, SNNR0159, SNNR0471, SNNR0484, SNNR0527, SNNR0571, SNNR0644, SNNR0661, SNNR0741, SNNR0800, SNNR0905, SNNR0912, SNNR0922, SNNR0982, SNNR0994, SNNR0996, SNNR1018, SNNR1035, SNNR1039, SNNR1170, SNNR1181, SNNR1241, SNNR1293, SNNR1323, SNNR1329, SNNR1338, SNNR1404, SNNR1407, SNNR1426, SNNR1435, SNNR1438 **Relevés:** SNFN0001, SNFN0028, SNFN0060, SNFN0068, SNFN0075, SNFN0106, SNFN0191, SNFN0635, SNFN0665, SNFN0667, SNFN0677

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada by Evens et al. (2004) in Tuolumne County. It appears to be restricted to this region, but it is locally widespread and common.

STAND TABLE

Quercus wislizeni / Toxicodendron diversilobum Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni	100	44.3	1	70	Χ		Χ	
	PISA2-T	Pinus sabiniana	63	8.0	0.2	4				
	QUDO-T	Quercus douglasii	42	0.7	0.2	5				
	QUWI2-M	Quercus wislizeni	33	3.1	0.2	45				
	QUWI2-L	Quercus wislizeni	33	0.1	0.2	0.2				
	PISA2-M	Pinus sabiniana	23	0.0	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum		20.7		60	X		X	
	HEAR5	Heteromeles arbutifolia	51	0.6	0.2	6				
	RHIL	Rhamnus ilicifolia	40	0.4	0.2	5				
	RHTO6	Rhamnus tomentella	35	0.5	0.2	5				
	CECU	Ceanothus cuneatus	28	1.0	0.2	20				
	ARMA	Arctostaphylos manzanita	21	0.1	0.2	2				
	LOHIV	Lonicera hispidula var. vacillans	21	0.1	0.2	0.4				
Herb										
	TOAR	Torilis arvensis	81	3.3	0.2	20			Χ	Χ
	GAPO	Galium porrigens	63	0.3	0.2	6				
	CYEC	Cynosurus echinatus	56	2.4	0.2	20				Χ
	BRDI3	Bromus diandrus	47	1.7	0.2	10				Χ
	SACR2	Sanicula crassicaulis	42	0.2	0.2	2				
	BRHO2	Bromus hordeaceus	40	4.3	0.2	45				Χ
	BRMA3	Bromus madritensis	37	0.7	0.2	7				Χ
	DAPU3	Daucus pusillus	37	0.3	0.2	5				
	AVBA	Avena barbata	33	0.3	0.2	5				Χ
	MECA2	Melica californica	30	0.1	0.2	1				
	MAGR3	Madia gracilis	28	0.2	0.2	2				
	GEMO	Geranium molle	26	0.7	0.2	7				Χ
	TRHI4	Trifolium hirtum	26	0.6	0.2	10				Χ
	AICA	Aira caryophyllea	26	0.5	0.2	10				Χ
	TRMI4	Trifolium microcephalum	26	0.1	0.2	1				
	CAAL2	Calochortus albus	26	0.1	0.2	1				
	CAPY2	Carduus pycnocephalus	23	0.4	0.2	10				Χ
	TRWI3	Trifolium willdenovii	23	0.0	0.2	0.2				
	GAVE3	Gastridium ventricosum	21	0.3	0.2	8				Χ
	HYGL2	Hypochaeris glabra	21	0.1	0.2	1				Χ
Cryptoga										
	MOSS	Moss	35	1.0	0.2	10				

Quercus wislizeni Mixed Shrub Association (Provisional) Interior Live Oak Mixed Shrub Association (Provisional)

SUMMARY

In the stands sampled, the canopy was typically open to continuous and dominated by *Quercus wislizeni* at 8-45% cover as a shrub or low tree. *Pinus sabiniana* was often present as a medium to tall tree. The shrub layer was open to continuous with *Arctostaphylos manzanita*, *Ceanothus cuneatus*, *Ceanothus lemmonii*, *Cercis occidentalis*, *Eriodictyon californicum*, *Fremontodendron californicum*, *Rhamnus ilicifolia*, *Rhamnus tomentella*, and *Toxicodendron diversilobum* often present. The herbaceous layer was open and often included *Aira caryophyllea*, *Bromus hordeaceus*, *Sanicula bipinnatifida*, and *Torilis arvensis*. The shrubby nature of this association differentiates it from most others of this alliance within the study area. It is unclear whether the shrubby to understory-tree lifeform of *Q. wislizeni* individuals is related to site history (including fire frequency) or whether there is a genetic component involved (e.g., *Quercus wislizeni* var. *frutescens*). The similarity of species composition with the previous *Q. wislizeni* / *Toxicodendron diversilobum* Association suggests that at least some of these stands described here are simply early seral (post-fire) expressions of that widespread association (as seen in these stands where *Eriodictyon californicum* is characteristically present).

This association was sampled infrequently in the study area within the Cascade Range Foothills and High Cascade Range Subregions (Hickman 1993). Stands always occurred on volcanic substrates. They occupied middle slopes to ridgetops on slopes that were gentle to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in the two northernmost counties: Shasta and Tehama Counties – within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	63.5	45-90	-
Herb	12	1-25	variable
Shrub	58.5	33-91	1-5
Low Tree/Tall Shrub	7.5	0-45	5-10
Hardwood	1.2	0-5	5-20
Conifer	0.7	0-4	10-20
Relative non-native to native cover	11.5	1-30	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (3), NE (2), SW (1)

Macrotopography: middle slope (1), upper slope (2), upper slope to ridgetop (2), ridgetop (1)

Microtopography: flat (4), undulating (2)

Parent Material: volcanic (6)

Soil Texture: clay or clay loam (4), loam or sandy loam (2)

	Mean	Range
Elevation	2014 ft.	1357-3265 ft.
Slope	14.3°	3-24°
Large rock cover	4.1%	<1-22%
Small rock cover	8.2%	3-15%
Bare ground cover	23.5%	10-59%
Litter cover	60.2%	35-80%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=6)

Rapid Assessments: SNNR0235, SNNR0433, SNNR0441, SNNR0811, SNNR0827,

SNNR0833

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills, based upon data collected for this project. This association appears similar to the *Quercus wislizeni / Eriodictyon californicum /* Grass Association defined by Allen et al. (1989, 1991) for the central Sierra Nevada. When compared to other *Q. wislizeni* associations that they defined, their *Q. wislizeni / E. californicum /* Grass Association: 1) had the lowest mean diameter breast height of *Q. wislizeni*, 2) commonly had understory live oaks, and 3) had higher average shrub cover.

STAND TABLE

Quercus wislizeni Mixed Shrub Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree	OLIMIO M	Overeve wielizeni	100	24.2	0	45	Χ		V	
	QUWI2-M PISA2-M	Quercus wislizeni Pinus sabiniana	67	0.1	8 0.2		^		Χ	
	PISA2-IVI PISA2-T	Pinus sabiniana Pinus sabiniana	33	0.1	0.2	0.2 4				
	UMCA-M	Umbellularia californica	33	0.7	0.2					
Chrub	UIVICA-IVI	Ombeliularia Californica	33	0.2	0.2	I				
Shrub	TODI	Toxicodendron diversilobum	100	4.9	0.2	23			Χ	
	ERCA6	Eriodictyon californicum	83	2.2	0.2	8.2			Х	
	CECU	Ceanothus cuneatus	83	1.2	0.2				Х	
	ARMA	Arctostaphylos manzanita	50	5.1	0.2				^	
	CELE	Ceanothus lemmonii	50	4.4	6	10.2				
	CEOCO	Cercis occidentalis	50	1.4	0.2	5				
	RHTO6	Rhamnus tomentella	50	0.4	0.2					
	FRCA6	Fremontodendron	50	0.4	0.2					
	RHIL	Rhamnus ilicifolia	50	0.2	0.2					
	LECA3	Lepechinia calycina	33	6.7	0.2					
	CEBE3	Cercocarpus betuloides	33	2.8	1	16				
	QUGAB	Quercus garryana var. breweri	33	1.2	1	6				
	ARVI4	Arctostaphylos viscida	33	0.8	1	4				
	LOHIV	Lonicera hispidula var.	33	0.0	0.2	0.2				
	LOTTIV	vacillans	00	0.1	0.2	0.2				
Herb										
11016	BRHO2	Bromus hordeaceus	67	3.0	2	7				Х
	SABI3	Sanicula bipinnatifida	67	0.1	0.2	0.2				
	TOAR	Torilis arvensis	50	0.7	0.2					Х
	AICA	Aira caryophyllea	50	0.1	0.2					Х
	AVBA	Avena barbata	33	0.7	0.2	4				Χ
	VUMY	Vulpia myuros	33	0.3	1	1				Х
	CAMO3	Calochortus monophyllus	33	0.1	0.2	0.2				
	CAOC6	Calystegia occidentalis	33	0.1	0.2	0.2				
	GAPO	Galium porrigens	33	0.1	0.2	0.2				

Quercus wislizeni - Salix laevigata / Rhamnus tomentella Association Interior Live Oak - Red Willow / Hoary Coffeeberry Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Quercus wislizeni* at 5-58% cover. Other trees such as *Salix laevigata* and *Pinus sabiniana* were often present. The shrub layer was open to continuous with *Heteromeles arbutifolia*, *Rhamnus tomentella*, *Rubus discolor*, *Toxicodendron diversilobum*, and *Vitis californica* often present. The herbaceous layer was open to intermittent and often included *Torilis arvensis*.. Although *S. laevigata* is only present in about two-thirds of the samples, it is indicative of the riparian environment, along with other riparian associates of this type.

In the study area, this association was sampled commonly in the northern Sierra Nevada Foothills and infrequently within the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands sometimes occurred on metamorphic substrates, sometimes on on igneous (including diorite, gabbro, or granitic) substrates, and infrequently on alluvium or shale substrates. They most frequently occupied bottom slope positions, but also occurred on lower to middle slopes along riparian corridors and stream terraces. Stand slopes varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Mariposa, Nevada, Placer, Shasta, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	69.5	18-86	-
Herb	15.8	1-50	variable
Shrub	31.5	5-70	<5
Low Tree/Tall Shrub	6	0-40	5-15
Hardwood	37.8	11-67	5-20
Conifer	1.8	0-7	10-35
Relative non-native to native cover	15.4	0-48	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (4), Variable (3), N (3), W (2), SW (2), E (2), NW (1), Flat (1)

Macrotopography: bottom (10), lower slope (3), lower to middle slope (2), middle slope (3)

Microtopography: undulating (10), concave (6), flat (1), convex (1)

Parent Material: metamorphic (8), mixed alluvium (3), shale (2), clayey alluvium (1), diorite (1),

gabbro (1), granitic (1), igneous (1)

Soil Texture: sand (5), loam or sandy loam (3), silt or silt loam (3), clay or clay loam (2)

	Mean	Range
Elevation	961 ft.	392-2270 ft.
Slope	7.1°	0-28°
Large rock cover	6.8%	0-25%
Small rock cover	11.5%	0-73%
Bare ground cover	16.2%	1-59%
Litter cover	59.2%	8-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=18)

Rapid Assessments: SNNR0011, SNNR0052, SNNR0398, SNNR0409, SNNR0475, SNNR0604, SNNR0619, SNNR0625, SNNR0913, SNNR0924, SNNR0936, SNNR1104, SNNR1152, SNNR1196, SNNR1307, SNNR1366, SNNR1395 **Relevés:** SNFN0393

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills solely from the data collected for this project. Potter (2005) does not describe a riparian association of the *Q. wislizeni* Alliance in his description of Sierra Nevada riparian vegetation. This may be related to the focus of that study on higher elevation riparian systems, largely within the lands managed by the US Forest Service.

STAND TABLE

Quercus wislizeni - Salix laevigata / Rhamnus tomentella Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni	100	26.5	5	58	Χ		Χ	
	SALA3-T	Salix laevigata	50	6.2	0.2	40				
	PISA2-T	Pinus sabiniana	50	1.5	0.2	7				
	QULO-T	Quercus lobata	28	2.8	4	20				
	QUKE-T	Quercus kelloggii	28	2.0	0.2	17				
	QUWI2-M	Quercus wislizeni	28	0.5	0.2	3				
	AECA-T	Aesculus californica	22	3.0	5	25				
	UMCA-T	Umbellularia californica	22	1.2	0.2	16				
	QUDO-T	Quercus douglasii	22	0.7	2	5				
	AECA-M	Aesculus californica	22	0.3	1	3				
	QUWI2-L	Quercus wislizeni	22	0.1	0.2	1				
Shrub										
	TODI	Toxicodendron diversilobum	100	7.6	0.4	30			Χ	
	RUDI2	Rubus discolor	67	5.0	0.2	20				Χ
	RHTO6	Rhamnus tomentella	67	2.1	0.2	12				
	HEAR5	Heteromeles arbutifolia	61	2.2	0.2	12				
	VICA5	Vitis californica	50	4.1	1	28				
	FICA	Ficus carica	22	8.0	0.2	10				Χ
	SALA6	Salix lasiolepis	22	8.0	0.2	12				
Herb										
	TOAR	Torilis arvensis	50	1.6	0.2	15				Χ
	CYEC	Cynosurus echinatus	44	1.9	0.2	8				Χ
	CAPY2	Carduus pycnocephalus	39	0.4	0.2	5				Χ
	ARDO3	Artemisia douglasiana	33	0.2	0.2	1				
	PETR7	Pentagramma triangularis	28	0.1	0.2	0.2				
	BRDI3	Bromus diandrus	22	0.3	1	2				Χ
	SACR2	Sanicula crassicaulis	22	0.1	0.2	2				
	MIGU	Mimulus guttatus	22	0.0	0.2	0.2				
Cryptoga	am									
	MOSS	Moss	56	6.6	0.2	46				

Quercus wislizeni - Aesculus californica Association Interior Live Oak - California Buckeye Association

SUMMARY

In the stands sampled, the canopy was typically open to continuous and dominated by *Quercus wislizeni* at 3-70% combined cover in the tree overstory and/or understory layers. Other trees such as *Aesculus californica* were characteristically present. The shrub layer was open to continuous with *Toxicodendron diversilobum* dominant and with *Heteromeles arbutifolia* often present. The herbaceous layer was open to continuous and often included *Torilis arvensis*.

This association was sampled commonly throughout much of the study area, within the central and northern Sierra Nevada Foothills, and Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on igneous substrates (including volcanic, gabbro, or granitic), sometimes on metamorphic (including slate and mixed) substrates, and infrequently on sedimentary (including limestone) or ultramafic substrates. Around half the stands occurred on volcanic substrates, and they commonly occupied bottom to upper slopes. Slopes were, on average, moderately steep, and 60% of the plots were on at least 20 degree slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in ten counties: Amador, Butte, Calaveras, El Dorado, Mariposa, Nevada, Placer, Shasta, Tehama, and Tuolumne - within the Lower Foothills Metamorphic Belt (M261Fb), Lower Granitic Foothills (M261Fc), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	69.3	25-94	-
Herb	21.6	0-75	variable
Shrub	40.2	4-87	<5
Low Tree/Tall Shrub	3.9	0-40	5-10
Hardwood	31.2	0-75	5-35
Conifer	0.9	0-8	5-35
Relative non-native to native cover	13.4	0-43	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (14), NW (10), Variable (9), NE (7), SW (2), W (1), SE (1), S (1), E (1)

Macrotopography: bottom (5), bottom to lower slope (2), lower slope (12), lower to middle slope (6), lower to upper slope (2), middle slope (4), middle to upper slope (3), upper slope (10), upper slope to ridgetop (1)

Microtopography: undulating (22), convex (8), flat (7), concave (7)

Parent Material: volcanic (19), metamorphic (9), granitic (4), sedimentary (4), slate (3), ultramafic (3), gabbro (1), igneous (1), limestone (1), mixed metamorphic (1)

Soil Texture: loam or sandy loam (14), clay or clay loam (11), sand (7), silt or silt loam (7), unknown (2)

	Mean	Range
Elevation	1063 ft.	236-2075 ft.
Slope	23.3°	0-50°
Large rock cover	11.7%	0-75%
Small rock cover	7.1%	0-55%
Bare ground cover	12.2%	0-76%
Litter cover	65.3%	13-95%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=46)

Rapid Assessments: SNNR0005, SNNR0026, SNNR0037, SNNR0065, SNNR0094, SNNR0098, SNNR0173, SNNR0229, SNNR0234, SNNR0237, SNNR0556, SNNR0557, SNNR0562, SNNR0587, SNNR0608, SNNR0614, SNNR0674, SNNR0740, SNNR0839, SNNR0845, SNNR0851, SNNR0857, SNNR0867, SNNR0875, SNNR0902, SNNR0931, SNNR0932, SNNR0934, SNNR0945, SNNR0955, SNNR1012, SNNR1068, SNNR1079, SNNR1161, SNNR1169, SNNR1201, SNNR1220, SNNR1280, SNNR1408, SNNR1446, SNNR1447, SNNR1459, SNNR1465 **Relevés:** SNFN0257, SNFN0650, SNFN0668

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills by Evens et al. (2004). Similar stands have been observed as far south as the foothills of Sequoia National Park (S. Haultain, pers. comm. 2004).

STAND TABLE

Quercus wislizeni - Aesculus californica Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni	87	30.2	2	70	Χ		Χ	
	AECA-M	Aesculus californica	83	7.1	0.2	40			Χ	
	PISA2-T	Pinus sabiniana	46	0.8	0.2	8				
	QUDO-T	Quercus douglasii	46	0.4	0.2	3				
	QUWI2-M	Quercus wislizeni	41	4.1	0.2	45				
	AECA-T	Aesculus californica	37	5.0	1	40				
Shrub										
	TODI	Toxicodendron diversilobum	96	17.3	0.2	55	Χ		Χ	
	HEAR5	Heteromeles arbutifolia	59	4.9	0.2	30				
	RHIL	Rhamnus ilicifolia	33	0.3	0.2	3				
	CLLA3	Clematis lasiantha	30	0.5	0.2	5				
Herb										
	TOAR	Torilis arvensis	63	2.0	0.2	12				Χ
	CYEC	Cynosurus echinatus	37	1.2	0.2	8				Χ
	AVBA	Avena barbata	30	0.5	0.2	5				Χ
	GAPO	Galium porrigens	30	0.1	0.2	1				
	BRHO2	Bromus hordeaceus	26	1.4	0.2	30				Χ
	DIVO	Dichelostemma volubile	26	0.1	0.2	0.2				
	SACR2	Sanicula crassicaulis	24	0.2	0.2	5				
	BRDI3	Bromus diandrus	22	0.9	0.2	25				Χ
Cryptoga	am									
•	MOSS	Moss	24	3.8	2	40				

Quercus wislizeni - Pinus ponderosa Association Interior Live Oak - Ponderosa Pine Association

SUMMARY

In the stands sampled, the canopy was typically open to intermittent and dominated by *Quercus wislizeni* at 5-39% combined cover in the tree overstory and/or understory layers. *Quercus kelloggii* was often present in the overstory. The shrub layer was open with *Toxicodendron diversilobum* dominant and with *Rhamnus tomentella* often present. The herbaceous layer was open to intermittent and often included *Achillea millefolium*, *Bromus diandrus*, *Cynosurus echinatus*, *Elymus glaucus*, and *Torilis arvensis*.

In the study area, this association was sampled commonly in the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands usually occurred on metamorphic substrates and infrequently on gabbro, granitic, or mixed rock substrates. They occupied lower to upper slopes that were moderate to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, Placer, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	55.8	37-77	-
Herb	20	1-45	variable
Shrub	13.4	0-33	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	17.2	0-38	5-20
Conifer	16.9	4-30	10->35
Relative non-native to native cover	22	0-55	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (5), NW (3), SW (1), NE (1)

Macrotopography: lower slope (4), lower to upper slope (1), middle slope (1), upper slope (4)

Microtopography: undulating (5), flat (4), convex (1)

Parent Material: metamorphic (7), gabbro (1), granitic (1), mixed rock (1)

Soil Texture: clay or clay loam (5), loam or sandy loam (2), silt or silt loam (2), sand (1)

	Mean	Range
Elevation	1044 ft.	513-1514 ft.
Slope	21.3°	7-32°
Large rock cover	1.4%	0-10%
Small rock cover	3.6%	0-20%
Bare ground cover	3.9%	<1-10%
Litter cover	87.8%	73-97%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=10)

Rapid Assessments: SNNR0260, SNNR0403, SNNR0470, SNNR0658, SNNR0670,

SNNR0770, SNNR0879, SNNR1174, SNNR1682 Relevés: SNFN0104

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely from the data collected for this project. These stands appear to be relatively uncommon and are ecologically related to the *Quercus kelloggii - Pinus ponderosa / Arctostaphylos viscida* Association of the *Quercus kelloggii* Alliance. The association with *Q. kelloggii* is, on average, approximately 500 ft. higher in elevation and clearly shows the gradient of increased importance of *Q. kelloggii* in the upper elevations of the Sierra Foothills.

This association represents the lowest elevation stands having a co-dominance of *Pinus ponderosa* in the study area. While concerns have been raised regarding shifts in *Pinus ponderosa* distribution up-slope in the past 70 years or so (Thorne et al. 2006), its presence as a co-dominant with individuals in the regeneration layer in this association at elevations as low as 500 ft. suggests that there are still viable stands of these trees in parts of the Sierra Nevada Foothills below 1000 ft elevation.

STAND TABLE

Quercus wislizeni - Pinus ponderosa Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PIPO-T	Pinus ponderosa	100	15.6	4	26		Χ	Χ	
	QUWI2-T	Quercus wislizeni	100	14.1	3	32		Χ	Χ	
	QUWI2-M	Quercus wislizeni	70	2.7	0.2	12				
	QUKE-T	Quercus kelloggii	70	2.0	0.2	9				
	PIPO-M	Pinus ponderosa	70	0.9	0.2	4				
	QUWI2-L	Quercus wislizeni	50	0.2	0.2	1				
	PISA2-T	Pinus sabiniana	30	0.2	0.2	2				
	QUDO-M	Quercus douglasii	30	0.2	0.2	1				
	PIPO-L	Pinus ponderosa	30	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	100		0.2		Χ		Χ	
	RHTO6	Rhamnus tomentella	50	1.6	0.2					
	ARVI4	Arctostaphylos viscida	30	0.5	0.2	4.2				
Herb										
	CYEC	Cynosurus echinatus	90	5.4	0.2				Χ	X
	TOAR	Torilis arvensis	80	3.1	0.2	15			Χ	X
	ELGL	Elymus glaucus	70	1.9	0.2					
	ACMI2	Achillea millefolium	60	0.1	0.2					
	BRDI3	Bromus diandrus	50	2.0	1	8				X
	DAPU3	Daucus pusillus	40	0.2	0.2	1				
	SACR2	Sanicula crassicaulis	40	0.1	0.2	0.2				
	AVBA	Avena barbata	30	1.1	1	8				Χ
	VISA	Vicia sativa	30	8.0	0.2	7				Χ
	BRHO2	Bromus hordeaceus	30	0.6	1	4				Χ
	LUCO6	Luzula comosa	30	0.1	0.2	1				
	SABI3	Sanicula bipinnatifida	30	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	40	1.7	0.2	10				

Quercus wislizeni - Pinus sabiniana Association Interior Live Oak - Foothill Pine Association

SUMMARY

In the stands sampled, the canopy was open to continuous and dominated by *Quercus wislizeni* at 5-39% combined cover in the tree overstory and/or understory layers. *Pinus sabiniana* was characteristically present in the overstory and sometimes co-dominant. The shrub layer was open to continuous with *Toxicodendron diversilobum* dominant. The herbaceous layer was open to intermittent and often included *Torilis arvensis*. The overall understory composition was variable, with natives often present.

In the study area, this association was sampled commonly within the central and northern Sierra Nevada Foothills and infrequently in the Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates (including slate), sometimes on igneous substrates (including granitic, gabbro, volcanic, and basalt), and infrequently on sedimentary (including limestone), mixed alluvium, and ultramafic substrates. They occupied bottom to upper slopes (most frequently middle to upper) that varied from flat to very steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Mariposa, Nevada, Placer, Tehama, Tuolumne, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Lower Granitic Foothills (M261Fc), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	67.7	30-90	-
Herb	26.3	0-60	variable
Shrub	26.8	3-72	<5
Low Tree/Tall Shrub	0.3	0-9	5-10
Hardwood	31.3	4-65	5-20
Conifer	9.3	1-40	5-35
Relative non-native to native cover	16.8	0-46	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (8), S (4), NW (4), N (4), W (3), Variable (3), SE (3), NE (3), E (2), Flat (1)

Macrotopography: bottom (1), lower slope (7), lower to middle slope (6), lower to upper slope (2), middle slope (10), middle to upper slope (2), upper slope (7)

Microtopography: undulating (16), flat (10), convex (7), concave (1)

Parent Material: metamorphic (18), volcanic (5), granitic (3), gabbro (2), sedimentary (2), basalt (1), limestone (1), mixed alluvium (1), slate (1), ultramafic (1)

Soil Texture: loam or sandy loam (9), clay or clay loam (6), silt or silt loam (5), sand (2), unknown (1)

	Mean	Range
Elevation	1242 ft.	450-2390 ft.
Slope	21.8°	0-50°
Large rock cover	6.7%	0-35%
Small rock cover	7.8%	<1-50%
Bare ground cover	8.5%	<1-25%
Litter cover	72.9%	5-93%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=35)

Rapid Assessments: SNNR0040, SNNR0055, SNNR0120, SNNR0162, SNNR0179, SNNR0186, SNNR0468, SNNR0545, SNNR0578, SNNR0610, SNNR0678, SNNR0726, SNNR0737, SNNR0738, SNNR0872, SNNR0917, SNNR0918, SNNR0959, SNNR1000, SNNR1004, SNNR1008, SNNR1014, SNNR1030, SNNR1054, SNNR1107, SNNR1160, SNNR1387, SNNR1390, SNNR1456, SNNR1471

Relevés SNFN0005, SNFN0153, SNFN0154, SNFN0155, SNFN0419

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the central Sierra Nevada Foothills (Evens et al. 2004). Its range has been broadened from the data collected for this project to include most of the northern and central Sierra Nevada Foothills.

STAND TABLE

Quercus wislizeni - Pinus sabiniana Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni	100	27.5	0.2	65	Χ		Χ	
	PISA2-T	Pinus sabiniana	100	9.2	1	40			Χ	
	QUWI2-M	Quercus wislizeni	57	7.5	0.2	60				
	QUDO-T	Quercus douglasii	46	0.7	0.2	4				
	PISA2-M	Pinus sabiniana	37	0.3	0.2	3				
	AECA-M	Aesculus californica	31	0.6	0.2	6				
	QUWI2-L	Quercus wislizeni	26	0.1	0.2	1				
Shrub										
	TODI	Toxicodendron diversilobum	89	11.3	1	60	Χ		Χ	
	HEAR5	Heteromeles arbutifolia	49	3.7	0.2	30				
	ARVI4	Arctostaphylos viscida	34	1.7	0.2	31				
	LOHIV	Lonicera hispidula var. vacillans	31	0.1	0.2	2				
	RHIL	Rhamnus ilicifolia	29	0.5	0.2	5				
Herb										
	TOAR	Torilis arvensis	51	2.4	0.2	15				Χ
	CYEC	Cynosurus echinatus	49	2.9	0.2	30				Χ
	AVBA	Avena barbata	46	0.9	0.2	8				Χ
	MECA2	Melica californica	46	0.2	0.2	1				
	PETR7	Pentagramma triangularis	43	0.3	0.2	3				
	BRDI3	Bromus diandrus	37	4.1	0.2	25				Χ
	GAPO	Galium porrigens	31	0.2	0.2	1				
	SACR2	Sanicula crassicaulis	26	0.2	0.2	3				
	BRDI2	Brachypodium distachyon	23	2.2	0.2	27				Χ
	GAAP2	Galium aparine	23	0.3	0.2	5				
Cryptog	am									
	MOSS	Moss	34	1.8	0.2	17				

Quercus wislizeni - Pinus sabiniana / Arctostaphylos manzanita Association Interior Live Oak - Foothill Pine / Common Manzanita Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Quercus wislizeni* at <1-55% cover. *Pinus sabiniana* was characteristically present in the overstory. The shrub layer was open to continuous with *Arctostaphylos manzanita* dominant and with *Heteromeles arbutifolia* and *Toxicodendron diversilobum* often present. The herbaceous layer was open to intermittent and often included non-natives *Cynosurus echinatus* and *Torilis arvensis*.

This association was sampled infrequently in the study area within the central Sierra Nevada Foothills, Cascade Range Foothills, and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occasionally occurred on metamorphic (including slate) or volcanic substrates, and infrequently on sedimentary or ultramafic substrates. They occupied lower to upper slopes and ridgetops. Slopes varied from moderate to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, El Dorado, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	72.8	40-90	-
Herb	17.7	1-45	variable
Shrub	40.7	10-77	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	35.4	0-55	5-20
Conifer	4.9	0-25	5-20
Relative non-native to native cover	11.2	0-28	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (3), SW (2), SE (2), NW (2), S (1), N (1)

Macrotopography: entire slope (1), lower slope (1), lower to middle slope (2), middle slope (1), middle to upper slope (1), upper slope (3), ridgetop (2)

Microtopography: flat (4), undulating (3), convex (3), concave (1)

Parent Material: metamorphic (3), volcanic (3), ultramafic (2), sedimentary (2), slate (1)

Soil Texture: loam or sandy loam (5), clay or clay loam (3), silt or silt loam (2)

	Mean	Range
Elevation	1241 ft.	690-2356 ft.
Slope	20.8°	10-38°
Large rock cover	5.7%	<1-13%
Small rock cover	3.4%	0-12%
Bare ground cover	15.4%	1-40%
Litter cover	71.6%	40-94%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=11)

Rapid Assessments: SNNR0222, SNNR0321, SNNR0550, SNNR0871, SNNR0940, SNNR1186, SNNR1187, SNNR1442, SNNR1521 **Relevés:** SNFN0189, SNFN0673

Rank: G3S3?

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills by Allen et al. (1989, 1991). It also may occur in the Inner North Coast Range. This association is clearly related to several other associations in the *Q. wislizeni* Alliance. These include the *Quercus wislizeni* / Heteromeles arbutifolia, Quercus wislizeni - Aesculus californica, Quercus wislizeni - Pinus sabiniana, and Quercus wislizeni / Toxicodendron diversilobum Associations. It remains to be seen if further studies and analyses would suggest subsuming some of these associations.

STAND TABLE

Quercus wislizeni - Pinus sabiniana / Arctostaphylos manzanita Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
Tree										
	PISA2-T	Pinus sabiniana	91	4.6	0.2	25			Χ	
	QUWI2-T	Quercus wislizeni	82	35.2	18	55	Χ		Χ	
	QUWI2-M	Quercus wislizeni	36	0.5	0.2	5				
	QUDO-T	Quercus douglasii	27	0.9	0.2	5				
	PISA2-M	Pinus sabiniana	27	0.3	0.2	2				
	QUWI2-L	Quercus wislizeni	27	0.1	0.2	1				
	PISA2-L	Pinus sabiniana	27	0.1	0.2	0.2				
Shrub										
	ARMA	Arctostaphylos manzanita		19.0		62		Χ	Χ	
	TODI	Toxicodendron diversilobum	100	8.6	1	17			Χ	
	HEAR5	Heteromeles arbutifolia	91	13.3	1	30.2			Χ	
	LOHIV	Lonicera hispidula var. vacillans	36	0.1	0.2	0.2				
	RHTO6	Rhamnus tomentella	36	0.1	0.2	0.2				
	MIAU	Mimulus aurantiacus	27	0.7	0.2	5				
	RHIL	Rhamnus ilicifolia	27	0.3	1	1				
	KEBR	Keckiella breviflora	27	0.1	0.2	1				
Herb										
	TOAR	Torilis arvensis	73	2.5	0.2	6				Χ
	CYEC	Cynosurus echinatus	55	2.0	0.2	9				Χ
	BRDI2	Brachypodium distachyon	45	2.3	0.2	10				Χ
	GAPO	Galium porrigens	45	0.3	0.2	2				
	BRMA3	Bromus madritensis	36	1.7	0.2	15				Χ
	BRDI3	Bromus diandrus	36	0.9	0.2	9				Χ
	AICA	Aira caryophyllea	36	0.6	0.2	3				Χ
	TRHI4	Trifolium hirtum	36	0.3	0.2	3				Χ
	BRLA3	Bromus laevipes	36	0.2	0.2	1				
	MAGR3	Madia gracilis	36	0.1	0.2	1				
	MECA2	Melica californica	36	0.1	0.2	1				
	CAAL2	Calochortus albus	27	0.2	0.2	1				
	AVBA	Avena barbata	27	0.1	0.2	1				Χ
	VUMY	Vulpia myuros	27	0.1	0.2	1				Χ
Cryptog										
	MOSS	Moss	36	2.9	1	21				

Quercus wislizeni - Quercus douglasii - Aesculus californica Association Interior Live Oak - Blue Oak - California Buckeye Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and codominated by *Quercus wislizeni* at 8-48% cover with other trees *Quercus douglasii* and *Aesculus californica* characteristically present in overstory and/or understory. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant and with *Rhamnus ilicifolia* often present. The herbaceous layer was open to continuous and often included non-natives *Avena barbata*, *Cynosurus echinatus*, *Torilis arvensis*, and *Trifolium hirtum*.

In the study area, this association was sampled somewhat commonly within the Cascade Range Foothills and northern Sierra Nevada Foothills, and infrequently in the central Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic and infrequently on, metamorphic or mixed alluvium substrates. They often occupied bottom to middle slopes that were flat to steep. The majority of the stands were associated within a single cluster cut level of the analysis, which also contained the majority of samples from the *Quercus wislizeni - Quercus douglasii - Pinus sabiniana* association. The ecological relationships between these two associations appear similar except for the complete absence of *Aesculus* in the above mentioned type. Slope position and other floristic attributes of this association suggest that this association is also more mesic and more often found on volcanic substrates than the *Quercus wislizeni - Quercus douglasii - Pinus sabiniana* Association.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Shasta, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	73.5	57-93	-
Herb	36.7	16-70	variable
Shrub	24.1	5-61	<5
Low Tree/Tall Shrub	5.9	0-50	5-10
Hardwood	40.8	5-69	5-20
Conifer	0.7	0-4	10-20
Relative non-native to native cover	27.2	7-48	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (5), NW (3), W (2), SW (2), SE (1), S (1), NE (1)

Macrotopography: bottom (2), bottom to lower slope (1), lower slope (4), lower to middle slope (2), lower to upper slope (2), middle slope (2), middle to upper slope (1), draw (1)

Microtopography: undulating (10), flat (2), concave (2), convex (1)

Parent Material: volcanic (11), metamorphic (3), mixed alluvium (1)

Soil Texture: loam or sandy loam (5), clay or clay loam (3), silt or silt loam (3), sand (1)

	Mean	Range
Elevation	910 ft.	321-1839 ft.
Slope	17.4°	0-30°
Large rock cover	7.4%	<1-25%
Small rock cover	8.9%	1-27%

Bare ground cover	11.9%	2-30%
Litter cover	67.9%	39-82%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=15)

Rapid Assessments: SNNR0013, SNNR0030, SNNR0081, SNNR0123, SNNR0169, SNNR0201, SNNR0257, SNNR0316, SNNR0675, SNNR0938, SNNR0939, SNNR0943,

SNNR0967, SNNR1469 Relevés: SNFN0245

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the northern Sierra Nevada Foothills based solely upon the data collected for this project. It is likely to be restricted to this part of the state.

STAND TABLE Quercus wislizeni - Quercus douglasii - Aesculus californica Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni	100	25.7	8	48		Χ	Χ	
	QUDO-T	Quercus douglasii	100	13.7	5	40			Χ	
	AECA-T	Aesculus californica	60	5.4	1	17				
	AECA-M	Aesculus californica	47	11.3	5	50				
	PISA2-T	Pinus sabiniana	40	0.8	0.2	5				
	QUWI2-M	Quercus wislizeni	27	0.4	0.2	3				
Shrub										
	TODI	Toxicodendron diversilobum	100	10.1	2	30	Χ		Χ	
	RHIL	Rhamnus ilicifolia	60	1.4	0.2	7				
	CLLA3	Clematis lasiantha	40	1.1	0.2	6				
	HEAR5	Heteromeles arbutifolia	40	1.1	0.2	8				
	ARCA10	Aristolochia californica	33	0.7	1	3				
	RHTO6	Rhamnus tomentella	33	0.5	0.2	5				
Herb										
	CYEC	Cynosurus echinatus	80	7.9	0.2	16			Χ	X
	TOAR	Torilis arvensis	80	4.7	1	15			Χ	Χ
	TRHI4	Trifolium hirtum	67	1.4	0.2	8				Χ
	AVBA	Avena barbata	53	1.1	0.2	5				Χ
	LOMU	Lolium multiflorum	33	2.5	0.2	16				Χ
	CAPY2	Carduus pycnocephalus	27	2.3	2	18				Χ
	BRHO2	Bromus hordeaceus	27	0.6	0.2	5				Χ
	DIVO	Dichelostemma volubile	27	0.1	0.2	1				

Quercus wislizeni - Quercus douglasii - Pinus sabiniana Association Interior Live Oak - Blue Oak - Foothill Pine Association

SUMMARY

In the stands sampled, the canopy was typically open to continuous and co-dominated by *Quercus wislizeni* at 7-47% cover and *Quercus douglasii* at 5-33% cover (canopy cover includes the tree overstory and/or understory layers). *Pinus sabiniana* was characteristically present in the overstory at <1-15% cover. The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant and with *Heteromeles arbutifolia* and *Rhamnus ilicifolia* often present. The herbaceous layer was variable and often included non-natives *Bromus hordeaceus*, *Cynosurus echinatus*, and *Torilis arvensis*.

This association was sampled commonly in the study area in the central and northern Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands often occurred on metamorphic (including slate) or igneous substrates (including volcanic, basalt, granitic, or gabbro) and infrequently on sedimentary (including limestone or shale), ultramafic, or mixed rock substrates. They typically occupied lower to upper slopes, which were more often on northerly aspects. Slopes varied from gentle to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in ten counties: Butte, Calaveras, El Dorado, Mariposa, Nevada, Placer, Shasta, Tehama, Tuolumne, and Yuba - within the Lower Foothills Metamorphic Belt (M261Fb), Tuscan Flows (M261Fa), and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	75.7	55-96	-
Herb	31.6	6-85	variable
Shrub	28.9	0-66	<5
Low Tree/Tall Shrub	0	0-1	5-10
Hardwood	36.1	19-60	5-20
Conifer	5.8	0-15	5-35
Relative non-native to native cover	25.2	2-57	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (8), Variable (7), N (6), NE (5), W (3), S (3), SW (2), E (1)

Macrotopography: lower slope (6), lower to middle slope (4), lower to upper slope (1), middle slope (9), middle to upper slope (4), middle slope to ridgetop (1), upper slope (8), upper slope to ridgetop (1), ridgetop (1)

Microtopography: undulating (15), flat (10), convex (7), concave (2)

Parent Material: metamorphic (10), granitic (6), volcanic (5), sedimentary (4), ultramafic (2), basalt (1), gabbro (1), igneous (1), limestone (1), mixed rock (1), shale (1), slate (1), water (1) Soil Texture: loam or sandy loam (15), clay or clay loam (9), silt or silt loam (7)

	Mean	Range
Elevation	1145 ft.	350-2188 ft.
Slope	17.7°	2-30°
Large rock cover	7.5%	0-45%
Small rock cover	4.4%	<1-20%
Bare ground cover	10.2%	<1-27%
Litter cover	74.5%	30-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=35)

Rapid Assessments: SNNR0204, SNNR0309, SNNR0710, SNNR0807, SNNR0830, SNNR0835, SNNR0836, SNNR0873, SNNR0906, SNNR0985, SNNR1007, SNNR1021, SNNR1214, SNNR1222, SNNR1311, SNNR1350, SNNR1361, SNNR1373, SNNR1374, SNNR1375, SNNR1394, SNNR1423, SNNR1431, SNNR1451, SNNR1477, SNNR1674, SNNR1685, SNNR1689 **Relevés:** SNFN0020, SNFN0064, SNFN0105, SNFN0184, SNFN0185, SNFN0567, SNFN0676

Rank: G4S4

GLOBAL DISTRIBUTION

This association occurs in the Sierra Nevada and in San Benito County (Allen et al. 1898, 1991, NatureServe et al. 2003b). It occurs as high as 5300 ft elevation in the southern Sierra Nevada.

STAND TABLE *Quercus wislizeni - Quercus douglasii - Pinus sabiniana* Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni	100	20.7	2	45		Χ	Χ	
	QUDO-T	Quercus douglasii	97	15.3	5	33		Χ	Χ	
	PISA2-T	Pinus sabiniana	97	5.6	0.2	15			Χ	
	QUWI2-M	Quercus wislizeni	63	3.9	0.2	19				
	PISA2-M	Pinus sabiniana	34	0.5	0.2	5				
	QUDO-M	Quercus douglasii	29	0.6	0.2	5				
	QUDO-L	Quercus douglasii	29	0.1	0.2	2				
	QUWI2-L	Quercus wislizeni	29	0.1	0.2	0.2				
	QUKE-T	Quercus kelloggii	26	0.9	0.2	10				
	PISA2-L	Pinus sabiniana	26	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	97		0.2	38	Χ		Χ	
	RHIL	Rhamnus ilicifolia	57	1.2	0.2	5				
	HEAR5	Heteromeles arbutifolia	54	4.8	0.2					
	ARMA	Arctostaphylos manzanita	31	3.6	0.2	42				
	ARVI4	Arctostaphylos viscida	23	0.9	0.2					
	CECU	Ceanothus cuneatus	23	0.5	0.2	7				
Herb										
	TOAR	Torilis arvensis	83	2.8	0.2	15			Χ	Χ
	CYEC	Cynosurus echinatus	60	3.9	0.2					Χ
	BRHO2	Bromus hordeaceus	54	5.5	0.2					X
	AVBA	Avena barbata	49	1.7	0.2	15				Χ
	MECA2	Melica californica	43	0.2	0.2					
	GAPO	Galium porrigens	43	0.2	0.2					
	TRHI4	Trifolium hirtum	40	1.6	0.2	21				Χ
	BRDI2	Brachypodium distachyon	34	2.1	0.2					Χ
	MAGR3	Madia gracilis	34	0.5	0.2					
	BRDI3	Bromus diandrus	31	2.8	0.2	30				X
	ELGL	Elymus glaucus	29	0.7	0.2					
	SABI3	Sanicula bipinnatifida	29	0.3	0.2	3				
	VUMY	Vulpia myuros	26	0.5	0.2	10				X
	DAPU3	Daucus pusillus	26	0.2	0.2					
	BRLA3	Bromus laevipes	26	0.1	0.2					
	SACR2	Sanicula crassicaulis	26	0.1	0.2	1				
	DIVO	Dichelostemma volubile	23	0.0	0.2	0.2				
Cryptoga						. —				
	MOSS	Moss	29	3.2	0.2	47				

Quercus wislizeni - Quercus douglasii / Herbaceous Association Interior Live Oak - Blue Oak / Herbaceous Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and codominated by *Quercus wislizeni* at 7-59% cover and *Quercus douglasii* at 3-34% cover (canopy cover includes the tree overstory and/or understory layers). The shrub layer was open to intermittent with *Toxicodendron diversilobum* dominant. The herbaceous layer was open to continuous and often included non-natives *Bromus diandrus*, *Bromus hordeaceus*, *Carduus pycnocephalus*, *Cynosurus echinatus*, *Torilis arvensis*, and *Trifolium hirtum*.

In the study area, this association was sampled commonly in the northern Sierra Nevada Foothills, less commonly in the central Sierra Nevada Foothills and Cascade Range Foothills, and once in the Sacramento Valley Subregions (Hickman 1993). Stands usually occurred on metamorphic (including mixed metamorphic, serpentine, and slate) substrates and occasionally on igneous (including volcanic/basalt), sedimentary (including limestone), and mixed alluvium substrates. They occupied all aspects and slope positions from bottoms to ridgetops and terraces. Slopes varied from flat to steep.

The relationship of this association to the more commonly described *Quercus wislizeni* - *Quercus douglasii* - *Pinus sabiniana* Association appears close. The principle difference is the lack of significant cover of *Pinus sabiniana* in this association. This difference may have to do with fire or management history, rather than well-defined non-temporal environmental differences in substrate, exposure, or climate.

DISTRIBUTION IN STUDY AREA

This association was sampled in elevation counties: Amador, Calaveras, El Dorado, Mariposa, Nevada, Placer, Sacramento, Shasta, Tehama, Tuolumne, and Yuba - within the Camanche Terraces (262Ao), Lower Foothills Metamorphic Belt (M261Fb), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

Mean %	Range %	Height (m)
67.8	32-95	-
41.7	19-90	variable
9.8	0-42	<5
0.1	0-5	5-10
35.2	9-60	5-20
0.9	0-6	5-35
43.5	7-72	-
	67.8 41.7 9.8 0.1 35.2 0.9	67.8 32-95 41.7 19-90 9.8 0-42 0.1 0-5 35.2 9-60 0.9 0-6

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (7), SW (6), W (5), NW (4), N (4), Variable (3), SE (3), NE (2), Flat (2), E (2) Macrotopography: bottom (2), bottom to middle slope (1), lower slope (6), lower to middle slope (2), middle slope (14), middle to upper slope (5), upper slope (1), upper slope to ridgetop (1), ridgetop (5), terrace (1)

Microtopography: undulating (29), convex (4), flat (3), concave (2)

Parent Material: metamorphic (22), volcanic (4), mixed metamorphic (2), sedimentary (2), serpentine (2), slate (2), basalt (1), igneous (1), limestone (1), mixed alluvium (1)

Soil Texture: silt or silt loam (18), clay or clay loam (8), loam or sandy loam (6), sand (1)

	Mean	Range
Elevation	1052 ft.	208-1900 ft.
Slope	12.1°	0-40°
Large rock cover	2.1%	0-15%
Small rock cover	2.4%	0-10%
Bare ground cover	15.7%	<1-59%
Litter cover	76.4%	35-97%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=38)

Rapid Assessments: SNNR0002, SNNR0023, SNNR0034, SNNR0041, SNNR0056, SNNR0079, SNNR0343, SNNR0407, SNNR0649, SNNR0650, SNNR0655, SNNR0680, SNNR0975, SNNR1015, SNNR1022, SNNR1051, SNNR1062, SNNR1205, SNNR1291, SNNR1354, SNNR1413, SNNR1414, SNNR1441, SNNR1612, SNNR1634, SNNR1639, SNNR1646, SNNR1653, SNNR1660, SNNR1662, SNNR1675, SNNR1676, SNNR1681, SNNR1683, SNNR1687 **Relevés:** SNFN0006, SNFN0254, SNFN0264

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely on the data collected for this project.

STAND TABLE *Quercus wislizeni - Quercus douglasii |* Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni		22.7		55	Χ		Χ	
	QUDO-T	Quercus douglasii	97	12.4		33		Χ	Χ	
	PISA2-T	Pinus sabiniana	50	0.8	0.2	6				
	QUDO-L	Quercus douglasii	50	0.1	0.2	0.2				
	QUWI2-L	Quercus wislizeni	47	0.1	0.2					
	QUWI2-M	Quercus wislizeni	42	1.7	0.2	12				
	QUDO-M	Quercus douglasii	42	0.4	0.2	3				
	PISA2-L	Pinus sabiniana	29	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	92	5.0	0.2	45	Χ		Χ	
	CECU	Ceanothus cuneatus	21	0.5	0.2	4				
Herb	0)./=0									
	CYEC	Cynosurus echinatus	82	7.0	0.2				Χ	X
	BRDI3	Bromus diandrus	74	6.9	0.2	30				Χ
	TRHI4	Trifolium hirtum	68	4.3	0.2	26				Χ
	TOAR	Torilis arvensis	66	2.1	0.2					Χ
	BRHO2	Bromus hordeaceus	61	4.0	0.2					Χ
	CAPY2	Carduus pycnocephalus	55	1.4	0.2	10				Χ
	AVBA	Avena barbata	47	0.7	0.2	5				Χ
	AVFA	Avena fatua	34	2.9	0.2					Χ
	BRDI2	Brachypodium distachyon	29	2.7	0.2	30				X
	HOMU	Hordeum murinum	29	1.6	0.2	15				X
	LOMU	Lolium multiflorum	29	1.4	0.2					Χ
	DAPU3	Daucus pusillus	29	0.1	0.2	1				
	NAPU2	Navarretia pubescens	26	0.1	0.2	2				
	SABI3	Sanicula bipinnatifida	24	8.0	0.2	8				
	SACR2	Sanicula crassicaulis	24	0.1	0.2	1				
	ELGL	Elymus glaucus	21	0.1	0.2	1				
	PETR7	Pentagramma triangularis	21	0.1	0.2	1				
	TRMI4	Trifolium microcephalum	21	0.1	0.2	1				

Quercus wislizeni - Quercus kelloggii Association Interior Live Oak - Black Oak Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and dominated by *Quercus wislizeni* at 15-81% combined cover in the tree overstory and/or understory layers. *Quercus kelloggii* was characteristically present at 3-47% cover and sometimes co-dominant with *Q. wislizeni*, while *Pinus sabiniana* was often present in the overstory. The shrub layer was open to continuous with *Toxicodendron diversilobum* dominant and with *Heteromeles arbutifolia* and *Rhamnus tomentella* often present. The herbaceous layer was open to continuous and often included *Cynosurus echinatus*, *Galium porrigens*, and *Torilis arvensis*.

In the study area, this association was sampled commonly in the northern Sierra Nevada Foothills and infrequently in the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates but also occurred on igneous (including gabbro, volcanic, or basalt), mixed rock, and sedimentary substrates. They occupied bottoms to upper slopes, with most samples collected from the middle slope. Slopes varied from gentle to steep, and they usually were mesic and north or east-facing.

DISTRIBUTION IN STUDY AREA

This association was sampled in ten counties: Amador, Butte, Calaveras, El Dorado, Nevada, Placer, Shasta, Tehama, Tuolumne, and Yuba; within the Lower Foothills Metamorphic Belt (M261Fb), Tuscan Flows (M261Fa), and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	76.9	38-95	-
Herb	16.7	1-75	variable
Shrub	33.9	2-70	<5
Low Tree/Tall Shrub	2	0-25	5-10
Hardwood	49.2	15-90	5-20
Conifer	2.5	0-14	5-35
Relative non-native to native cover	9	0-38	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (6), NW (5), NE (4), W (3), Variable (2), E (2), SW (1)

Macrotopography: entire slope (1), bottom (1), lower slope (4), lower to middle slope (1), lower to upper slope (1), middle slope (8), middle to upper slope (3), upper slope (4)

Microtopography: flat (11), undulating (9), convex (2), concave (1)

Parent Material: metamorphic (10), volcanic (4), mixed rock (3), sedimentary (3), gabbro (2),

basalt (1)

Soil Texture: loam or sandy loam (7), silt or silt loam (6), clay or clay loam (5)

	Mean	Range
Elevation	1214 ft.	490-1966 ft.
Slope	23°	1-35°
Large rock cover	2.7%	0-12%
Small rock cover	2.5%	<1-7%
Bare ground cover	5.5%	1-11%
Litter cover	85.9%	72-95%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=23)

Rapid Assessments: SNNR0318, SNNR0405, SNNR0481, SNNR0496, SNNR0577, SNNR0659, SNNR0708, SNNR0757, SNNR0814, SNNR0973, SNNR1365, SNNR1433, SNNR1658, SNNR1686 **Relevés:** SNFN0058, SNFN0170, SNFN0222, SNFN0253, SNFN0572, SNFN0577, SNFN0579, SNFN0661, SNFN0683

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills by Evens et al. (2004). It is locally common and widespread, though likely restricted to this part of the state.

STAND TABLE Quercus wislizeni - Quercus kelloggii Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni	100	27.7	5	81		Χ	Χ	
	QUKE-T	Quercus kelloggii	100	18.9	3	47			Χ	
	PISA2-T	Pinus sabiniana	65	2.8	0.2	15				
	QUWI2-M	Quercus wislizeni	57	5.3	0.2	52				
	QUDO-T	Quercus douglasii	39	1.3	0.2	7				
	QUWI2-L	Quercus wislizeni	39	0.1	0.2	1				
	PISA2-M	Pinus sabiniana	35	0.3	0.2	3				
	AECA-M	Aesculus californica	30	1.2	0.2	17				
	PISA2-L	Pinus sabiniana	26	0.1	0.2	0.2				
	QUKE-L	Quercus kelloggii	26	0.1	0.2	0.2				
	QUKE-M	Quercus kelloggii	22	0.1	0.2	2				
Shrub										
	TODI	Toxicodendron diversilobum		20.9		70	X		Χ	
	HEAR5	Heteromeles arbutifolia	65	3.9	0.2	15				
	RHTO6	Rhamnus tomentella	52	3.1		35.4				
	RHIL	Rhamnus ilicifolia	35	1.0	0.2	15				
	LOHIV	Lonicera hispidula var. vacillans	35	0.1	0.2	1				
	ARMA	Arctostaphylos manzanita	30	1.8	0.2	15				
	ARVI4	Arctostaphylos viscida	22	1.2	0.2	19				
Herb										
	CYEC	Cynosurus echinatus	65	2.5	0.2					Χ
	TOAR	Torilis arvensis	61	1.9	0.2	15				Χ
	GAPO	Galium porrigens	57	0.1	0.2	1				
	SACR2	Sanicula crassicaulis	43	0.1	0.2	1				
	ELGL	Elymus glaucus	35	0.5	0.2	6				
	BRLA3	Bromus laevipes	30	0.1	0.2	1				
	AICA	Aira caryophyllea	30	0.1	0.2	0.2				Χ
	GAAP2	Galium aparine	30	0.1	0.2	0.2				
	TRHI4	Trifolium hirtum	26	0.4	0.2	3				Χ
	CAAL2	Calochortus albus	26	0.1	0.2	1				
	MAGR3	Madia gracilis	26	0.1	0.2	1				
	MECA2	Melica californica	26	0.1	0.2	1				
	LUCO6	Luzula comosa	26	0.1	0.2					
	BRMA3	Bromus madritensis	22	0.5	0.2	8				Χ
	PETR7	Pentagramma triangularis	22	0.0	0.2	0.2				
Cryptoga		Mara	00	0.5	0.0	00				
	MOSS	Moss	39	3.5	0.2	30				

Salix gooddingii Woodland/Forest Alliance Gooddings (Black) Willow Woodland/Forest Alliance

As defined in the state, *Salix gooddingii* is dominant in the tree canopy with *Alnus rhombifolia*, *Populus fremontii*, *S. laevigata*, *S. lasiolepis*, *S. lucida* subsp. *lasiandra*, *Sambucus nigra* subsp. *canadensis*, and *Washingtonia filifera*. The tree canopy is open to continuous and the shrub layer is open to dense with *Baccharis pilularis*, *B. salicifolia*, or *Cornus sericea*. The herbaceous layer is variable.

Stands of *Salix gooddingii* form on terraces along large rivers, canyons, along rocky floodplains of small intermittent streams, and on seeps and springs. Stands from this alliance were not sampled often in the study area. One association was classified and is described below. One stand (SNNR0702) showed additional variation due to a co-dominance with *Salix lucida* subsp. *lasiandra* and *Salix exigua* and was only classified to the alliance level only.

Salix gooddingii Association (Provisional) Black Willow Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open and characterized by *Salix gooddingii* at 12-20% cover. The shrub layer was open to intermittent with *Salix exigua* dominant at low cover. The herbaceous layer was open with a variety of native and non-native grasses and forbs (see stand table below).

This association was sampled infrequently in the study area, only within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on igneous (including granitic) substrates. They occupied bottom and lower slopes that were gentle to moderate, along riparian corridors, streambank terraces, and lake margins.

DISTRIBUTION IN STUDY AREA

This association was sampled in Placer County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	55	25-85	-
Herb	7.6	0-15	variable
Shrub	20	5-35	2.1-5
Low Tree/Tall Shrub	12.5	0-25	5-10
Hardwood	17.5	15-20	10-20
Conifer	0	-	-
Relative non-native to native cover	33.3	15-51	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (1)

Macrotopography: bottom (1), lower slope (1)

Microtopography: undulating (2)

Parent Material: granitic (1), igneous (1)

Soil Texture: sand (1)

	Mean	Range
Elevation	619 ft.	461-777 ft.
Slope	4 º	1-7°
Large rock cover	0%	-%
Small rock cover	<1%	<1%
Bare ground cover	23%	1-45%
Litter cover	75.5%	55-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR0611, SNNR0613

Rank: G4S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based upon data collected for this project and by Klein and Evens (2006) in western Riverside County. Although other *S. gooddingii* associations are known from the Central Valley (Hickson and Keeler-Wolf 2007), they do not match well with the local foothill stands.

STAND TABLE Salix gooddingii Association

Lifeform Tree	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
1100	SAGO-T	Salix gooddingii	100	16.0	12	20	Х		Χ	
	AIAL	Ailanthus altissima	50	1.5	3	3				Χ
	MASY3	Malus sylvestris	50	0.1	0.2	0.2				Χ
	QUWI2-M	Quercus wislizeni	50	0.1	0.2	0.2				
Shrub										
	SAEX	Salix exigua	100	1.5	1	2			Χ	
	RUDI2	Rubus discolor	50	17.5	35	35				Χ
	SALA6	Salix lasiolepis	50	10.0	20	20				
	CEOCC2	Cephalanthus occidentalis var. californicus	50	2.5	5	5				
	VICA5	Vitis californica	50	1.5	3	3				
	BAPI	Baccharis pilularis	50	0.1	0.2	0.2				
Herb										
	SOHA	Sorghum halepense	50	2.5	5	5				Χ
	CYDA	Cynodon dactylon	50	2.0	4	4				Χ
	JUBA	Juncus balticus	50	1.5	3	3				
	TYLA	Typha latifolia	50	1.5	3	3				
	ALPLA	Alisma plantago-aquatica var. americanum	50	0.5	1	1				
	CHMA11	Chamaesyce maculata	50	0.5	1	1				Χ
	CIVU	Cirsium vulgare	50	0.5	1	1				Χ
	EPCI	Epilobium ciliatum	50	0.5	1	1				
	JUEF	Juncus effusus	50	0.5	1	1				
	LYSA2	Lythrum salicaria	50	0.5	1	1				Χ
	POLYG4	Polygonum	50	0.5	1	1				
	ASFA	Asclepias fascicularis	50	0.1	0.2	0.2				
	CAPY2	Carduus pycnocephalus	50	0.1	0.2	0.2				Χ
	CYER	Cyperus eragrostis	50	0.1	0.2	0.2				
	HIIN3	Hirschfeldia incana	50	0.1	0.2					Χ
	HYPE	Hypericum perforatum	50	0.1	0.2					X
	LASE	Lactuca serriola	50	0.1	0.2	0.2				Χ
	LOPU3	Lotus purshianus	50	0.1	0.2	0.2				
	MOVE	Mollugo verticillata	50	0.1	0.2	0.2				Χ
	PHNO2	Phyla nodiflora	50	0.1	0.2	0.2				
	SAMOC2	Sagittaria montevidensis subsp calycina	. 50	0.1	0.2	0.2				
	HERBAC	unknown	50	0.1	0.2	0.2				
	VETH	Verbascum thapsus	50	0.1	0.2					Χ
	VIVI	Vicia villosa	50	0.1	0.2					Χ
	XAST	Xanthium strumarium	50	0.1	0.2	0.2				

Salix laevigata Woodland/Forest Alliance Red Willow Woodland/Forest Alliance

As defined in the state, *Salix laevigata* is dominant or co-dominant in the shrub or tree canopy with *Acer negundo*, *Aesculus californica*, *Alnus rhombifolia*, *Calocedrus decurrens*, *Pinus jeffreyi*, *P. sabiniana*, *Platanus racemosa*, *Populus fremontii*, *Quercus agrifolia*, *Q. chrysolepis*, *Salix gooddingii*, *S. lasiolepis*, and *Sambucus nigra* subsp. *canadensis*. The canopy is open to continuous. The shrub layer is sparse to intermittent and the herbaceous layer is variable. Stands of *Salix laevigata* form along creeks, ditches, floodplains, lake edges, and low-gradient depositions along streams.

In the study area, stands are associated with willows such as *Salix lasiolepis* and other common riparian species. *Rubus discolor*, *Vitis californica*, *Rhamnus tomentella*, *Cercis occidentalis* are usually present in the understory. Two associations in the Red Willow Alliance were described. Two stands (SNNR0165, SNNR0445) showed additional variation and were only classified to the alliance level. One of these stands contained *Quercus garryana* var. *breweri*, *Q. chrysolepis*, and *Q. berberidifolia*, and the other had *Calycanthus occidentalis* and *Cornus glabrata*.

Salix laevigata Association Red Willow Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to intermittent and dominated solely by *Salix laevigata* at 10-65% cover. The shrub layer was open to continuous with *Rubus discolor* dominant and with *Salix lasiolepis* often present. The herbaceous layer was open to intermittent with *Artemisia douglasiana*, *Bromus diandrus*, *Lolium multiflorum*, *Rumex pulcher*, *Paspalum dilatatum*, *Torilis arvensis*, and *Xanthium strumarium* occurring occasionally.

This association was sampled commonly in the study area within the central Sierra Nevada Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands sometimes occurred on metamorphic or mixed alluvium and infrequently on granitic or sedimentary substrates. They usually occupied bottom slope positions but were occasionally found on lower to middle slopes. Slopes were flat to moderate, along seasonally flooded riparian corridors and streambank terraces.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, Calaveras, El Dorado, Mariposa, Nevada, and Placer Counties, within the Camanche Terraces (262Ao) and Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	63.9	40-90	-
Herb	14.4	0-40	variable
Shrub	33.1	1-95	<5
Low Tree/Tall Shrub	9.7	0-80	5-10
Hardwood	23.2	2-65	5-20
Conifer	0.5	0-4	5-20
Relative non-native to native cover	36.7	4-74	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (5), W (2), NW (2), N (2), Flat (2), SE (1), S (1), NE (1)

Macrotopography: bottom (13), lower slope (2), lower to middle slope (1)

Microtopography: concave (8), flat (4), undulating (3), convex (1)

Parent Material: metamorphic (6), mixed alluvium (5), granitic (2), sedimentary (2), igneous (1)

Soil Texture: sand (5), clay or clay loam (2), loam or sandy loam (1), unknown (1)

	Mean	Range
Elevation	852 ft.	213-2048 ft.
Slope	1.9°	0-8°
Large rock cover	5.5%	0-40%
Small rock cover	8%	0-35%
Bare ground cover	20.7%	<1-70%
Litter cover	47.4%	0-94%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=16)

Rapid Assessments: SNNR0038, SNNR0063, SNNR0109, SNNR0369, SNNR0605, SNNR0632, SNNR0806, SNNR0899, SNNR0987, SNNR1106, SNNR1210, SNNR1265, SNNR1276, SNNR1278, SNNR1302, SNNR1386

Rank: G4S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and lower slopes of the Sierra Nevada. Potter (2005) describes this type up to elevations of 5000 ft. Similar associations may exist elsewhere in cismontane California, including Marin County (Evens and Kentner 2006).

STAND TABLE Salix laevigata Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	SALA3-T	Salix laevigata	94	23.1	10	65	Χ		Χ	
	SALA3-M	Salix laevigata	44	2.8	2	10				
	POFR2-T	Populus fremontii	31	0.6	0.2	3				
Shrub										
	RUDI2	Rubus discolor	81	21.7	1	70	Χ		Χ	Χ
	SALA6	Salix lasiolepis	50	2.3	2	7				
	VICA5	Vitis californica	31	3.5	1	45.2				
	SAEX	Salix exigua	25	3.3	0.2	35				
	FICA	Ficus carica	25	1.1	0.2	7				Χ
	TODI	Toxicodendron diversilobum	25	0.5	0.2	5				
Herb										
	ARDO3	Artemisia douglasiana	38	1.5	0.2	12				
	BRDI3	Bromus diandrus	31	1.0	0.2	10				Χ
	LOMU	Lolium multiflorum	31	0.5	0.2	3				Χ
	RUPU3	Rumex pulcher	25	0.3	0.2	2				Χ
	PADI3	Paspalum dilatatum	25	0.2	0.2	1				Χ
	TOAR	Torilis arvensis	25	0.1	0.2	1				Χ
	XAST	Xanthium strumarium	25	0.1	0.2	1				

Salix laevigata / Salix lasiolepis Association Red Willow / Arroyo Willow Association

SUMMARY

In the stands sampled, the canopy was typically open and dominated by *Salix laevigata* at 10-25% cover (combined cover in the tree overstory and/or understory layers). *Populus fremontii* and *Salix gooddingii* were present occasionally in the overstory. The shrub layer was open to intermittent with *Salix lasiolepis* dominant and with *Rubus discolor* and *Vitis californica* often present. The herbaceous layer was open and often included *Cynosurus echinatus* and *Euthamia occidentalis*.

This association was sampled infrequently in the study area, within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands usually occurred on metamorphic, and infrequently on igneous, and mixed alluvium substrates. They usually occupied bottoms with gentle slopes, along riparian corridors and streambank terraces.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado, Nevada, Placer, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	59.7	30-85	-
Herb	17.5	3-30	variable
Shrub	22.8	5-45	1-5
Low Tree/Tall Shrub	19.2	0-50	5-10
Hardwood	16.3	5-25	5-20
Conifer	0	-	5-10
Relative non-native to native cover	27.6	14-35	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (3), W (1), N (1), Flat (1)

Macrotopography: bottom (5), lower slope (1)

Microtopography: undulating (3), concave (2), convex (1)

Parent Material: metamorphic (4), igneous (1), mixed alluvium (1)

Soil Texture: clay or clay loam (3), muck (1), sand (1)

	Mean	Range
Elevation	1020 ft.	374-1652 ft.
Slope	2.5°	1-5°
Large rock cover	4.1%	<1-8%
Small rock cover	2.5%	1-4%
Bare ground cover	32%	2-62%
Litter cover	59.5%	35-84%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=6)

Rapid Assessments: SNNR0590, SNNR0698, SNNR0700, SNNR0895, SNNR1282 Relevés:

SNFN0036

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills using data collected for this project. This same association name has been used in the Suisun Marsh (Keeler-Wolf and Vaghti 2000) and the Santa Monica Mountains of Southern California (Keeler-Wolf and Evens 2006). They share a number of the same, widely-distributed riparian species.

STAND TABLE Salix lasiolepis Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	SALA3-T	Salix laevigata	100	10.3	5	15	Χ		Χ	
	SALA3-M	Salix laevigata	50	4.5	2	20				
	SAGO-T	Salix gooddingii	33	2.8	5	12				
	POFR2-T	Populus fremontii	33	8.0	1	4				
	QUWI2-M	Quercus wislizeni	33	0.1	0.2	0.2				
Shrub										
	SALA6	Salix lasiolepis	100	18.5	11	35	Χ		Χ	
	RUDI2	Rubus discolor	100	14.2	0.2	40			Χ	Χ
	VICA5	Vitis californica	50	0.4	0.2	1				
	BAPI	Baccharis pilularis	33	8.0	2	3				
	SAEX	Salix exigua	33	0.7	2	2				
Herb										
	CYEC	Cynosurus echinatus	50	0.2	0.2	1				Χ
	EUOC4	Euthamia occidentalis	50	0.2	0.2	1				
	TYLA	Typha latifolia	33	3.5	6	15				
	PADI3	Paspalum dilatatum	33	1.3	1	7				Χ
	HOLA	Holcus lanatus	33	0.7	1	3				Χ
	RONA2	Rorippa nasturtium-aquaticum	33	0.5	0.2	3				
	EPCI	Epilobium ciliatum	33	0.5	1	2				
	JUBA	Juncus balticus	33	0.5	1	2				
	STST	Stachys stricta	33	0.3	1	1				
	TYDO	Typha domingensis	33	0.3	1	1				
	GEDI	Geranium dissectum	33	0.2	0.2	1				Χ
	JUEF	Juncus effusus	33	0.2	0.2	1				
	HYPE	Hypericum perforatum	33	0.1	0.2	0.2				Χ
	RUCR	Rumex crispus	33	0.1	0.2	0.2				Χ

Umbellularia californica Woodland/Forest Alliance California Bay Woodland/Forest Alliance

As defined in the state, *Umbellularia californica* may form dense stands with little understory or may form mixed stands with overstory species such as oaks (*Quercus agrifolia*, *Q. chrysolepis*, or *Q. wislizeni*), *Lithocarpus densiflorus*, *Arbutus menziesii*, and *Sequoia sempervirens*. Common shrubs associated with *U. californica* are *Garrya elliptica*, *Heteromeles arbutifolia*, *Ceanothus* spp., and *Toxicodendron diversilobum*. *Umbellularia californica* may form stands in uplands or along streamsides, on soils that are typically derived from sandstone, schist, or mixed alluvium.

Two associations were described for the California Bay Alliance in the study area. Additional variation occurred in two stream terrace/riparian stands (SNNR0277, SNNR0634) where *Adiantum jordanii*, *Aesculus californica*, and *Styrax officinalis* var. *redivivus* were present in the understory. These stands were classified to the alliance level only.

Umbellularia californica - Alnus rhombifolia Association (Provisional) California Bay - White Alder Association (Provisional)

SUMMARY

In the stands sampled, the overstory tree canopy was typically intermittent to continuous and dominated by *Umbellularia californica* at 28-30% cover. Other trees such as *Alnus rhombifolia* and *Umbellularia californica* were characteristically present. The shrub layer was open with *Toxicodendron diversilobum* dominant and with *Rubus discolor* characteristically present. The herbaceous layer was open with abundant and characteristic taxa such as *Cynosurus echinatus* and *Sanicula crassicaulis*.

This association was sampled infrequently in the study area, once in the Cascade Range Foothills and once in the High Cascade Range Subregions (Hickman 1993). Stands occurred on mixed alluvium or volcanic substrates. They occupied bottoms, lower slopes, and terraced slopes that were moderate to somewhat steep, along riparian corridors.

DISTRIBUTION IN STUDY AREA

This association was sampled in Shasta and Tehama Counties, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	73.5	62-85	-
Herb	7.5	2-13	< 0.3
Shrub	23.5	17-30	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	57.5	48-67	5-20
Conifer	0	-	-
Relative non-native to native cover	5.2	3-7	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (1), N (1)

Macrotopography: bottom to lower slope (1), terrace (1)

Microtopography: flat (1), undulating (1)

Parent Material: mixed alluvium (1), volcanic (1)

Soil Texture: clay or clay loam (1), loam or sandy loam (1)

	Mean	Range
Elevation	1198 ft.	555-1841 ft.
Slope	12º	8-16°
Large rock cover	19.5%	4-35%
Small rock cover	8%	5-11%
Bare ground cover	5%	5-5%
Litter cover	62%	52-72%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR1249 Relevés: SNFN0258

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills in the two northernmost counties. It is likely that the *U. californica - A. rhombifolia* Associations defined from Marin County (Evens and Kentner 2006) and from the Santa Monica Mountains (Keeler-Wolf and Evens 2006) are analogous, thus extending this association's range to the Central Coast Ranges and southern California.

Potter (2005) does not report any version of the *Umbellularia californica* Alliance in his study of Sierra Nevada riparian vegetation. However, this may be due to his focus on U.S. Forest Service lands, which occur principally upslope from the landscape covered in this project. Potter's broadly defined *Quercus chrysolepis / Toxicodendron diversilobum* Association contains some stands that have a mix of *U. californica*, *A. rhombifolia*, *Quercus chrysolepis*, and *Q. wislizeni*. These stands resemble this and the following association in the *U. californica* alliance; however, in most of Potter's stands, *Q. chrysolepis* has significantly higher cover than in this association.

STAND TABLE
Umbellularia californica - Alnus rhombifolia Association

Lifeform Tree	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
1166	UMCA-T	Umbellularia californica	100	29.0	28	30		Х	Χ	
	ALRH2-T	Alnus rhombifolia	100	8.0	1	15			Χ	
	UMCA-M	Umbellularia californica	100	2.1	0.2				Χ	
	UMCA-L	Umbellularia californica	100		0.2				Χ	
	QUKE-T	Quercus kelloggii	50	10.5		21				
	FRLA-T	Fraxinus latifolia	50	7.5	15	15				
	PLRA-T	Platanus racemosa	50	1.0	2	2				
	QUCH2-M	Quercus chrysolepis	50	0.5	1	1				
	QUCH2-T	Quercus chrysolepis	50	0.5	1	1				
	ACMA3-T	Acer macrophyllum	50	0.1	0.2	0.2				
	AECA-L	Aesculus californica	50	0.1	0.2	0.2				
	ALRH2-M	Alnus rhombifolia	50	0.1	0.2	0.2				
	QUKE-L	Quercus kelloggii	50	0.1	0.2	0.2				
	QUWI2-L	Quercus wislizeni	50	0.1	0.2	0.2				
	QUWI2-M	Quercus wislizeni	50	0.1	0.2	0.2				
	SNAG	Standing snag	50	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	100	12.0	12	12		Χ	Χ	
	RUDI2	Rubus discolor	100	3.0	1	5			Χ	Χ
	CAOC5	Calycanthus occidentalis	50	6.5	13	13				
	STOFR	Styrax officinalis var. redivivus	50	4.0	8	8				
	VICA5	Vitis californica	50	2.1	4.2	4.2				
	ARCA10	Aristolochia californica	50	2.0	4	4				
	RULE	Rubus leucodermis	50	0.5	1	1				
	FICA	Ficus carica	50	0.1	0.2					Χ
	LOHIV	Lonicera hispidula var. vacillans	50	0.1	0.2	0.2				
	PTCR3	Ptelea crenulata	50	0.1	0.2	0.2				
	RHIL	Rhamnus ilicifolia	50	0.1	0.2	0.2				
	RHTO6	Rhamnus tomentella	50	0.1	0.2	0.2				
	SYMO	Symphoricarpos mollis	50	0.1	0.2	0.2				
Herb										
	CYEC	Cynosurus echinatus	100		0.2				Χ	X
	SACR2	Sanicula crassicaulis	100	0.2	0.2				Χ	
	CABA4	Carex barbarae	50	1.0	2	2				
	TONO	Torilis nodosa	50	1.0	2	2				Χ
	TRLA6	Trientalis latifolia	50	0.5	1	1				
	HERBAC	unknown	50	0.2	0.4	0.4				

STAND TABLE continued *Umbellularia californica - Alnus rhombifolia* Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	ADJO	Adiantum jordanii	50	0.1	0.2	0.2				
	BRST2	Bromus sterilis	50	0.1	0.2	0.2				Χ
	CAAL2	Calochortus albus	50	0.1	0.2	0.2				
	CAOL	Cardamine oligosperma	50	0.1	0.2	0.2				
	CEAR4	Cerastium arvense	50	0.1	0.2	0.2				
	CLPAP	Claytonia parviflora subsp. parviflora	50	0.1	0.2	0.2				
	CLPE	Claytonia perfoliata	50	0.1	0.2	0.2				
	DELPH	Delphinium	50	0.1	0.2	0.2				
	DIVO	Dichelostemma volubile	50	0.1	0.2	0.2				
	ELGL	Elymus glaucus	50	0.1	0.2	0.2				
	FRITI	Fritillaria	50	0.1	0.2	0.2				
	GAAP2	Galium aparine	50	0.1	0.2	0.2				
	MECA2	Melica californica	50	0.1	0.2	0.2				
	METO	Melica torreyana	50	0.1	0.2	0.2				
	MIGL2	Mimulus glaucescens	50	0.1	0.2	0.2				
	PETR7	Pentagramma triangularis	50	0.1	0.2	0.2				
	PEDU2	Petrorhagia dubia	50	0.1	0.2	0.2				Χ
	POCOC	Polygala cornuta var. cornuta	50	0.1	0.2	0.2				
	POCA26	Polypodium calirhiza	50	0.1	0.2	0.2				
	PTAQ	Pteridium aquilinum	50	0.1	0.2	0.2				
	SMCA2	Smilax californica	50	0.1	0.2	0.2				
	STST	Stachys stricta	50	0.1	0.2	0.2				
	TOAR	Torilis arvensis	50	0.1	0.2	0.2				Χ
Cryptoga										
	MOSS	Moss	100		1	3	X		Χ	
	LIVER	Liverwort	50	0.1	0.2	0.2				

Umbellularia californica - Quercus wislizeni Association California Bay - Interior Live Oak Association

SUMMARY

In the stands sampled, the overstory tree canopy was typically open to continuous and characterized by *Umbellularia californica* at 10-65% cover (combined cover in the tree overstory and/or understory layers). *Quercus wislizeni* was characteristically present in the tree and/or shrub layers. The shrub layer was open to continuous with *Toxicodendron diversilobum* dominant and with *Ceanothus integerrimus*, *Clematis lasiantha*, and *Heteromeles arbutifolia* often present. The herbaceous layer was open and often included *Torilis arvensis*.

In this study, this association was sampled commonly in the Cascade Range Foothills, and infrequently in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands always occurred on volcanic (including basalt) substrates. They occupied lower to upper slopes that varied from gentle to steep. Stands occurred in mesic, northwest to east-facing uplands.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Shingletown-Paradise (M261Dl), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	71.6	60-85	-
Herb	5.9	1-15	variable
Shrub	45.4	2-80	<5
Low Tree/Tall Shrub	5	0-40	5-10
Hardwood	29.7	0-68	5-20
Conifer	<1	0-1	5-10
Relative non-native to native cover	2.6	0-11	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (3), Variable (2), NE (2), E (2), NW (1)

Macrotopography: lower slope (2), lower to middle slope (1), middle slope (1), upper slope (4)

Microtopography: undulating (4), flat (2), concave (2)

Parent Material: volcanic (9), basalt (1)

Soil Texture: clay or clay loam (2), loam or sandy loam (2), silt or silt loam (2), sand (1)

Mean	Range
1156 ft.	645-1668 ft.
19.8°	1-32°
9%	<1-25%
12.2%	<1-50%
14%	2-50%
60%	10-93%
	1156 ft. 19.8° 9% 12.2% 14%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=10)

Rapid Assessments: SNNR0088, SNNR0431, SNNR0543, SNNR0549, SNNR1067, SNNR1069, SNNR1076, SNNR1337, SNNR1341, SNNR1355

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely on the data collected for this project. See comments in the previous description of the *Umbellularia californica* - *Alnus rhombifolia* Association regarding this association's relationship to the Potter (2005) classification. Some of Potter's stand tables appear to have a co-dominance of *U. californica* and *Q. wislizeni*, although, unlike our association, most of his also have high cover of *Q. chrysolepis*. So far, this primarily upland association appears restricted to the Sierra Nevada Foothills.

STAND TABLE
Umbellularia californica - Quercus wislizeni Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	UMCA-M	Umbellularia californica	70	18.8	3	40				
	QUWI2-T	Quercus wislizeni	70	8.5	0.2	40				
	UMCA-T	Umbellularia californica	60	18.1	1	65				
	AECA-M	Aesculus californica	60	1.6	0.2	10				
	QUWI2-M	Quercus wislizeni	50	9.3	3	26				
	QUDO-T	Quercus douglasii	30	0.1	0.2	0.2				
Shrub										
	TODI	Toxicodendron diversilobum	100	14.1	3	37	Χ		Χ	
	CEIN3	Ceanothus integerrimus	70	3.8	0.2	25				
	HEAR5	Heteromeles arbutifolia	50	1.6	0.2	10				
	CLLA3	Clematis lasiantha	50	0.5	0.2	3				
	CEBE3	Cercocarpus betuloides	40	0.6	0.2	3				
	RHTR	Rhus trilobata	40	0.2	0.2	1				
	ARCA10	Aristolochia californica	30	0.5	0.2	3.2				
	CECU	Ceanothus cuneatus	30	0.3	0.2	3				
	CEOCO	Cercis occidentalis	30	0.1	0.2	1				
	LOHIV	Lonicera hispidula var. vacillans	30	0.1	0.2	1				
Herb										
	TOAR	Torilis arvensis	60	0.6	0.2	5				Χ
	ADJO	Adiantum jordanii	30	0.3	0.2	3				
	METO	Melica torreyana	30	0.3	0.2	2				
	CYEC	Cynosurus echinatus	30	0.1	0.2	0.2				Χ
	GAPO	Galium porrigens	30	0.1	0.2	0.2				
Cryptoga	am									
	MOSS	Moss	30	4.1	5	30				

SHRUB DESCRIPTIONS

A view across a matrix of the *Adenostoma fasciculatum - Arctostaphylos manzanita* Shrubland Association (*A. fasciculatum* in flower) on middle and upper slopes. The *Quercus wislizeni - Pinus sabiniana / Arctostaphylos manzanita* Woodland Association can be seen on adjacent lower slopes. Photo taken in western Tuolumne County.

Adenostoma fasciculatum Shrubland Alliance Chamise Shrubland Alliance

As defined in the state, *Adenostoma fasciculatum* is dominant in the shrub canopy, and may occur in pure stands or with *A. sparsifolium*, *Arctostaphylos glandulosa*, *A. manzanita*, *A. viscida*, *Ceanothus* spp., *Eriogonum fasciculatum*, *Hesperoyucca whipplei*, *Heteromeles arbutifolia*, *Quercus berberidifolia*, *Q. wislizeni*, *Salvia apiana*, *S. mellifera*, and *Toxicodendron diversilobum*. Emergent trees such as *Pinus sabiniana* and *Quercus wislizeni* may be present and the herb layer is sparse to intermittent. Stands occur across cismontane California in varied topography. Soils are commonly shallow over colluvium and many kinds of bedrock, including serpentine.

As described below, five associations of the Chamise Alliance were classified in the study area. One plot (SNNR0110) showed additional variation, with *Fraxinus dipetala* co-dominating the shrub layer. This plot was classified to the alliance level only.

Adenostoma fasciculatum Association Chamise Association

SUMMARY

In the stands sampled, the shrub canopy was open to continuous and dominated by *Adenostoma fasciculatum* at 20-95% cover. *Heteromeles arbutifolia* was often present in the shrub overstory. *Pinus sabiniana* sometimes occurred as a scattered emergent tree. The herbaceous layer was open and often included non-native grasses *Aira caryophyllea* and *Bromus hordeaceus*.

This association was sampled frequently in the study area within the central Sierra Nevada Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on a variety of substrates - usually on metamorphic (including slate and serpentine) and sedimentary substrates, and rarely on gabbro, ultramafic, and greenstone substrates. They occupied a variety of upland slope positions from lower slopes to ridgetops that were gentle to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Calaveras, El Dorado, Mariposa, Placer, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb), and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	76.2	38-95	-
Herb	9.2	0-32	variable
Shrub	72.4	27-95	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.4	0-8	<5-20
Conifer	0.5	0-5	<5-20
Relative non-native to native cover	8.1	0-33	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (9), SW (4), S (4), NW (4), W (2), SE (2), E (2), NE (1), N (1)

Macrotopography: entire slope (2), lower slope (4), lower to middle slope (3), lower to upper slope (2), middle slope (8), middle to upper slope (2), middle slope to ridgetop (1), upper slope (5), upper slope to ridgetop (1), ridgetop (1)

Microtopography: convex (13), undulating (12), flat (2), concave (1)

Parent Material: metamorphic (12), sedimentary (6), gabbro (2), mixed rock (2), serpentine (2), slate (2), ultramafic (2), greenstone (1)

Soil Texture: loam or sandy loam (8), clay or clay loam (6), silt or silt loam (5), sand (1)

	Mean	Range
Elevation	1177 ft.	464-2915 ft.
Slope	17.3°	3-32°
Large rock cover	2.1%	0-8%
Small rock cover	11.1%	0.2-60%
Bare ground cover	22.8%	3-77%
Litter cover	60.5%	3-87%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=29)

Rapid Assessments: SNNR0012, SNNR0015, SNNR0035, SNNR0064, SNNR0067, SNNR0068, SNNR0143, SNNR0154, SNNR0218, SNNR0225, SNNR0869, SNNR0981, SNNR1002, SNNR1087, SNNR1098, SNNR1153, SNNR1166, SNNR1202, SNNR1229, SNNR1432, SNNR1439, SNNR1440, SNNR1462 **Relevés:** SNFN0569, SNFN0570, SNFN0571, SNFN0663, SNFN0671, SNFN0680

Rank: G5S5

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills, lower slopes of the Sierra Nevada montane zone (NatureServe et al. 2003b), and for many other parts of Cismontane California from Shasta Co. to San Diego Co. (e.g., Evens and San 2006, Evens et al. 2006, Klein and Evens 2006, Sawyer et al. 2007 MS). This equates to the association defined in Tuolumne Co. as the *Adenostoma fasciculatum*/Annual Grass-Herb-Moss (Evens et al. 2004).

STAND TABLE

Adenostoma fasciculatum Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	PISA2-T	Pinus sabiniana	34	0.3	0.2	3				
Shrub										
	ADFA	Adenostoma fasciculatum	100	69.2	20	95	Χ		Χ	
	HEAR5	Heteromeles arbutifolia	55	1.5	0.2	10				
	TODI	Toxicodendron diversilobum	38	0.6	0.2	6				
	ARMA	Arctostaphylos manzanita	28	0.3	0.2	2				
	ERCA6	Eriodictyon californicum	28	0.1	0.2	2				
	LOSC2	Lotus scoparius	28	0.1	0.2	2				
Herb										
	AICA	Aira caryophyllea	66	8.0	0.2	5				Χ
	BRHO2	Bromus hordeaceus	59	1.5	0.2	20				Χ

STAND TABLE continued Adenostoma fasciculatum Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	GAPO	Galium porrigens	48	0.2	0.2	2				
	VUMY	Vulpia myuros	41	1.3	0.2	10				Χ
	LOMI	Lotus micranthus	34	0.2	0.2	2				
	DAPU3	Daucus pusillus	31	0.1	0.2	1				
	BRMA3	Bromus madritensis	24	0.7	0.2	12				Χ
	VUBR	Vulpia bromoides	24	0.3	0.2	8				Χ
	BRDI3	Bromus diandrus	24	0.2	0.2	2				Χ
	CEME2	Centaurea melitensis	24	0.2	0.2	3				Χ
	TOAR	Torilis arvensis	24	0.1	0.2	3				Χ
	GAVE3	Gastridium ventricosum	21	0.2	0.2	3				Χ
	TRHI4	Trifolium hirtum	21	0.1	0.2	1				Χ
Cryptoga	ım									
	MOSS	Moss	28	2.8	0.2	20				

Adenostoma fasciculatum / Herbaceous Association Chamise / Herbaceous Association

SUMMARY

In the stands sampled, the overstory shrub canopy was open to continuous and dominated by *Adenostoma fasciculatum* at 14-75% cover. Other shrubs such as *Eriodictyon californicum*, *Eriophyllum lanatum* var. *grandiflorum*, and *Rhamnus ilicifolia* were often present. *Quercus wislizeni* sometimes occurred as a scattered emergent tree. The herbaceous layer was intermittent to continuous with abundant and characteristic taxa such as *Aira caryophyllea*, *Avena barbata*, *Bromus diandrus*, *Bromus hordeaceus*, *Castilleja pruinosa*, *Chlorogalum*, *Daucus pusillus*, *Galium porrigens*, *Silene gallica*, *Torilis arvensis*, and *Trifolium willdenovii*.

This association was sampled infrequently in the study area within the central Sierra Nevada Foothills Subregion (Hickman 1993). Stands usually occurred on volcanic substrates. They occupied upland, ridgetop slopes that were flat to gentle. This association represents open stands of chamise growing on shallow volcanic rock. All stands sampled were found along upper slopes in Table Mountain at Peoria Wildlife Area. The herbaceous openings in this association are not a result of recent fire opening up the shrub canopy, but of inherent edaphic conditions. The herbaceous component is largely native in species composition.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tuolumne County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	84.5	70-95	-
Herb	68	60-72	variable
Shrub	47.8	18-75	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.1	0-0.2	<5
Conifer	0	-	-
Relative non-native to native cover	42.7	16-69	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (1), SW (1), S (1), Flat (1)

Macrotopography: ridgetop (4)

Microtopography: concave (2), flat (1), convex (1)

Parent Material: volcanic (4)

Soil Texture: loam or sandy loam (3), unknown (1)

	Mean	Range
Elevation	1737 ft.	1734-1740 ft.
Slope	0.80	0-1°
Large rock cover	12.5%	5-20%
Small rock cover	7%	6-8%
Bare ground cover	6.5%	5-8%
Litter cover	65%	60-70%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=4)

Rapid Assessments: SNNR1463, SNNR1464, SNNR1466 Relevés: SNFN0604

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based upon the data collected for this project. This equates to the association defined in Tuolumne Co. as the *Adenostoma fasciculatum / Castilleja pruinosa* - Annual Grass - Herb Association (Evens et al. 2004). Other reports define similar types such as the *A. fasciculatum /* Annual Grass - Herb Association in Marin Co. (Evens and Kentner 2006).

STAND TABLE

Adenostoma fasciculatum / Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree	QUWI2-M	Quercus wislizeni	25	0.5	2	2				
	QUWI2-T	Quercus wislizeni	25	0.5	2	2				
Shrub										
	ADFA	Adenostoma fasciculatum	100	48.5	14	75	Χ		Χ	
	ERCA6	Eriodictyon californicum	100	1.4	0.2	4			Χ	
	RHIL	Rhamnus ilicifolia	50	0.3	0.2	1				
	ERLAG	Eriophyllum lanatum var. grandiflorum	50	0.1	0.2	0.2				
	LOHIV	Lonicera hispidula var. vacillans	25	1.0	4	4				
	RHTO6	Rhamnus tomentella	25	0.8	3	3				
	TODI	Toxicodendron diversilobum	25	0.5	2	2				
	MIAU	Mimulus aurantiacus	25	0.1	0.2	0.2				
	PRSU2	Prunus subcordata	25	0.1	0.2	0.2				
	SYMO	Symphoricarpos mollis	25	0.1	0.2	0.2				
Herb										
	BRHO2	Bromus hordeaceus	100	29.0	6	50			Χ	Χ
	AVBA	Avena barbata	100	20.3	0.2	65			Χ	Χ
	TRWI3	Trifolium willdenovii	100		1	10			Χ	
	AICA	Aira caryophyllea	100		0.2				Χ	X
	CAPR14	Castilleja pruinosa	100	2.3	0.2				Χ	
	BRDI3	Bromus diandrus	75	8.5	1	18			Χ	Χ
	TOAR	Torilis arvensis	75	8.0	1	16			Χ	Χ
	DAPU3	Daucus pusillus	75	2.8	0.2				Χ	
	SIGA	Silene gallica	75	1.6	0.2				Χ	Χ
	GAPO	Galium porrigens	75	8.0	0.2				Χ	
	CHLOR3	Chlorogalum	75	0.2	0.2	0.2			Χ	
	VUMI	Vulpia microstachys	50	6.5	1	25				
	LUNA3	Lupinus nanus	50	3.1	0.2	12				

STAND TABLE continued Adenostoma fasciculatum / Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb		•		Ū						
	BRMA3	Bromus madritensis	50	1.8	3	4				Χ
	HYGL2	Hypochaeris glabra	50	1.6	0.2	6				Χ
	ERNUP4	Eriogonum nudum var. pubiflorum	50	8.0	0.2	3				
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	50	0.5	1	1				
	LACA7	Lasthenia californica	50	0.3	0.2	1				
	POSE	Poa secunda	50	0.3	0.2	1				
	TRHI4	Trifolium hirtum	50	0.3	0.2	1				Χ
	TRMI4	Trifolium microcephalum	50	0.3	0.2	1				
	CAPY2	Carduus pycnocephalus	50	0.1	0.2	0.2				Χ
	PETRT	Pentagramma triangularis subsp. triangularis	50	0.1	0.2	0.2				
	PLER3	Plantago erecta	25	1.0	4	4				
	LUBE	Lupinus benthamii	25	0.5	2	2				
	MADIA	Madia	25	0.5	2	2				
	ASGA	Astragalus gambelianus	25	0.1	0.2	0.2				
	BRDI2	Brachypodium distachyon	25	0.1	0.2	0.2				Χ
	CALU9	Calochortus luteus	25	0.1	0.2	0.2				
	DICAC5	Dichelostemma capitatum subsp. capitatum	25	0.1	0.2	0.2				
	ERCI6	Erodium cicutarium	25	0.1	0.2	0.2				Χ
	ERMO7	Erodium moschatum	25	0.1	0.2	0.2				Χ
	GAPA5	Galium parisiense	25	0.1	0.2	0.2				Χ
	GAVE3	Gastridium ventricosum	25	0.1	0.2	0.2				Χ
	GEDI	Geranium dissectum	25	0.1	0.2	0.2				Χ
	LOMI	Lotus micranthus	25	0.1	0.2	0.2				
	LOWR2	Lotus wrangelianus	25	0.1	0.2	0.2				
	LUST2	Lupinus stiversii	25	0.1	0.2	0.2				
	PHCI	Phacelia cicutaria	25	0.1	0.2	0.2				
	POLYP	Polypodium	25	0.1	0.2	0.2				
	STME2	Stellaria media	25	0.1	0.2	0.2				Χ
	TONO	Torilis nodosa	25	0.1	0.2	0.2				Χ
	TRLA16	Triteleia laxa	25	0.1	0.2	0.2				
Cryptoga	m									
J	LICHEN	Lichen	75	8.5	8	16		Χ	Χ	
	MOSS	Moss	75	4.3	1	8			Χ	
	SEHA2	Selaginella hansenii	50	9.6	0.2	38				

Adenostoma fasciculatum - Arctostaphylos manzanita Association (Provisional) Chamise - Common Manzanita Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was intermittent to continuous and dominated by *Adenostoma fasciculatum* at 22-63% cover. Other shrubs such as *Arctostaphylos manzanita*, *Ceanothus cuneatus*, and *Heteromeles arbutifolia* were often present. The herbaceous layer was open to intermittent and often included *Aira caryophyllea*, *Bromus hordeaceus*, *Bromus madritensis*, *Calochortus albus*, *Galium porrigens*, *Gastridium ventricosum*, *Torilis arvensis*, and *Vulpia myuros*.

This association was sampled infrequently in the study area within the central Sierra Nevada Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on sedimentary substrates, but were also found on metamorphic and ultramafic substrates. These upland stands occupied a variety of slope positions between lower slopes and ridgetops, but most often occupied middle slopes that were gentle to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	78.3	67-90	-
Herb	12.2	1-50	variable
Shrub	70	48-82	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	1.4	0-5	<5-10
Conifer	0.4	0-1	5-10
Relative non-native to native cover	10.3	0-42	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (2), N (2), Variable (1), E (1)

Macrotopography: lower slope (1), middle slope (3), upper slope (1), ridgetop (1)

Microtopography: undulating (2), convex (2), concave (1), flat (1) Parent Material: sedimentary (3), metamorphic (2), ultramafic (1) Soil Texture: loam or sandy loam (2), clay or clay loam (1)

	Mean	Range
Elevation	1310 ft.	1032-1809 ft.
Slope	11.2°	3-18°
Large rock cover	12.1%	0.2-34.2%
Small rock cover	8.3%	3-12%
Bare ground cover	5.3%	2-10%
Litter cover	70.3%	55-81%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=6)

Rapid Assessments: SNNR0006, SNNR0047, SNNR0096 Relevés: SNFN0249, SNFN0666,

SNFN0679

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills (Evens et al. 2004) based on the data collected for this project. This type extends in range to other parts of the central Sierra Foothills and may also occur in the Inner North Coast Ranges of California.

STAND TABLE

Adenostoma fasciculatum - Arctostaphylos manzanita Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-L	Quercus wislizeni	33	0.7	1	3.2				
Shrub										
	ADFA	Adenostoma fasciculatum		42.5		63	X		Χ	
	ARMA	Arctostaphylos manzanita		18.0		28			Χ	
	HEAR5	Heteromeles arbutifolia	67	9.4	2	37				
	CECU	Ceanothus cuneatus	50	1.7	2	5				
	ERCA6	Eriodictyon californicum	33	1.0	0.2					
	TODI	Toxicodendron diversilobum	33	1.0	1	5				
	RHIL	Rhamnus ilicifolia	33	0.6	0.4					
	MIAU	Mimulus aurantiacus	33	0.4	0.2	2				
	LOSC2	Lotus scoparius	33	0.3	1	1				
Herb										
	BRHO2	Bromus hordeaceus	83	3.9	0.2				Χ	X
	AICA	Aira caryophyllea	83	1.3	0.2				Χ	Χ
	BRMA3	Bromus madritensis	67	1.7	0.2					Χ
	GAVE3	Gastridium ventricosum	67	8.0	0.2					Χ
	VUMY	Vulpia myuros	50	1.7	2	5				Χ
	GAPO	Galium porrigens	50	0.2	0.2					
	TOAR	Torilis arvensis	50	0.2	0.2					Χ
	CAAL2	Calochortus albus	50	0.1	0.2					
	AVBA	Avena barbata	33	0.2	0.2	1				Χ
	NALE2	Nassella lepida	33	0.2	0.2	1				
	PETRT	Pentagramma triangularis subsp. triangularis	33	0.2	0.2	1				
	BRMI2	Briza minor	33	0.1	0.2	0.2				Χ
	CAPY2	Carduus pycnocephalus	33	0.1	0.2	0.2				Χ
	CEME2	Centaurea melitensis	33	0.1	0.2	0.2				Χ
	CHLOR3	Chlorogalum	33	0.1	0.2	0.2				
	FIGA	Filago gallica	33	0.1	0.2	0.2				Χ
	MAGR3	Madia gracilis	33	0.1	0.2	0.2				
	SAGR5	Sanicula graveolens	33	0.1	0.2	0.2				
	TRHI4	Trifolium hirtum	33	0.1	0.2	0.2				Χ
Cryptoga	am									
	MOSS	Moss	33	1.5	0.2	9				

Adenostoma fasciculatum - Arctostaphylos viscida Association Chamise - Whiteleaf Manzanita Association

SUMMARY

In the stands sampled, the shrub canopy was intermittent to continuous and dominated by *Adenostoma fasciculatum* at 19-70% cover. *Arctostaphylos viscida* was characteristically present, while *Heteromeles arbutifolia* was often present in the shrub overstory. *Pinus sabiniana* sometimes occurred as a scattered emergent tree. The herbaceous layer was typically open with *Aira caryophyllea, Bromus madritensis, Galium porrigens*, and *Vulpia myuros* occurring occasionally.

This association was sampled frequently in the study area within the central Sierra Nevada Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates (including slate, mixed metamorphic, and serpentine), but were also found infrequently on sedimentary, ultramafic, gabbro, or mixed rock substrates. They occupied all aspects and slope positions, from lower slopes to ridgetops (most often on middle to upper slopes). Slopes varied from gentle to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Calaveras, El Dorado, Mariposa, Placer, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	72.3	48-93	-
Herb	9.5	0-35	variable
Shrub	66.4	37-93	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.3	0-3	<5-20
Conifer	0.3	0-2	<5-20
Relative non-native to native cover	7.4	0-46	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (11), SW (6), W (4), SE (3), NE (3), E (3), S (2), NW (2)

Macrotopography: entire slope (2), lower slope (4), lower to middle slope (1), lower to upper slope (3), middle slope (8), middle to upper slope (7), middle slope to ridgetop (1), upper slope (6), upper slope to ridgetop (1), ridgetop (1)

Microtopography: undulating (22), convex (7), flat (5)

Parent Material: metamorphic (16), sedimentary (5), slate (4), ultramafic (4), serpentine (2), gabbro (1), mixed metamorphic (1), mixed rock (1)

Soil Texture: loam or sandy loam (6), silt or silt loam (6), clay or clay loam (4), sand (1)

	Mean	Range
Elevation	1391 ft.	460-2496 ft.
Slope	19°	2-37°
Large rock cover	2%	0.2-10%
Small rock cover	11.4%	0-66.7%
Bare ground cover	20.5%	2-66%
Litter cover	62.8%	8-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=34)

Rapid Assessments: SNNR0004, SNNR0009, SNNR0103, SNNR0107, SNNR0114, SNNR0138, SNNR0139, SNNR0220, SNNR0224, SNNR0226, SNNR0298, SNNR0310, SNNR0311, SNNR0312, SNNR0366, SNNR0367, SNNR0564, SNNR0565, SNNR0652, SNNR0751, SNNR0797, SNNR1025, SNNR1047, SNNR1048, SNNR1097, SNNR1103, SNNR1150, SNNR1163, SNNR1200 **Relevés:** SNFN0045, SNFN0137, SNFN0139, SNFN0152, SNFN0573

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon data collected for this project. It is likely to occur in the eastern Klamath Mountains and in the adjacent Inner North Coast Ranges.

STAND TABLE

Adenostoma fasciculatum - Arctostaphylos viscida Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	PISA2-T	Pinus sabiniana	41	0.2	0.2	1				
	QUWI2-M	Quercus wislizeni	24	0.6	0.2	15				
Shrub										
	ADFA	Adenostoma fasciculatum	100	47.1	19	70	Χ		Χ	
	ARVI4	Arctostaphylos viscida	100	15.4	0.2	52			Χ	
	HEAR5	Heteromeles arbutifolia	71	1.9	0.2	14				
	CECU	Ceanothus cuneatus	47	0.3	0.2	3				
	TODI	Toxicodendron diversilobum	35	0.4	0.2	5				
	ARMA	Arctostaphylos manzanita	26	0.6	0.2	10				
	ERCA6	Eriodictyon californicum	24	0.2	0.2	4				
	LOSC2	Lotus scoparius	24	0.1	0.2	1.2				
	CLLA3	Clematis lasiantha	21	0.1	0.2	1				
Herb										
	VUMY	Vulpia myuros	44	2.1	0.2	20				Χ
	BRMA3	Bromus madritensis	38	0.9	0.2	7				Χ
	AICA	Aira caryophyllea	32	0.5	0.2	12				Χ
	GAPO	Galium porrigens	26	0.1	0.2	1				
	LOMI	Lotus micranthus	24	0.1	0.2	2				
	VUBR	Vulpia bromoides	21	0.3	0.2	8				Χ
	SACR2	Sanicula crassicaulis	21	0.1	0.2	1				
	PETR7	Pentagramma triangularis	21	0.1	0.2	1				
Cryptog	am									
	MOSS	Moss	32	1.5	0.2	15				

Adenostoma fasciculatum - Eriodictyon californicum - Lotus scoparius Association Chamise - California Yerba Santa - Deer Weed Association

SUMMARY

In the stands sampled, the overstory shrub canopy was intermittent to continuous and dominated by *Adenostoma fasciculatum* at 5-60% cover. Other shrubs such as *Eriodictyon californicum*, *Heteromeles arbutifolia*, and *Lotus scoparius* were characteristically present. The herbaceous layer was open to continuous and often included *Centaurea melitensis*, *Daucus pusillus*, *Hypochaeris glabra*, *Lotus micranthus*, and *Vulpia myuros*.

This association was sampled frequently in the study area within the central Sierra Nevada Foothills and infrequently in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands sometimes occurred on metamorphic, ultramafic, or sedimentary substrates, and rarely on igneous or mixed rock substrates. They occupied a variety of upland slope positions, from lower slopes to ridgetops, but occurred most often on southerly-facing, middle and upper slopes that were gentle to steep.

This association is the typical post-fire expression of the *A. fasciculatum* alliance in the Sierra Foothills. Virtually all stands sampled appear to have experienced fire within the last 10 years. As stands mature they are likely to trend toward either *A. fasciculatum* or *A. fasciculatum* - *Arctostaphylos viscida* associations. In keeping with the philosophy of sampling different seral stages of vegetation in this study, this is considered a temporally-driven association of the widespread chamise chaparral alliance.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras, El Dorado, Mariposa, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	65.8	45-80	-
Herb	19.3	2-70	variable
Shrub	55.9	37-75	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0	0-0.2	<5
Conifer	0	0-0.2	5-20
Relative non-native to native cover	18.5	0-50	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (6), Variable (4), SW (4), E (2), W (1), SE (1), NW (1), NE (1)

Macrotopography: entire slope (1), lower slope (1), lower to middle slope (1), lower to upper slope (1), middle slope (6), middle to upper slope (2), upper slope (6), ridgetop (1)

Microtopography: undulating (12), flat (4), convex (3), concave (1)

Parent Material: metamorphic (7), ultramafic (6), sedimentary (5), igneous (1), mixed rock (1)

Soil Texture: clay or clay loam (6), loam or sandy loam (4), silt or silt loam (2), sand (1)

	Mean	Range
Elevation	1723 ft.	540-2737 ft.
Slope	17.5°	4-30°
Large rock cover	3%	0-25%
Small rock cover	23%	0.4-55%

Bare ground cover	24.8%	5-69%
Litter cover	45.7%	10-87%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=20)

Rapid Assessments: SNNR0054, SNNR0102, SNNR0106, SNNR0135, SNNR0140, SNNR0302, SNNR0306, SNNR0308, SNNR0314, SNNR0355, SNNR0356, SNNR0357, SNNR0358, SNNR0361, SNNR0364, SNNR0370, SNNR0580 **Relevés:** SNFN0042, SNFN0225, SNFN0227

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon the data collected for this project. Very similar post-fire stands have been identified in the Santa Monica Mountains (Keeler-Wolf and Evens 2006), western Riverside County (Klein and Evens 2006), the southern Sierra Foothills of Sequoia National Park (S. Haultain, pers. comm. 2004), and in the Central Coast Ranges (T. Keeler-Wolf, pers. obs. 2005). This type is also likely to occur in the Inner North Coast Ranges of California.

STAND TABLE

Adenostoma fasciculatum - Eriodictyon californicum - Lotus scoparius Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	QUWI2-M	Quercus wislizeni	25	0.2	0.2	4				
Shrub										
	ADFA	Adenostoma fasciculatum		31.7		60	X		Χ	
	ERCA6	Eriodictyon californicum	95	5.6	0.2	19			Χ	
	LOSC2	Lotus scoparius	90	14.2	0.2	45			X	
	HEAR5	Heteromeles arbutifolia	80	4.4	0.2	18			Χ	
	ARVI4	Arctostaphylos viscida	55	1.4	0.2	10				
	CECU	Ceanothus cuneatus	35	0.5	0.2	7				
	ERCO25	Eriophyllum confertiflorum	30	0.7	0.2	5				
	ERAR27	Ericameria arborescens	30	0.2	0.2	2				
Herb										
	CEME2	Centaurea melitensis	70	2.5	0.2	17				Χ
	DAPU3	Daucus pusillus	60	0.5	0.2	5				
	HYGL2	Hypochaeris glabra	55	3.9	0.2	59				Χ
	VUMY	Vulpia myuros	50	4.1	1	15				Χ
	LOMI	Lotus micranthus	50	0.6	0.2	4				
	BRMA3	Bromus madritensis	45	1.1	0.2	5				Χ
	AICA	Aira caryophyllea	40	8.0	0.2	5				Χ
	FIGA	Filago gallica	40	0.2	0.2	2				Χ
	AVBA	Avena barbata	35	0.2	0.2	2				Χ
	GAVE3	Gastridium ventricosum	35	0.2	0.2	2				Χ
	BRHO2	Bromus hordeaceus	30	1.1	0.2	8				Χ
	GAPA5	Galium parisiense	30	0.1	0.2	1				Χ
	NALE2	Nassella lepida	25	0.3	0.2	2				
	VERI	Velezia rigida	25	0.1	0.2	1				Χ

Arctostaphylos viscida Shrubland Alliance Whiteleaf manzanita Shrubland Alliance

As defined in the state, *Arctostaphylos viscida* is dominant in the shrub canopy with *Adenostoma fasciculatum*, *Amelanchier alnifolia*, *Arctostaphylos manzanita*, *A. mewukka*, *A. myrtifolia*, *A. patula*, *Ceanothus cordulatus*, *C. cuneatus*, *C. integerrimus*, *C. velutinus*, *Garrya fremontii*, *Heteromeles arbutifolia*, *Holodiscus discolor*, and *Quercus berberidifolia*. Emergent trees such as *Pinus sabiniana*, *P. ponderosa*, or *Pseudotsuga menziesii* may be present. The shrub canopy is continuous or intermittent and the herbaceous layer is sparse. Stands occur on ridges and upper slopes that may be steep. Soils are shallow and are developed from ultramafic, weathered clay, sandstone, or granitic substrates. In many portions of its range, stands of *A. viscida* are transitional to montane forests or woodland types. Other stands persist for over 100 years.

In the Foothills, most of the sampled stands were on gabbro soils. As described below, four associations of the Whiteleaf Manzanita Alliance were classified in the study area. Three plots (SNNR0785, SNNR1244, SNNR0979) showed additional variation, two with *Ceanothus cuneatus* in the shrub layer, and one with an herb layer dominated by *Eriogonum prattenianum*. These were classified to the alliance level only.

Arctostaphylos viscida Association Whiteleaf Manzanita Association

SUMMARY

In the stands sampled, the overstory shrub canopy was open to continuous and dominated by *Arctostaphylos viscida* at 30-75% cover. Other shrubs such as *Heteromeles arbutifolia* and *Quercus wislizeni* were characteristically present. Trees such as *Pinus ponderosa*, *Pinus sabiniana*, and *Quercus chrysolepis* sometimes occurred as scattered emergents. The herbaceous layer was sparse and often included *Aira caryophyllea*, *Polygala cornuta* var. *cornuta*, and *Vulpia myuros*.

This association was sampled infrequently in the study area within the central Sierra Nevada Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands often occurred on metamorphic or mixed metamorphic and infrequently occurred on sedimentary substrates. They occupied upland middle to upper slopes and ridgetops, that were gentle to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	60	31-80	-
Herb	0.7	0-2	< 0.3
Shrub	59.1	30-80	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	1	0-4	<5-20

Conifer	0.1	0-0.2	5-20
Relative non-native to native cover	1.3	0-3	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (3), Variable (2), SW (2)

Macrotopography: middle slope (2), upper slope (2), upper slope to ridgetop (2), ridgetop (1)

Microtopography: flat (4), convex (3)

Parent Material: metamorphic (3), mixed metamorphic (3), sedimentary (1)

Soil Texture: loam or sandy loam (4), silt or silt loam (1)

	Mean	Range
Elevation	1925 ft.	1443-3028 ft.
Slope	10°	3-240
Large rock cover	1.1%	0-3%
Small rock cover	18.7%	0.2-90%
Bare ground cover	9.3%	0.2-20%
Litter cover	67.6%	1-97%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=7)

Rapid Assessments: SNNR0297, SNNR0754, SNNR1126, SNNR1133, SNNR1134,

SNNR1142, SNNR1298 Relevés: none

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills (NatureServe et al. 2003b). In the Yosemite region, stands ascend to 5200 ft elevation. This association was considered a post-fire, early seral type in Yosemite. It is likely to occur elsewhere in the Inner North Coast Range and in the eastern Klamath Mountains.

STAND TABLE Arctostaphylos viscida Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
Tree										
	QUWI2-M	Quercus wislizeni	86	1.1	0.2	5	Χ		Χ	
	QUCH2-T	Quercus chrysolepis	29	0.3	1	1				
	PIPO-T	Pinus ponderosa	29	0.1	0.2	0.2				
	PISA2-T	Pinus sabiniana	29	0.1	0.2	0.2				
	QUWI2-L	Quercus wislizeni	29	0.1	0.2	0.2				
Shrub										
	ARVI4	Arctostaphylos viscida	100	57.4	30	75	Χ		Χ	
	HEAR5	Heteromeles arbutifolia	100	1.5	0.2	5			Χ	
	TODI	Toxicodendron diversilobum	29	0.1	0.2	0.2				
Herb										
	AICA	Aira caryophyllea	71	0.4	0.2	1				Χ
	VUMY	Vulpia myuros	71	0.1	0.2	0.2				Χ
	POCOC	Polygala cornuta var. cornuta	57	0.2	0.2	1				
	FIGA	Filago gallica	29	0.1	0.2	0.2				Χ
	HYCO3	Hypericum concinnum	29	0.1	0.2	0.2				
	HYGL2	Hypochaeris glabra	29	0.1	0.2	0.2				Χ
	LUCO6	Luzula comosa	29	0.1	0.2	0.2				
	MIVI2	Mimulus viscidus	29	0.1	0.2	0.2				
Cryptoga	ım									
	MOSS	Moss	86	1.0	0.2	2	Χ		Χ	

Arctostaphylos viscida / Salvia sonomensis Association (Provisional) Whiteleaf Manzanita / Creeping Sage Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was intermittent to continuous and dominated by *Arctostaphylos viscida* at 40-65% cover. Other shrubs such as *Ceanothus lemmonii*, *Heteromeles arbutifolia*, *Quercus garryana* var. *breweri*, *Rhamnus ilicifolia*, and *Rhamnus tomentella* were often present. Trees such as *Pinus ponderosa*, *Pinus sabiniana*, *Quercus chrysolepis*, *Quercus kelloggii*, and *Quercus wislizeni* sometimes occurred as scattered emergents. The herbaceous layer was open to intermittent and often included *Carex brainerdii*, *Elymus elymoides*, *Melica californica*, *Salvia sonomensis*, *Triteleia bridgesii*, and *Vulpia myuros*.

This association was sampled infrequently in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands consistently occurred on gabbro substrates. They occupied a variety of upland slope positions from lower slopes to ridgetops, on gentle to somewhat steep slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Yuba County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	74.9	60-90	-
Herb	19.7	10-40	< 0.3
Shrub	65.6	40-122	0-5
Low Tree/Tall Shrub	5	0-30	5-10
Hardwood	3.4	0-20	<5-20
Conifer	3	0-10	10-20
Relative non-native to native cover	6.1	1-17	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (2), S (2), Variable (1), SW (1), SE (1)

Macrotopography: lower slope (1), middle slope (3), upper slope to ridgetop (1), ridgetop (2)

Microtopography: undulating (4), flat (3)

Parent Material: gabbro (7)

Soil Texture: clay or clay loam (3), loam or sandy loam (2), silt or silt loam (1)

	Mean	Range
Elevation	2239 ft.	2000-2340 ft.
Slope	7°	1-20°
Large rock cover	2.1%	0.2-7%
Small rock cover	10.3%	2-25%
Bare ground cover	32.2%	10-48%
Litter cover	48.7%	20-72%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=7)

Rapid Assessments: SNNR0126, SNNR0128, SNNR0130, SNNR0133, SNNR0134,

SNNR0176 Relevés: SNFN0329

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon the data collected for this project. It is so far understood to be restricted to gabbro soils in the Sierra Nevada Foothills. It is distinguishable from the more typical (*Arctostaphylos viscida - Adenostoma fasciculatum*) / *Salvia sonomensis* Association by the lack of *A. fasciculatum* as a significant co-dominant.

STAND TABLE
Arctostaphylos viscida | Salvia sonomensis Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree	QUKE-T	Quercus kelloggii	57	3.1	0.2	20				
	PIPO-T	Pinus ponderosa	43	1.6	1	9				
	QUWI2-T	Quercus wislizeni	43	1.4	2	5				
	PISA2-T	Pinus sabiniana	29	0.9	1	5				
	QUCH2-T	Quercus chrysolepis	29	0.3	0.2					
Shrub		200.000 0, 00.0p.0		0.0	0	_				
	ARVI4	Arctostaphylos viscida	100	50.4	40	65	Χ		Χ	
	HEAR5	Heteromeles arbutifolia	100	1.5	0.2	4			Χ	
	QUGAB	Quercus garryana var. breweri	71	2.0	1	5				
	RHIL	Rhamnus ilicifolia	71	1.7	1	5				
	CELE	Ceanothus lemmonii	71	1.6	0.2	5				
	RHTO6	Rhamnus tomentella	57	1.3	0.2	6				
	GAFR	Garrya fremontii	43	0.3	0.2	1				
	PIMO5	Pickeringia montana	29	0.7	2	3				
	BEAQD	Berberis aquifolium var. dictyota	29	0.1	0.2	0.2				
Herb										
	CABR7	Carex brainerdii	86	4.9	3	10			Χ	
	SASO	Salvia sonomensis	71	15.3	5	53				
	TRBR7	Triteleia bridgesii	71	1.3	0.2	7				
	VUMY	Vulpia myuros	57	2.3	2	6				Χ
	ELEL5	Elymus elymoides	57	0.1	0.2	0.2				
	MECA2	Melica californica	57	0.1	0.2	0.2				
	HYGL2	Hypochaeris glabra	43	1.0	0.2	4				Χ
	ODHA	Odontostomum hartwegii	43	1.0	0.2					
	GAVE3	Gastridium ventricosum	43	0.6	1	2				Χ
	CHPO3	Chlorogalum pomeridianum	43	0.3	0.2					
	CHLOR3	Chlorogalum	29	0.7	2	3				
	TRHY3	Triteleia hyacinthina	29	0.6	1	3				
	VUMI	Vulpia microstachys	29	0.3	0.2					
	BRPU16	Brodiaea purdyi	29	0.2	0.2					
	AICA	Aira caryophyllea	29	0.1	0.2					Χ
	DIMU5	Dichelostemma multiflorum	29	0.1	0.2					
	MAGR3	Madia gracilis	29	0.1	0.2	0.2				

(Arctostaphylos viscida - Adenostoma fasciculatum) / Salvia sonomensis Association (Whiteleaf Manzanita - Chamise) / Creeping Sage Association

SUMMARY

In the stands sampled, the canopy was open to continuous with characteristic shrubs *Adenostoma fasciculatum* (<1-60% cover) and *Arctostaphylos viscida* (<1-70% cover). Other shrubs such as *Ceanothus lemmonii*, *Ceanothus roderickii*, *Cercis occidentalis*, and *Rhamnus ilicifolia* were often present. In some stands, *Ceanothus roderickii* was the dominant shrub. *Pinus sabiniana* often occurred as a scattered emergent tree. The herbaceous layer was open to intermittent and dominated by *Salvia sonomensis*.

This association was sampled frequently in the study area within the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on gabbro substrate, but were also found infrequently on metamorphic, igneous, sedimentary, or ultramafic substrates. They occupied all upland slope positions, but more commonly occupied middle and upper slopes that varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras, El Dorado, and Nevada Counties, within the Granitic and Metamorphic Foothills (M261Ef) and Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsections (Miles and Goudey 1997). A large number of samples were collected for a collaborative project relating the importance of this type to habitat for several listed plant species (Gogol-Prokurat pers. comm. 2007). Because many surveys were collected at the same sites, sub-sampling likely occurred across some of the 101 stands.

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	38.2	6-87	-
Herb	16.6	2-58	variable
Shrub	26.5	0-85	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	1	0-35	<5-10
Conifer	1.4	0-60	<5-20
Relative non-native to native cover	4.4	0-43	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (22), SE (17), SW (15), W (14), NW (10), E (8), NE (5), N (5), Variable (4), Flat (1) Macrotopography: entire slope (3), bottom (4), lower slope (10), lower to middle slope (4), lower to upper slope (1), middle slope (37), middle to upper slope (2), middle slope to ridgetop (1), upper slope (33), ridgetop (2)

Microtopography: undulating (54), flat (32), convex (11), concave (2)

Parent Material: gabbro (96), metamorphic (2), igneous (1), sedimentary (1), ultramafic (1) Soil Texture: clay or clay loam (36), loam or sandy loam (31), silt or silt loam (10), sand (3)

	Mean	Range
Elevation	1373 ft.	519-2427 ft.
Slope	15.9°	0-37°
Large rock cover	3.9%	0-33.2%
Small rock cover	27.1%	0-92%
Bare ground cover	39.9%	0-89%
Litter cover	25%	0.2-97%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=101)

```
Rapid Assessments: SNNR0146, SNNR0147, SNNR0149, SNNR0151, SNNR0152, SNNR0279, SNNR0281, SNNR0283, SNNR0285, SNNR0337, SNNR0338, SNNR0339, SNNR0397, SNNR0399, SNNR0402, SNNR0493, SNNR0498, SNNR0500, SNNR0502, SNNR0504, SNNR0640, SNNR0641, SNNR0911, SNNR1507, SNNR1508, SNNR1523, SNNR1524, SNNR1529, SNNR1530, SNNR1531, SNNR1532, SNNR1533, SNNR1534, SNNR1535, SNNR1536, SNNR1537, SNNR1538, SNNR1539, SNNR1540, SNNR1541, SNNR1542, SNNR1543, SNNR1544, SNNR1545, SNNR1546, SNNR1547, SNNR1548, SNNR1549, SNNR1550, SNNR1551, SNNR1552, SNNR1553, SNNR1554, SNNR1555, SNNR1556, SNNR1557, SNNR1557, SNNR1559, SNNR1560, SNNR1561, SNNR1562, SNNR1563, SNNR1564, SNNR1564, SNNR1565, SNNR1567, SNNR1568, SNNR1569, SNNR1570, SNNR1571, SNNR1572, SNNR1573, SNNR1577, SNNR1578, SNNR1579, SNNR1580, SNNR1581, SNNR1582, SNNR1583, SNNR1584, SNNR1585, SNNR1586, SNNR1587, SNNR1588, SNNR1589, SNNR1590, SNNR1591, SNNR1592, SNNR1593, SNNR1596, SNNR1596, SNNR1598, SNNR1599, SNNR1600, SNNR1601, SNNR1602 Relevés: SNFN0007, SNFN0008, SNFN0009, SNFN0010, SNFN0012, SNFN0014, SNFN0690
```

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the central and northern Sierra Nevada Foothills based upon the data analyzed in this project. It is likely to be endemic to this area.

STAND TABLE (Arctostaphylos viscida - Adenostoma fasciculatum) / Salvia sonomensis Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PISA2-T	Pinus sabiniana	50	0.7	0.2	6				
	PISA2-M	Pinus sabiniana	22	0.1	0.2	1				
	QUWI2-T	Quercus wislizeni	21	0.9	0.2	30				
Shrub										
	ARVI4	Arctostaphylos viscida	96	12.2	0.2	70			Χ	
	ADFA	Adenostoma fasciculatum	95	11.2	0.2	60			Χ	
	CEOCO	Cercis occidentalis	59	1.7	0.2	13				
	RHIL	Rhamnus ilicifolia	59	0.9	0.2	14				
	CERO4	Ceanothus roderickii	58	4.1	0.2	25.2				
	CELE	Ceanothus lemmonii	57	2.0	0.2	45				
	HEAR5	Heteromeles arbutifolia	50	0.6	0.2	7				
	RHTO6	Rhamnus tomentella	39	1.0	0.2	14				
	LECA3	Lepechinia calycina	38	0.5	0.2	10				
	ERCA6	Eriodictyon californicum	29	0.3	0.2	4				
	TODI	Toxicodendron diversilobum	25	0.4	0.2	5				
	QUDU4	Quercus durata	22	0.4	0.2	9				
	BAPI	Baccharis pilularis	21	0.3	0.2	8				
Herb										
	SASO	Salvia sonomensis	98	8.8	0.2	50		Χ	Χ	
	POACXX	Poaceae	60	2.8	0.2	35				
	CHGR3	Chlorogalum grandiflorum	36	0.4	0.2	6				
	SABI3	Sanicula bipinnatifida	34	0.2	0.2	2				
	WYRE	Wyethia reticulata	32	1.7	0.2	37				
	CAST21	Calystegia stebbinsii	31	0.2	0.2	3				
	SELA4	Senecio layneae	27	0.1	0.2	2				
	LETAL	Leontodon taraxacoides subsp. Longirostris	23	0.5	0.2	15				Χ

Arctostaphylos viscida - Quercus wislizeni Association Whiteleaf Manzanita - Interior Live Oak Association

SUMMARY

In the stands sampled, the overstory shrub canopy was open to continuous and dominated by *Arctostaphylos viscida* at 1-64% cover. Other shrubs such as *Adenostoma fasciculatum*, *Ericameria arborescens*, *Eriodictyon californicum*, and *Heteromeles arbutifolia* were often present. *Pinus ponderosa*, *Pinus sabiniana*, *Quercus kelloggii*, and *Quercus wislizeni* sometimes occurred as scattered emergent trees. The herbaceous layer was open and often included *Aira caryophyllea*. A similar type, *Q. wislizeni* / *A. viscida* woodland, was defined by Allen et al. (1991). However, that type was dominated by tree-size *Q. wislizeni*. The stands defined here grouped with chaparral-related stands that did not group with other *Q. wislizeni* types represented in this report.

In the study area, this association was sampled infrequently within the central Sierra Nevada Foothills and Cascade Range Foothills, and often in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on sedimentary substrates, and infrequently on metamorphic and granitic substrates. They usually occupied the middle slope, but were also found on upper slopes and ridgetops. These upland slopes varied from flat to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Calaveras, Mariposa, Nevada, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Tuscan Flows (M261Fa), and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	60	30-90	-
Herb	6.8	0-20	variable
Shrub	54	5-85	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	4.8	0-20	<5-20
Conifer	2.3	0-10	5-20
Relative non-native to native cover	2.7	0-14	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (3), NW (3), NE (2), N (2), SW (1), S (1), E (1), (0)

Macrotopography: middle slope (7), upper slope (5), upper slope to ridgetop (1)

Microtopography: undulating (8), flat (4), convex (1)

Parent Material: sedimentary (11), metamorphic (2), granitic (1)

Soil Texture: loam or sandy loam (6), clay or clay loam (2), silt or silt loam (2)

	Mean	Range
Elevation	2105 ft.	1243-2962 ft.
Slope	14.2°	0-25°
Large rock cover	1%	0-4%
Small rock cover	9.1%	0.2-25%
Bare ground cover	32.6%	3-85%
Litter cover	53.9%	2-90%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=14)

Rapid Assessments: SNNR0296, SNNR0558, SNNR0561, SNNR0581, SNNR0583, SNNR0584, SNNR0746, SNNR1127, SNNR1371, SNNR1509, SNNR1511, SNNR1512,

SNNR1513, SNNR1520 Relevés: none

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon the data collected for this project. So far, it is known to be restricted to this area of the state.

STAND TABLE

Arctostaphylos viscida - Quercus wislizeni Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-M	Quercus wislizeni	71	9.6	1	30				
	QUKE-T	Quercus kelloggii	43	0.9	0.2	5				
	PIPO-T	Pinus ponderosa	43	0.8	0.2	5				
	QUWI2-T	Quercus wislizeni	36	2.2	0.2	20				
	QUKE-M	Quercus kelloggii	36	1.6	0.2	9				
	PISA2-T	Pinus sabiniana	36	0.4	0.2	2				
	PIPO-M	Pinus ponderosa	21	0.2	0.2	2				
Shrub										
	ARVI4	Arctostaphylos viscida	93	27.2		64	Χ		X	
	HEAR5	Heteromeles arbutifolia	64	5.2	0.2	27				
	ADFA	Adenostoma fasciculatum	64	2.0	0.2	10				
	ERAR27	Ericameria arborescens	50	1.6	1	8				
	ERCA6	Eriodictyon californicum	50	0.4	0.2	2				
	TODI	Toxicodendron diversilobum	29	0.8	0.2	10				
	CETO	Ceanothus tomentosus	21	0.5	1	3				
	BAPI	Baccharis pilularis	21	0.5	0.2	6				
	CECU	Ceanothus cuneatus	21	0.2	0.2	1				
	CHFO	Chamaebatia foliolosa	21	0.2	0.2	1				
Herb										
	AICA	Aira caryophyllea	50	0.3						Χ
	VUMY	Vulpia myuros	43	0.8	0.2	8				Χ
	SASO	Salvia sonomensis	36	2.1	2	10				
	HOPA2	Horkelia parryi	36	1.1	1	5				
	BRMA3	Bromus madritensis	29	0.1	0.2	1				Χ
	FIGA	Filago gallica	21	0	0.2	0.2				Χ
	LOMI	Lotus micranthus	21	0	0.2	0.2				
Cryptoga										
	MOSS	Moss	29	0.9	0.2	10				

Ceanothus cuneatus Shrubland Alliance Wedgeleaf Ceanothus (Buck brush) Shrubland Alliance

As defined in the state, *Ceanothus cuneatus* is dominant in the shrub canopy with *Adenostoma fasciculatum*, *Arctostaphylos manzanita*, *A. patula*, *A. viscida*, *Ceanothus integerrimus*, *Eriodictyon californicum*, *Heteromeles arbutifolia*, *Juniperus californica*, and *Quercus berberidifolia*. Emergent *Calocedrus decurrens*, *Pinus jeffreyi*, *P. ponderosa*, *P. sabiniana*, *Quercus douglasii*, or *Q. wislizeni* trees may be present. The shrub canopy is continuous or intermittent, and the herbaceous layer is sparse to intermittent. Stands occur on ridges and upper slopes. Soils are shallow, rocky, and well drained. In the Foothills, stands occur on a variety of geologic substrates, including serpentinite.

Ceanothus cuneatus occurs as a persistent understory shrub across various forests and woodland types in northern California, and it is present as a secondary species in many chaparral types in southern California. Self-perpetuating stands are typically restricted to very rocky and harsh exposures or substrates. Many other stands are established after fire and they are an important part of the chaparral in northern and central California. This alliance is one of the best representations of chaparral types in the Sierra Nevada Foothills.

As described below, four associations of the Wedgeleaf Ceanothus Alliance were classified in the study area. Six plots (SNFN0087, SNNR1487, SNNR1575, SNNR1574, SNNR0881, SNNR1340) showed additional variation and were classified to the alliance level only.

Ceanothus cuneatus / Herbaceous Association Wedgeleaf Ceanothus / Herbaceous Association

SUMMARY

In the stands sampled, the shrub canopy was open to continuous and dominated by *Ceanothus cuneatus* at 11-72% cover. *Toxicodendron diversilobum* was occasionally present in the overstory. Trees such as *Pinus sabiniana*, *Quercus douglasii*, and *Quercus wislizeni* sometimes occurred as scattered emergents. The herbaceous layer was open to intermittent and often included non-native grasses *Aira caryophyllea*, *Avena barbata*, *Bromus hordeaceus*, and *Vulpia myuros*.

In the study area, this association was sampled frequently in the Cascade Range Foothills, less frequently in the central Sierra Nevada Foothill, and fairly infrequently in the High Cascade Range and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt), sometimes on metamorphic (including slate), and infrequently on sedimentary or ultramafic substrates. They occupied a variety of upland slope positions from bottom to ridgetop, appearing most often on upper slopes and ridgetops. Slopes varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Mariposa, Nevada, Shasta, Tehama, Tuolumne, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Northern Eastside Terraces (262Ab), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	60	35-85	-
Herb	32.2	7-65	variable
Shrub	33.8	12-75	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	1.2	0-6	<5-10
Conifer	0.3	0-2	<5-20
Relative non-native to native cover	38	10-69	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (4), SW (4), SE (4), Flat (4), W (3), S (2), NW (2), NE (1)

Macrotopography: entire slope (2), bottom (2), lower slope (2), middle slope (3), middle to upper slope (1), upper slope (6), upper slope to ridgetop (2), ridgetop (6)

Microtopography: undulating (12), flat (9), convex (2), concave (1)

Parent Material: volcanic (14), metamorphic (3), slate (3), sedimentary (2), basalt (1), ultramafic (1)

Soil Texture: clay or clay loam (8), loam or sandy loam (6), silt or silt loam (5), sand (1)

	Mean	Range
Elevation	1332 ft.	410-2479 ft.
Slope	11.4°	0-30°
Large rock cover	7.7%	0.2-47%
Small rock cover	9.3%	0.2-40%
Bare ground cover	24.4%	3-65%
Litter cover	55%	16-86%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=24)

Rapid Assessments: SNNR0164, SNNR0174, SNNR0199, SNNR0254, SNNR0278, SNNR0299, SNNR0320, SNNR0798, SNNR0821, SNNR0850, SNNR0855, SNNR0863, SNNR0864, SNNR0947, SNNR0960, SNNR1017, SNNR1095, SNNR1232, SNNR1240, SNNR1244, SNNR1244, SNNR1244, SNNR0960, SNNR1048, SNNR0869, SNNR1267, SNNR126

SNNR1314, SNNR1331 **Relevés:** SNFN0018, SNFN0669, SNFN0670

Rank: G4S4

GLOBAL DISTRIBUTION

Previously, this association was described for the Sierra Nevada Foothills in the lower elevations of the Yosemite region (NatureServe et al. 2003b). Its range has been extended from data for this project to include most of the northern and central Sierra Nevada Foothills. Analogous stands have also been reported for the southern Sierra Foothills in the Sequoia National Park area (S. Haultain, pers. comm. 2004).

STAND TABLE

Ceanothus cuneatus / Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree	QUDO-T	Quercus douglasii	63	1.1	0.2	3				
	QUWI2-T	Quercus wislizeni	33	0.4	0.2	4				
	PISA2-T	Pinus sabiniana	33	0.4	0.2	2				
Shrub	1 10AZ-1	i inus sabiniana	55	0.5	0.2	2				
Siliub	CECU	Ceanothus cuneatus	100	30.5	11	72	Х		Χ	
	TODI	Toxicodendron diversilobum	33	1.2	0.2	20	,,		, ,	
	ERCA6	Eriodictyon californicum	21	0.2	0.2	2				
Herb	2110/10	Enough of camonical		0.2	0.2	_				
11012	BRHO2	Bromus hordeaceus	88	10.0	1	55			Χ	Χ
	AVBA	Avena barbata	63	2.0	0.2	20				Χ
	AICA	Aira caryophyllea	63	1.2	0.2	10				Χ
	VUMY	Vulpia myuros	58	1.9	0.2	11				Χ
	BRMA3	Bromus madritensis	46	0.8	0.2	5				Χ
	VUMI	Vulpia microstachys	46	0.8	0.2	7				
	TACA8	Taeniatherum caput-medusae	38	2.5	3	12				Χ
	CYEC	Cynosurus echinatus	38	0.7	0.2	4				Χ
	HYGL2	Hypochaeris glabra	33	0.7	0.2	10				Χ
	ERBO	Erodium botrys	29	0.8	0.2	12				Χ
	TOAR	Torilis arvensis	29	0.2	0.2	2				Χ
	CEME2	Centaurea melitensis	25	0.4	0.2	3				Χ
	CLPU2	Clarkia purpurea	25	0.1	0.2	1				
	TRHI4	Trifolium hirtum	25	0.1	0.2	1				Χ
	BRDI3	Bromus diandrus	21	0.4	0.2	5				Χ
	PEDU2	Petrorhagia dubia	21	0.3	0.2	4				Χ
	DAPU3	Daucus pusillus	21	0.2	0.2	1				
	GAPO	Galium porrigens	21	0.1	0.2	2				
	GAVE3	Gastridium ventricosum	21	0.1	0.2	1				Χ

Ceanothus cuneatus / Plantago erecta Association Wedgeleaf Ceanothus / Dwarf Plantain Association

SUMMARY

In the stands sampled, the overstory shrub canopy was open to intermittent and dominated by *Ceanothus cuneatus* at 5-48% cover. Other shrubs such as *Eriodictyon californicum*, *Heteromeles arbutifolia*, and *Rhamnus ilicifolia* were occasionally present. *Pinus sabiniana* sometimes occurred as a scattered emergent tree. The herbaceous layer was open to intermittent, with abundant and characteristic taxa such as *Bromus hordeaceus*, *Galium porrigens*, *Plantago erecta*, and *Vulpia microstachys*. Many of the herbaceous species were natives.

This association was sampled frequently in the study area within the central Sierra Nevada Foothills, and infrequently in the Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on serpentine and other ultramafic (gabbro) substrates, but were also found infrequently on metamorphic (including slate) and volcanic substrates. They occupied lower, middle, and upper slopes and were found infrequently on ridgetops. Slopes varied from gentle to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Mariposa, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	40.9	15-65	-
Herb	22.6	6-45	variable
Shrub	23.8	7-45	0.9-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.3	0-3	<5-20
Conifer	2.4	0-14	<5-20
Relative non-native to native cover	18.5	0-60	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Variable (5), SW (5), N (5), SE (4), S (4), E (3), W (1), NE (1)

Macrotopography: lower slope (7), lower to upper slope (3), middle slope (7), middle slope to ridgetop (1), upper slope (8), upper slope to ridgetop (1)

Microtopography: undulating (14), convex (6), flat (6), concave (1)

Parent Material: serpentine (18), ultramafic (3), metamorphic (2), slate (2), volcanic (2), gabbro (1)

Soil Texture: loam or sandy loam (10), clay or clay loam (8), silt or silt loam (3)

	Mean	Range
Elevation	1470 ft.	610-2527 ft.
Slope	16.5°	4-32°
Large rock cover	12.5%	1-42%
Small rock cover	31.2%	1-65%
Bare ground cover	29.2%	10-77%
Litter cover	23.3%	0.2-85%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=28)

Rapid Assessments: SNNR0007, SNNR0101, SNNR0365, SNNR0874, SNNR1028, SNNR1032, SNNR1497, SNNR1506, SNNR1527, SNNR1576 **Relevés:** SNFN0085, SNFN0089, SNFN0113, SNFN0130, SNFN0132, SNFN0135, SNFN0148, SNFN0150, SNFN0175, SNFN0176, SNFN0177, SNFN0298, SNFN0349, SNFN0448, SNFN0591, SNFN0602, SNFN0607, SNFN0691

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills (Evens et al. 2004). Its range has been extended from the data for this project. In the northern and central Sierra Nevada Foothills, it was found on serpentine and other rocky, oligotrophic soils.

STAND TABLE
Ceanothus cuneatus / Plantago erecta Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PISA2-T	Pinus sabiniana	57	1.9	0.2	14				
	PISA2-M	Pinus sabiniana	29	0.3	0.2	6				
Shrub										
	CECU	Ceanothus cuneatus		23.6	5	48	Х		Χ	
	ERCA6	Eriodictyon californicum	36	0.3	0.2	2				
	HEAR5	Heteromeles arbutifolia	29	0.3	0.2	3				
	RHIL	Rhamnus ilicifolia	25	0.6	0.2	12.2				
Herb										
	PLER3	Plantago erecta	89	2.4	0.2	15			Χ	
	VUMI	Vulpia microstachys	82	1.9	0.2	17			Χ	
	GAPO	Galium porrigens	79	0.4	0.2	2			Χ	
	BRHO2	Bromus hordeaceus	75	6.2	0.2	45			Χ	Χ
	MECA2	Melica californica	57	0.5	0.2	4				
	PETR7	Pentagramma triangularis	57	0.5	0.2	2				
	BRMA3	Bromus madritensis	54	1.4	0.2	10				Χ
	DICAC5	Dichelostemma capitatum subsp. capitatum	54	0.1	0.2	0.2				
	AVBA	Avena barbata	50	0.7	0.2	8				Χ
	TRWI3	Trifolium willdenovii	50	0.2	0.2	1				
	GAVE3	Gastridium ventricosum	46	0.9	0.2	10				Χ
	LACA7	Lasthenia californica	46	8.0	0.2	10				
	ERLA6	Eriophyllum lanatum	43	0.1	0.2	1				
	TRMI4	Trifolium microcephalum	39	0.7	0.2	10				
	AICA	Aira caryophyllea	39	0.1	0.2	1				Χ
	CALA68	Castilleja lacera	36	0.2	0.2	4				
	LEVI8	Lessingia virgata	36	0.2	0.2	2				
	MICA	Micropus californicus	36	0.2	0.2	1				
	VUMY	Vulpia myuros	32	0.8	0.2	7				Χ

STAND TABLE continued Ceanothus cuneatus / Plantago erecta Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Herb										
	DAPU3	Daucus pusillus	32	0.2	0.2	1				
	SABI3	Sanicula bipinnatifida	32	0.2	0.2	1				
	CAAT25	Castilleja attenuata	32	0.1	0.2	1				
	CHPO3	Chlorogalum pomeridianum	29	0.2	0.2	4				
	AGHE2	Agoseris heterophylla	29	0.1	0.2	1				
	CAAF	Castilleja affinis	29	0.1	0.2	1				
	ELEL5	Elymus elymoides	25	0.2	0.2	3				
	URLI5	Uropappus lindleyi	25	0.2	0.2	3				
	DIMU5	Dichelostemma multiflorum	25	0.1	0.2	1				
	CAOCF	Calystegia occidentalis subsp. fulcrata	25	0.1	0.2	0.2				
	MICAC2	Micropus californicus var. californicus	25	0.1	0.2	0.2				
	THCU	Thysanocarpus curvipes	25	0.1	0.2	0.2				
	HYGL2	Hypochaeris glabra	21	0.4	0.2	5				Χ
	PSHE	Pseudobahia heermannii	21	0.2	0.2	2				
	CEME2	Centaurea melitensis	21	0.1	0.2	2				Χ
	LIBI	Linanthus bicolor	21	0.1	0.2	1				
	ERCI6	Erodium cicutarium	21	0	0.2	0.2				Χ
	GAAP2	Galium aparine	21	0	0.2	0.2				
	POSE	Poa secunda	21	0	0.2	0.2				
Cryptoga	am									
	MOSS	Moss	39	2.3	0.2	25				

Adenostoma fasciculatum - Ceanothus cuneatus Association Chamise - Wedgeleaf Ceanothus Association

SUMMARY

In the stands sampled, the overstory shrub canopy was intermittent to continuous and dominated by *Adenostoma fasciculatum* at 12-40% and *Ceanothus cuneatus* at 8-28% cover. Other shrubs such as *Arctostaphylos viscida*, *Eriodictyon californicum*, and *Rhamnus ilicifolia* were often present. Trees such as *Pinus sabiniana* and *Quercus douglasii* sometimes occurred as scattered emergents. The herbaceous layer was open, with abundant and characteristic taxa such as nonnatives *Aira caryophyllea*, *Bromus madritensis*, and *Hypochaeris glabra*.

This association was sampled infrequently in the study area, within the central and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic (including serpentine), and/or other ultramafic substrates. They occupied a variety of upland slope positions, more often upper slopes that were moderate to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras, Mariposa, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	61.3	52-79	-
Herb	18.3	12-24	variable
Shrub	46	35-68	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.5	0-2	<5
Conifer	1.5	0-2	<5-20
Relative non-native to native cover	15.5	3-30	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (1), SW (1), SE (1), N (1)

Macrotopography: entire slope (1), middle to upper slope (1), upper slope (2)

Microtopography: flat (2), undulating (1), concave (1)

Parent Material: metamorphic (2), serpentine (1), ultramafic (1) Soil Texture: loam or sandy loam (2), clay or clay loam (1)

	Mean	Range
Elevation	1479 ft.	718-2232 ft.
Slope	14.8°	8-20°
Large rock cover	11.3%	2-22%
Small rock cover	26%	15-40%
Bare ground cover	25.3%	8-38%
Litter cover	35%	25-45%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=4)

Rapid Assessments: SNNR0111, SNNR1149 Relevés: SNFN0088, SNFN0151

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada, including in the Yosemite region (NatureServe et al. 2003b). Similar association descriptions have been defined from the Central Coast Ranges (Evens et al. 2006) south to San Diego County (Gordon and White 1994); thus, this association may be widespread in cismontane California.

STAND TABLE

Adenostoma fasciculatum - Ceanothus cuneatus Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PISA2-T	Pinus sabiniana	75	1.1	0.2	2		Χ	Χ	
	PISA2-L	Pinus sabiniana	50	0.6	0.2	2				
	QUDO-T	Quercus douglasii	25	0.5	2	2				
	PISA2-M	Pinus sabiniana	25	0.1	0.2	0.2				
Shrub										
	ADFA	Adenostoma fasciculatum		23.3		40		X	Χ	
	CECU	Ceanothus cuneatus	100			28		Χ	Χ	
	ARVI4	Arctostaphylos viscida	50	3.3	1	12				
	RHIL	Rhamnus ilicifolia	50	0.3	0.2	1				
	ERCA6	Eriodictyon californicum	50	0.1	0.2	0.2				
	ERCO25	Eriophyllum confertiflorum	25	8.0	3	3				
	CEOCO	Cercis occidentalis	25	0.5	2	2				
	ARMA	Arctostaphylos manzanita	25	0.3	1.2	1.2				
	HEAR5	Heteromeles arbutifolia	25	0.3	1	1				
Herb										
	BRMA3	Bromus madritensis	75	1.3	0.2	3			Χ	X
	AICA	Aira caryophyllea	75	0.2	0.2	0.2			X	Х
	HYGL2	Hypochaeris glabra	75	0.2	0.2	0.2			X	Χ
	GAVE3	Gastridium ventricosum	50	2.3	0.2	9				Χ
	BRHO2	Bromus hordeaceus	50	1.8	0.2	7				Χ
	MICA	Micropus californicus	50	1.3	0.2	5				
	CHPO3	Chlorogalum pomeridianum	50	8.0	1	2				
	CALYC	Calycadenia	50	0.6	0.2	2				
	GAPO	Galium porrigens	50	0.3	0.2	1				
	PLER3	Plantago erecta	50	0.3	0.2	1				
	VUMI	Vulpia microstachys	50	0.3	0.2	1				
	MECA2	Melica californica	50	0.1	0.2	0.2				
	PETR7	Pentagramma triangularis	50	0.1	0.2	0.2				
	SABI3	Sanicula bipinnatifida	50	0.1	0.2	0.2				

STAND TABLE continued Adenostoma fasciculatum - Ceanothus cuneatus Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	BRST2	Bromus sterilis	25	1.8	7	7				Χ
	HOVIV	Holocarpha virgata subsp. virg	ata25	1.5	6	6				
	VUMY	Vulpia myuros	25	1.5	6	6				Χ
	CEME2	Centaurea melitensis	25	1.3	5	5				Χ
	ALAM2	Allium amplectens	25	0.5	2	2				
	CHGR3	Chlorogalum grandiflorum	25	0.5	2	2				
	TRBR7	Triteleia bridgesii	25	0.5	2	2				
	VUBR	Vulpia bromoides	25	0.5	2	2				Χ
	AVFA	Avena fatua	25	0.3	1	1				X
	BAMAM	Balsamorhiza macrolepis var. macrolepis	25	0.3	1	1				
	CASU3	Calochortus superbus	25	0.3	1	1				
	ERLA6	Eriophyllum lanatum	25	0.3	1	1				
	GIPUP	Githopsis pulchella subsp. pulchella	25	0.3	1	1				
	OXLA8	Oxalis laxa	25	0.3	1	1				Χ
	HERBAC	unknown	25	0.2	0.6	0.6				
	ALPEP2	Allium peninsulare var. peninsulare	25	0.1	0.2	0.2				
	AVBA	Avena barbata	25	0.1	0.2	0.2				Χ
	BRDI2	Brachypodium distachyon	25	0.1	0.2	0.2				Χ
	BRMI2	Briza minor	25	0.1	0.2	0.2				Χ
	BRODI	Brodiaea	25	0.1	0.2	0.2				
	BRDI3	Bromus diandrus	25	0.1	0.2	0.2				Χ
	BRTE	Bromus tectorum	25	0.1	0.2	0.2				Χ
	CAVE3	Calochortus venustus	25	0.1	0.2	0.2				
	CAOC6	Calystegia occidentalis	25	0.1	0.2	0.2				
	CAAF	Castilleja affinis	25	0.1	0.2	0.2				
	CALA68	Castilleja lacera	25	0.1	0.2	0.2				
	CEGL2	Cerastium glomeratum	25	0.1	0.2	0.2				Χ
	CLPE	Claytonia perfoliata	25	0.1	0.2	0.2				
	DAPU3	Daucus pusillus	25	0.1	0.2	0.2				
	DICAC5	Dichelostemma capitatum subsp. capitatum	25	0.1	0.2	0.2				
	DIMU5	Dichelostemma multiflorum	25	0.1	0.2	0.2				
	DUCYC3	Dudleya cymosa subsp.	25	0.1	0.2	0.2				
	FICA2	Filago californica	25	0.1	0.2	0.2				
	GAAP2	Galium aparine	25	0.1	0.2	0.2				
	GIPUS	Githopsis pulchella subsp. serpentinicola	25	0.1	0.2	0.2				
	HEAC8	Hesperevax acaulis	25	0.1	0.2	0.2				
	HYRA3	Hypochaeris radicata	25	0.1	0.2	0.2				Χ

STAND TABLE continued

Adenostoma fasciculatum - Ceanothus cuneatus Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	LETA	Leontodon taraxacoides	25	0.1	0.2	0.2				Χ
	LEVI8	Lessingia virgata	25	0.1	0.2	0.2				
	LIBI	Linanthus bicolor	25	0.1	0.2	0.2				
	LOTUS	Lotus	25	0.1	0.2	0.2				
	LOMI	Lotus micranthus	25	0.1	0.2	0.2				
	LOWR2	Lotus wrangelianus	25	0.1	0.2	0.2				
	MICAC2	Micropus californicus var. californicus	25	0.1	0.2	0.2				
	MICRO6	Microseris	25	0.1	0.2	0.2				
	MOVI2	Monardella villosa	25	0.1	0.2	0.2				
	ORUN	Orobanche uniflora	25	0.1	0.2	0.2				
	PEMU	Pellaea mucronata	25	0.1	0.2	0.2				
	PLAGI	Plagiobothrys	25	0.1	0.2	0.2				
	POSE	Poa secunda	25	0.1	0.2	0.2				
	PSHE	Pseudobahia heermannii	25	0.1	0.2	0.2				
	SABI2	Sanicula bipinnata	25	0.1	0.2	0.2				
	SICAC3	Sidalcea calycosa subsp. calycosa	25	0.1	0.2	0.2				
	TRIFO	Trifolium	25	0.1	0.2	0.2				
	TRMI4	Trifolium microcephalum	25	0.1	0.2	0.2				
	TRWI3	Trifolium willdenovii	25	0.1	0.2	0.2				
	URLI5	Uropappus lindleyi	25	0.1	0.2	0.2				
	WYBO	Wyethia bolanderi	25	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	25	7.5	30	30				
	LICHEN	Lichen	25	0.1	0.2	0.2				
	SEHA2	Selaginella hansenii	25	0.1	0.2	0.2				

Ceanothus cuneatus - Eriodictyon californicum - (Fremontodendron californicum) Association (Provisional)

Wedgeleaf Ceanothus - California Yerba Santa - (Flannelbush) Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was typically intermittent and dominated by Ceanothus cuneatus at 15-55% cover. Other shrubs such as Cercis occidentalis, Eriodictyon californicum, Fremontodendron californicum, and Toxicodendron diversilobum were often present. Trees such as Pinus sabiniana and Quercus kelloggii sometimes occurred as scattered emergents. The herbaceous layer was open and often included Aira caryophyllea, Bromus hordeaceus, Bromus madritensis, Galium parisiense, Petrorhagia dubia, Vulpia microstachys, and Vulpia myuros.

In the study area, this association was sampled infrequently within the Cascade Range Foothills, and more frequently in the High Cascade Range Subregions (Hickman 1993). Stands consistently occurred on volcanic substrates. They occupied a variety of upland slope positions from lower slopes to ridgetops, but most often occupied southerly-facing, middle and upper slopes that were moderate to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tehama County, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	63.4	50-75	-
Herb	16.9	6-30	variable
Shrub	52.7	40-65	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.8	0-5	<5-10
Conifer	0.8	0-3	<5-20
Relative non-native to native cover	16.3	2-28	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (3), SE (2), W (1), Variable (1), SW (1), E (1)

Macrotopography: lower to middle slope (1), middle slope (4), upper slope (3), ridgetop (1)

Microtopography: convex (3), concave (2), flat (2), undulating (2)

Parent Material: volcanic (9)

Soil Texture: clay or clay loam (3), loam or sandy loam (3), silt or silt loam (1)

	Mean	Range
Elevation	2978 ft.	2164-3477 ft.
Slope	14.8°	6-26°
Large rock cover	1.6%	0-5%
Small rock cover	14.9%	2-25%
Bare ground cover	31.4%	6-79%
Litter cover	47.7%	15-69%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=9)

Rapid Assessments: SNNR0390, SNNR0428, SNNR0438, SNNR0451, SNNR0456,

SNNR0462, SNNR0463, SNNR0485 Relevés: SNFN0377

Rank: G3?S3?

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely on the data collected for this project. It is likely restricted to the volcanic flows of the northern Foothills. This is the typical chaparral of warmer and drier slopes on shallow soils across the Foothills study area, even more common than the *Adenostoma fasciculatum* Alliance and other xeric types.

STAND TABLE
Ceanothus cuneatus - Eriodictyon californicum - (Fremontodendron californicum)
Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree	PISA2-M	Pinus sabiniana	56	0.3	0.2	1				
	QUKE-T	Quercus kelloggii	33	0.2	0.2	1				
	QUWI2-M	Quercus wislizeni	22	0.8	0.2	7				
	PISA2-T	Pinus sabiniana	22	0.4	0.2	3				
Shrub										
	CECU	Ceanothus cuneatus	100	32.3	15	55	Χ		Χ	
	ERCA6	Eriodictyon californicum	89	6.5	0.2	15			Χ	
	CEOCO	Cercis occidentalis	78	0.6	0.2	3			Χ	
	FRCA6	Fremontodendron	56	7.3	0.2	40				
	TODI	Toxicodendron diversilobum	56	0.9	0.2	5				
	CEBE3	Cercocarpus betuloides	44	0.4	0.2	2				
	LECA3	Lepechinia calycina	33	1.6	1	8				
	QUGAB	Quercus garryana var. breweri	33	1.6	1	10				
	QUBE5	Quercus berberidifolia	33	8.0	0.2	7				
	RHIL	Rhamnus ilicifolia	33	0.2	0.2	1				
Herb										
	BRHO2	Bromus hordeaceus	78	3.3	0.2	12			Χ	Χ
	PEDU2	Petrorhagia dubia	78	0.6	0.2	2			Χ	Χ
	GAPA5	Galium parisiense	78	0.3	0.2	1			Χ	Χ
	VUMY	Vulpia myuros	67	2.9	1	8				Χ
	VUMI	Vulpia microstachys	67	1.3	0.2	5				
	BRMA3	Bromus madritensis	67	0.5	0.2					Χ
	AICA	Aira caryophyllea	56	0.6	0.2					Χ
	CESO3	Centaurea solstitialis	44	1.7	0.2					Χ
	AVBA	Avena barbata	44	1.3	0.2					Χ
	CAOC6	Calystegia occidentalis	33	0.6	0.2	3				
	CEME2	Centaurea melitensis	33	0.2	0.2	1				Χ
	MICA	Micropus californicus	33	0.2	0.2	1				
	BRTE	Bromus tectorum	33	0.1	0.2					Χ
	GAPO	Galium porrigens	22	0.2	0.2	2				
	DAPU3	Daucus pusillus	22	0.1	0.2					
	POBO3	Polygonum bolanderi	22	0.1	0.2	1				

Ceanothus integerrimus Shrubland Alliance Deerbrush Shrubland Alliance

As defined in the state, *Ceanothus integerrimus* dominates the shrub canopy with *Arctostaphylos manzanita*, *A. patula*, *Ceanothus cordulatus*, *C. cuneatus*, *C. velutinus*, *Holodiscus discolor*, *Lepechinia calycina*, *Prunus emarginata*, *Quercus berberidifolia*, and *Symphoricarpos mollis*. Emergent trees may be present including *Q. chrysolepis* and *Q. kelloggii*. The shrub canopy is continuous to intermittent and the herbaceous layer is sparse. Stands occur on ridges and upper slopes. Soils are well-drained. Self-perpetuating stands are very unusual as stands are usually established after fire, logging, or other disturbances.

As described below, two associations of the Deerbrush Alliance were classified in the study area.

Ceanothus integerrimus Association Deerbrush Association

SUMMARY

In the stands sampled, the overstory shrub canopy was intermittent to continuous and dominated by *Ceanothus integerrimus* at 40-60% cover. Other shrubs such as *Eriodictyon californicum*, *Heteromeles arbutifolia*, and *Rhamnus tomentella* were often present. Trees such as *Acer macrophyllum*, *Pinus ponderosa*, *Quercus chrysolepis*, *Quercus kelloggii*, and *Umbellularia californica* sometimes occurred as scattered emergents. The herbaceous layer was open and often included *Elymus glaucus* and *Torilis arvensis*.

This association was sampled infrequently in the study area within the Cascade Range Foothills and High Cascade Range Subregions (Hickman 1993). Stands occurred on volcanic and other igneous substrates. They occupied bottom and middle to upper slopes that were somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Tehama Counties, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	67.3	59-83	-
Herb	11	8-15	variable
Shrub	70	53-82	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.3	0-1	10-20
Conifer	2.7	0-8	10-20
Relative non-native to native cover	1.3	0-3	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (1), SE (1), NW (1)

Macrotopography: bottom (1), middle to upper slope (1)

Microtopography: convex (1), concave (1) Parent Material: volcanic (2), igneous (1) Soil Texture: clay or clay loam (1), silt or silt loam (1)

	Mean	Range
Elevation	2314 ft.	1458-3975 ft.
Slope	17º	16-18°
Large rock cover	1.4%	0-4%
Small rock cover	8%	4-15%
Bare ground cover	37.3%	20-47%
Litter cover	50%	30-74%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: SNNR0348, SNNR0535, SNNR0714 Relevés: none

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada and adjacent foothills by NatureServe et al. (2003b). Similar stands have been observed as far south as the semi-desert mountains of San Diego County (Keeler-Wolf et al. 1998).

STAND TABLE Ceanothus integerrimus Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUKE-L	Quercus kelloggii	67	0.4	0.2	1				
	PIPO-T	Pinus ponderosa	33	2.7	8	8				
	QUKE-M	Quercus kelloggii	33	2.0	6	6				
	PIPO-M	Pinus ponderosa	33	1.0	3	3				
	UMCA-M	Umbellularia californica	33	0.7	2	2				
	ACMA3-L	Acer macrophyllum	33	0.3	1	1				
	QUCH2-T	Quercus chrysolepis	33	0.3	1	1				
	SNAG	Standing snag	33	0.3	1	1				
	QUCH2-M	Quercus chrysolepis	33	0.1	0.2	0.2				
Shrub										
	CEIN3	Ceanothus integerrimus	100	47.3	40	60	Χ		Χ	
	HEAR5	Heteromeles arbutifolia	67	11.7	5	30				
	RHTO6	Rhamnus tomentella	67	2.7	4	4				
	ERCA6	Eriodictyon californicum	67	0.1	0.2	0.2				
	ARMA	Arctostaphylos manzanita	33	3.3	10	10				
	TODI	Toxicodendron diversilobum	33	3.3	10	10				
	VICA5	Vitis californica	33	3.3	10	10				
	CECU	Ceanothus cuneatus	33	2.7	8	8				
	RUUR	Rubus ursinus	33	1.7	5	5				
	CEPR	Ceanothus prostratus	33	1.0	3	3				
	ARVI4	Arctostaphylos viscida	33	0.7	2	2				
	BAPI	Baccharis pilularis	33	0.1	0.2	0.2				
	OECE	Oemleria cerasiformis	33	0.1	0.2	0.2				
	RIRO	Ribes roezlii	33	0.1	0.2	0.2				
Herb										
	ELGL	Elymus glaucus	67	0.4	0.2	1				
	TOAR	Torilis arvensis	67	0.4	0.2	1				Х
	CAOCO	Calystegia occidentalis subsp. occidentalis	33	2.3	7	7				
	POACXX	Poaceae	33	2.3	7	7				
	CYEC	Cynosurus echinatus	33	0.7	2	2				Х
	MAGR3	Madia gracilis	33	0.7	2	2				
	DRAR3	Dryopteris arguta	33	0.3	1	1				
	METO	Melica torreyana	33	0.3	1	1				
	VIAMA3	Vicia americana subsp. americana	33	0.3	1	1				
	VISA	Vicia sativa	33	0.3	1	1				
	BRCA5	Bromus carinatus	33	0.1	0.2	0.2				
	CIVU	Cirsium vulgare	33	0.1	0.2	0.2				Х
	DIMU5	Dichelostemma multiflorum	33	0.1	0.2					^
	MITO	Mimulus torreyi	33	0.1	0.2					
		_								
	PHPU2	Phacelia purpusii	33	0.1	0.2	0.2				

STAND TABLE continued Ceanothus integerrimus Association

Lifeform Code Herb	Species Name	Con	Avg	Min	Max	D	cD	С	N
POLEXX	Polemoniaceae	33	0.1	0.2	0.2				
SACR2	Sanicula crassicaulis		0.1	_	_				
VUMI	Vulpia microstachys	33	0.1	0.2	0.2				

Ceanothus integerrimus - Quercus garryana var. breweri Association (Provisional) Deerbrush - Brewer Oak Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was intermittent to continuous and dominated by *Ceanothus integerrimus* at 10-54% cover. *Quercus garryana* var. *breweri* was characteristically present, while *Ceanothus cuneatus*, *Cercis occidentalis*, *Cercocarpus betuloides*, *Eriodictyon californicum*, *Fraxinus dipetala*, *Lepechinia calycina*, and *Ptelea crenulata* were often present in the shrub layer. *Pinus sabiniana* sometimes occurred as a scattered emergent tree. The herbaceous layer was open and often included *Clarkia rhomboidea*, *Galium parisiense*, and *Vulpia myuros*.

In the study area, this association was sampled somewhat frequently, but only within the High Cascade Range Subregion (Hickman 1993). Stands consistently occurred on volcanic substrates. They occupied a variety of upland slope positions, from lower to ridgetop, on slopes that were gentle to steep. The winter-deciduous nature of the two dominant and characteristic taxa suggest higher cold tolerance and greater moisture requirement than most chaparral types in the area.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tehama County, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	70.2	50-78	-
Herb	4.2	0-12	variable
Shrub	71.9	50-83	0.9-5
Low Tree/Tall Shrub	0.7	0-5	5-10
Hardwood	0.5	0-4	<5-20
Conifer	0.1	0-0.2	<5-20
Relative non-native to native cover	4	0-14	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (4), W (3), NE (1), E (1)

Macrotopography: lower to middle slope (1), lower to upper slope (2), middle slope (2), middle to

upper slope (1), upper slope (1), upper slope to ridgetop (1), ridgetop (1)

Microtopography: convex (5), flat (2), undulating (2)

Parent Material: volcanic (9)

Soil Texture: loam or sandy loam (3), clay or clay loam (2), silt or silt loam (2)

	Mean	Range
Elevation	3421 ft.	2942-3860 ft.
Slope	19.8°	3-32°
Large rock cover	1.3%	0.2-5%
Small rock cover	10.1%	5-28%
Bare ground cover	12.9%	7-33%
Litter cover	70.8%	55-81%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=9)

Rapid Assessments: SNNR0330, SNNR0373, SNNR0418, SNNR0442, SNNR0444,

SNNR0453, SNNR0454, SNNR0486, SNNR0489 Relevés: none

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely on the data collected for this project. It is likely to occur in the adjacent montane Sierra Nevada at elevations up to at least 5000 ft.

STAND TABLE
Ceanothus integerrimus - Quercus garryana var. breweri Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PISA2-M	Pinus sabiniana	33	0.1	0.2	0.2				
	QUWI2-M	Quercus wislizeni	22	0.7	1	5				
	PISA2-T	Pinus sabiniana	22	0	0.2	0.2				
	QUKE-T	Quercus kelloggii	22	0	0.2	0.2				
Shrub										
	CEIN3	Ceanothus integerrimus		33.6	10	54		Χ	Χ	
	QUGAB	Quercus garryana var. breweri	89	7.3	1	18			Χ	
	LECA3	Lepechinia calycina	78	6.6	1	25			Χ	
	CEOCO	Cercis occidentalis	78	3.2	2	8			Χ	
	FRDI2	Fraxinus dipetala	67	3.4	0.2	9				
	CECU	Ceanothus cuneatus	67	2.2	0.4	14				
	PTCR3	Ptelea crenulata	67	1.0	0.2	4				
	ERCA6	Eriodictyon californicum	67	0.7	0.2	3				
	CEBE3	Cercocarpus betuloides	56	0.6	0.2	2				
	ARPA6	Arctostaphylos patula	33	3.0	0.2	23				
	QUBE5	Quercus berberidifolia	33	0.6	1	3				
	CLLA3	Clematis lasiantha	33	0.3	1	1				
	TODI	Toxicodendron diversilobum	33	0.3	0.4	1.2				
	KEBR	Keckiella breviflora	33	0.2	0.2	1				
Herb										
	VUMY	Vulpia myuros	67	2.3	0.2	10				Χ
	CLRH	Clarkia rhomboidea	56	0.4	0.2	1				
	GAPA5	Galium parisiense	56	0.3	0.2	1				Χ
	BRTE	Bromus tectorum	33	0.2	0.2	1				Χ
	TONO	Torilis nodosa	33	0.2	0.2	1				Χ
	AICA	Aira caryophyllea	22	0	0.2	0.2				Χ

Cephalanthus occidentalis Shrubland Alliance Button-willow Shrubland Alliance

As defined in the state, *Cephalanthus occidentalis* is the dominant in the shrub canopy. *Salix laevigata*, *Rubus discolor*, and *Vitis californica* are often present in the shrub layer. Emergent trees may include *Fraxinus latifolia*. The shrub layer is sparse to continuous, and the herb layer is sparse to open. Stands occur on the banks of rivers and streams, and in the Foothills, soils are generally coarse sand.

As described below, one association of the Button-willow Alliance was classified in the study area.

Cephalanthus occidentalis Association Button-willow Association

SUMMARY

In the stands sampled, the overstory shrub canopy was open to continuous and dominated by *Cephalanthus occidentalis* var. *californicus* at 1-53% cover. Other shrubs such as *Rubus discolor* and *Vitis californica* were often present. Trees such as *Fraxinus latifolia*, *Pinus sabiniana*, and *Salix laevigata* sometimes occurred as scattered emergents. The herbaceous layer was open and often included *Artemisia douglasiana*.

This association was sampled infrequently in the study area within the central Sierra Nevada Foothills and Cascade Range Foothills, and occasionally in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on mixed or sandy alluvium, metamorphic, basalt, or mixed rock substrates. They usually occupied bottom slopes that were flat to moderate along riparian corridors with seasonal inundation.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Mariposa, Nevada, Placer, and Shasta Counties within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	29.4	8-59	-
Herb	8.8	3-26	variable
Shrub	27.8	2-83	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	3.4	0-19	<5-20
Conifer	0.6	0-3	10-35
Relative non-native to native cover	18	6-34	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (3), N (2), W (1), SW (1), S (1)

Macrotopography: bottom (7), lower slope (1)

Microtopography: flat (4), concave (2), undulating (2)

Parent Material: mixed alluvium (3), metamorphic (2), basalt (1), mixed rock (1), sandy alluvium

(1)

Soil Texture: sand (7)

	Mean	Range
Elevation	1120 ft.	638-1814 ft.
Slope	1.6°	0-6°
Large rock cover	40%	5-75%
Small rock cover	21.1%	6-63%
Bare ground cover	14.5%	1-40%
Litter cover	10.3%	2-40%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=8)

Rapid Assessments: SNNR0595, SNNR0633, SNNR0723, SNNR0904, SNNR0964,

SNNR0995, SNNR1006, SNNR1266 Relevés: none

Rank: G4S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills. The *C. occidentalis* alliance has also been described for the Great Valley (Hickson and Keeler-Wolf 2007, Holland 1986), but not in sufficient detail to describe different associations. Stands from the lower elevation valley floor are likely to be different than this foothill type. So far as is understood, this association is endemic to the Sierra Nevada Foothills.

STAND TABLE Cephalanthus occidentalis Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	SALA3-M	Salix laevigata	50	2.4	0.2	16				
	SALA3-T	Salix laevigata	50	2.4	4	5				
	FRLA-M	Fraxinus latifolia	38	0.8	0.2	4				
	PISA2-T	Pinus sabiniana	25	0.5	1	3				
Shrub										
	CEOCC2	Cephalanthus occidentalis var. californicus	100	15.3	1	53	Χ		Χ	
	RUDI2	Rubus discolor	63	4.0	0.2	20				Χ
	VICA5	Vitis californica	50	1.8	0.2	10				
	SAEX	Salix exigua	38	1.5	4	4				
	SALA6	Salix lasiolepis	38	1.3	1	6				
	CEOCO	Cercis occidentalis	25	0.2	0.2	1				
	BRCA3	Brickellia californica	25	0.1	0.2	0.2				
	TODI	Toxicodendron diversilobum	25	0.1	0.2	0.2				
Herb										
	ARDO3	Artemisia douglasiana	50	0.2	0.2	1				
	CYDA	Cynodon dactylon	38	2.4	2	12				Χ
	MEAL2	Melilotus albus	38	0.3	0.2	1				Χ
	MIGU	Mimulus guttatus	38	0.2	0.2	1				
	ELMA5	Eleocharis macrostachya	25	0.8	0.2	6				
	CYER	Cyperus eragrostis	25	0.5	1	3				
	HOFI	Holozonia filipes	25	0.4	1	2				
	MURI2	Muhlenbergia rigens	25	0.4	1	2				
	STST	Stachys stricta	25	0.4	1	2				
	DAGL2	Datisca glomerata	25	0.3	0.2	2				
	JUEF	Juncus effusus	25	0.3	1	1				
	CYEC	Cynosurus echinatus	25	0.2	0.2	1				Χ
	GRHID2	Grindelia hirsutula var. davyi	25	0.2	0.2	1				
	HOMA4	Hoita macrostachya	25	0.2	0.2	1				
	CESO3	Centaurea solstitialis	25	0.1	0.2	0.2				Χ
	ELGL	Elymus glaucus	25	0.1	0.2	0.2				
	EPCI	Epilobium ciliatum	25	0.1	0.2	0.2				
	EUOC4	Euthamia occidentalis	25	0.1	0.2	0.2				
	HYPE	Hypericum perforatum	25	0.1	0.2	0.2				Χ
	PAAC5	Panicum acuminatum	25	0.1	0.2	0.2				
	POLYG4	Polygonum	25	0.1	0.2					
	RUCR	Rumex crispus	25	0.1	0.2	0.2				Χ

Cercocarpus betuloides Shrubland Alliance Birchleaf Mountain-mahogany Shrubland Alliance

As defined in the state, *Cercocarpus betuloides* (=*C. montanus*) is dominant or co-dominant in the shrub or small tree canopy layer with the chaparral shrubs *Adenostoma fasciculatum*, *Arctostaphylos glandulosa*, *A. glauca*, *Artemisia californica*, *Ceanothus crassifolius*, *C. cuneatus*, *C. spinosus*, *Eriogonum fasciculatum*, *Fremontodendron californicum*, *Garrya flavescens*, *Hesperoyucca whipplei*, *Heteromeles arbutifolia*, *Malosma laurina*, *Prunus ilicifolia*, *Quercus berberidifolia*, *Q. john-tuckeri*, *Rhamnus ilicifolia*, and *Salvia mellifera*. Emergent *Juglans californica*, *Juniperus californica*, *Pinus sabiniana*, *Platanus racemosa*, *Quercus agrifolia*, *Q. douglasii* or *Umbellularia californica* trees may be present. The shrub canopy is often two-tiered, and shrubs are patchy. Stands occur on ridges, upper slopes, and fractured rock outcrops on limestone, marble, volcanic, and rarely-flooded rocky alluvium.

In the study area, stands typically occupy rockier sites than denser *Ceanothus* or *Quercus*-dominated chaparral stands. Two associations of the Birchleaf Mountain-mahogany Alliance were classified and are described below.

Cercocarpus betuloides Association Birchleaf Mountain-mahogany Association

SUMMARY

In the stands sampled, the overstory shrub canopy was open and dominated by *Cercocarpus betuloides* at 5-20% cover. Other shrubs such as *Brickellia californica*, *Ceanothus cuneatus*, *Cercis occidentalis*, *Lonicera hispidula* var. *vacillans*, and *Toxicodendron diversilobum* were often present. Trees such as *Aesculus californica*, *Pinus ponderosa*, *Pinus sabiniana*, and *Quercus wislizeni* sometimes occurred as scattered emergents. The herbaceous layer was open and included a variety of native and non-native grasses and forbs (see stand table below).

This association was sampled infrequently in the study area within the central Sierra Nevada Foothills, Cascade Range Foothills, and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on mixed alluvium, greenstone, or other metamorphic substrates. They occupied gently sloping bottoms, lower slopes, or draws, often along riparian corridors.

DISTRIBUTION IN STUDY AREA

This association was sampled in Mariposa, Placer, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	29.5	14-45	-
Herb	9.5	4-22	variable
Shrub	16.8	10-23	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	1.3	0-5	<5-10
Conifer	1.5	0-5	5-20
Relative non-native to native cover	16.1	9-21	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (2), W (1), E (1)

Macrotopography: bottom (2), lower slope (1), draw (1)

Microtopography: undulating (3), concave (1)

Parent Material: mixed alluvium (2), greenstone (1), metamorphic (1)

Soil Texture: sand (2), silt or silt loam (1)

	Mean	Range
Elevation	1349 ft.	968-2170 ft.
Slope	2.80	2-40
Large rock cover	45.5%	10-88%
Small rock cover	35%	10-55%
Bare ground cover	11.8%	1-39%
Litter cover	3.3%	0.2-10%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=4)

Rapid Assessments: SNNR0623, SNNR0728, SNNR0802 Relevés: SNFN0344

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills and adjacent lower Sierra Nevada montane zone (NatureServe et al. 2003b) as the *C. montanus* var. *glaber* association. It is likely to occur at least as far south as Sequoia National Park (S. Haultain, pers. comm. 2004).

STAND TABLE Cercocarpus betuloides Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-M	Quercus wislizeni	25	1.3	5	5				
	PIPO-T	Pinus ponderosa	25	1.0	4	4				
	PISA2-T	Pinus sabiniana	25	0.3	1	1				
	AECA-M	Aesculus californica	25	0.1	0.2	0.2				
	QUWI2-T	Quercus wislizeni	25	0.1	0.2	0.2				
Shrub										
	CEBE3	Cercocarpus betuloides	100	11.8	5	20	Χ		Χ	
	BRCA3	Brickellia californica	75	2.3	1	6			Χ	
	CEOCO	Cercis occidentalis	75	1.1	0.2	2			Χ	
	TODI	Toxicodendron diversilobum	75	8.0	0.2	2			Χ	
	CECU	Ceanothus cuneatus	50	0.1	0.2	0.2				
	LOHIV	Lonicera hispidula var. vacillans	50	0.1	0.2	0.2				
	RHTO6	Rhamnus tomentella	25	0.5	2	2				
	RUDI2	Rubus discolor	25	0.5	2	2				Χ
	JUCA7	Juniperus californica	25	0.3	1	1				
	ARVI4	Arctostaphylos viscida	25	0.1	0.2	0.2				
	CELE	Ceanothus lemmonii	25	0.1	0.2	0.2				

STAND TABLE continued Cercocarpus betuloides Association

Lifeforr	n Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Shrub										
	CLLA3	Clematis lasiantha	25	0.1	0.2	0.2				
	ERPR8	Eriogonum prattenianum	25	0.1	0.2	0.2				
	LUAL4	Lupinus albifrons	25	0.1	0.2	0.2				
Herb										
	TRHI4	Trifolium hirtum	50	1.1	0.2	4				Χ
	LOMU	Lolium multiflorum	50	8.0	0.2	3				Χ
	LOPU3	Lotus purshianus	50	8.0	0.2	3				
	MURI2	Muhlenbergia rigens	50	8.0	0.2	3				
	GRHID2	Grindelia hirsutula var. davyi	50	0.6	0.2	2				
	VUMY	Vulpia myuros	50	0.6	0.2	2				Χ
	ACLE8	Achnatherum lemmonii	50	0.3	0.2	1				
	BRMA3	Bromus madritensis	50	0.3	0.2	1				Χ
	CESO3	Centaurea solstitialis	50	0.3	0.2	1				Χ
	CLPA5	Claytonia parviflora	50	0.3	0.2	1				
	ERLA6	Eriophyllum lanatum	50	0.3	0.2	1				
	AVBA	Avena barbata	50	0.1	0.2	0.2				Χ
	ELEL5	Elymus elymoides	50	0.1	0.2	0.2				
	MADIA	Madia	50	0.1	0.2					
	MECA2	Melica californica	50	0.1	0.2	0.2				
	MOVI2	Monardella villosa	50	0.1	0.2					
	SCUTE	Scutellaria	50	0.1	0.2	0.2				
	BRHO2	Bromus hordeaceus	25	8.0	3	3				Χ
	ELGL	Elymus glaucus	25	0.5		2				
	HEFI	Hemizonia fitchii	25	0.5	2	2				
	MAGR3	Madia gracilis	25	0.5	2	2				
	ERUM	Eriogonum umbellatum	25	0.3	1	1				
	SHAR2	Sherardia arvensis	25	0.3	1	1				Χ
	AICA	Aira caryophyllea	25	0.1	0.2	0.2				Χ
	ALAM2	Allium amplectens	25	0.1	0.2	0.2				
	ALSAS	Allium sanbornii var. sanbornii	25	0.1	0.2	0.2				
	AMMEI2	Amsinckia menziesii var. intermedia	25	0.1	0.2	0.2				
	ANCA14	Anthriscus caucalis	25	0.1	0.2	0.2				Χ
	ASCLE	Asclepias	25	0.1	0.2	0.2				
	ASER	Asclepias eriocarpa	25	0.1	0.2	0.2				
	BRCA4	Brodiaea californica	25	0.1	0.2	0.2				
	BRDI3	Bromus diandrus	25	0.1	0.2	0.2				Χ
	CAAL2	Calochortus albus	25	0.1	0.2	0.2				
	CAOL	Cardamine oligosperma	25	0.1	0.2	0.2				
	CEGL2	Cerastium glomeratum	25	0.1	0.2	0.2				Χ
	COPA3	Collinsia parviflora	25	0.1	0.2	0.2				
	CRAN11	Crucianella angustifolia	25	0.1	0.2	0.2				Χ

STAND TABLE continued Cercocarpus betuloides Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	CRCR4	Cryptantha crinita	25	0.1	0.2	0.2				
	CYEC	Cynosurus echinatus	25	0.1	0.2	0.2				Χ
	DELPH	Delphinium	25	0.1	0.2	0.2				
	DIMU5	Dichelostemma multiflorum	25	0.1	0.2	0.2				
	EPBR3	Epilobium brachycarpum	25	0.1	0.2	0.2				
	EPCA3	Epilobium canum	25	0.1	0.2	0.2				
	EPCAL	Epilobium canum subsp. latifoli	um25	0.1	0.2	0.2				
	ERSE3	Eremocarpus setigerus	25	0.1	0.2	0.2				
	ERFOH	Erigeron foliosus var. hartwegii	25	0.1	0.2	0.2				
	ERBO	Erodium botrys	25	0.1	0.2	0.2				Χ
	ESCA	Eschscholzia caespitosa	25	0.1	0.2	0.2				
	GAAP2	Galium aparine	25	0.1	0.2	0.2				
	GAPO	Galium porrigens	25	0.1	0.2	0.2				
	GEMO	Geranium molle	25	0.1	0.2	0.2				Χ
	GRCA	Grindelia camporum	25	0.1	0.2	0.2				
	HOMU	Hordeum murinum	25	0.1	0.2					Χ
	HYGL2	Hypochaeris glabra	25	0.1	0.2	0.2				Χ
	LOMAT	Lomatium	25	0.1	0.2					
	LOMA4	Lomatium marginatum	25	0.1	0.2					
	LOUT	Lomatium utriculatum	25	0.1	0.2	0.2				
	LOMI	Lotus micranthus	25	0.1	0.2					
	MEPO3	Medicago polymorpha	25	0.1	0.2					Χ
	MICA	Micropus californicus	25	0.1	0.2	0.2				
	MIGU	Mimulus guttatus	25	0.1	0.2					
	NAPU4	Nassella pulchra	25	0.1	0.2	0.2				
	NATA3	Navarretia tagetina	25	0.1	0.2	0.2				
	NEHE	Nemophila heterophylla	25	0.1	0.2	0.2				
	ODHA	Odontostomum hartwegii	25	0.1	0.2					
	PETR7	Pentagramma triangularis	25	0.1	0.2	0.2				
	PEDU2	Petrorhagia dubia	25	0.1	0.2	0.2				Χ
	PLNO	Plagiobothrys nothofulvus	25	0.1	0.2	0.2				
	PLER3	Plantago erecta	25	0.1	0.2	0.2				
	PLLA	Plantago lanceolata	25	0.1	0.2					Χ
	POAN	Poa annua	25	0.1	0.2					Χ
	POSE	Poa secunda	25	0.1	0.2	0.2				
	PTDR	Pterostegia drymarioides	25	0.1	0.2					
	RAMU2	Ranunculus muricatus	25	0.1	0.2					Χ
	SADEO	Sagina decumbens subsp. occidentalis	25	0.1	0.2	0.2				
	SABI3	Sanicula bipinnatifida	25	0.1	0.2	0.2				
	SEVU	Senecio vulgaris	25	0.1	0.2	0.2				Χ
	SOCA5	Solidago californica	25	0.1	0.2	0.2				

STAND TABLE continued Cercocarpus betuloides Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	SOHA	Sorghum halepense	25	0.1	0.2	0.2				Χ
	STME2	Stellaria media	25	0.1	0.2	0.2				Χ
	THCU	Thysanocarpus curvipes	25	0.1	0.2	0.2				
	TOAR	Torilis arvensis	25	0.1	0.2	0.2				Χ
	TRDU2	Trifolium dubium	25	0.1	0.2	0.2				Χ
	TRWI3	Trifolium willdenovii	25	0.1	0.2	0.2				
	TRLA16	Triteleia laxa	25	0.1	0.2	0.2				
	VUMI	Vulpia microstachys	25	0.1	0.2	0.2				
Cryptoga	am									
	MOSS	Moss	25	0.1	0.2	0.2				
	SEHA2	Selaginella hansenii	25	0.1	0.2	0.2				

Cercocarpus betuloides - Ceanothus cuneatus Association (Provisional) Birchleaf Mountain-mahogany - Wedgeleaf Ceanothus Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was open to intermittent and dominated by *Ceanothus cuneatus* at 2-16% cover and *Cercocarpus betuloides* at 3-18% cover. Other shrubs such as *Lonicera interrupta* and *Toxicodendron diversilobum* were often present. Trees or shrubs such as *Aesculus californica*, *Quercus chrysolepis*, *Quercus douglasii*, *Quercus wislizeni* sometimes occurred as scattered emergents. The herbaceous layer was open to intermittent and often included *Avena barbata*, *Bromus hordeaceus*, *Bromus madritensis*, *Galium porrigens*, *Torilis arvensis*, and *Vulpia microstachys*.

In the study area, this association was sampled occasionally in the Cascade Range Foothills and High Cascade Range, extending infrequently into the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands consistently occurred on volcanic (including basalt) substrates. They occupied a variety of upland slope positions from bottom to upper slopes (most often middle slopes), that were flat to very steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Nevada and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	60.9	49-75	-
Herb	33.9	8-60	variable
Shrub	30.5	21-42	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	1	0-6	<5-10
Conifer	0.5	0-3	<5-20
Relative non-native to native cover	29.9	7-58	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (3), SE (1), S (1), NW (1), NE (1), Flat (1)

Macrotopography: bottom (1), lower slope (2), middle slope (3), middle to upper slope (1), upper slope (1)

Microtopography: undulating (5), convex (2), flat (1)

Parent Material: volcanic (7), basalt (1)

Soil Texture: loam or sandy loam (3), clay or clay loam (2)

	Mean	Range
Elevation	1748 ft.	500-3228 ft.
Slope	22.9°	0-480
Large rock cover	11.2%	0.2-40%
Small rock cover	9.6%	5-20%
Bare ground cover	17.4%	5-40%
Litter cover	57.4%	30-79%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=8)

Rapid Assessments: SNNR0190, SNNR0211, SNNR0332, SNNR0349, SNNR0598,

SNNR0858, SNNR1348 Relevés: SNFN0164

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon the data from this project. A similar association has been defined for the central Coast Ranges in W. Fresno Co. (Evens and Keeler-Wolf 2006).

STAND TABLE Cercocarpus betuloides - Ceanothus cuneatus Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	AECA-M	Aesculus californica	63	1.0	0.2	3				
	QUDO-T	Quercus douglasii	38	0.4	1	1				
	QUWI2-M	Quercus wislizeni	25	0.4	0.2	3				
	QUCH2-M	Quercus chrysolepis	25	0.2	0.2	1				
Shrub										
	CECU	Ceanothus cuneatus	100	10.9	2	16		Χ	Χ	
	CEBE3	Cercocarpus betuloides	100	10.8	3	18		Χ	Χ	
	TODI	Toxicodendron diversilobum	100	1.8	0.2	4			Χ	
	LOIN4	Lonicera interrupta	50	0.3	0.2	1				
	CLLA3	Clematis lasiantha	38	0.7	0.2	5				
	CEOCO	Cercis occidentalis	38	0.4	0.2	2				
	RHIL	Rhamnus ilicifolia	38	0.3	0.2	2				
	CEIN3	Ceanothus integerrimus	25	1.4	1	10				
	PHLE4	Philadelphus lewisii	25	0.7	0.2	5				
Herb		•								
	BRHO2	Bromus hordeaceus	75	5.9	2	20			Χ	Χ
	TOAR	Torilis arvensis	75	2.3	0.2	8			Χ	Χ
	AVBA	Avena barbata	63	2.0	0.2	8				Χ
	BRMA3	Bromus madritensis	50	1.4	0.2	10				Χ
	VUMI	Vulpia microstachys	50	0.4	0.2	2				
	GAPO	Galium porrigens	50	0.2	0.2	1				
	CYEC	Cynosurus echinatus	38	1.5	0.2	9				Χ
	TRHI4	Trifolium hirtum	38	1.0	0.2	7				Χ
	AICA	Aira caryophyllea	38	8.0	1	3				Χ
	TRMI4	Trifolium microcephalum	38	0.7	0.2	4				
	ERLA6	Eriophyllum lanatum	38	0.3	0.2	2				
	CESO3	Centaurea solstitialis	38	0.2	0.2	1				Χ
	GAPA5	Galium parisiense	25	0.4	1	2				Χ
	MICA	Micropus californicus	25	0.4	1	2				
	VUMY	Vulpia myuros	25	0.4	1	2				Χ
	HYGL2	Hypochaeris glabra	25	0.3	0.2	2				Χ
	MAGR3	Madia gracilis	25	0.3	0.2	2				
	BRDI3	Bromus diandrus	25	0.2	0.2	1				Χ
	PETR7	Pentagramma triangularis	25	0.2	0.2	1				
	GEMO	Geranium molle	25	0.1	0.2	0.2				Χ
	MECA2	Melica californica	25	0.1	0.2	0.2				
	PEDU2	Petrorhagia dubia	25	0.1	0.2	0.2				Χ
	TRLA16	Triteleia laxa	25	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	25	4.3	4	30				

Cornus sericea Shrubland Alliance Red-osier Dogwood Shrubland Alliance

As defined in the state, *Cornus sericea* is the dominant shrub with *Salix exigua*, *Salix lasiolepis*, *Cercis occidentalis* or *Toxicodendron diversilobum*. The shrub layer is intermittent to continuous, and the herb layer is sparse to open. In California, stands are known from the Sacramento-San Joaquin Delta and from the Sierra, but few stands have been sampled.

One stand in this alliance was sampled in the Foothills (SNNR0181), and it occurred in an environmental setting different from associations described from the Delta. It had an intermittent shrub cover, which was dominated strongly by *Cornus sericea* and included *Cercis occidentalis*, *Toxicodendron diversilobum*, and *Rhus trilobata*.

Cornus sericea Alliance (no Associations defined) Red-osier Dogwood Alliance

SUMMARY

In the stand sampled, the overstory shrub canopy was intermittent and dominated by *Cornus sericea* at 50% cover. Other shrubs such as *Cercis occidentalis*, *Rhamnus ilicifolia*, *Rhamnus tomentella*, *Rhus trilobata*, *Sambucus mexicana*, *Toxicodendron diversilobum*, and *Vitis californica* were present. Trees such as *Aesculus californica* and *Pinus sabiniana* sometimes occurred as scattered emergents. The herbaceous layer was variable and dominated by *Madia elegans* and *Torilis arvensis*, and it included a variety of other taxa such as *Bromus* spp., *Galium aparine*, *G. parisiense*, and *Taeniatherum caput-medusae*.

This alliance was sampled once in the study area in the Tehama Wildlife Area within the Cascade Range Foothills Subregion (Hickman 1993). Although *Cornus sericea* is usually a riparian, understory species in the Sierra Nevada, this stand occurred in an unusual setting – in a small disturbed upland area on volcanic substrate near more mesic vegetation.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tehama County, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	82	82-82	-
Herb	15	15-15	< 0.3
Shrub	70	70-70	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0.2	0-0.2	10-20
Relative non-native to native cover	11	11-11	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (1)

Macrotopography: middle slope (1) Microtopography: undulating (1) Parent Material: volcanic (1)

Soil Texture: loam or sandy loam (1)

	Mean	Range
Elevation	1391 ft.	1391-1391 ft.
Slope	30	3-3°
Large rock cover	5%	5-5%
Small rock cover	3%	3-3%
Bare ground cover	8%	8-8%
Litter cover	79%	79-79%

SAMPLES USED TO DESCRIBE ALLIANCE (n=1)

Rapid Assessments: SNNR0181 Relevés: none

Rank: G4S3

GLOBAL DISTRIBUTION

This alliance has been described for the Sierra Nevada and many other parts of western North America (NatureServe 2007a). Insufficient sampling precludes further description of stands in the Sierra Foothills. Other associations have been defined from the Sacramento-San Joaquin River Delta (Hickson and Keeler-Wolf 2007) and from the higher elevations of the Sierra Nevada (Potter 2005).

STAND TABLE

Cornus sericea Alliance

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	AECA-M	Aesculus californica	100	1.0	1	1	Χ		Χ	
	PISA2-T	Pinus sabiniana	100	0.2	0.2	0.2			Χ	
Shrub										
	COSE16	Cornus sericea	100	50.0	50	50	Χ		Χ	
	CEOCO	Cercis occidentalis	100	10.0	10	10			Χ	
	TODI	Toxicodendron diversilobum	100	10.0	10	10			Χ	
	RHTR	Rhus trilobata	100	2.0	2	2			Χ	
	RHIL	Rhamnus ilicifolia	100	1.0	1	1			Χ	
	RHTO6	Rhamnus tomentella	100	1.0	1	1			Χ	
	VICA5	Vitis californica	100	1.0	1	1			Χ	
	SAME5	Sambucus mexicana	100	0.2	0.2	0.2			Χ	
Herb										
	MAEL	Madia elegans	100	5.0	5	5		Χ	Χ	
	TOAR	Torilis arvensis	100	5.0	5	5		Χ	Χ	Χ
	BRDI3	Bromus diandrus	100	1.0	1	1			Χ	Χ
	BRMA3	Bromus madritensis	100	1.0	1	1			Χ	Χ
	BRTE	Bromus tectorum	100	1.0	1	1			Χ	Χ
	GAAP2	Galium aparine	100	1.0	1	1			Χ	
	GAPA5	Galium parisiense	100	1.0	1	1			Χ	Χ
	TACA8	Taeniatherum caput-medusae	100	1.0	1	1			Χ	Χ
	ELGL	Elymus glaucus	100	0.2	0.2	0.2			Χ	
	VUMY	Vulpia myuros	100	0.2	0.2	0.2			Χ	Χ

Eriodictyon californicum Shrubland Alliance Yerba Santa Shrubland Alliance

As defined in the state, *Eriodictyon californicum* is the dominant shrub, with *Ceanothus cuneatus* frequently present, and *Adenostoma fasciculatum* and *Toxicodendron diversilobum* less frequent in the shrub layer. The shrub canopy is open to intermittent. Topography and geologic substrates are variable (including serpentinite substrate in the Foothills). Stands generally occur in relatively recently-burned areas, although they may occur in other disturbed areas.

As described below, one association of the Yerba Santa Alliance was classified in the study area. This type is typically associated with recent disturbance, including recent burns, and stands may transition to Wedgeleaf Ceanothus or Blue Oak Alliances with lack of disturbance.

Eriodictyon californicum / Herbaceous Association California Yerba Santa / Herbaceous Association

SUMMARY

In the stands sampled, the shrub canopy was open to intermittent and dominated by *Eriodictyon californicum* at 6-45% cover. *Ceanothus cuneatus* often intermixed in the shrub overstory. *Pinus sabiniana* sometimes occurred as a scattered emergent tree. The herbaceous layer was open to continuous and often included *Avena barbata*, *Bromus hordeaceus*, *Bromus madritensis*, *Centaurea melitensis*, *Daucus pusillus*, *Galium parisiense*, *Hypochaeris glabra*, and *Vulpia myuros*.

In the study area, this association was sampled often within the central Sierra Nevada Foothills and infrequently in the Cascade Range Foothills, High Cascade Range, and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic (including serpentine) substrates, and infrequently on volcanic or ultramafic substrates. They usually occupied upland middle slopes to ridgetops that were moderate to steep. Stands may be in recently disturbed settings, including recently burned or cleared areas, and they may transition to the *Ceanothus cuneatus* Alliance 10 or more years after disturbance.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Calaveras, Mariposa, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	60.2	20-96	-
Herb	41.9	5-90	variable
Shrub	28.5	7-50	0-2
Low Tree/Tall Shrub	0	-	-
Hardwood	0.4	0-5	<5
Conifer	0.2	0-1	<5
Relative non-native to native cover	45.8	9-93	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (6), S (4), Variable (2), W (1), SE (1)

Macrotopography: lower to middle slope (1), middle slope (6), middle slope to ridgetop (1), upper

slope (3), ridgetop (3)

Microtopography: convex (7), undulating (4), flat (2), concave (1)

Parent Material: metamorphic (7), volcanic (4), serpentine (2), ultramafic (1) Soil Texture: loam or sandy loam (5), clay or clay loam (3), silt or silt loam (1)

	Mean	Range
Elevation	1734 ft.	784-2618 ft.
Slope	16.9°	6-29°
Large rock cover	6.4%	0.2-20%
Small rock cover	14.5%	0.2-65%
Bare ground cover	26.5%	2-49%
Litter cover	48.9%	1-76%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=14)

Rapid Assessments: SNNR0136, SNNR0245, SNNR0415, SNNR0424, SNNR0466,

SNNR0755, SNNR1036, SNNR1092, SNNR1148, SNNR1417 Relevés: SNFN0111, SNFN0226,

SNFN0652, SNFN0653

Rank: G4S4?

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon data collected for this project. It is likely to occur in the Inner North Coast Ranges as well.

STAND TABLE Eriodictyon californicum / Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PISA2-M	Pinus sabiniana	36	0.2	0.2	1				
	QUDO-M	Quercus douglasii	21	0.6	0.2	8				
Shrub										
	ERCA6	Eriodictyon californicum	100	24.6	6	45	Χ		Χ	
	CECU	Ceanothus cuneatus	64	1.2	0.2	12				
	ADFA	Adenostoma fasciculatum	29	1.2	0.2	8				
	TODI	Toxicodendron diversilobum	29	0.3	0.2	2				
	LOSC2	Lotus scoparius	21	0.1	0.2	1				
	MIAU	Mimulus aurantiacus	21	0	0.2	0.2				
Herb										
	GAPA5	Galium parisiense	71	1.7	0.2	10				X
	BRHO2	Bromus hordeaceus	64	6.5	1	30				X
	AVBA	Avena barbata	64	1.8	0.2	10				Χ
	VUMY	Vulpia myuros	57	4.3	0.2	25				Χ
	HYGL2	Hypochaeris glabra	57	1.8	0.2	10				Χ
	CEME2	Centaurea melitensis	50	1.4	0.2	8				X
	DAPU3	Daucus pusillus	50	0.6	0.2	3				
	BRMA3	Bromus madritensis	50	0.2	0.2	1				X
	TRHI4	Trifolium hirtum	43	2.6	0.2	30				X
	AICA	Aira caryophyllea	43	1.0	0.2	7				Χ
	BRDI2	Brachypodium distachyon	36	9.9	0.2	65				Χ
	FIGA	Filago gallica	36	0.9	0.2	8				Χ
	GAVE3	Gastridium ventricosum	36	0.1	0.2	1				Χ
	PEDU2	Petrorhagia dubia	29	0.5	0.2	5				Χ
	CESO3	Centaurea solstitialis	29	0.2	0.2	2				Χ
	LOWR2	Lotus wrangelianus	29	0.1	0.2	0.2				
	TRMI4	Trifolium microcephalum	29	0.1	0.2	0.2				
	ERBO	Erodium botrys	21	1.3	0.2	17				Χ
	MAGR3	Madia gracilis	21	0.5	0.2	7				
	CHPO3	Chlorogalum pomeridianum	21	0.4	0.2	5				
	BRDI3	Bromus diandrus	21	0.3	0.2	3				Χ
	CAOCO	Calystegia occidentalis subsp. occidentalis	21	0	0.2	0.2				
	CAAT25	Castilleja attenuata	21	0	0.2	0.2				
	SIGA	Silene gallica	21	0	0.2	0.2				Χ
	SOOL	Sonchus oleraceus	21	0	0.2	0.2				Χ

Heteromeles arbutifolia Shrubland Alliance Toyon Shrubland Alliance

As defined in the state, *Heteromeles arbutifolia* is dominant or co-dominant in the shrub canopy with *Artemisia californica*, *Ceanothus crassifolius*, *Ceanothus spinosus*, *Cercocarpus montanus*, *Diplacus aurantiacus*, *Eriogonum fasciculatum*, *Fraxinus dipetala*, *Keckiella antirrhinoides*, *Lonicera subspicata*, *Malosma laurina*, *Prunus ilicifolia*, *Quercus berberidifolia*, *Rhamnus ilicifolia*, *Rhus ovata*, *Salvia mellifera*, and *Sambucus nigra* subsp. *canadensi*s. Emergent *Cupressus forbesii*, *Juglans californica*, and *Quercus agrifolia* trees may be present. The shrub canopy is often two-tiered and is open to continuous. The herbaceous layer is open to intermittent. Stands generally occur on steep, north-facing slopes. Soils are loams. The alliance is generally represented by a heterogeneous mixture of chaparral dominants. The difference between this alliance and other chaparral types appears to be mostly related to site history, largely time since last fire, fire frequency, and proximity to other alliances.

As described below, one association of the Toyon Alliance was classified. This association was found on serpentine and was similar to Wedgeleaf Ceanothus stands in the study area. One stand (SNNR0395) in the Foothills did not occur on serpentine soil and was classified to the alliance level only.

Heteromeles arbutifolia Serpentine Association (Provisional) Toyon Serpentine Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was open to intermittent and dominated by Heteromeles arbutifolia at 19-35% cover. Other shrubs such as Ceanothus cuneatus, Rhamnus ilicifolia, and Toxicodendron diversilobum were often present. Pinus sabiniana often occurred as a scattered emergent tree. The herbaceous layer was open, with abundant and characteristic taxa such as Bromus hordeaceus, Bromus madritensis, Dichelostemma capitatum subsp. capitatum, Eriophyllum lanatum, Galium porrigens, Lasthenia californica, Linanthus bicolor, Melica californica, Micropus californicus, Pentagramma triangularis, Uropappus lindleyi, and Vulpia microstachys.

This association was sampled somewhat infrequently in the study area within the central Sierra Nevada Foothills Subregion (Hickman 1993). Stands consistently occurred on serpentine substrates. They occupied upland sites on lower to upper slopes that were moderate to steep and usually north-facing.

DISTRIBUTION IN STUDY AREA

This association was sampled in Mariposa and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	50.8	45-55	-
Herb	18.6	8-28	< 0.3
Shrub	37.2	24-47	1-5

Low Tree/Tall Shrub	0	-	-
Hardwood	0.2	0-1	5-10
Conifer	1.6	0-6	<5-10
Relative non-native to native cover	12	2-39	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NE (2), N (2), W (1)

Macrotopography: lower slope (1), lower to middle slope (1), middle slope (1), upper slope (2)

Microtopography: convex (2), flat (2), undulating (1)

Parent Material: serpentine (5)

Soil Texture: loam or sandy loam (3), clay or clay loam (2)

	Mean	Range
Elevation	1153 ft.	860-1458 ft.
Slope	25.2°	12-35°
Large rock cover	12.8%	0-35%
Small rock cover	26.5%	0.4-45%
Bare ground cover	13%	6-30%
Litter cover	44.2%	10-78%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=5)

Rapid Assessments: SNNR1100 Relevés: SNFN0112, SNFN0133, SNFN0180, SNFN0348

Rank: G3S3?

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada based solely upon the data collected for this project. It is likely to also occur in the Inner North Coast Ranges. Stands are likely to be small and localized on serpentine outcrops.

STAND TABLE Heteromeles arbutifolia Serpentine Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PISA2-M	Pinus sabiniana	80	0.3	0.2	1		Χ	Χ	
	PISA2-T	Pinus sabiniana	40	1.4	1	6				
Shrub										
	HEAR5	Heteromeles arbutifolia		27.8		35	X		Χ	
	CECU	Ceanothus cuneatus	100		1	23			Χ	
	TODI	Toxicodendron diversilobum	80	0.7	0.2	1.2			Χ	
	RHIL	Rhamnus ilicifolia	60	0.6	0.2	2				
	ERCA6	Eriodictyon californicum	40	1.2	0.2	6				
Herb	DETD-		400			_				
	PETR7	Pentagramma triangularis	100		0.2				X	
	ERLA6	Eriophyllum lanatum	100		0.2	1			X	
	GAPO	Galium porrigens	100		0.2	0.2			X	
	BRHO2	Bromus hordeaceus	80	4.2	1	10			X	X
	VUMI	Vulpia microstachys	80	2.8	0.2	6			X	
	MECA2	Melica californica	80	1.6	0.2	4			X	
	LACA7	Lasthenia californica	80	1.6	1	4			X	
	LIBI	Linanthus bicolor	80	0.9	0.2	4			X	
	URLI5	Uropappus lindleyi	80	0.7	0.2	3			Χ	
	MICA	Micropus californicus	80	0.5	0.2	1			Χ	
	BRMA3	Bromus madritensis	80	0.3	0.2	1			Χ	Χ
	DICAC5	Dichelostemma capitatum subsp. capitatum	80	0.2	0.2	0.2			Х	
	MECA	Meconella californica	60	0.5	0.2	2				
	CAOCF	Calystegia occidentalis subsp. fulcrata	60	0.3	0.2	1				
	AGHE2	Agoseris heterophylla	60	0.1	0.2	0.2				
	DAPU3	Daucus pusillus	60	0.1	0.2	0.2				
	PLCI	Plectritis ciliosa	60	0.1	0.2	0.2				
	SABI3	Sanicula bipinnatifida	60	0.1	0.2	0.2				
	MAEX	Madia exigua	40	1.4	2	5				
	LEVI8	Lessingia virgata	40	0.6	0.2	3				
	CLARK	Clarkia	40	0.6	1	2				
	AVBA	Avena barbata	40	0.4	0.2	2				Χ
	LOUT	Lomatium utriculatum	40	0.4	0.2	2				
	PLER3	Plantago erecta	40	0.4	0.2	2				
	CHPO3	Chlorogalum pomeridianum	40	0.2	0.2	1				
	PSHE	Pseudobahia heermannii	40	0.2	0.2					
	TRWI3	Trifolium willdenovii	40	0.2	0.2	1				
	VUMY	Vulpia myuros	40	0.2	0.2	1				Χ
	AICA	Aira caryophyllea	40	0.1	0.2	0.2				Χ
	APOC	Aphanes occidentalis	40	0.1	0.2	0.2				
	ASTEXX	Asteraceae	40	0.1	0.2	0.2				Χ
	CAAL2	Calochortus albus	40	0.1	0.2	0.2				

STAND TABLE continued Heteromeles arbutifolia Serpentine Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
Herb										
	DUCYC3	Dudleya cymosa subsp.	40	0.1	0.2	0.2				
	ELEL5	Elymus elymoides	40	0.1	0.2	0.2				
	EPMI	Epilobium minutum	40	0.1	0.2	0.2				
	GIPUS	Githopsis pulchella subsp. serpentinicola	40	0.1	0.2	0.2				
	HEAC8	Hesperevax acaulis	40	0.1	0.2	0.2				
	POSE	Poa secunda	40	0.1	0.2	0.2				
	THCU	Thysanocarpus curvipes	40	0.1	0.2	0.2				
	TRMI4	Trifolium microcephalum	40	0.1	0.2	0.2				
	TRLA16	Triteleia laxa	40	0.1	0.2	0.2				
Cryptoga	am									
	MOSS	Moss	80	4.0	1	10	Χ		Χ	

Juniperus californica Shrubland Alliance California juniper Shrubland Alliance

As defined in the state, *Juniperus californica* is the dominant shrub, often with low cover of *Ceanothus cuneatus*. *Quercus douglasii* is often an emergent tree at low cover. The shrub canopy is open, with an intermittent herbaceous understory. Topography and aspect are variable.

Most stands in the Foothills are on volcanic mudflow substrates. One association of the California Juniper Alliance was classified for the study area and is described below.

Juniperus californica / Herbaceous Association California Juniper / Herbaceous Association

SUMMARY

In the stands sampled, the shrub canopy was open to intermittent and dominated by *Juniperus californica* at 5-35% cover. *Ceanothus cuneatus* was often present in the shrub overstory. *Quercus douglasii* often occurred as a scattered emergent tree. The herbaceous layer was open to continuous and often included *Aira caryophyllea*, *Avena barbata*, *Bromus hordeaceus*, *Geranium molle*, *Hypochaeris glabra*, *Micropus californicus*, *Plagiobothrys nothofulvus*, *Torilis arvensis*, *Trifolium hirtum*, and *Vulpia microstachys*.

In the study area, this association was sampled infrequently within the central Sierra Nevada Foothills and somewhat frequently in the Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic, and rarely occurred on metamorphic substrates. They occupied bottom to upper slopes and draws on slopes that were flat to somewhat steep, sometimes along, or adjacent to, seasonal creeks and draws.

DISTRIBUTION IN STUDY AREA

This association was sampled in Mariposa and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	54	22-77	-
Herb	42.3	12-65	< 0.3
Shrub	17.2	0-35	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	2.1	0-8	<5-20
Conifer	5.1	0-27	<5-10
Relative non-native to native cover	35.6	2-80	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (3), Variable (1), S (1), NE (1), N (1)

Macrotopography: bottom (1), bottom to lower slope (1), lower to middle slope (1), upper slope (2), draw (2)

Microtopography: undulating (4), concave (3) Parent Material: volcanic (6), metamorphic (1)

Soil Texture: clay or clay loam (3), loam or sandy loam (2), sand (1)

	Mean	Range
Elevation	1090 ft.	334-2692 ft.
Slope	7.5°	0-24°
Large rock cover	25%	5-48%
Small rock cover	12.1%	5-20%
Bare ground cover	9.7%	3-18%
Litter cover	42.5%	2-77%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=7)

Rapid Assessments: SNNR0025, SNNR0852, SNNR0883, SNNR1073 Relevés: SNFN0228, SNFN0259, SNFN0320

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills. Similar stands have been described for the central Coast Ranges in Fresno Co., but with different associated species (Evens and Keeler-Wolf 2006). Outside of the Sierra Foothills, this association is only likely to occur in spotty portions of the Inner North Coast Ranges.

STAND TABLE

Juniperus californica / Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree	QUDO-T	Quercus douglasii	57	1.9	1	8				
Shrub	JUCA7 CECU LOHIV	Juniperus californica Ceanothus cuneatus Lonicera hispidula var. vacillans	100 57 29	19.9 1.5 0.1	5 0.2 0.2		Х		X	
Herb	BRHO2 MICA	Bromus hordeaceus Micropus californicus	86 71	5.0 0.9	0.2 0.2	_			X	X
	GEMO TRHI4	Geranium molle Trifolium hirtum	57 57	2.5 2.3	0.2	17				X X
	HYGL2 AVBA	Hypochaeris glabra Avena barbata	57 57	1.9 1.6	0.2	8				X X
	TOAR VUMI	Torilis arvensis Vulpia microstachys	57 57	0.8	0.2	4				X
	AICA TACA8	Aira caryophyllea Taeniatherum caput-medusae	57 43	0.3	0.2	_				X X
	ERBO	Erodium botrys	43	2.5	0.2					X

STAND TABLE continued Juniperus californica / Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	CYEC	Cynosurus echinatus	43	2.0	1	12				Χ
	LOMU	Lolium multiflorum	43	1.3	0.2	6				Χ
	CESO3	Centaurea solstitialis	43	1.0	2	3				Χ
	BRMA3	Bromus madritensis	43	0.7	1	2				Χ
	NAPU2	Navarretia pubescens	43	0.6	0.2	3				
	TRDU2	Trifolium dubium	43	0.5	0.2	2				Χ
	MAGR3	Madia gracilis	43	0.3	0.2	2				
	PLER3	Plantago erecta	43	0.3	0.2	1				
	ALAM2	Allium amplectens	43	0.2	0.2	1				
	CLPU2	Clarkia purpurea	43	0.2	0.2	1				
	PETR7	Pentagramma triangularis	43	0.2	0.2	1				
	CEME2	Centaurea melitensis	43	0.1	0.2	0.2				Χ
	GAVE3	Gastridium ventricosum	43	0.1	0.2	0.2				Χ
	PLNO	Plagiobothrys nothofulvus	43	0.1	0.2	0.2				
	BRDI2	Brachypodium distachyon	29	0.6	1	3				Χ
	CEMU2	Centaurium muehlenbergii	29	0.5	0.2	3				
	DAPU3	Daucus pusillus	29	0.5	0.2	3				
	MADIA	Madia	29	0.3	0.2	2				
	BRELE	Brodiaea elegans subsp.	29	0.2	0.2	1				
	CASU3	Calochortus superbus	29	0.2		1				
	JUBU	Juncus bufonius	29	0.2	0.2	1				
	PEDU2	Petrorhagia dubia	29	0.2	0.2	1				Χ
	SIGA	Silene gallica	29	0.2	0.2	1				Χ
	DEVAV	Delphinium variegatum subsp. variegatum	29	0.1	0.2	0.2				
	DICAC5	Dichelostemma capitatum subsp. capitatum	29	0.1	0.2	0.2				
	ERLA6	Eriophyllum lanatum	29	0.1	0.2	0.2				
	GAPA5	Galium parisiense	29	0.1	0.2	0.2				Χ
	GRHID2	Grindelia hirsutula var. davyi	29	0.1	0.2	0.2				
	LUNA3	Lupinus nanus	29	0.1	0.2	0.2				
	MEPO3	Medicago polymorpha	29	0.1	0.2	0.2				Χ
	NATA3	Navarretia tagetina	29	0.1	0.2	0.2				
	TRBR7	Triteleia bridgesii	29	0.1	0.2	0.2				
	VUMY	Vulpia myuros	29	0.1	0.2	0.2				Χ
Cryptoga	ım									
	SEHA2	Selaginella hansenii	71	2.6	0.2	12				
	MOSS	Moss	43	1.1	1	5				

Quercus berberidifolia Shrubland Alliance Scrub oak Shrubland Alliance

As defined in the state, *Quercus berberidifolia* is dominant in the shrub canopy with *Adenostoma fasciculatum*, *A. sparsifolium*, *Arctostaphylos glandulosa*, *Ceanothus cuneatus*, *C. thyrsiflorus*, *Frangula californica*, *Heteromeles arbutifolia*, *Pickeringia montana*, *Prunus ilicifolia*, *Rhamnus ilicifolia*, and *Toxicodendron diversilobum*. The shrub canopy is continuous. Emergent *Aesculus californica*, *Quercus wislizeni*, and *Pinus sabiniana* may be present. The herbaceous layer is sparse to open. Stands primarily occur on north-facing, steep slopes. Soils are deep to shallow and are well to extensively-drained. Stands of scrub oak typically occur on mesic, north-facing slopes from southern to northern cismontane California. It is the most common scrub oak alliance on non-serpentinite substrates. In the Foothills, it is found primarily on volcanic mudflow substrate. Careful oak identification is necessary to correctly assign stands to this alliance.

As described below, two associations of the Scrub Oak Alliance were classified in the study area. Two stands (SNNR0322, SNNR0507) showed additional variation, with a co-dominance of *Quercus wislizeni*, and were only classified to the alliance level only.

Quercus berberidifolia - Ceanothus cuneatus Association Scrub Oak - Wedgeleaf Ceanothus Association

SUMMARY

In the stands sampled, the overstory shrub canopy was open to continuous and dominated by *Quercus berberidifolia* at 7-35% cover. Other shrubs such as *Ceanothus cuneatus*, *Cercocarpus betuloides*, *Lonicera interrupta*, and *Toxicodendron diversilobum* were often present. *Pinus sabiniana* often occurred as a scattered emergent tree. The herbaceous layer was open and often included *Galium porrigens* and *Vulpia microstachys*.

In the study area, this association was sampled infrequently within the central and northern Sierra Nevada Foothills, and occasionally in the Cascade Range Foothills and High Cascade Range Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt) substrates, but occurred once on serpentine substrate. They occupied a variety of upland slope positions, from lower slopes to ridgetops (most often on middle and upper slopes). Slopes varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997). Stands appear to be more common in the northern part of the study area on volcanics. The stands in Tuolumne Co. are scattered. It is notable that: 1) no stands were described in the western foothills portion of the Yosemite region by Keeler-Wolf et al. (2003) and 2) no *Q. berberidifolia* stands were identified in the vegetation inventory of Sequoia National Park (S. Haultain, pers. comm. 2004).

LOCAL VEGETATION DESCRIPTION

Mean % Range % Height (m)
Total vegetation cover 66.9 40-88 -

Herb	12.5	2-28	variable
Shrub	57.4	32-85	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	3.4	0-35	<5-10
Conifer	1.9	0-12	5-20
Relative non-native to native cover	9.4	0-28	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (3), SW (2), NW (2), NE (2), Flat (2), Variable (1), S (1)

Macrotopography: lower slope (1), middle slope (3), middle to upper slope (1), upper slope (5),

upper slope to ridgetop (2), ridgetop (1)

Microtopography: flat (6), undulating (4), convex (2), concave (1)

Parent Material: volcanic (11), basalt (1), serpentine (1)

Soil Texture: loam or sandy loam (6), clay or clay loam (4), silt or silt loam (2)

	Mean	Range
Elevation	2348 ft.	1402-3353 ft.
Slope	14.9°	0-29°
Large rock cover	2.5%	0-10%
Small rock cover	11.5%	0.2-50%
Bare ground cover	25.4%	2-47%
Litter cover	56%	35-90%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=13)

Rapid Assessments: SNNR0203, SNNR0363, SNNR0386, SNNR0389, SNNR0435, SNNR0436, SNNR0440, SNNR0517, SNNR0547, SNNR0716, SNNR0775, SNNR0790

Relevés: SNFN0375

Rank: G4S4

GLOBAL DISTRIBUTION

This association is now known from the Sierra Nevada Foothills based on data collected for this project. Formerly it was known from the southern California mountains (Gordon and White 1994, Klein and Evens 2006, and Keeler-Wolf and Evens 2006).

STAND TABLE *Quercus berberidifolia - Ceanothus cuneatus* Association

Lifefo	orm Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PISA2-T	Pinus sabiniana	54	1.9	0.2	12				
	QUWI2-M	Quercus wislizeni	23	0.2	0.2	1				
Shru								.,		
	QUBE5	Quercus berberidifolia		29.9		55		Χ	X	
	CECU	Ceanothus cuneatus		11.2		28			Χ	
	CEBE3	Cercocarpus betuloides	69	3.2	0.2					
	TODI	Toxicodendron diversilobum	69	3.2	1	15				
	LOIN4	Lonicera interrupta	69	1.1	0.2	5				
	ERCA6	Eriodictyon californicum	46	3.5	0.2					
	HEAR5	Heteromeles arbutifolia	46	1.1	0.2					
	CEOCO	Cercis occidentalis	38	0.6	0.2					
	ARVI4	Arctostaphylos viscida	31	2.9	0.2					
	RHIL	Rhamnus ilicifolia	31	2.8	1	16				
	ARMA	Arctostaphylos manzanita	31	1.3	0.2					
	CLLA3	Clematis lasiantha	31	0.6	0.2					
	LECA3	Lepechinia calycina	31	0.4	0.2					
	CEIN3	Ceanothus integerrimus	23	1.2	4	7				
	FRDI2	Fraxinus dipetala	23	0.3	0.2	3				
Herb										
	VUMI	Vulpia microstachys	62	2.2	0.2					
	GAPO	Galium porrigens	62	0.6	0.2					
	BRHO2	Bromus hordeaceus	46	1.5	1	6				Χ
	VUMY	Vulpia myuros	46	1.2	1	6				Χ
	TOAR	Torilis arvensis	38	0.3	0.2					Χ
	AVBA	Avena barbata	31	0.6	0.2					Χ
	PEDU2	Petrorhagia dubia	31	0.3	0.2					Χ
	CYEC	Cynosurus echinatus	31	0.2	0.2					Χ
	CLPU2	Clarkia purpurea	31	0.1	0.2					
	PETR7	Pentagramma triangularis	31	0.1	0.2					
	BRMA3	Bromus madritensis	23	0.6	0.2					Χ
	AICA	Aira caryophyllea	23	0.4	1	3				Χ
	GAPA5	Galium parisiense	23	0.3	0.2					Χ
	CESO3	Centaurea solstitialis	23	0.2	0.2					Χ
	DIVO	Dichelostemma volubile	23	0	0.2	0.2				

Quercus berberidifolia - Fraxinus dipetala - Heteromeles arbutifolia Association Scrub Oak - Foothill Ash - Toyon Association

SUMMARY

In the stands sampled, the overstory shrub canopy was intermittent to continuous and dominated by *Quercus berberidifolia* at 18-45% cover. Other shrubs such as *Arctostaphylos manzanita*, *Cercocarpus betuloides*, *Eriophyllum confertiflorum*, *Fraxinus dipetala*, *Heteromeles arbutifolia*, *Juniperus californica*, *Keckiella breviflora*, *Rhamnus ilicifolia*, and *Toxicodendron diversilobum* were often present. Trees such as *Aesculus californica* and *Quercus wislizeni* often occurred as scattered emergents. The herbaceous layer was open and included a variety of native and nonnative grasses and forbs (see stand table below).

This association was sampled twice in the study area, once in the central Sierra Nevada Foothills and once in the Cascade Range Foothills Subregions (Hickman 1993). Stands occurred on ultramafic or volcanic substrates. They occupied lower slopes of upland sites that were moderate to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	70	60-80	-
Herb	16	7-25	< 0.3
Shrub	56.5	37-76	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	18.8	1-36	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (1), N (1)

Macrotopography: lower slope (2) Microtopography: undulating (2)

Parent Material: ultramafic (1), volcanic (1)

Soil Texture: clay or clay loam (1)

	Mean	Range
Elevation	1148 ft.	738-1557 ft.
Slope	14.5°	7-22°
Large rock cover	2.5%	1-4%
Small rock cover	10.5%	1-20%
Bare ground cover	14%	10-18%
Litter cover	70.5%	66-75%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR0307, SNNR1066 Relevés: none

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described from Western Riverside Co. (Klein and Evens 2006). Its range has been extended to the Sierra Nevada Foothills based on data collected for this project. It is also likely to occur in the Inner North Coast Ranges and in the Central Coast Ranges.

STAND TABLE

Quercus berberidifolia - Fraxinus dipetala - Heteromeles arbutifolia Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	AECA-M	Aesculus californica	100	0.2	0.2	0.2	Χ		Χ	
	QUWI2-M	Quercus wislizeni	50	0.5	1	1				
Shrub										
	QUBE5	Quercus berberidifolia		31.5		45		Χ	Χ	
	TODI	Toxicodendron diversilobum		12.0		16			Χ	
	FRDI2	Fraxinus dipetala		11.0		20			Χ	
	HEAR5	Heteromeles arbutifolia	100	6.5	1	12			Χ	
	CLLI2	Clematis ligusticifolia	50	1.0	2	2				
	ARMA	Arctostaphylos manzanita	50	0.5	1	1				
	CEBE3	Cercocarpus betuloides	50	0.1	0.2	0.2				
	CLLA3	Clematis lasiantha	50	0.1	0.2	0.2				
	ERCO25	Eriophyllum confertiflorum	50	0.1	0.2	0.2				
	JUCA7	Juniperus californica	50	0.1	0.2	0.2				
	KEBR	Keckiella breviflora	50	0.1	0.2	0.2				
	RHIL	Rhamnus ilicifolia	50	0.1	0.2	0.2				
Herb										
	BRMA3	Bromus madritensis	100	6.5	1	12		Χ	Χ	Χ
	VUMY	Vulpia myuros	50	6.0	12	12				Χ
	METO	Melica torreyana	50	1.0	2	2				
	VUMI	Vulpia microstachys	50	1.0	2	2				
	BRHO2	Bromus hordeaceus	50	0.5	1	1				Χ
	BRLA3	Bromus laevipes	50	0.5	1	1				
	AVBA	Avena barbata	50	0.1	0.2	0.2				Χ
	CALYS	Calystegia	50	0.1	0.2	0.2				
	CLBI	Clarkia biloba	50	0.1	0.2	0.2				
	DAPU3	Daucus pusillus	50	0.1	0.2	0.2				
	DIVO	Dichelostemma volubile	50	0.1	0.2	0.2				
	ERLA6	Eriophyllum lanatum	50	0.1	0.2	0.2				
	LICI	Linanthus ciliatus	50	0.1	0.2	0.2				
	MAGR3	Madia gracilis	50	0.1	0.2	0.2				
	MECA2	Melica californica	50	0.1	0.2	0.2				
	TOAR	Torilis arvensis	50	0.1	0.2	0.2				Χ
	TRWI3	Trifolium willdenovii	50	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	50	2.0	4	4				

Quercus durata Shrubland Alliance Leather Oak Shrubland Alliance

As defined in the state, *Quercus durata* is dominant or co-dominant in the shrub canopy with *Adenostoma fasciculatum*, *Arctostaphylos glandulosa*, *A. glauca*, *A. pungens*, *A. viscida*, *Eriodictyon californicum*, *Fremontodendron californicum*, *Garrya congdonii*, *Heteromeles arbutifolia*, *Rhamnus ilicifolia*, *R. tomentella*, *Quercus berberidifolia*, and *Q. wislizeni*. Emergent *Pinus ponderosa*, *P. sabiniana*, or *Umbellularia californica* trees may be present. The shrub canopy is intermittent to continuous and the herbaceous layer is sparse to intermittent. Stands occur on varied topography. Soils are shallow and rocky. Stands of this alliance have a high fidelity to serpentinite or other ultramafic substrates (Kruckeberg 1951, Alexander et al. 2006).

In the Foothills, stands are found on gabbro soils. *Q. durata* is typically dominant or co-dominant in mesic sites, including north-facing slopes. Two associations of the Leather Oak Alliance were classified for the study area and are described below.

Quercus durata Association (Provisional) Leather Oak Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was open and dominated by *Quercus durata* at 8-12% cover. Other shrubs such as *Arctostaphylos viscida*, *Ceanothus cuneatus*, *Rhamnus ilicifolia*, and *Rhamnus tomentella* were often present. Trees such as *Pinus ponderosa*, *Pinus sabiniana*, and *Umbellularia californica* often occurred as scattered emergents. The herbaceous layer was open with abundant and characteristic taxa such as *Elymus multisetus*, *Eriophyllum lanatum*, *Melica californica*, other identified grasses, and *Scutellaria californica*.

This association was sampled twice in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on serpentine substrates. They occupied upland middle to upper slopes that were somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado County, within the Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	19.5	11-28	-
Herb	7	4-10	>0.3
Shrub	11	0-22	1-2
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0.5	0-1	5-10
Relative non-native to native cover	0	-	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (1), SE (1)

Macrotopography: middle slope (1), upper slope (1)

Microtopography: undulating (2)

Parent Material: serpentine (2) Soil Texture: silt or silt loam (2)

	Mean	Range
Elevation	2265 ft.	2250-2280 ft.
Slope	18º	18-18°
Large rock cover	4.5%	0-9%
Small rock cover	73%	61-85%
Bare ground cover	8%	6-10%
Litter cover	12.5%	4-21%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR1594, SNNR1595 Relevés: none

Rank: G3S3?

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon data collected for this project. Another association defined by relatively strong dominance of *Q. durata* in the shrub layer and *Pinus sabiniana* as a regular overstory emergent has been defined in the central Coast Ranges of San Benito Co. (Evens et al. 2006). This association is likely similar to the association described here.

STAND TABLE

Quercus durata Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	UMCA-M	Umbellularia californica	100	2.5	1	4		Χ	Χ	
	PISA2-T	Pinus sabiniana	100	2.0	2	2		Χ	Χ	
	PIPO-M	Pinus ponderosa	50	0.5	1	1				
Shrub										
	QUDU4	Quercus durata	100	10.0	8	12	Χ		Χ	
	RHIL	Rhamnus ilicifolia	100	2.1	0.2	4			Χ	
	RHTO6	Rhamnus tomentella	100	0.6	0.2	1			Χ	
	ARVI4	Arctostaphylos viscida	100	0.2	0.2	0.2			Χ	
	CECU	Ceanothus cuneatus	50	1.5	3	3				
Herb										
	POACXX	Poaceae	100	2.1	0.2	4			Χ	
	ELMU3	Elymus multisetus	100	1.5	1	2			Χ	
	ERLA6	Eriophyllum lanatum	100	0.6	0.2	1			Χ	
	MECA2	Melica californica	100	0.6	0.2	1			Χ	
	SCCA3	Scutellaria californica	100	0.6	0.2	1			Χ	
	POCOC	Polygala cornuta var. cornuta	50	0.5	1	1				
	GAPO	Galium porrigens	50	0.1	0.2	0.2				
	MOVI2	Monardella villosa	50	0.1	0.2	0.2				
	SABI3	Sanicula bipinnatifida	50	0.1	0.2	0.2				
	SELA4	Senecio layneae	50	0.1	0.2	0.2				
	SICA4	Silene californica	50	0.1	0.2	0.2				

Quercus durata - Adenostoma fasciculatum / Salvia sonomensis Association (Provisional) Leather Oak - Chamise / Creeping Sage Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was open to continuous and dominated by *Quercus durata* at 11-35% cover and *Adenostoma fasciculatum* at 3-37% cover. Other shrubs such as *Arctostaphylos viscida*, *Ceanothus lemmonii*, *Heteromeles arbutifolia*, *Rhamnus ilicifolia*, and *Toxicodendron diversilobum* were often present. Trees such as *Pinus sabiniana* and *Quercus wislizeni* often occurred as scattered emergents. The herbaceous layer was open and dominated by *Salvia sonomensis*.

This association was sampled somewhat frequently in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands consistently occurred on gabbro substrates. They occupied a variety of upland slope positions, most often on lower and middle slopes that were flat to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	57.6	25-83	-
Herb	12.9	3-28	< 0.3
Shrub	48.6	10-70	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	1.6	0-4	<5-10
Conifer	1.3	0-5	<5-20
Relative non-native to native cover	1.6	0-6	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (2), E (2), N (1), Flat (1), (0)

Macrotopography: entire slope (1), lower slope (3), lower to middle slope (1), middle slope (2)

Microtopography: undulating (4), flat (3)

Parent Material: gabbro (7)

Soil Texture: clay or clay loam (2), loam or sandy loam (2), silt or silt loam (2)

	Mean	Range
Elevation	846 ft.	487-1120 ft.
Slope	8.7°	0-13°
Large rock cover	1.1%	0-5%
Small rock cover	8.1%	0.2-30%
Bare ground cover	44%	2-88%
Litter cover	42.5%	3-95%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=7)

Rapid Assessments: SNNR0280, SNNR0336, SNNR0503, SNNR0914, SNNR1522,

SNNR1566 Relevés: SNFN0011

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon the data collected for this project. It is likely to be an endemic association of gabbro and serpentine substrates in the central and northern Sierra Nevada Foothills.

STAND TABLE

Quercus durata - Adenostoma fasciculatum / Salvia sonomensis Association

Lifeform Code		Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni	71	1.9	0.2	5				
	PISA2-T	Pinus sabiniana	57	1.1	0.2	5				
Shrub										
	ADFA	Adenostoma fasciculatum	100	20.4	3	37		Χ	Χ	
	QUDU4	Quercus durata	100	20.3	11	35		Χ	Χ	
	ARVI4	Arctostaphylos viscida	100	10.6	0.2	35			Χ	
	CELE	Ceanothus lemmonii	71	2.3	0.2	12				
	TODI	Toxicodendron diversilobum	71	2.1	0.2	7				
	RHIL	Rhamnus ilicifolia	71	0.9	0.2	2				
	HEAR5	Heteromeles arbutifolia	57	0.6	0.2	2				
	CERO4	Ceanothus roderickii	43	1.4	1	5				
	CEOCO	Cercis occidentalis	43	0.6	0.2	2				
	BAPI	Baccharis pilularis	43	0.1	0.2	0.2				
	RHTO6	Rhamnus tomentella	29	0.1	0.2	0.2				
Herb										
	SASO	Salvia sonomensis	100	9.9	0.2	25	Χ		Χ	
	POCOC	Polygala cornuta var. cornuta	43	0.6	0.2	3				
	CHPO3	Chlorogalum pomeridianum	43	0.5	0.2	2				
	WYRE	Wyethia reticulata	29	0.9	2	4				
	VUMY	Vulpia myuros	29	0.3	0.2	2				Χ
	GAVE3	Gastridium ventricosum	29	0.3	1	1				Χ
	AICA	Aira caryophyllea	29	0.2	0.2	1				Χ
	SABI3	Sanicula bipinnatifida	29	0.1	0.2	0.2				

Quercus garryana var. breweri Shrubland Alliance (Provisional) Oregon White Oak Shrubland Alliance (Provisional)

As defined in the state, *Quercus garryana* var. breweri is dominant in the shrub canopy with Amelanchier utahensis, Arctostaphylos manzanita, Ceanothus cuneatus, C. integerrimus, Cercis occidentalis, Cercocarpus montanus, Clematis lasiantha, Fraxinus dipetala, Prunus emarginata, P. subcordata, Quercus berberidifolia, Q. vacciniifolia, Rhamnus ilicifolia and Toxicodendron diversilobum. Emergent trees such as Quercus kelloggii, Q. chrysolepis, Q. wislizeni, or Pinus sabiniana may be present. The shrub canopy is intermittent to continuous and the herbaceous layer is usually open and grassy. Stands occur on ridges and upper slopes that may be steep or rocky.

As described below, one association of the Scrub Oak Alliance was classified in the study area. One stand (SNNR0511) showed additional variation with a co-dominance of *Ceanothus cuneatus* and was classified to the alliance level only.

Quercus garryana var. breweri Association (Provisional) Brewer Oak Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was intermittent to continuous and dominated by *Quercus garryana* var. *breweri* at 22-60% cover. Other shrubs such as *Ceanothus cuneatus*, *Ceanothus integerrimus*, *Cercis occidentalis*, *Cercocarpus betuloides*, *Rhus trilobata*, and *Toxicodendron diversilobum* were often present. *Pinus sabiniana* sometimes occurred as a scattered emergent tree. The herbaceous layer was open and often included non-natives *Bromus hordeaceus* and *Torilis arvensis*.

This association was sampled infrequently in the study area within the Cascade Range Foothills and High Cascade Range Subregions (Hickman 1993). Stands consistently occurred on volcanic substrates. They usually occupied somewhat steep, upland, middle slopes, but were occasionally found on upper slopes and/or ridgetops.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tehama County within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	66.8	53-80	-
Herb	8.6	0-17	variable
Shrub	64.2	44-75	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.8	0-2	5-10
Conifer	5.4	0-17	5-20
Relative non-native to native cover	8.9	0-20	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (2), NW (1), NE (1), E (1)

Macrotopography: middle slope (3), upper slope (1), upper slope to ridgetop (1)

Microtopography: flat (4), concave (1)

Parent Material: volcanic (5)

Soil Texture: clay or clay loam (2), loam or sandy loam (2), silt or silt loam (1)

	Mean	Range
Elevation	2872 ft.	2432-3689 ft.
Slope	18°	15-20°
Large rock cover	2.8%	1-5%
Small rock cover	9%	3-15%
Bare ground cover	17.2%	2-44%
Litter cover	65.4%	44-80%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=5)

Rapid Assessments: SNNR0188, SNNR0375, SNNR0417, SNNR0455, SNNR0520

Relevés: none

Rank: G4S4?

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills. Although stands have been observed in the Yosemite region (NatureServe et al. 2003b) and in the Sequoia National Park area (S. Haultain pers. comm. 2004), they have not been well described. It appears that the most extensive stands of this association occur in the northern Sierra Nevada Foothills. The samples collected in this study suggest a common mixture with *Cercocarpus betuloides*, which has also been noted in Sequoia National Park (S. Haultain, pers. comm. 2004). Similar stands may occur in the central and inner North Coast Ranges, from Mendocino to Humboldt Counties.

STAND TABLE Quercus garryana var. breweri Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	PISA2-M	Pinus sabiniana	60	1.8	0.2	8				
	PISA2-T	Pinus sabiniana	40	3.6	1	17				
Shrub										
	QUGAB	Quercus garryana var. breweri	100	41.4	22	60	Χ		X	
	CEBE3	Cercocarpus betuloides	80	8.4	1	20			Χ	
	TODI	Toxicodendron diversilobum	80	2.4	0.2	10			X	
	CEIN3	Ceanothus integerrimus	60	4.6	3	16				
	CEOCO	Cercis occidentalis	60	2.6	1	8				
	CECU	Ceanothus cuneatus	60	2.0	2	5				
	RHTR	Rhus trilobata	60	0.5	0.2	2				
	LECA3	Lepechinia calycina	40	1.2	0.2	6				
	QUBE5	Quercus berberidifolia	40	1.2	1	5				
	CLLA3	Clematis lasiantha	40	1.0	0.2	5				
	LOIN4	Lonicera interrupta	40	0.6	0.2	3				
Herb										
	TOAR	Torilis arvensis	60	1.2	0.2	4				Χ
	BRHO2	Bromus hordeaceus	60	8.0	1	2				Χ
	VUMY	Vulpia myuros	40	2.4	2	10				Χ
	CYEC	Cynosurus echinatus	40	8.0	0.2	4				Χ
	BRDI3	Bromus diandrus	40	0.6	1	2				Χ
	SABI3	Sanicula bipinnatifida	40	0.4	0.2	2				
	CLCO	Clarkia concinna	40	0.2	0.2	1				
	VUMI	Vulpia microstachys	40	0.2	0.2	1				

Frangula californica (=Rhamnus tomentella) Shrubland Alliance California Coffeeberry Shrubland Alliance

As defined in the state, *Frangula californica* is dominant or co-dominant in the shrub canopy with *Baccharis pilularis*, *Calycanthus occidentalis*, *Ericameria pinifolia*, *Eriogonum wrightii*, *Garrya veatchii*, *Hoita macrostachya*, *Prunus virginiana*, *Ribes roezlii*, *Salix breweri*, *Sambucus nigra* var. *canadensis*, and *Toxicodendron diversilobum*. Emergent *Quercus agrifolia*, *Q. chrysolepis*, and other trees may be present. The tree layer is sparse. The shrub layer can be two-tiered with an open to continuous canopy. The herbaceous layer is sparse with a high amount of exposed soil and rock. Stands occur along drainages at the bottom of concave and undulating slopes that are moderate to somewhat steep and derived from sedimentary or serpentinite substrates. Soils retain moisture much of the year. The names *Rhamnus californica* and *Rhamnus tomentella* have been used in most manuals, but both warrant a generic status with a subspecies designation (Bolmgren and Oxelman 2004).

Stands of *F. californica* have been defined along the coast of central and northern California (NatureServe et al. 2003a). These stands are mesic coastal scrub types, much different than those of *F. tomentella* described herein. Another type, the *F. tomentella* subsp. *crassifolia* Association, has been provisionally identified and sampled in moist serpentine areas in the inner North Coast Ranges from Napa, Lake, and Colusa Counties (CNPS 2002). In the Foothills, stands occur on south-facing slopes, often on serpentine soils. One association of the California Coffeeberry Alliance was classified for the study area and is described below.

Rhamnus tomentella - Hoita macrostachya Association (Provisional) Hoary Coffeeberry - Large Leather-root Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was open to continuous and dominated by *Rhamnus tomentella* at 12-45% cover. Other shrubs such as *Heteromeles arbutifolia*, *Sambucus mexicana*, and *Toxicodendron diversilobum* were often present. Trees such as *Pinus sabiniana*, *Quercus chrysolepis*, *Quercus douglasii*, *Quercus wislizeni*, and *Umbellularia californica* sometimes occurred as scattered emergents. The herbaceous layer was open to intermittent, with abundant and characteristic taxa such as *Hoita macrostachya*, *Lactuca serriola*, and *Mimulus guttatus*.

This association was sampled infrequently in the study area within the central Sierra Nevada Foothills and High Cascade Range Subregions (Hickman 1993). Stands usually occurred on serpentine, with the exception of one stand found on conglomerate substrate. They occupied bottom to middle slopes that were gentle to somewhat steep. Sometimes stands occurred along riparian corridors or stream terraces.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tehama and Tuolumne Counties within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	67.5	45-80	-
Herb	26.5	16-35	>0.3
Shrub	53.8	15-80	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	3.5	0-9	10-20
Conifer	0.6	0-2	10-20
Relative non-native to native cover	30.8	2-50	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (2), S (1), E (1)

Macrotopography: bottom (2), lower slope (1), middle slope (1)

Microtopography: concave (3), undulating (1)
Parent Material: serpentine (3), conglomerate (1)

Soil Texture: loam or sandy loam (2), clay or clay loam (1), silt or silt loam (1)

	Mean	Range
Elevation	1266 ft.	1000-1976 ft.
Slope	9.80	4-20°
Large rock cover	13.3%	1-30%
Small rock cover	14.3%	5-28%
Bare ground cover	22.7%	7-46%
Litter cover	40.7%	1-81%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=4)

Rapid Assessments: SNNR0342, SNNR1492, SNNR1493, SNNR1525 Relevés: none

Rank: G3S3

GLOBAL DISTRIBUTION

This association has been described sporadically in the Sierra Nevada Foothills, including the Peoria Wildlife Area (Evens et al. 2004). This association probably also occurs in small, localized, stands in riparian settings within the inner North Coast Ranges. Similar stands, lacking *Hoita macrostachya*, occur in serpentine seeps in the central Coast Ranges of Santa Clara County (Evens and San 2004).

STAND TABLE Rhamnus tomentella - Hoita macrostachya Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUWI2-T	Quercus wislizeni	25	1.3	5	5				
	QUDO-T	Quercus douglasii	25	1.0	4	4				
	UMCA-M	Umbellularia californica	25	8.0	3	3				
	QUCH2-M	Quercus chrysolepis	25	0.3	1	1				
	PISA2-T	Pinus sabiniana	25	0.1	0.2	0.2				
Shrub										
	RHTO6	Rhamnus tomentella		30.5	12	45	X		X	
	HOMA4	Hoita macrostachya	75 	5.8	1	16			X	
	TODI	Toxicodendron diversilobum	75	6.0	8	8			Χ	
	HEAR5	Heteromeles arbutifolia	50	2.0	2	6				
	SAME5	Sambucus mexicana	50	1.0	1	3				
	RUDI2	Rubus discolor	25	6.3	25	25				Χ
	CAOC5	Calycanthus occidentalis	25	1.5	6	6				
	RUUR	Rubus ursinus	25	1.3	5	5				
	SALA6	Salix lasiolepis	25	1.3	5	5				
	CECU	Ceanothus cuneatus	25	0.5	2	2				
	VICA5	Vitis californica	25	0.5	2	2				
	BEAQD	Berberis aquifolium var. dictyota	25	0.3	1	1				
	ERCA6	Eriodictyon californicum	25	0.3	1	1				
	PRSU2	Prunus subcordata	25	0.3	1	1				
	ARMA	Arctostaphylos manzanita	25	0.1	0.2	0.2				
	RHIL	Rhamnus ilicifolia	25	0.1	0.2	0.2				
Herb										
	MIGU	Mimulus guttatus	75	1.3	0.2	3			Χ	
	LASE	Lactuca serriola	75	0.6	0.2	1			Χ	Χ
	BRHO2	Bromus hordeaceus	50	21.5	16	70				Χ
	AVBA	Avena barbata	50	4.3	1	16				Χ
	CAPY2	Carduus pycnocephalus	50	3.0	6	6				Χ
	RORIP	Rorippa	50	1.5	1	5				
	CEME2	Centaurea melitensis	50	1.3	0.2	5				Χ
	POMO5	Polypogon monspeliensis	50	1.3	1	4				Χ
	STST	Stachys stricta	50	1.0	1	3				
	ASFA	Asclepias fascicularis	50	0.5	1	1				
	BRDI2	Brachypodium distachyon	50	0.5	1	1				Χ

STAND TABLE continued

Rhamnus tomentella - Hoita macrostachya Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	HOBRB2	Hordeum brachyantherum subsp. brachyantherum	25	4.0	16	16				
	CAREX	Carex	25	2.0	8	8				
	LOMU	Lolium multiflorum	25	2.0	8	8				Χ
	MIFL2	Mimulus floribundus	25	2.0	8	8				
	CEVE3	Centaurium venustum	25	1.0	4	4				
	CESO3	Centaurea solstitialis	25	8.0	3	3				Χ
	MICA3	Mimulus cardinalis	25	8.0	3	3				
	BRMI2	Briza minor	25	0.5	2	2				Χ
	BRDI3	Bromus diandrus	25	0.5	2	2				Χ
	LOTUS	Lotus	25	0.5	2	2				
	LOPU3	Lotus purshianus	25	0.5	2	2				
	CYEC	Cynosurus echinatus	25	0.3	1	1				Χ
	CYER	Cyperus eragrostis	25	0.3	1	1				
	ELGL	Elymus glaucus	25	0.3	1	1				
	GAAP2	Galium aparine	25	0.3	1	1				
	HEPU2	Helenium puberulum	25	0.3	1	1				
	HEFI	Hemizonia fitchii	25	0.3	1	1				
	LENE3	Lessingia nemaclada	25	0.3	1	1				
	PADI6	Paspalum distichum	25	0.3	1	1				
	RUCR	Rumex crispus	25	0.3	1	1				Χ
	TOAR	Torilis arvensis	25	0.3	1	1				Χ
	AGVI11	Agrostis viridis	25	0.1	0.2	0.2				Χ
	BRMA3	Bromus madritensis	25	0.1	0.2	0.2				Χ
	CANU5	Carex nudata	25	0.1	0.2	0.2				
	DAPU3	Daucus pusillus	25	0.1	0.2	0.2				
	JUBU	Juncus bufonius	25	0.1	0.2	0.2				
	LYCA4	Lythrum californicum	25	0.1	0.2	0.2				
	MADIA	Madia	25	0.1	0.2	0.2				
	MIMO3	Mimulus moschatus	25	0.1	0.2	0.2				
	NAPU4	Nassella pulchra	25	0.1	0.2	0.2				
	VUMI	Vulpia microstachys	25	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	25	0.8	3	3				

Rubus discolor Shrubland Semi-Natural Stands Himalaya blackberry Shrubland Semi-Natural Stands

As defined in the state, the non-native, invasive *Rubus discolor* is dominant in the shrub layer with *Clematis ligusticifolia*, *Philadelphus lewisii*, *Rosa californica*, *Rubus ursinus*, *Toxicodendron diversilobum* and *Vitis californica*. Emergent trees of *Quercus wislizeni*, *Q. lobata*, *Populus fremontii*, or *Salix* spp. may be present. The canopy is intermittent to continuous and the herbaceous layer is open to intermittent. Stands occur in wastelands, pastures, forest plantations, and along roadsides, streams, river flats, fence lines, and right-of-way corridors. *R. discolor* and the native *R. ursinus* and have similar ecologies, and both species are found to intermix in some sites.

As described below, one association of the Himalaya Blackberry Alliance was classified in the study area. Studies in the Sacramento-San Joaquin River Delta (Hickson and Keeler-Wolf 2007) suggest *R. discolor* is the close ecological equivalent of native briars and brambles such as *Rosa californica* and *Rubus ursinus*. Thus, these stands may have once been occupied by *Rosa californica* or native *Rubus* sp. in much of California.

Rubus discolor Association Himalayan Blackberry Association

SUMMARY

In the stands sampled, the overstory shrub canopy was intermittent to continuous and dominated by *Rubus discolor* at 23-85% cover. *Vitis californica* was often present as a viney shrub. Trees such as *Alnus rhombifolia*, *Pinus ponderosa*, *Pinus sabiniana*, *Quercus lobata*, *Quercus wislizeni*, and *Salix laevigata* sometimes occurred as scattered emergents. The herbaceous layer was open and often included *Artemisia douglasiana*, *Holcus lanatus*, and *Hypericum perforatum*.

In the study area, this association was sampled occasionally in the northern Sierra Nevada Foothills and once each in the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates, but were found once each on mixed sedimentary or volcanic substrates. They usually occupied gently sloping bottom to lower slopes, and rarely occupied a middle slope or upper slope. Stands were invasive and almost always associated with water. They formed dense stands along riparian corridors, stream terraces, and lake edges.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, El Dorado, Mariposa, Placer, Tehama, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	77	57-87	-
Herb	7	0-16	variable
Shrub	73	50-88	1-5
Low Tree/Tall Shrub	0	-	-

Hardwood	5.9	0-35	<5-20
Conifer	0.1	-	<5-35
Relative non-native to native cover	76.2	47-95	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (3), W (2), Variable (1), SE (1), N (1)

Macrotopography: bottom (3), bottom to lower slope (3), middle slope (1), upper slope (1)

Microtopography: concave (3), flat (3), undulating (1)

Parent Material: metamorphic (6), mixed sedimentary (1), volcanic (1) Soil Texture: silt or silt loam (3), loam or sandy loam (2), sand (2)

	Mean	Range
Elevation	1157 ft.	539-2205 ft.
Slope	2.40	1-5°
Large rock cover	1.6%	0-9.1%
Small rock cover	2.6%	0-15.5%
Bare ground cover	26.3%	10-50%
Litter cover	61.3%	33-84%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=8)

Rapid Assessments: SNNR0291, SNNR0467, SNNR0683, SNNR1040, SNNR1132,

SNNR1258, SNNR1263, SNNR1344 Relevés: none

Rank: Unranked, non-native type

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills. Similar stands have been described at the alliance level in the Sacramento-San Joaquin River Delta (Hickson and Keeler-Wolf 2007) and in the Suisun Marsh of Solano Co. (Keeler-Wolf and Vaghti 2000).

STAND TABLE
Rubus discolor Association

Lifeform Co	ode	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	UWI2-T	Quercus wislizeni	38	3.9	0.2	30				
	UWI2-M	Quercus wislizeni	38	8.0	0.2	6				
Α	LRH2-T	Alnus rhombifolia	38	8.0	0.2	5				
S	ALA3-M	Salix laevigata	25	0.5	0.2	4				
S	ALA3-T	Salix laevigata	25	0.5	2	2				
Р	IPO-T	Pinus ponderosa	25	0.1	0.2	0.2				
	ISA2-T	Pinus sabiniana	25	0.1	0.2	0.2				
Q	ULO-T	Quercus lobata	25	0.1	0.2	0.2				
Shrub										
	UDI2	Rubus discolor		63.8		85	Χ		Χ	Χ
	ICA5	Vitis californica	50	4.5	2	20				
	API	Baccharis pilularis	38	4.0	1	30				
R	HTO6	Rhamnus tomentella	38	0.2	0.2	1				
S	ALA6	Salix lasiolepis	25	1.0	2	6				
R	UUR	Rubus ursinus	25	0.2	0.2	1				
Α	RVI4	Arctostaphylos viscida	25	0.1	0.2	0.2				
Herb										
	IYPE	Hypericum perforatum	75	0.7	0.2	4			Χ	X
	RDO3	Artemisia douglasiana	50	0.4	0.2	2				
	IOLA	Holcus lanatus	50	0.3	0.2	2				Χ
	OAR	Torilis arvensis	38	0.7	0.2	4				Χ
	LPE	Claytonia perfoliata	25	1.3	0.2	10				
	RDI3	Bromus diandrus	25	0.9	0.2	7				Χ
С	EMU2	Centaurium muehlenbergii	25	0.2	0.2	1				
Α	ICA	Aira caryophyllea	25	0.1	0.2	0.2				Χ
Α	NAR	Anagallis arvensis	25	0.1	0.2	0.2				Χ
В	RHO2	Bromus hordeaceus	25	0.1	0.2	0.2				Χ
С	LUN	Clarkia unguiculata	25	0.1	0.2	0.2				
L	OMU	Lolium multiflorum	25	0.1	0.2	0.2				Χ
M	IESP3	Mentha spicata	25	0.1	0.2	0.2				Χ
V	EBL	Verbascum blattaria	25	0.1	0.2	0.2				Χ

Salix exigua Shrubland Alliance Narrow-leaf Willow Shrubland Alliance

As defined in the state, *Salix exigua* is dominant or co-dominant in the shrub canopy, often with *Salix lasiolepis*, *Rosa californica*, *Rubus discolor*, *R. ursinus*, and *Cephalanthus occidentalis*. Emergent trees may be present, including *Acer negundo*, *Alnus rhombifolia*, *Juglans hindsii*, *Populus fremontii*, *Salix gooddingii*, *Salix laevigata*, and *S. lucida*. Stands occur in temporarily flooded floodplains, depositions along rivers and streams, springs, and reservoir edges.

In the study area, stands often occur with *Salix lasiolepis* and *Rubus discolor*. Two associations were classified and are described below for the Narrow-leaf Willow Alliance. One stand (SNNR0692) showed additional variation, due to high cover of *Salix lasiolepis*, and was only classified to the alliance level only.

Salix exigua Association Narrow-leaf Willow Association

SUMMARY

In the stands sampled, the overstory shrub canopy was open to continuous and dominated by *Salix exigua* at 18-84% cover. *Rubus discolor* was often present in the shrub layer. Trees such as *Ailanthus altissima*, *Fraxinus latifolia*, and *Salix laevigata* sometimes occurred as scattered emergents. The herbaceous layer was open and often included *Artemisia douglasiana*.

In the study area, this association was sampled frequently in the northern Sierra Nevada Foothills and once each in the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on mixed, sandy, or silty alluvium substrates and infreqently on gabbro, granitic, greenstone, sedimentary, slate, or volcanic substrates. They usually occupied slope bottoms, occasionally extending to lower slopes that were flat to somewhat steep. Stands occurred along riparian corridors and stream terraces.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras, El Dorado, Madera, Nevada, Placer, Tehama, and Yuba Counties within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	64	25-90	-
Herb	11	0-30	variable
Shrub	51.8	22-105	0-5
Low Tree/Tall Shrub	4	0-44	5-10
Hardwood	11.5	0-65	5-20
Conifer	0	-	10-20
Relative non-native to native cover	26.6	0-61	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (4), W (3), NW (2), SW (1), SE (1), S (1), N (1), (0)

Macrotopography: bottom (11), bottom to lower slope (1), lower slope (2)

Microtopography: flat (9), undulating (3), concave (2)

Parent Material: mixed alluvium (6), gabbro (1), granitic (1), greenstone (1), sandy alluvium (1),

sedimentary (1), silty alluvium (1), slate (1), volcanic (1)

Soil Texture: sand (10)

	Mean	Range
Elevation	677 ft.	279-1681 ft.
Slope	2.80	0-24°
Large rock cover	3.9%	0-25%
Small rock cover	20.4%	0-85%
Bare ground cover	26.9%	5-80%
Litter cover	29.4%	1-88%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=14)

Rapid Assessments: SNNR0074, SNNR0232, SNNR0288, SNNR0631, SNNR0805, SNNR0841, SNNR0887, SNNR0903, SNNR0919, SNNR0984, SNNR1055, SNNR1151,

SNNR1362, SNNR1388 Relevés: none

Rank: G5S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills. Potter (2005) describes a *Salix exigual/Artemisia douglasiana* Association, which commonly occurs below 3000 ft, but up to 4,680 ft. along the western slope of the Sierra. This association is very similar to his association, but his includes both *Brickellia californica* and *A. douglasiana*, while we identify two associations that have *A. douglasiana* and *B. californica* as separate indicators. Hickson and Keeler-Wolf (2007) describe a *Salix exigua* – (*Salix lasiolepis*) - *Rubus discolor* Association from the Sacramento-San Joaquin River Delta. About 20% of their stands contain *Artemisia douglasiana*. Similar stands have also been described for southern California in the Santa Monica Mountains (Keeler-Wolf and Evens 2006) and in Western Riverside County (Klein and Evens 2006).

STAND TABLE Salix exigua Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	SALA3-T	Salix laevigata	36	1.3	1	7				
	AIAL	Ailanthus altissima	29	0.7	0.2	6				Χ
	FRLA-T	Fraxinus latifolia	29	0.3	0.2	2				
	ALRH2-T	Alnus rhombifolia	21	1.2	0.2	15				
	SALA3-M	Salix laevigata	21	0.6	2	4				
	POFR2-T	Populus fremontii	21	0.2	1	1				
Shrub										
	SAEX	Salix exigua	100	44.6	18	84	Χ		Χ	
	RUDI2	Rubus discolor	64	14.8	1	40				Χ
	VICA5	Vitis californica	43	2.6	0.2	16				
Herb										
	ARDO3	Artemisia douglasiana	50	1.8	0.2	10				
	LOMU	Lolium multiflorum	43	1.1	0.2	5				Χ
	RUCR	Rumex crispus	29	0.1	0.2	0.2				Χ
	BRDI3	Bromus diandrus	21	0.4	0.2	3				Χ
	BRHO2	Bromus hordeaceus	21	0.4	1	2				Χ
	XAST	Xanthium strumarium	21	0.3	0.2	4				
	CYER	Cyperus eragrostis	21	0.2	0.2	2				
	LYHY2	Lythrum hyssopifolia	21	0.2	0.2	1				Χ
	BRNI	Brassica nigra	21	0.1	0.2	1				Χ
	HOLA	Holcus lanatus	21	0.1	0.2	1				Χ
	POMO5	Polypogon monspeliensis	21	0	0.2	0.2				Χ

Salix exigua - Brickellia californica Association (Provisional) Narrow-leaf Willow - California Brickellbush Association (Provisional)

SUMMARY

In the stands sampled, the overstory shrub canopy was open and dominated by *Salix exigua* at 2-15% cover. Other shrubs such as *Brickellia californica*, *Cephalanthus occidentalis* var. *californicus*, and *Vitis californica* were characteristically present. Trees such as *Fraxinus latifolia* and *Populus fremontii* sometimes occurred as scattered emergents. The herbaceous layer was open and often included *Carex barbarae*.

This association was sampled somewhat infrequently in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on metamorphic (including greenstone) or mixed alluvium substrates. They usually occupied slope bottoms that were flat to gentle, along stream corridors that were subject to seasonal inundation or submersion.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado and Placer Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	14.6	8-26	-
Herb	1.9	0-8	variable
Shrub	8.8	5-13	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	3.8	0-19	<5
Conifer	0	-	-
Relative non-native to native cover	6.3	0-12	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (3), SW (1), NW (1)

Macrotopography: bottom (4), bottom to lower slope (1)

Microtopography: undulating (2), flat (1), concave (1), convex (1) Parent Material: metamorphic (2), mixed alluvium (2), greenstone (1)

Soil Texture: sand (5)

	Mean	Range
Elevation	615 ft.	422-1015 ft.
Slope	0.80	0-3°
Large rock cover	35.2%	0.2-87%
Small rock cover	29.8%	0.2-85%
Bare ground cover	31.4%	1-99%
Litter cover	0.9%	0.2-2%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=5)

Rapid Assessments: SNNR0282, SNNR0687, SNNR0689, SNNR0727, SNNR0916

Relevés: none

Rank: G3S3?

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely on the data collected for this project. It is closely related to Potter's (2005) *S. exigua / A. douglasiana* association and may, with further data collection and analysis, be considered a phase of that broadly defined association. Both species are widespread in California and this association may occur in the North Coast Ranges, the Central and South Coast Ranges, and the Transverse Ranges as well.

STAND TABLE Salix exigua - Brickellia californica Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	FRLA-M	Fraxinus latifolia	60	1.0	1	3				
	POFR2-M	Populus fremontii	40	0.1	0.2	0.2				
Shrub										
	SAEX	Salix exigua	100	6.8	2	15	Χ		Χ	
	BRCA3	Brickellia californica	100	2.7	0.2	7			Χ	
	VICA5	Vitis californica	80	1.0	0.2	3			Χ	
	CEOCC2	Cephalanthus occidentalis var. californicus	80	0.7	0.2	2			X	
	RUDI2	Rubus discolor	60	0.3	0.2	1				Χ
	SALA6	Salix lasiolepis	40	0.4	0.2	2				
	CEOCO	Cercis occidentalis	40	0.1	0.2	0.2				
Herb										
	CABA4	Carex barbarae	60	1.1	0.2	5				
	CHJU	Chondrilla juncea	40	0.1	0.2	0.2				Χ
	ERFOH	Erigeron foliosus var. hartwegii	40	0.1	0.2	0.2				

Salix lasiolepis Shrubland Alliance Arroyo Willow Shrubland Alliance

As defined in the state, *Salix lasiolepis* dominates the shrub or low tree canopy alone or with *Baccharis pilularis*, *B. salicifolia*, *Rosa californica*, *Rubus ursinus*, *R. discolor*, *Cephalanthus occidentalis*, *Cornus sericea*, *Populus balsamifera*, *P. fremontii*, *Salix* spp., and *Sambucus nigra* subsp. *canadensis*. Stands occur in riparian areas, typically along creeks and rivers. Plants generally resprout as tall shrubs from recurring flood activity.

As described below, one association of the Arroyo Willow Alliance was classified in the study area. One stand (SNNR0705) showed additional variation with high cover of *Typha latifolia* and scattered arroyo willow. This stand was only classified to the alliance level only.

Salix lasiolepis / Rubus spp. Association Arroyo Willow / Blackberry Association

SUMMARY

In the stands sampled, the overstory shrub canopy was open to intermittent and dominated by *Salix lasiolepis* at 40-45% cover. Other shrubs such as *Baccharis pilularis*, *Rosa californica*, and *Rubus discolor* were often present. *Quercus wislizeni* often occurred as a scattered emergent tree. The herbaceous layer was open to intermittent and often included *Juncus effusus* and *Panicum acuminatum*.

This association was sampled infrequently in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on metamorphic or sedimentary substrates. They occupied upper slopes that were flat to gentle along riparian corridors, stream terraces, or lake edges.

DISTRIBUTION IN STUDY AREA

This association was sampled in Placer County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	75.7	67-85	-
Herb	19.7	4-45	variable
Shrub	34.7	6-63	1-5
Low Tree/Tall Shrub	15	0-45	5-10
Hardwood	23	6-40	<5-10
Conifer	0	-	-
Relative non-native to native cover	37.3	28-43	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (1), Flat (1)

Macrotopography: upper slope (1)

Microtopography: undulating (2), concave (1)

Parent Material: metamorphic (2), sedimentary (1)

Soil Texture: muck (1), sand (1)

	Mean	Range
Elevation	973 ft.	630-1415 ft.
Slope	1.3°	0-3°
Large rock cover	0.1%	0-0.2%
Small rock cover	0.1%	0-0.2%
Bare ground cover	15%	10-20%
Litter cover	65%	42-88%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: SNNR0704, SNNR0620 Relevés: SNFN0143

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon the data collected for this project. Potter (2005) defines a *S. lasiolepis / Artemisia douglasiana* Association from the Sierra Nevada between 2500 and 7100 ft. elevation. This current association can also be compared to the *S. lasiolepis* Great Valley Association defined for the Sacramento-San Joaquin River Delta project (Hickson and Keeler-Wolf 2007). Apparently, *S. lasiolepis* Alliance stands are relatively rare in the Sierra Nevada Foothills compared to other adjacent areas.

STAND TABLE Salix lasiolepis / Rubus spp. Association

Name
ALRH2-M Alnus rhombifolia 33 1.7 5 5 5 POFR2-M Populus fremontii 33 0.1 0.2 0.2 SALA3-T Salix laevigata 33 1.7 5 5 5 QULO-T Quercus lobata 33 0.7 2 2 Shrub SALA6 Salix lasiolepis 100 41.7 40 45 X X RUDI2 Rubus discolor 100 20.3 6 35 X X BAPI Baccharis pilularis 67 1.1 0.2 3 ROCA2 Rosa californica 67 0.4 0.2 1 CYSC4 Cytisus scoparius 33 0.3 1 1 X VICA5 Vitis californica 33 0.1 0.2 0.2 PTCR3 Ptelea crenulata 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 10.0 30 30 X TYLA Typha latifolia 33 0.7 2 2 2 HYPE Hypericum perforatum 33 0.7 2 2 2 X
POFR2-M
SALA3-T Salix laevigata 33 1.7 5 5 5 5 5 5 5 5 5
Shrub SALA6 Salix lasiolepis 100 41.7 40 45 X X X RUDI2 Rubus discolor 100 20.3 6 35 X X X BAPI Baccharis pilularis 67 1.1 0.2 3 ROCA2 Rosa californica 67 0.4 0.2 1 X YICA5 Vitis californica 33 0.1 0.4 0.4 PTCR3 Ptelea crenulata 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 DELPA Eleocharis pachycarpa 33 1.0 30 30 X TYLA Typha latifolia 33 0.7 2 2 2 X X X X X X X
Shrub SALA6 Salix lasiolepis 100 41.7 40 45 X X X RUD12 Rubus discolor 100 20.3 6 35 X X X BAPI Baccharis pilularis 67 1.1 0.2 3 ROCA2 Rosa californica 67 0.4 0.2 1 X VICA5 Vitis californica 33 0.3 1 1 X VICA5 Vitis californica 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 D.2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 1.7 5 5 5 CANU5 Carex nudata 33 0.7 2 2 2 X X X X X X X
SALA6 Salix lasiolepis 100 41.7 40 45 X X RUDI2 Rubus discolor 100 20.3 6 35 X X X BAPI Baccharis pilularis 67 1.1 0.2 3 ROCA2 Rosa californica 67 0.4 0.2 1 X VICA5 Vitis californica 33 0.1 0.4 0.4 PTCR3 Ptelea crenulata 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 2 X X X X X X X
RUDI2 Rubus discolor 100 20.3 6 35 X X X BAPI Baccharis pilularis 67 1.1 0.2 3 ROCA2 Rosa californica 67 0.4 0.2 1 X VICA5 Vitis californica 33 0.1 0.4 0.4 PTCR3 Ptelea crenulata 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 D.2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 2 X X X X X X X
BAPI Baccharis pilularis 67 1.1 0.2 3 ROCA2 Rosa californica 67 0.4 0.2 1 CYSC4 Cytisus scoparius 33 0.3 1 1 X VICA5 Vitis californica 33 0.1 0.4 0.4 PTCR3 Ptelea crenulata 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 D.2 ELPA Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 2 X X X ROCA2
ROCA2 Rosa californica 67 0.4 0.2 1 CYSC4 Cytisus scoparius 33 0.3 1 1 X VICA5 Vitis californica 33 0.1 0.4 0.4 PTCR3 Ptelea crenulata 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 10.0 30 30 X TYLA Typha latifolia 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 2 HYPE Hypericum perforatum 33 0.7 2 2 2 X X CANU5 Carex nudata 33 0.7 2 2 2 X X PAAC5 Panicum perforatum Carex nudata Carex nudata
CYSC4 Cytisus scoparius 33 0.3 1 1 X VICA5 Vitis californica 33 0.1 0.4 0.4 PTCR3 Ptelea crenulata 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 Herb JUEF Juncus effusus 67 1.0 1 2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 10.0 30 30 X TYLA Typha latifolia 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 HYPE Hypericum perforatum 33 0.7 2 2 X
VICA5 Vitis californica 33 0.1 0.4 0.4 PTCR3 Ptelea crenulata 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 Herb JUEF Juncus effusus 67 1.0 1 2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 10.0 30 30 X TYLA Typha latifolia 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 HYPE Hypericum perforatum 33 0.7 2 2 X
PTCR3 Ptelea crenulata 33 0.1 0.2 0.2 SAEX Salix exigua 33 0.1 0.2 0.2 Herb JUEF Juncus effusus 67 1.0 1 2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 10.0 30 30 X TYLA Typha latifolia 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 HYPE Hypericum perforatum 33 0.7 2 2 X
Herb Salix exigua 33 0.1 0.2 0.2 Herb JUEF Juncus effusus 67 1.0 1 2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 10.0 30 30 X TYLA Typha latifolia 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 HYPE Hypericum perforatum 33 0.7 2 2 X
Herb JUEF Juncus effusus 67 1.0 1 2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 10.0 30 30 X TYLA Typha latifolia 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 2 HYPE Hypericum perforatum 33 0.7 2 2 X
JUEF Juncus effusus 67 1.0 1 2 PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 10.0 30 30 X TYLA Typha latifolia 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 HYPE Hypericum perforatum 33 0.7 2 2 X
PAAC5 Panicum acuminatum 67 0.1 0.2 0.2 ELPA Eleocharis pachycarpa 33 10.0 30 30 X TYLA Typha latifolia 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 HYPE Hypericum perforatum 33 0.7 2 2 X
ELPA Eleocharis pachycarpa 33 10.0 30 30 X TYLA Typha latifolia 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 HYPE Hypericum perforatum 33 0.7 2 2 X
TYLA Typha latifolia 33 1.7 5 5 CANU5 Carex nudata 33 0.7 2 2 HYPE Hypericum perforatum 33 0.7 2 2 X
CANU5 Carex nudata 33 0.7 2 2 HYPE Hypericum perforatum 33 0.7 2 2 X
HYPE Hypericum perforatum 33 0.7 2 2 X
MEAR4 Mentha arvensis 33 0.7 2 2
PADI3 Paspalum dilatatum 33 0.7 2 2 X
POPU5 Polygonum punctatum 33 0.7 2 2
WOFI Woodwardia fimbriata 33 0.3 1 1
ANVI2 Andropogon virginicus 33 0.1 0.2 0.2 X
APIAXX Apiaceae 33 0.1 0.2 0.2
ARDO3 Artemisia douglasiana 33 0.1 0.2 0.2
CAREX <i>Carex</i> 33 0.1 0.2 0.2
DAGL2 Datisca glomerata 33 0.1 0.2 0.2
EPILO Epilobium 33 0.1 0.2 0.2
EQLA Equisetum laevigatum 33 0.1 0.2 0.2
EUOC4 Euthamia occidentalis 33 0.1 0.2 0.2
HYCO3 Hypericum concinnum 33 0.1 0.2 0.2
PLANT Plantago 33 0.1 0.2 0.2
SEEU Senecio eurycephalus 33 0.1 0.2 0.2
TOAR Torilis arvensis 33 0.1 0.2 0.2 X
TYPHA <i>Typha</i> 33 0.1 0.2 0.2

STAND TABLE continued Salix lasiolepis / Rubus spp. Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	VIMA	Vinca major	33	0.1	0.2	0.2				Χ
	SOHA	Sorghum halepense	33	0.7	2	2				Χ
	CHPO3	Chlorogalum pomeridianum	33	0.3	1	1				
	EPCI	Epilobium ciliatum	33	0.1	0.2	0.2				
	HIIN3	Hirschfeldia incana	33	0.1	0.2	0.2				Χ
	LOPU3	Lotus purshianus	33	0.1	0.2	0.2				
	SESP5	Setaria sphacelata	33	0.1	0.2	0.2				Χ
	VETH	Verbascum thapsus	33	0.1	0.2	0.2				Χ

Tamarix sp. Shrubland Semi-Natural Stands Tamarisk Shrubland Semi-Natural Stands

As defined in the state, the invasive, non-native *Tamarix* is dominant in the shrub layer, often forming pure stands along rivers, creeks, and reservoir banks.

One stand of the Tamarisk Alliance was sampled in the study area and was dominated by *Tamarix parviflora*. Other than emergent, low cover of *Quercus lobata*, this stand supported nonnative species - including low cover of *Catalpa bignonioides* and *Rubus discolor* in a continuous shrub layer and sparse cover of *Bromus diandrus* and *Geranium dissectum* in the herbaceous layer.

Tamarix spp. Shrubland Semi-Natural Stands (no Associations defined) Shrub Tamarisk Shrubland Semi-Natural Stands

SUMMARY

In the one stand sampled, the overstory shrub canopy was dominated by *Tamarix parviflora* at 75% cover. *Rubus discolor* was also present in the shrub layer. Trees such as *Catalpa bignonioides* and *Quercus lobata* occurred as scattered emergents. The herbaceous layer was open, with *Bromus diandrus* and *Geranium dissectum* present.

This semi-natural type was sampled infrequently in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). The stand occurred on metamorphic substrates. It occupied a gentle lower slope above a river.

DISTRIBUTION IN STUDY AREA

This type was sampled in Placer County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	85	85-85	-
Herb	3	3-3	< 0.3
Shrub	90	90-90	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	5	5-5	10-20
Conifer	0	-	-
Relative non-native to native cover	96.8	97-97	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NE (1)

Macrotopography: lower slope (1) Microtopography: undulating (1) Parent Material: metamorphic (1) Soil Texture: clay or clay loam (1)

	Mean	Range
Elevation	1285 ft.	1285-1285 ft.
Slope	00	_0
Large rock cover	0%	-%
Small rock cover	5%	5-5%
Bare ground cover	5%	5-5%
Litter cover	87%	87-87%

SAMPLES USED TO DESCRIBE ALLIANCE (n=1)

Rapid Assessments: SNNR0722 Relevés: none

Rank: Unranked, non-native type

GLOBAL DISTRIBUTION

This semi-natural stands type has been described for the Sierra Nevada and a number of other moderate to low elevation areas in central and southern California (including the deserts). Currently, it is not as much of an invasive problem in the Sierra Nevada Foothills as in many other parts of the state.

STAND TABLE Tamarix spp. Shrubland Semi-Natural Stands

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
Tree										
	QULO-T	Quercus lobata	100	3.0	3	3	Χ		Χ	
	CABI8	Catalpa bignonioides	100	2.0	2	2		Χ	X	Χ
Shrub										
	TAPA4	Tamarix parviflora	100	75.0	75	75	Χ		Χ	Χ
	RUDI2	Rubus discolor	100	10.0	10	10			Χ	Χ
Herb										
	BRDI3	Bromus diandrus	100	2.0	2	2	Χ		Χ	Χ
	GEDI	Geranium dissectum	100	1.0	1	1		Χ	X	Χ

Toxicodendron diversilobum Shrubland Alliance Poison oak Shrubland Alliance

As defined in the state, *Toxicodendron diversilobum* is dominant or co-dominant in the shrub canopy, where stands have been sampled from southern to northern California. Other shrubs may include *Artemisia californica*, *Diplacus* (=*Mimulus*) *aurantiacus*, *Heteromeles arbutifolia*, *Keckiella cordifolia*, *Malosma laurina*, *Salvia leucophylla*, *S. mellifera*, and *Sambucus nigra* subsp. *canadensis*. Emergent *Juglans californica*, *Quercus agrifolia*, or *Q. douglasii* trees may be present. Herbs may include *Bromus hordeaceus*, *B. diandrus*, and *Leymus condensatus*. The shrub canopy is intermittent to continuous and two-tiered. The herbaceous layer is variable. While sampling this alliance must be done with caution, it has been sampled in a variety of settings in California, from the immediate coastline to the Foothills. Some coastal stands are nearly pure, persistent, and have relatively low diversity. However, some stands are likely to be a consequence of past and frequent fire disturbance, and may have a high diversity of native herbs and emergent trees.

As described below, one association of the Poison Oak Alliance was classified in the study area. While there was variability in the herbaceous understory, stands were classified broadly into one association, even though past sampling (Evens et al. 2004) denoted a couple of associations in the foothills of Tuolumne Co.

Toxicodendron diversilobum / Herbaceous Association Poison-Oak / Herbaceous Association

SUMMARY

In the stands sampled, the overstory shrub canopy was open to continuous and dominated solely by *Toxicodendron diversilobum* at 7-76% cover. *Rhamnus ilicifolia* was occasionally present with sparse cover. The herbaceous layer was open to continuous and often included *Bromus diandrus*, *Bromus madritensis*, *Daucus pusillus*, *Dichelostemma volubile*, and *Torilis arvensis*.

In the study area, this association was sampled frequently in the central Sierra Nevada Foothills, occasionally in the northern Sierra Nevada Foothills, and infrequently in the Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic (including mixed metamorphic serpentine and slate), sometimes on sedimentary, and rarely on ultramafic, volcanic, or mixed rock substrates. They occupied a variety of slope positions from lower to upper slopes and ridgetops (most frequently on middle to upper slopes) that were moderate to abrupt. Stands commonly appeared to be the result of removing overstory oak trees and often persisted in more rocky areas of northerly facing slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Butte, El Dorado, Mariposa, Placer, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

Mean % Range % Height (m)
Total vegetation cover 72.2 15-95 -

Herb	46.1	4-80	variable
Shrub	37.3	8-76	<5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.8	0-5	<5-10
Conifer	0.1	0-1	<5-20
Relative non-native to native cover	51.2	5-87	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NE (7), N (6), W (5), Variable (3), SE (3), NW (3), E (2), SW (1), S (1)

Macrotopography: entire slope (4), lower slope (2), lower to middle slope (2), lower to upper slope (1), middle slope (10), upper slope (10), ridgetop (2)

Microtopography: convex (14), undulating (9), flat (8)

Parent Material: metamorphic (13), sedimentary (7), slate (3), ultramafic (3), volcanic (2), mixed metamorphic (1), mixed rock (1), serpentine (1)

Soil Texture: loam or sandy loam (10), silt or silt loam (9), clay or clay loam (5), sand (1)

	Mean	Range
Elevation	1153 ft.	500-2240 ft.
Slope	22.70	9-75°
Large rock cover	13.8%	0-75%
Small rock cover	2.8%	<1-13%
Bare ground cover	19.7%	<1-45%
Litter cover	60.1%	8-92%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=31)

Rapid Assessments: SNNR0020, SNNR0259, SNNR0410, SNNR0664, SNNR0768, SNNR0865, SNNR0956, SNNR1019, SNNR1023, SNNR1050, SNNR1085, SNNR1108, SNNR1204, SNNR1405, SNNR1419, SNNR1429, SNNR1436, SNNR1448, SNNR1452, SNNR1453, SNNR1460, SNNR1482 **Relevés:** SNFN0192, SNFN0610, SNFN0617, SNFN0638, SNFN0647, SNFN0651, SNFN0660, SNFN0674, SNFN0675

Rank: G4S4

GLOBAL DISTRIBUTION

This association has been described for the Sierra Nevada Foothills based solely upon the data collected for this project. Other stands of this alliance have been defined from the outer coast ranges in Marin and San Mateo Counties (NatureServe et al. 2003a), the Santa Monica Mountains (Keeler-Wolf and Evens 2006), and elsewhere in the state (Sawyer et al. 2007 MS).

STAND TABLE

Toxicodendron diversilobum / Herbaceous

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Shrub										
	TODI	Toxicodendron diversilobum	100	35.3	7	76	Χ		Χ	
	RHIL	Rhamnus ilicifolia	29	0.1	0.2	1				
Herb										
	BRHO2	Bromus hordeaceus	94	22.4		60		Χ	Χ	Χ
	BRDI3	Bromus diandrus	68	2.6	0.2	13				Χ
	TOAR	Torilis arvensis	65	2.0	0.2	12				Χ
	DAPU3	Daucus pusillus	65	1.2	0.2	6				
	BRMA3	Bromus madritensis	58	2.4	0.2	15				Χ
	DIVO	Dichelostemma volubile	52	0.1	0.2	1				
	CAPY2	Carduus pycnocephalus	48	1.7	0.2	13				Χ
	VIVI	Vicia villosa	45	7.0	0.2	60				Χ
	TRMI4	Trifolium microcephalum	45	0.1	0.2	1				
	CEME2	Centaurea melitensis	39	1.7	0.2	20				Χ
	MAGR3	Madia gracilis	39	1.3	0.2	12				
	AICA	Aira caryophyllea	39	0.3	0.2	5				Χ
	BRMI2	Briza minor	39	0.1	0.2	1				Χ
	TRHI4	Trifolium hirtum	35	1.3	0.2	20				Χ
	MICAC2	Micropus californicus var. californicus	35	1.1	0.2	15				
	AVBA	Avena barbata	35	0.7	0.2	18				Χ
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	35	0.3	0.2	6				
	AVFA	Avena fatua	32	3.7	0.2	35				Χ
	GEDI	Geranium dissectum	32	0.4	0.2	5				Χ
	TRWI3	Trifolium willdenovii	32	0.2	0.2	3				
	VUMY	Vulpia myuros	29	0.3	0.2	5				Χ
	GAVE3	Gastridium ventricosum	29	0.1	0.2	0.2				Χ
	TRLA16	Triteleia laxa	29	0.1	0.2	0.2				
	GAPA5	Galium parisiense	26	0.1	0.2	1				Χ
	GAPO	Galium porrigens	26	0.1	0.2	0.2				
		· ·								

HERB DESCRIPTIONS

Stands of the Layia fremontii - Lasthenia californica - Achyrachaena mollis Herbaceous Association (in flower) interspersed with the Vulpia microstachys - Plantago erecta - (Calycadenia truncata - Calycadenia multiglandulosa) Herbaceous Association (green, non-flowery) on Tuscan soils northeast of Chico, Butte County, California.

Avena (barbata, fatua) Herbaceous Semi-Natural Stands Oat (Slender, Wild) Herbaceous Semi-Natural Stands

As defined in the state, *Avena barbata* and/or *Avena fatua* strongly dominate(s) (> 90% relative cover) in the herbaceous layer with intermittent to continuous cover. Other non-native or native species may be present, but with low overall cover. General references for an *Avena barbata/A*. *fatua* Herbaceous Alliance include studies from the Point Reyes National Seashore area in Marin County (NatureServe et al. 2003a), Coyote Ridge in Santa Clara County (Evens and San 2004), and the Santa Monica Mountains in southern California (Keeler-Wolf and Evens 2006), where *Avena* is an indicator and strong dominant. Previous to these studies, the "California Annual Grassland" Series (Sawyer and Keeler-Wolf 1995) was used as a generic term to include this and other upland herbaceous alliances; however, state ecologists are beginning to define this type because of its distribution and clear establishment over the past 100 years. It potentially occurs across cismontane California on sedimentary and igneous parent materials at elevations below 5000 ft., especially where agriculture, hay, and cattle grazing have been introduced (Evens and San 2004).

In the study area, stands usually contain *Bromus hordeaceus* and other non-native grasses such as *Vulpia* spp. at low cover. Native and non-native forbs in the genera of *Clarkia*, *Trifolium*, *Dichelostemma*, *Galium*, and *Plagiobothrys* may occur in these stands as well. One association was classified for the Oat (Slender, Wild) Alliance and is described below. This semi-natural type is closely related to the *Bromus* (*diandrus*, *hordeaceus*, *madritensis*) Semi-Natural Stands type. Further research and analysis may show them to be better described as a single alliance characterized by a combination of both *Avena* and *B. hordeaceus*. The distinguishing features of both are that they contain little cover of any diagnostic native herbaceous annual species and are thus distinguished by the overwhelming presence of these non-native taxa.

Avena barbata - Bromus hordeaceus Herbaceous Association (Provisional) Slender Oat - Soft Chess Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and dominated by *Avena barbata* at 25-65% cover. *Bromus hordeaceus* (6-10% cover) and *Galium parisiense* (<1-3% cover) were consistently present, while *Bromus madritensis*, *Clarkia purpurea*, *Eremocarpus setigerus*, *Filago gallica*, *Galium murale*, *Lactuca serriola*, *Lupinus nanus*, *Plagiobothrys fulvus*, and *Trifolium microcephalum* were often present.

This association was sampled infrequently in the study area within the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands occurred on either basalt or metamorphic substrates. They occupied upland slope positions from bottom to upper slope, that were flat to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, and Madera Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	54.3	35-82	-
Herb	54.3	35-82	>0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	88.7	67-99	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (1), Variable (1), S (1), Flat (1)

Macrotopography: bottom (2), bottom to upper slope (1), middle slope (1)

Microtopography: undulating (2), flat (1), convex (1)

Parent Material: basalt (2), metamorphic (2)

Soil Texture: loam or sandy loam (2), clay or clay loam (1), silt or silt loam (1)

	Mean	Range
Elevation	601 ft.	267-1309 ft.
Slope	6.3°	0-18°
Large rock cover	0.3%	0-1%
Small rock cover	1.8%	0.2-3%
Bare ground cover	15%	5-33%
Litter cover	78.3%	62-89%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=4)

Rapid Assessments: SNNR0046, SNNR0889 Relevés: SNFN0195, SNFN0197

Rank: Unranked, non-native type

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on the upland grassland data from this study and from uplands associated with vernal pools in southern California (Kopecko and Lathrop 1975). Similar stands have been described from the Santa Monica Mountains (Keeler-Wolf and Evens 2006).

STAND TABLE

Avena barbata - Bromus hordeaceus Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	AVBA	Avena barbata		40.8	25	65	X		X	X
	BRHO2	Bromus hordeaceus	100	7.8	6	10			X	X
	GAPA5	Galium parisiense	100	1.1	0.2	3			Χ	Χ
	ERSE3	Eremocarpus setigerus	75	0.4	0.2	1				
	LASE	Lactuca serriola	75	0.2	0.2	0.2				Χ
	CLPU2	Clarkia purpurea	50	8.0	1	2				
	FIGA	Filago gallica	50	0.3	0.2	1				Χ
	GAMU4	Galium murale	50	0.3	0.2	1				Χ
	TRMI4	Trifolium microcephalum	50	0.3	0.2	1				
	BRMA3	Bromus madritensis	50	0.1	0.2	0.2				Χ
	LUNA3	Lupinus nanus	50	0.1	0.2	0.2				
	PLFU	Plagiobothrys fulvus	50	0.1	0.2	0.2				
	VUMY	Vulpia myuros	25	2.0	8	8				Χ
	CAPY2	Carduus pycnocephalus	25	1.3	5	5				Χ
	CLGR	Clarkia gracilis	25	1.3	5	5				
	TRHI4	Trifolium hirtum	25	8.0	3	3				Χ
	AICA	Aira caryophyllea	25	0.1	0.2	0.2				Χ
	AMME	Amsinckia menziesii	25	0.1	0.2	0.2				
	BRODI	Brodiaea	25	0.1	0.2	0.2				
	BRMI3	Brodiaea minor	25	0.1	0.2	0.2				
	BRDI3	Bromus diandrus	25	0.1	0.2	0.2				Χ
	CALU9	Calochortus luteus	25	0.1	0.2	0.2				
	CAAT25	Castilleja attenuata	25	0.1	0.2	0.2				
	CESO3	Centaurea solstitialis	25	0.1	0.2	0.2				Χ
	CHAN2	Chlorogalum angustifolium	25	0.1	0.2	0.2				
	DICAC5	Dichelostemma capitatum subsp. capitatum	25	0.1	0.2	0.2				
	DIMU5	Dichelostemma multiflorum	25	0.1	0.2	0.2				
	DOCLP	Dodecatheon clevelandii subsp patulum	25	0.1	0.2	0.2				
	EPTO4	Epilobium torreyi	25	0.1	0.2	0.2				
	ERBO	Erodium botrys	25	0.1	0.2	0.2				Χ
	ESLO	Eschscholzia lobbii	25	0.1	0.2	0.2				
	HYRA3	Hypochaeris radicata	25	0.1	0.2					Χ
	MICAC2	Micropus californicus var. californicus	25	0.1	0.2					
	SCCA2	Scrophularia californica	25	0.1	0.2	0.2				
	SIMA3	Silybum marianum	25	0.1	0.2	0.2				Χ
	VICIA	Vicia	25	0.1	0.2	0.2				
	VIVI	Vicia villosa	25	0.1	0.2	0.2				Χ
	VUBR	Vulpia bromoides	25	0.1	0.2	0.2				Χ
Cryptoga										
	MOSS	Moss	25	2.5	10	10				

Bromus (diandrus, hordeaceus, madritensis) Herbaceous Semi-Natural Stands Brome (Ripgut, Soft Chess, Foxtail) Herbaceous Semi-Natural Stands

As defined in the state, *Bromus hordeaceus* and/or *B. diandrus* is/are usually strongly dominant in this generic upland grassland semi-natural type; however, some stands may contain other non-native and native species that may sometimes co-dominate. Non-native species typically predominate (at > 90% of relative cover) when natives are present. Annual bromes are now considered "resident annuals" and permanent members of the broader category of "California Annual Grassland." This type tends to be depauperate of species with low native herb cover. The associations in this type are coarser-level than others in this report. This underscores the shifting composition of relatively non-diagnostic alien and native species in associations of this seminatural stands type. Further analysis with full species lists from field surveys, over a period of several seasons and years in permanent plots, are needed to understand the relationships between the component vegetation associations of this type and other similar associations in the *Avena* (*barbata*, *fatua*) Semi-Natural Stands type.

In the study area, stands often contain other non-native forbs and grasses such as *Trifolium hirtum*, *T. dubium*, *Erodium botrys*, *Bromus diandrus*, and *Hypochaeris glabra*. Occasionally, native herbs occur, including *Brodiaea elegans* subsp. *elegans*, *Castilleja attenuata*, *Plagiobothrys fulvus*, *Lotus micranthus*, *Lupinus nanus*, *L. bicolor*, and *Trifolium microcephalum*. One sub-alliance and four associations have been described below for this alliance.

Brachypodium distachyon - Bromus diandrus / (Quercus douglasii) Sub-Alliance Purple False Brome - Ripgut Brome / (Blue Oak) Sub-Alliance

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and characterized by *Bromus hordeaceus* with *Brachypodium distachyon* (<1-65% cover) and/or *Bromus diandrus* (<1-60% cover). *B. distachyon* and/or *B. diandrus* occurred in > 97% of samples, where one or both species was/were dominant or co-dominant. *Avena barbata*, *Carduus pycnocephalus*, *Trifolium hirtum*, and *Vicia villosa* were often present in the herbaceous layer. *Quercus douglasii* often occurred as a scattered emergent tree, and *Toxicodendron diversilobum* sometimes occurred as an emergent shrub. Some stands were recovering from recent fire disturbance and had snags and burned oak trees that recover more slowly from fire than the non-native grass species.

This group of related associations was sampled frequently in the study area within the central and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic (including greenstone) substrates, but were also found occasionally on granitic, volcanic, sedimentary (including limestone), serpentine and other ultramafic substrates. They occupied a variety of upland slope positions from bottom to ridgetop (most commonly middle and upper slopes) that varied from gentle to steep.

DISTRIBUTION IN STUDY AREA

This group of related associations was sampled within Amador, Butte, Calaveras, El Dorado, Mariposa, Nevada, Tuolumne and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsection(s) (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	69.3	35-95	-
Herb	68.7	35-95	variable
Shrub	1.5	0-16	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	1.2	0-6	5-20
Conifer	0	0-1	5-20
Relative non-native to native cover	92.2	68-100	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (12), W (6), Variable (6), S (6), SE (5), NW (2), E (1)

Macrotopography: entire slope (2), bottom (1), lower slope (4), lower to middle slope (3), lower to upper slope (1), middle slope (10), middle to upper slope (2), upper slope (11), ridgetop (4) Microtopography: undulating (22), flat (9), convex (7)

Parent Material: metamorphic (27), granitic (2), serpentine (2), ultramafic (2), volcanic (2), greenstone (1), limestone (1), sedimentary (1)

Soil Texture: silt or silt loam (15), clay or clay loam (10), loam or sandy loam (10)

	Mean	Range
Elevation	1142 ft.	316-2029 ft.
Slope	14.6°	1-37°
Large rock cover	3.3%	0-20%
Small rock cover	4.1%	0-20%
Bare ground cover	14.8%	1-36%
Litter cover	74.6%	45-97%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=38)

Rapid Assessments: SNNR0066, SNNR0233, SNNR0663, SNNR0677, SNNR0927, SNNR0961, SNNR0983, SNNR0997, SNNR1060, SNNR1065, SNNR1183, SNNR1219, SNNR1292, SNNR1295, SNNR1299, SNNR1393, SNNR1396, SNNR1409, SNNR1412, SNNR1449, SNNR1457, SNNR1475, SNNR1479, SNNR1604, SNNR1608, SNNR1610, SNNR1620 **Relevés:** SNFN0025, SNFN0387, SNFN0611, SNFN0614, SNFN0615, SNFN0619, SNFN0620, SNFN0621, SNFN0623, SNFN0633, SNFN0644

Rank: Unranked, non-native type. Likely with multiple associations

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on data collected and analyzed for this project and for a previous project in Peoria Wildlife Area, Tuolumne County (Evens et al. 2004). The study in Peoria Wildlife Area recognized a *Brachypodium distachyon* Herbaceous Alliance and a *Brachypodium distachyon* - *Centaurea* spp. Herbaceous Association. A similar association, *Brachypodium distachyon* Herbaceous Association, was defined in Point Reyes National Seashore (NatureServe et al. 2003a).

STAND TABLE

Brachypodium distachyon - Bromus diandrus / (Quercus douglasii) Sub-Alliance

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUDO-T	Quercus douglasii	53	1.0	0.2	6				
Shrub	TODI	-	-00			40				
	TODI	Toxicodendron diversilobum	26	0.7	0.2	12				
Herb	BRHO2	Bromus hordeaceus	100	18.4	0.2	68			Х	Х
	TRHI4	Trifolium hirtum	74	3.2	0.2	30				Х
	BRDI3	Bromus diandrus	71	10.4	_	60				X
	AVBA	Avena barbata	61	4.4	0.2					Х
	CAPY2	Carduus pycnocephalus	61	2.9	0.2	20				Χ
	VIVI	Vicia villosa	50	10.6	0.2	75				Χ
	BRDI2	Brachypodium distachyon	47	12.9	0.2	65				X
	LOMU	Lolium multiflorum	45	4.6	0.2	45				Χ
	AVFA	Avena fatua	45	3.9	0.2	25				Χ
	BRELE	Brodiaea elegans subsp. elega	ns42	0.1	0.2	1				
	CEME2	Centaurea melitensis	39	2.4	0.2	20				Χ
	TOAR	Torilis arvensis	39	0.7	0.2	10				Χ
	AMMEI2	Amsinckia menziesii var. intermedia	39	0.2	0.2	4				
	ERBO	Erodium botrys	37	0.7	0.2	15				Χ
	HYGL2	Hypochaeris glabra	37	0.7	0.2	10				Χ
	GAPA5	Galium parisiense	37	0.3	0.2	5				Χ
	NAPU2	Navarretia pubescens	29	0.3	0.2	5				
	DAPU3	Daucus pusillus	29	0.2	0.2	4				
	TACA8	Taeniatherum caput-medusae	26	3.3	0.2	40				Χ
	BRMA3	Bromus madritensis	26	0.5	0.2					Χ
	TRMI4	Trifolium microcephalum	21	0.3	0.2	10				
	MAGR3	Madia gracilis	21	0.2	0.2	3				

Bromus hordeaceus - Erodium botrys - Plagiobothrys fulvus Herbaceous Association Soft Chess - Filaree - Fulvous Popcornflower Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and characterized by *Bromus hordeaceus* (<1-40% cover), *Erodium botrys* (<1-30% cover), *Hypochaeris glabra* (<1-17% cover), *Plagiobothrys fulvus* (<1-5% cover), and *Trifolium hirtum* (<1-25% cover). Other taxa that were often present included non-natives *Aira caryophyllea*, *Eschscholzia lobbii*, and *Taeniatherum caput-medusae*.

This association was sampled infrequently in the study area within the central and northern Sierra Nevada Foothills, and occasionally in the Cascade Range Foothills Subregions (Hickman 1993). Stands often occurred on igneous substrates (including basalt and other volcanic), occasionally on metamorphic substrates, and infrequently on sedimentary substrates. They occupied a variety of upland slope positions from bottom to ridgetop, on slopes that were flat to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, Mariposa, Placer, Shasta, Tehama, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Northern Eastside Terraces (262Ab), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	54.4	27-73	-
Herb	54.4	27-73	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	0-0.2	5-20
Conifer	0	-	-
Relative non-native to native cover	87.1	35-99	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (4), Variable (2), W (1), SW (1), NW (1), NE (1), E (1)

Macrotopography: bottom (2), lower slope (2), lower to middle slope (1), lower to upper slope (1), middle slope (2), upper slope (1), mesa/plateau (1), ridgetop (1)

Microtopography: flat (5), undulating (4), concave (1), convex (1)

Parent Material: volcanic (4), metamorphic (3), basalt (2), igneous (1), sedimentary (1)

Soil Texture: clay or clay loam (5), loam or sandy loam (3), silt or silt loam (3)

	Mean	Range
Elevation	815 ft.	282-1547 ft.
Slope	2.80	0-14°
Large rock cover	1.5%	0-14.2%
Small rock cover	5%	0.2-20.2%
Bare ground cover	29.4%	0.2-57%
Litter cover	61.7%	28-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=11)

Rapid Assessments: SNNR0001, SNNR0818, SNNR0972, SNNR1093, SNNR1114 **Relevés:** SNFN0057, SNFN0079, SNFN0110, SNFN0339, SNFN0352, SNFN0429

Rank: G4S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on the data collected for this project. Similar stands have been described for other areas of the state with *B. hordeaceus* and *Erodium botrys* (Schlising and Sanders 1982, Jimerson et al. 2000, Keeler-Wolf and Evens 2006).

STAND TABLE

Bromus hordeaceus - Erodium botrys - Plagiobothrys fulvus Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	BRHO2	Bromus hordeaceus		17.4					X	X
	ERBO	Erodium botrys	91	10.1					X	X
	HYGL2	Hypochaeris glabra	91	4.8	0.2				Χ	X
	TRHI4	Trifolium hirtum	82	4.3	0.2				Χ	X
	PLFU	Plagiobothrys fulvus	82	0.9	0.2				X	
	TACA8	Taeniatherum caput-medusae	73	6.7	0.2					X
	AICA	Aira caryophyllea	64	0.7	0.2					Х
	ESLO	Eschscholzia lobbii	55	1.0	0.2					
	AVBA	Avena barbata	45	1.1	0.2					Χ
	TRDU2	Trifolium dubium	45	1.0	1	4				X
	LUBI	Lupinus bicolor	45	0.1	0.2	0.2				
	BRDI3	Bromus diandrus	36	0.5	0.2	3				Х
	LOMU	Lolium multiflorum	36	0.4	0.2	4				Χ
	CLPU2	Clarkia purpurea	36	0.2	0.2	2				
	BRMI2	Briza minor	36	0.1	0.2	1				Χ
	DICAC5	Dichelostemma capitatum subsp. capitatum	36	0.1	0.2	1				
	SHAR2	Sherardia arvensis	36	0.1	0.2	1				Χ
	TRERE2	Triphysaria eriantha subsp. eriantha	36	0.1	0.2	0.2				
	HERBAC	unknown	27	0.3	0.2	3.4				
	HOMA2	Hordeum marinum	27	0.2	0.2	2				Χ
	VUBR	Vulpia bromoides	27	0.2	0.2	2				Χ
	PLER3	Plantago erecta	27	0.1	0.2	1				
	CEGL2	Cerastium glomeratum	27	0.1	0.2	0.2				Χ
	ERSE3	Eremocarpus setigerus	27	0.1	0.2	0.2				
	LOCA5	Lomatium caruifolium	27	0.1	0.2	0.2				
	PLNO	Plagiobothrys nothofulvus	27	0.1	0.2	0.2				
	TRDE	Trifolium depauperatum	27	0.1	0.2	0.2				
Cryptoga	am									
	MOSS	Moss	27	2.3	0.2	15				

Bromus hordeaceus - Leontodon taraxacoides Herbaceous Association Soft Chess - Lesser Hawkbit Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous, with the consistent presence of *Bromus hordeaceus* at <1-45% cover and *Leontodon taraxacoides* at 1-28% cover. Other taxa that were characteristically present included non-natives *Aira caryophyllea*, *Briza minor*, *Erodium botrys*, *Hypochaeris glabra*, *Trifolium dubium*, and *Trifolium hirtum*.

In the study area, this association was sampled somewhat frequently in the northern Sierra Nevada Foothills and frequently in the Sacramento Valley Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates and sometimes on sedimentary substrates. They occupied a variety of upland slope positions, from bottom to upper slopes, that were flat to steep surfaces.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Calaveras, and Sacramento Counties, within the Camanche Terraces (262Ao) and Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	63	25-90	-
Herb	63	25-90	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0.1	0-1	5-20
Conifer	0	-	-
Relative non-native to native cover	83.2	52-100	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (5), S (4), SW (3), E (3), Variable (2), N (2), SE (1), Flat (1)

Macrotopography: bottom (1), bottom to lower slope (1), middle slope (1), upper slope (1)

Microtopography: concave (2), flat (2)

Parent Material: metamorphic (14), sedimentary (9)

Soil Texture: silt or silt loam (4)

	Mean	Range
Elevation	631 ft.	365-751 ft.
Slope	6.3°	0-30°
Large rock cover	0.3%	0.2-0.4%
Small rock cover	3.5%	2-5%
Bare ground cover	38%	8-68%
Litter cover	56.5%	25-88%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=23)

Rapid Assessments: SNNR1049, SNNR1159 **Relevés:** SNFN0206, SNFN0412, SNFN0466, SNFN0477, SNFN0479, SNFN0483, SNFN0487, SNFN0491, SNFN0492, SNFN0494, SNFN0496, SNFN0497, SNFN0498, SNFN0499, SNFN0500, SNFN0501, SNFN0502, SNFN0504, SNFN0511, SNFN0514, SNFN0530

Rank: G4S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills and appears largely restricted to the central Sierra Nevada Foothills. It is particularly well-represented due to the sampling efforts at Deer Creek Hills, Sacramento County.

STAND TABLE Bromus hordeaceus - Leontodon taraxacoides Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb				9			_		•	
11012	BRHO2	Bromus hordeaceus	100	15.0	0.2	45			Χ	X
	LETA	Leontodon taraxacoides		13.7		28			X	X
	AICA	Aira caryophyllea	96	0.5	0.2	5			Χ	Χ
	ERBO	Erodium botrys	91	2.7	0.2	9			Χ	Χ
	TRDU2	Trifolium dubium	87	4.0	0.2	20			Χ	Χ
	HYGL2	Hypochaeris glabra	87	3.0	0.2	20			Χ	Χ
	BRMI2	Briza minor	87	0.3	0.2	1			Χ	Χ
	TRHI4	Trifolium hirtum	83	5.1	0.2	35			Χ	Χ
	TRMI4	Trifolium microcephalum	74	0.4	0.2	2				
	VUBR	Vulpia bromoides	70	2.6	0.2	20				Χ
	CAAT25	Castilleja attenuata	65	0.5	0.2	5				
	AVFA	Avena fatua	61	1.6	0.2	10				Χ
	BRELE	Brodiaea elegans subsp. elega	ns57	8.0	0.2	10				
	TACA8	Taeniatherum caput-medusae	52	3.8	0.2	20				Χ
	LOMU	Lolium multiflorum	52	2.0	0.2	20				Χ
	JUBU	Juncus bufonius	52	1.0	0.2	5				
	SIGA	Silene gallica	52	0.1	0.2	0.2				Χ
	TRERE2	Triphysaria eriantha subsp. eriantha	48	0.7	0.2	12				
	FIGA	Filago gallica	48	0.1	0.2	1				Χ
	GAPA5	Galium parisiense	48	0.1	0.2	0.2				Χ
	LYHY2	Lythrum hyssopifolia	43	0.7	0.2	10				Χ
	HOVIV	Holocarpha virgata subsp. virga	ata39	2.2	0.2	23				
	LOMI	Lotus micranthus	39	0.1	0.2	1				
	TRVA	Trifolium variegatum	39	0.1	0.2	0.2				
	GAVE3	Gastridium ventricosum	35	0.3	0.2	4				Χ
	LOPU3	Lotus purshianus	35	0.2	0.2	3				
	HEFI	Hemizonia fitchii	35	0.1	0.2	1				
	CEMU2	Centaurium muehlenbergii	35	0.1	0.2	1				
	DAPU3	Daucus pusillus	35	0.1	0.2	1				
	CYEC	Cynosurus echinatus	30	1.8	0.2	40				Χ
	NATA3	Navarretia tagetina	30	1.0	0.2	15				
	TRLA4	Trichostema lanceolatum	30	0.1	0.2	0.2				
	TRHY3	Triteleia hyacinthina	30	0.1	0.2	0.2				

STAND TABLE continued Bromus hordeaceus - Leontodon taraxacoides Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	BRDI2	Brachypodium distachyon	26	3.5	1	25				Χ
	BRDI3	Bromus diandrus	26	0.7	0.2	12				Χ
	MEPO3	Medicago polymorpha	26	0.3	0.2	3				Χ
	TRDED	Trifolium depauperatum var. depauperatum	26	0.2	0.2	2				
	CALU9	Calochortus luteus	26	0.1	0.2	1				
	CEGL2	Cerastium glomeratum	26	0.1	0.2	0.2				Χ
	BRST2	Bromus sterilis	22	0.4	0.2	8				Χ
	HOMAG	Hordeum marinum subsp. gussonianum	22	0.4	0.2	4				Χ
	VUMI	Vulpia microstachys	22	0.1	0.2	2				
	TRCI	Trifolium ciliolatum	22	0.1	0.2	1				
	ANAR	Anagallis arvensis	22	0.0	0.2	0.2				Χ
	LIBI	Linanthus bicolor	22	0.0	0.2	0.2				
Cryptoga	am									
	MOSS	Moss	52	1.0	0.2	12				

Bromus hordeaceus - Lupinus nanus - Trifolium spp. Herbaceous Association (Provisional)

Soft Chess - Sky Lupine - Clover Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and characterized by *Trifolium hirtum* at <1-55% cover and *Hypochaeris glabra* at <1-30% cover. Other dominant plants included *Lupinus* species: *Lupinus nanus* and *Lupinus bicolor* at up to 76% and 21% cover, respectively. Other species of *Trifolium* often present include *Trifolium dubium* and *Trifolium microcephalum*. Other taxa that were often present included *Aira caryophyllea*, *Bromus hordeaceus*, *Castilleja attenuata*, *Erodium botrys*, *Lotus micranthus*, *Lupinus nanus*, and *Triphysaria eriantha* subsp. *eriantha*.

This association was sampled infrequently in the study area within the central and northern Sierra Nevada Foothills and Sacramento Valley Subregions (Hickman 1993). Stands sometimes occurred on metamorphic (including slate and serpentine) and volcanic (including rhyolite) substrates and infrequently on granitic or sedimentary substrates. They occupied a variety of upland slope positions from bottoms to upper slopes and ridgetops. Slopes were flat to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado, Mariposa, Sacramento, and Tuolumne Counties, within the Camanche Terraces (262Ao) and Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	76.2	60-99	-
Herb	75.8	60-99	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0.1	0-1	5-10
Conifer	0.4	0-4	10-20
Relative non-native to native cover	67.6	42-95	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (3), W (1), Variable (1), SW (1), SE (1), NW (1), E (1)

Macrotopography: bottom (1), lower slope (4), upper slope (1), ridgetop (2)

Microtopography: flat (5), convex (2), concave (1)

Parent Material: slate (2), volcanic (2), granitic (1), metamorphic (1), rhyolite (1), sedimentary (1),

serpentine (1)

Soil Texture: silt or silt loam (3), loam or sandy loam (2)

	Mean	Range
Elevation	880 ft.	382-1810 ft.
Slope	8.30	0-25°
Large rock cover	8.4%	0-40%
Small rock cover	17.1%	<1-45%
Bare ground cover	31.4%	1-74%
Litter cover	40.2%	3-92%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=9)

Rapid Assessments: SNNR1080 Relevés: SNFN0023, SNFN0043, SNFN0093, SNFN0232,

SNFN0475, SNFN0588, SNFN0594, SNFN0598

Rank: G4 S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on the data collected for this project and for Peoria Wildlife Area in Tuolumne County (Evens et al. 2004). It is likely to occur commonly throughout cismontane California.

The combination of several species of native and non-native *Trifolium* species and the native *L. nanus* suggests that this association may belong to a different alliance, defined by native species. Further sampling and comparative analysis is necessary to determine if placement in the *B. hordeaceus* alliance is correct.

STAND TABLE *Bromus hordeaceus - Lupinus nanus - Trifolium* spp. Herbaceous Association (Provisional)

Lifeform	-	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb				9			_		•	
	TRHI4	Trifolium hirtum	89	12.8	0.2	55			X	X
	HYGL2	Hypochaeris glabra	89	12.0	0.2	30			Χ	Χ
	BRHO2	Bromus hordeaceus	78	18.7	1	55				X
	TRDU2	Trifolium dubium	78	8.6	0.2	30				X
	ERBO	Erodium botrys	78	5.9	1	20				Χ
	LOMI	Lotus micranthus	78	2.2	0.2	9				
	CAAT25	Castilleja attenuata	78	0.2	0.2	1				
	LUNA3	Lupinus nanus	67	15.0	2	76				
	TRERE2	Triphysaria eriantha subsp. eriantha	67	3.1	0.2	27				
	AICA	Aira caryophyllea	67	1.0	0.2	6				Χ
	TRMI4	Trifolium microcephalum	56	2.5	0.2	20				
	LUBI	Lupinus bicolor	44	5.2	0.2	21				
	VUMY	Vulpia myuros	44	0.3	0.2	1				Χ
	VUBR	Vulpia bromoides	33	3.9	1	27				Χ
	BRDI3	Bromus diandrus	33	2.3	0.2	20				Χ
	TRWI3	Trifolium willdenovii	33	1.2	0.2	10				
	VIVI	Vicia villosa	33	8.0	0.2	5				Χ
	LOPU3	Lotus purshianus	33	0.4	0.2	2				
	CYDA	Cynodon dactylon	33	0.2	0.2	1				Χ
	FIGA	Filago gallica	33	0.2	0.2	1				Χ
	AVBA	Avena barbata	33	0.1	0.2	0.2				Χ
	BRMI2	Briza minor	33	0.1	0.2	0.2				Χ
	VUMI	Vulpia microstachys	33	0.1	0.2	0.2				
	LOMU	Lolium multiflorum	22	2.0	0.2	18				Χ
	GAPA5	Galium parisiense	22	0.4	2	2				Χ
	LETA	Leontodon taraxacoides	22	0.4	2	2				Χ
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	22	0.2	1	1				
	BRMA3	Bromus madritensis	22	0.0	0.2	0.2				Χ
	LACA7	Lasthenia californica	22	0.0	0.2	0.2				
	PAPU10	Parvisedum pumilum	22	0.0	0.2	0.2				
	PLFU	Plagiobothrys fulvus	22	0.0	0.2	0.2				
	TRVA	Trifolium variegatum	22	0.0	0.2	0.2				
	TRHY3	Triteleia hyacinthina	22	0.0	0.2	0.2				
Cryptoga										
	MOSS	Moss	33	8.0	0.2	7				

Trifolium hirtum - Bromus hordeaceus Herbaceous Association (Provisional) Rose Clover - Soft Chess Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and dominated by *Trifolium hirtum* at <1-55%. *Bromus hordeaceus* (1-70% cover) was characteristically present and usually co-dominant with at least 30% relative cover, while *Amsinckia menziesii* var. *intermedia*, *Avena fatua*, *Bromus diandrus*, *Centaurea solstitialis*, *Erodium botrys*, *Lolium multiflorum*, and *Vulpia myuros* were often present with low cover in the herbaceous layer.

In the study area, this association was sampled infrequently within the central Sierra Nevada Foothills and occasionally in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on metamorphic, sedimentary, ultramafic, mixed rock, or volcanic substrates. They occupied a variety of upland slope positions from lower to upper slopes and ridgetops, on gentle to somewhat steep surfaces.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Placer, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Upper Foothills Metamorphic Belt (M261Eg) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	64.6	29-85	-
Herb	64.6	29-85	variable
Shrub	0.1	0-0.2	1-2
Low Tree/Tall Shrub	0	-	-
Hardwood	0.1	0-0.2	<5-10
Conifer	0	-	-
Relative non-native to native cover	96.8	94-99	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SE (4), W (1), SW (1), S (1), NW (1)

Macrotopography: lower slope (3), middle slope (3), upper slope (1), ridgetop (1)

Microtopography: flat (4), undulating (2), concave (1), convex (1)

Parent Material: metamorphic (2), mixed rock (2), sedimentary (1), serpentine (1), ultramafic (1),

volcanic (1)

Soil Texture: clay or clay loam (3), loam or sandy loam (2)

	Mean	Range
Elevation	1040 ft.	460-1630 ft.
Slope	10°	2-23°
Large rock cover	0.2%	0-0.2%
Small rock cover	2.9%	0.2-10%
Bare ground cover	7%	1-15%
Litter cover	86.8%	68-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=8)

Rapid Assessments: SNNR0049, SNNR0223, SNNR0406 Relevés: SNFN0065, SNFN0147, SNFN0578, SNFN0605, SNFN0632

Rank: G4S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on the data collected for this project. Its appears to be closely related to the *Bromus hordeaceus - Lupinus nanus - Trifolium* spp. Herbaceous Association, *Bromus hordeaceus - Erodium botrys - Plagiobothrys fulvus* Herbaceous Association, and the *Avena* (*barbata*, *fatua*) Semi-Natural Stands type. Further, detailed analysis of field samples with full species lists in these annual grasslands will be necessary to understand their proper placement.

STAND TABLE

Trifolium hirtum - Bromus hordeaceus Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	TRHI4	Trifolium hirtum	100	35.4	15	58		X	X	X
	BRHO2	Bromus hordeaceus	100	16.8	1	35			X	X
	CESO3	Centaurea solstitialis	75	7.5	1	34				Χ
	BRDI3	Bromus diandrus	75	3.6	1	10				Χ
	ERBO	Erodium botrys	63	1.1	0.2	5				Χ
	AVFA	Avena fatua	50	4.1	0.2	30				Χ
	LOMU	Lolium multiflorum	50	1.3	0.2	10				Χ
	VUMY	Vulpia myuros	50	0.4	0.2	2				Χ
	AMMEI2	Amsinckia menziesii var. intermedia	50	0.1	0.2	0.2				
	HYGL2	Hypochaeris glabra	38	0.4	0.2	3				Χ
	LUNA3	Lupinus nanus	38	0.3	0.2	2				
	VISA	Vicia sativa	38	0.3	0.2	2				Χ
	PLNO	Plagiobothrys nothofulvus	38	0.2	0.2	1				
	BRELE	Brodiaea elegans subsp. elega	ns38	0.1	0.2	0.2				
	ERCI6	Erodium cicutarium	38	0.1	0.2	0.2				Χ
	GAPA5	Galium parisiense	38	0.1	0.2	0.2				Χ
	TRDU2	Trifolium dubium	38	0.1	0.2	0.2				Χ
	VISAN2	Vicia sativa subsp. nigra	25	5.0	0.2	40				Χ
	BRMA3	Bromus madritensis	25	0.4	0.2	3				Χ
	TACA8	Taeniatherum caput-medusae	25	0.2	0.2	1				Χ
	AICA	Aira caryophyllea	25	0.1	0.2	0.2				Χ
	AVBA	Avena barbata	25	0.1	0.2	0.2				Χ
	CLARK	Clarkia	25	0.1	0.2	0.2				
	CLPU2	Clarkia purpurea	25	0.1	0.2	0.2				
	DICAC5	Dichelostemma capitatum subsp. capitatum	25	0.1	0.2	0.2				
	GEDI	Geranium dissectum	25	0.1	0.2	0.2				Χ
	HYPE	Hypericum perforatum	25	0.1	0.2	0.2				Χ
	MAGR3	Madia gracilis	25	0.1	0.2	0.2				
	THCU	Thysanocarpus curvipes	25	0.1	0.2	0.2				
	TRWI3	Trifolium willdenovii	25	0.1	0.2	0.2				
	TRLA16	Triteleia laxa	25	0.1	0.2	0.2				

Bromus hordeaceus - (Holocarpha virgata) Herbaceous Alliance Soft Chess - (Yellowflower Tarweed) Herbaceous Alliance

As defined for the first time in the state, *Bromus hordeaceus* and *Holocarpha virgata* typically codominate with a variety of other herbs in an intermittent to continuous herbaceous layer. *B. hordeaceus* may be higher in cover, and native forbs may have 10-15% relative cover. An infrequent and sparse shrub layer includes *Toxicodendron diversilobum*. Occasionally, emergent trees (and snags) such as *Quercus douglasii* are found in low cover in the understory or overstory. In this alliance, the herbaceous layer is usually diverse and dominated by grass and forb species. The parentheses in the name of this alliance highlights the importance of *H. virgata* as an indicator, which may have sub-dominance to dominance with *B. hordeaceus* and other nonnative taxa. Associated native species may include *Castilleja attenuata*, *Centaurium venustum*, *Clarkia purpurea*, *Daucus pusillus*, *Navarretia intertexta*, *N. pubescens*, *Trifolium microcephalum*, and *Triteleia hyacinthina*. Stands of this type occur in upland grasslands in the Central Valley (per Solomeschch in Keeler-Wolf et al. 2007) and in the Sierra Nevada Foothills.

In the study area, stands often contain abundant non-native species, such as *Trifolium hirtum*, *Taeniatherum caput-medusae*, *Lolium multiflorum*, and *Vicia villosa*. Stands also contain occasional native species such as *Navarretia pubescens*, *Clarkia* spp., *Castilleja attenuata*, *Trifolium microcephalum*, and *Vulpia microstachys*. As described below, one association was classified for the Soft Chess - (Yellowflower Tarweed) Herbaceous Alliance.

Holocarpha virgata - Bromus hordeaceus - Taeniatherum caput-medusae Herbaceous Association

Yellowflower Tarweed - Soft Chess - Medusahead Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and dominated by *Bromus hordeaceus* at 1-70% cover. Other taxa that were characteristic included *Holocarpha virgata* subsp. *virgata* (<1-33% cover), *Hypochaeris glabra* (<1-20% cover), *Taeniatherum caput-medusae* (<1-50% cover), and *Trifolium hirtum* (<1-25% cover).

In the study area, this association was sampled frequently within the central Sierra Nevada Foothills and infrequently in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates, but were found infrequently on ultramafic (including serpentine and gabbro), mixed rock, or slate substrates. They occupied a variety of upland slope positions, from lower to upper slopes and ridgetops, that were flat to somewhat steep.

H. virgata is a summer-flowering native annual that is widespread throughout cismontane northern and central California. It was likely to have been an important component of pre-European grasslands. Its proper placement in the vegetation hierarchy will not be determined until more plot data with full species lists are analyzed within and beyond the Sierra Nevada Foothills.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras, Mariposa, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	66	37-93	-
Herb	65.9	36-93	variable
Shrub	0.1	0-1	1-2
Low Tree/Tall Shrub	0	-	-
Hardwood	0.1	0-1	<5-20
Conifer	0	-	-
Relative non-native to native cover	73.1	26-98	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (11), S (3), N (3), E (3), Variable (2), Flat (2), NE (1)

Macrotopography: entire slope (1), bottom (3), lower slope (8), lower to upper slope (1), middle slope (8), upper slope (1), bench (2), ridgetop (1)

Microtopography: flat (10), undulating (7), convex (5), concave (3)

Parent Material: metamorphic (15), ultramafic (5), mixed rock (2), gabbro (1), serpentine (1), slate (1)

Soil Texture: loam or sandy loam (13), clay or clay loam (8), silt or silt loam (1)

	Mean	Range
Elevation	1345 ft.	735-2277 ft.
Slope	5.1°	0-19°
Large rock cover	2.9%	0-8%
Small rock cover	7.5%	0.2-35%
Bare ground cover	25.1%	7-35%
Litter cover	58.6%	47-70%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=25)

Rapid Assessments: SNNR0104, SNNR0799, SNNR1016, SNNR1026, SNNR1427, SNNR1473, SNNR1476, SNNR1481, SNNR1483, SNNR1498, SNNR1500 **Relevés:** SNFN0217, SNFN0219, SNFN0250, SNFN0252, SNFN0608, SNFN0609, SNFN0616, SNFN0624, SNFN0629, SNFN0631, SNFN0634, SNFN0639, SNFN0641, SNFN0655

Rank: G4S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon data collected for this project and the Peoria Wildlife Area project in Tuolumne County (Evens et al. 2004). Similar associations are described for the Central Valley, including the *Holocarpha virgata* Association (per Solomeshch in Keeler-Wolf et al. 2007), and for the inner North Coast Ranges, including the *Bromus hordeaceus - Taeniatherum caput - medusae - Erodium botrys* and *Cynosurus cristatus - Bromus hordeaceus - Taeniatherum caput - medusae* Associations (Jimerson et al. 2000).

STAND TABLE

Holocarpha virgata - Bromus hordeaceus - Taeniatherum caput-medusae Herbaceous

Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	BRHO2	Bromus hordeaceus	100	30.3	1	70		X	X	X
	HOVIV	Holocarpha virgata ssp.virga	ta 96	13.1	0.2	33			X	
	TRHI4	Trifolium hirtum	92	3.0	0.2	25			Χ	Χ
	TACA8	Taeniatherum caput-medusa	e 80	10.3	0.2	50			X	X
	HYGL2	Hypochaeris glabra	80	4.8	0.2	20			Χ	Χ
	BRELE	Brodiaea elegans subsp. elega	<i>ns</i> 68	0.3	0.2	2				
	LOMU	Lolium multiflorum	56	3.2	0.2	25				Χ
	VIVI	Vicia villosa	56	1.1	0.2	7				Χ
	BRMI2	Briza minor	56	0.4	0.2	3				Χ
	TRMI4	Trifolium microcephalum	56	0.1	0.2	0.2				
	AVBA	Avena barbata	52	3.0	0.2	30				Χ
	VISAN2	Vicia sativa subsp. nigra	52	0.7	0.2	5				Χ
	GAPA5	Galium parisiense	52	0.2	0.2	2				Χ
	CAAT25	Castilleja attenuata	48	0.2	0.2	1				
	BRDI3	Bromus diandrus	44	1.2	0.2	8				Χ
	TRDU2	Trifolium dubium	40	0.6	0.2	8				Χ
	ERSE3	Eremocarpus setigerus	40	0.1	0.2	1				
	AGHE2	Agoseris heterophylla	36	8.0	0.2	8				
	BRMA3	Bromus madritensis	36	0.5	0.2	8				Χ
	NAPU2	Navarretia pubescens	36	0.4	0.2	5				
	CAPY2	Carduus pycnocephalus	36	0.4	0.2	4				Χ
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	32	0.5	0.2	8				
	GEDI	Geranium dissectum	32	0.4	0.2	4				Χ
	ERBO	Erodium botrys	32	0.2	0.2	2				Χ
	CEME2	Centaurea melitensis	32	0.1	0.2	1				Χ
	TOAR	Torilis arvensis	32	0.1	0.2	1				Χ
	HOMAG	Hordeum marinum subsp. gussonianum	28	1.3	0.2	15				Χ
	AMMEI2	Amsinckia menziesii var. intermedia	28	0.2	0.2	3				
	AICA	Aira caryophyllea	28	0.2	0.2	2				Χ
	JUBU	Juncus bufonius	28	0.2	0.2	2				
	PLER3	Plantago erecta	24	0.6	0.2	11				
	DAPU3	Daucus pusillus	24	0.1	0.2	2				
Cryptoga	m									
	MOSS	Moss	24	0.4	0.2	6				

Bromus hordeaceus - (Plagiobothrys nothofulvus) Herbaceous Alliance Soft Chess - (Rusty Popcornflower) Herbaceous Alliance

As described for the first time in the state, *Bromus hordeaceus* and *Plagiobothrys nothofulvus* define an intermittent to continuous herbaceous layer, where *P. nothofulvus* is characteristically present as a sub-dominant to co-dominant with *B. hordeaceus*. The shrub layer, when present, is sparse. Hardwood trees, including *Quercus douglasii*, occur infrequently in an emergent layer. Stands appear as a regular feature in the lower elevations of the Sierra Nevada Foothills, with white popcorn flower carpeting hillsides in early spring. *P. nothofulvus* and other "popcorn flowers" were an important food source for Native Americans (Anderson 2005) and are likely to have been common dominants in foothill and valley grassland stands prior to the introduction of non-natives. The parentheses in the name of this alliance highlights the importance of *P. nothofulvus* as a native indicator species, where it may have sub-dominance to dominance with *B. hordeaceus* and other non-native taxa.

As described below, one association was classified in the study area. The herbaceous layer is diverse and dominated by grass and forb species such as *B. hordeaceus*, *P. nothofulvus*, *Daucus pusillus*, *Erodium botrys*, *Trifolium hirtum* and *B. diandrus*. Stands often contain natives such as *Trifolium microcephalum*, *Amsinckia menziesii* var. *intermedia*, *Castilleja attenuata*, and occasionally contain annual species of *Lupinus* and *Clarkia*. Five surveys (SNFN0099, SNFN0389, SNFN0350, SNFN0030, SNNR0848) showed additional variation, where *Erodium botrys*, *E. cicutarium*, *Hypochaeris glabra*, and/or *Vulpia* spp. had high cover, along with *B. hordeaceus* and *P. nothofulvus*. These surveys were classified to the alliance only.

Plagiobothrys nothofulvus - Daucus pusillus - Bromus hordeaceus Herbaceous Association

Rusty Popcornflower - Wild Carrot - Soft Chess Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and characterized by *Bromus hordeaceus* (<1-70% cover), *Daucus pusillus* (<1-17% cover), *Plagiobothrys nothofulvus* (<1-23% cover), and *Trifolium hirtum* (<1-35% cover). Other taxa that were often present included *Aira caryophyllea*, *Amsinckia menziesii* var. *intermedia*, *Bromus diandrus*, *Castilleja attenuata*, *Cerastium glomeratum*, *Erodium botrys*, *Filago gallica*, *Hypochaeris glabra*, and *Trifolium microcephalum*.

In the study area, this association was sampled frequently within the northern Sierra Nevada Foothills, occasionally in the central Sierra Nevada Foothills, and infrequently in the Sacramento Valley Subregions (Hickman 1993). Stands usually occurred on metamorphic (including slate or serpentine) substrates, and occasionally on sedimentary, ultramafic, and mixed alluvium substrates. They occupied a variety of upland slope positions, from lower slopes to upper slopes and ridgetops, on slopes or terraces that were flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado, Mariposa, Sacramento, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

Mean % Range % Height (m)

Total vegetation cover	69.5	43-91	-
Herb	69	43-90	variable
Shrub	0.3	0-5	0.9-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.4	0-8	<5
Conifer	0	-	-
Relative non-native to native cover	61.4	21-86	-

Aspect: N (5), SW (3), W (2), SE (2), S (2), NW (2), NE (2), E (2), Variable (1), Flat (1)

Macrotopography: lower slope (6), middle slope (5), upper slope (3), ridgetop (2), terrace (1)

Microtopography: flat (7), undulating (5), convex (4), concave (1)

Parent Material: metamorphic (11), sedimentary (4), slate (3), ultramafic (2), mixed alluvium (1), serpentine (1)

Soil Texture: loam or sandy loam (9), clay or clay loam (2)

	Mean	Range
Elevation	713 ft.	253-1225 ft.
Slope	13.7°	0-40°
Large rock cover	0.4%	0-2%
Small rock cover	2.8%	0.2-8.2%
Bare ground cover	25.8%	2-74%
Litter cover	67%	23-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=22)

Rapid Assessments: SNNR1111, SNNR1430, SNNR1443, SNNR1484, SNNR1501 **Relevés:** SNFN0003, SNFN0047, SNFN0048, SNFN0074, SNFN0094, SNFN0194, SNFN0211, SNFN0279, SNFN0283, SNFN0288, SNFN0452, SNFN0457, SNFN0507, SNFN0513, SNFN0521, SNFN0636, SNFN0637

Rank: G4S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on the data collected for this project and for the Peoria Wildlife Area project in Tuolumne County (Evens et al. 2004). It is likely to occur as a widespread association throughout much of cismontane California. A similar association, *Bromus diandrus - Bromus hordeaceus - Trifolium* spp. - *Daucus* spp., was defined in a Yosemite National Park study (NatureServe et al. 2003b).

STAND TABLE

Plagiobothrys nothofulvus - Daucus pusillus - Bromus hordeaceus Herbaceous

Association

Lifeforr Herb	n Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	BRHO2	Bromus hordeaceus	100	21.5	0.2	70			X	X
	PLNO	Plagiobothrys nothofulvus	91	5.8	0.2	23			X	
	DAPU3	Daucus pusillus	91	2.5	0.2	17			X	
	TRHI4	Trifolium hirtum	82	11.3	0.2	35			Χ	Χ
	ERBO	Erodium botrys	73	3.2	0.2	35				Χ
	BRDI3	Bromus diandrus	73	3.1	0.2	15				Χ
	TRMI4	Trifolium microcephalum	64	52	0.2	35				

STAND TABLE continued Plagiobothrys nothofulvus - Daucus pusillus - Bromus hordeaceus Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	HYGL2	Hypochaeris glabra	64	2.8	0.2	20				Χ
	CAAT25	Castilleja attenuata	64	0.6	0.2	4				
	AMMEI2	Amsinckia menziesii var. intermedia	59	0.7	0.2	6				
	AICA	Aira caryophyllea	55	0.6	0.2	4				Χ
	FIGA	Filago gallica	55	0.1	0.2	1				Χ
	CEGL2	Cerastium glomeratum	50	0.1	0.2	0.2				Χ
	VUBR	Vulpia bromoides	45	4.4	0.2	25				Χ
	TRDU2	Trifolium dubium	45	0.5	0.2	8				Χ
	GEMO	Geranium molle	41	2.0	0.2	22				Χ
	LOMI	Lotus micranthus	41	1.4	0.2	17				
	TRCI	Trifolium ciliolatum	41	1.1	0.2	22				
	AVFA	Avena fatua	41	0.7	0.2	5				Χ
	LUBI	Lupinus bicolor	41	0.5	0.2	3				
	GAPA5	Galium parisiense	41	0.1	0.2	1				Χ
	LETA	Leontodon taraxacoides	36	8.0	0.2	8				Χ
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	32	1.8	0.2	16				
	TRERE2	Triphysaria eriantha subsp. eriantha	32	0.3	0.2	4				
	LIBI	Linanthus bicolor	27	0.7	0.2	8				
	AVBA	Avena barbata	27	0.1	0.2	2				Χ
	CAPY2	Carduus pycnocephalus	27	0.1	0.2	2				Χ
	TRDED	Trifolium depauperatum var. depauperatum	27	0.1	0.2	1				
	CRTI	Crassula tillaea	27	0.1	0.2	1				Χ
	JUBU	Juncus bufonius	27	0.1	0.2	1				
	TACA8	Taeniatherum caput-medusae	27	0.1	0.2	1				Χ
	DICAC5	Dichelostemma capitatum subsp. capitatum	27	0.1	0.2	0.2				
	ESLO	Eschscholzia lobbii	23	1.9	2	22				
	LUNA3	Lupinus nanus	23	1.1	0.2	12				
	VIVI	Vicia villosa	23	0.6	0.2	5				Χ
	TOAR	Torilis arvensis	23	0.4	0.2					Χ
	PLFU	Plagiobothrys fulvus	23	0.4	0.2	5				
	TRLA16	Triteleia laxa	23	0.4	0.2	7				
	MICA	Micropus californicus	23	0.1	0.2					
	TRVA	Trifolium variegatum	23	0.1	0.2					
	BRMI2	Briza minor	23	0.1	0.2	1				Χ
Cryptoga		• •	- -							
	MOSS	Moss	55	4.0	0.2	35				

Carex barbarae Herbaceous Alliance Santa Barbara Sedge Herbaceous Alliance

As defined in the state, Carex barbarae dominates the herbaceous layer with dense cover in wetland settings, particularly streambanks. The shrub and tree layers are absent or open, including species such as Fraxinus latifolia, Populus fremontii, and Quercus lobata. Carex barbarae may have been cultivated and amplified in stands by historic Native American influences. Stands of this alliance have been described in Marin County on Mount Tamalpais in the Marin Municipal Water District (Evens and Kentner 2006) and the Sacramento-San Joaquin River Delta (Hickson and Keeler-Wolf 2007). Stands may contain other wetland herbs such as Asclepias fascicularis.

In the Foothills, this alliance was rarely sampled and one association was described below. Stands contain a variety of trees and shrubs with low cover, sometimes including *Fraxinus latifolia*, *Populus fremontii*, *Rubus discolor* or *Cephalanthus occidentalis* var. *californicus*. Herbs occasionally include wetland and upland species such as *Cynodon dactylon*, *Euthamia occidentalis* and *Perideridia kelloggii*. *C. barbarae* is an important basketry plant for Native Americans throughout cismontane California (Anderson 2005). Stands of *C. barbarae* were likely encouraged through "tending" in many areas of the Foothills. Remaining stands are important indicators of pre-European conditions.

Carex barbarae Herbaceous Association (Provisional) Santa Barbara Sedge Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was open and dominated by *Carex barbarae* at 19-25% cover. Other taxa that were often present included *Centaurea solstitialis*, *Cynodon dactylon*, *Epilobium ciliatum*, *Euthamia occidentalis*, *Hirschfeldia incana*, *Holozonia filipes*, *Melilotus albus*, *Perideridia kelloggii*, *Polypogon monspeliensis*, *Solidago*, and *Vicia sativa*. Trees such as *Fraxinus latifolia* and *Populus fremontii* often occurred as scattered emergents, and shrubs such as *Cephalanthus occidentalis* var. *californicus*, *Rhamnus tomentella*, *Rubus discolor*, *Rubus ursinus*, *Salix lasiolepis*, and *Vitis californica* often occurred as emergents.

This association was sampled twice in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on metamorphic or mixed alluvium substrates. They occupied wetland habitats or riparian corridors on gentle bottom slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado and Placer Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

	Mean %	Range %	Height (m)
Total vegetation cover	28	27-29	-
Herb	23.5	22-25	>0.3
Shrub	5	2-8	0.9-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	4.2	2-6	-

Aspect: SE (1), E (1)

Macrotopography: bottom (2) Microtopography: flat (2)

Parent Material: metamorphic (1), mixed alluvium (1) Soil Texture: loam or sandy loam (1), muck (1)

	Mean	Range
Elevation	695 ft.	367-1022 ft.
Slope	2°	1-3°
Large rock cover	10.1%	0.2-20%
Small rock cover	3.5%	2-5%
Bare ground cover	20%	12-28%
Litter cover	40.1%	0.2-80%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR0228, SNNR0724 Relevés: none

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills. Similar stands have been identified in the Sacramento-San Joaquin River Delta (Hickson and Keeler-Wolf 2007) as well as in the central and north Coast Ranges (T. Keeler-Wolf and J. Evens, pers. obs. 2006). Turf with this species also forms in the understory of *Quercus lobata* woodland stands throughout the same areas.

STAND TABLE Carex barbarae Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree	ED! A 14	- · · · · · · · · · · · · · · · · · · ·		4.0						
	FRLA-M	Fraxinus latifolia	50	1.0	2	2				
	POFR2-M	Populus fremontii	50	1.0	2	2				
Shrub										
	RUDI2	Rubus discolor	100		0.2	1			Χ	X
	CEOCC2	Cephalanthus occidentalis var. californicus	50	1.5	3	3				
	RUUR	Rubus ursinus	50	0.5	1	1				
	SALA6	Salix lasiolepis	50	0.5	1	1				
	RHTO6	Rhamnus tomentella	50	0.1	0.2	0.2				
	VICA5	Vitis californica	50	0.1	0.2	0.2				
Herb										
	CABA4	Carex barbarae	100	22.0	19	25	X		X	
	EUOC4	Euthamia occidentalis	50	1.0	2	2				
	HOFI	Holozonia filipes	50	0.5	1	1				
	CESO3	Centaurea solstitialis	50	0.1	0.2	0.2				Χ
	CYDA	Cynodon dactylon	50	0.1	0.2	0.2				Χ
	EPCI	Epilobium ciliatum	50	0.1	0.2	0.2				
	HIIN3	Hirschfeldia incana	50	0.1	0.2	0.2				Χ
	MEAL2	Melilotus albus	50	0.1	0.2	0.2				Χ
	PEKE	Perideridia kelloggii	50	0.1	0.2	0.2				
	POMO5	Polypogon monspeliensis	50	0.1	0.2	0.2				Χ
	SOLID	Solidago	50	0.1	0.2	0.2				
	VISA	Vicia sativa	50	0.1	0.2	0.2				Χ

Carex nudata Herbaceous Alliance Naked Sedge Herbaceous Alliance

As defined in the state, *Carex nudata* is either dominant or co-dominant in the herbaceous layer with other graminoid or herb species such as *Typha domingensis*, *Paspalum dilatatum*, and *Stachys stricta*, *Mentha* spp., or *Artemisia douglasiana*. An open overstory shrub and tree layer may include *Fraxinus latifolia*, *Alnus rhombifolia*, *Salix laevigata*, and *Rubus discolor*. The herbaceous layer is often continuous and the shrub layer is open. Stands are described in the northern, central, and southern Sierra Nevada Foothills along small secondary streams in narrow v-shaped canyons of wider, trough-shaped valleys. Stands occur as tussocks on stream bank, bar, or mid-channel boulders (Potter 2005).

In the Foothills, stands of this alliance were sampled rarely, although the species, *Carex nudata*, occurred often in other riparian vegetation types. As described above, stands occur with trees and shrubs such as *Salix laevigata* and *Rhamnus tomentella* and herbs such as *Stachys stricta*, *Carex praegracilis*, and *Mimulus guttatus*. As described below, one association was described from the study area.

Carex nudata Herbaceous Association Naked Sedge Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and dominated by Carex nudata at 35-60% cover. Other taxa that were often present included Carex praegracilis, Carex serratodens, Helianthus bolanderi, Mimulus floribundus, Mimulus guttatus, Rumex crispus, and Stachys stricta. Trees such as Quercus douglasii and Salix laevigata sometimes occurred as scattered emergents, and shrubs such as Rhamnus tomentella, Rubus discolor, and Salix lasiolepis sometimes occurred as emergents.

This association was sampled infrequently in the study area within the central Sierra Nevada Foothills Subregion (Hickman 1993). Stands consistently occurred on serpentine substrates. They occupied riparian sites in a draw, the edge of a basin/wetland, and a terrace. Slopes were flat to gentle.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tuolumne County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

Mean %	Range %	Height (m)
76.7	67-90	-
72.3	57-85	>0.3
8	1-16	1-5
0	-	-
1.7	0-5	0-10
0	-	-
8.5	0-16	-
	76.7 72.3 8 0 1.7	76.7 67-90 72.3 57-85 8 1-16 0 - 1.7 0-5 0 -

Aspect: SE (2), Flat (1)

Macrotopography: draw (1), edge of basin/wetland (1), terrace (1)

Microtopography: undulating (2), concave (1)

Parent Material: serpentine (3)

Soil Texture: loam or sandy loam (1), sand (1)

	Mean	Range
Elevation	952 ft.	765-1058 ft.
Slope	10	0-2°
Large rock cover	0%	-%
Small rock cover	0%	-%
Bare ground cover	0%	-%
Litter cover	0%	-%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: none Relevés: SNFN0134, SNFN0179, SNFN0687

Rank: G3S3?

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described in the Sierra Nevada Foothills, including the Peoria Wildlife Area and Red Hills, Tuolumne County, and adjacent mid-elevations of the Sierra Nevada (Potter 2005). Similar stands also occur throughout the central and northern California Coast Ranges and in the eastern Klamath Province (T. Keeler-Wolf, pers. obs. 2006).

STAND TABLE

Carex nudata Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	SALA3-M	Salix laevigata	33	0.3	1	1				
	QUDO-M	Quercus douglasii	33	0.1	0.2	0.2				
Shrub										
	RHTO6	Rhamnus tomentella	67	0.7	1	1				
	SALA6	Salix lasiolepis	33	5.7	17	17				
	RUDI2	Rubus discolor	33	0.1	0.2	0.2				Χ
Herb										
	CANU5	Carex nudata	100	45.0	35	60		X	X	
	STST	Stachys stricta	67	17.7	18	35				
	CAPR5	Carex praegracilis	67	6.7	3	17				
	CASE2	Carex serratodens	67	5.7	5	12				
	HEBO3	Helianthus bolanderi	67	1.0	1	2				
	MIGU	Mimulus guttatus	67	0.7	0.2	2				
	MIFL2	Mimulus floribundus	67	0.1	0.2	0.2				
	RUCR	Rumex crispus	67	0.1	0.2	0.2				Χ

STAND TABLE continued Carex nudata Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Shrub										
	HOMA4	Hoita macrostachya	33	0.1	0.2	0.2				
Herb										
	COMA2	Conium maculatum	33	3.3	10	10				Χ
	PADI3	Paspalum dilatatum	33	2.3	7	7				Χ
	SECL2	Senecio clevelandii	33	2.0	6	6				
	TYDO	Typha domingensis	33	2.0	6	6				
	LOMU	Lolium multiflorum	33	1.3	4	4				Χ
	VECA9	Verbena californica	33	1.3	4	4				
	SENEC	Senecio	33	1.0	3	3				
	ASFA	Asclepias fascicularis	33	0.1	0.2	0.2				
	BRMA3	Bromus madritensis	33	0.1	0.2	0.2				Χ
	CORDY	Cordylanthus	33	0.1	0.2	0.2				
	CYPER	Cyperus	33	0.1	0.2	0.2				
	CYER	Cyperus eragrostis	33	0.1	0.2	0.2				
	EPILO	Epilobium	33	0.1	0.2	0.2				
	EPDE4	Epilobium densiflorum	33	0.1	0.2	0.2				
	ERIOG	Eriogonum	33	0.1	0.2	0.2				
	HOLA	Holcus lanatus	33	0.1	0.2	0.2				Χ
	HOCAD	Horkelia californica subsp. dis	sita33	0.1	0.2	0.2				
	IRIS	Iris	33	0.1	0.2	0.2				
	JUEF	Juncus effusus	33	0.1	0.2	0.2				
	LASE	Lactuca serriola	33	0.1	0.2	0.2				Χ
	LOPU3	Lotus purshianus	33	0.1	0.2	0.2				
	POMO5	Polypogon monspeliensis	33	0.1	0.2	0.2				Χ
	RUCO2	Rumex conglomeratus	33	0.1	0.2	0.2				Χ
	SOAS	Sonchus asper	33	0.1	0.2	0.2				Χ
	TRRU	Trichostema rubisepalum	33	0.1	0.2	0.2				
	URDI	Urtica dioica	33	0.1	0.2	0.2				
	VUMY	Vulpia myuros	33	0.1	0.2	0.2				Χ
	XAST	Xanthium strumarium	33	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	33	0.3	1	1				

Carex serratodens Herbaceous Alliance Twotooth Sedge Herbaceous Alliance

As defined in the state, *Carex serratodens* is dominant or co-dominant in the herbaceous layer with other wetland graminoids such as *Hordeum brachyantherum*, *Juncus occidentalis*, or *J. bufonius*. Other wetland and upland species also occur in the stands, which are characterized by a dense herbaceous layer. The shrub and tree layers are open or absent, with *Baccharis pilularis* being the most common shrub. Stands of the Twotooth Sedge Alliance have been described on serpentine wetland sites in Peoria Wildlife Area, Tuolumne County (Evens et al. 2004), and on Mount Tamalpais in the Marin Municipal Water District, Marin County (Evens and Kentner 2006).

This alliance was sampled once in the study area and one association is described below.

Carex serratodens Herbaceous Association (Provisional) Twotooth Sedge Alliance (Provisional)

SUMMARY

In the one stand sampled, the herbaceous canopy was continuous and dominated by *Carex serratodens* at 60% cover. Other taxa that were present included *Allium*, *Deschampsia danthonioides*, *Hordeum brachyantherum*, *Juncus bufonius*, *Lotus purshianus*, *Mimulus guttatus*, and *Sisyrinchium bellum*.

This association was sampled once in the study area within the central Sierra Nevada Foothills Subregion (Hickman 1993). The stand occurred on serpentine substrate. It occupied the edge of a basin/wetland on a gentle slope.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tuolumne County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	80	80-80	-
Herb	80	80-80	>0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	0	-	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (1)

Macrotopography: edge of basin/wetland (1)

Microtopography: concave (1)
Parent Material: serpentine (1)

Soil Texture: no data

	Mean	Range
Elevation	1128 ft.	1128-1128 ft.
Slope	10	1-10
Large rock cover	0%	-%
Small rock cover	0%	-%
Bare ground cover	0%	-%
Litter cover	0%	-%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=1)

Rapid Assessments: none Relevés: SNFN0593

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills from data collected at Peoria Wildlife Area in Tuolumne County (Evens et al. 2004). Similar associations have been described in serpentine seeps in the central California Coast Ranges of Santa Clara and San Benito Counties (Evens and San 2004, Evens et al. 2006). According to Alexander et al. (2006) the *C. serratodens* Herbaceous Alliance and Association is endemic to serpentine seeps and streamsides in the California Floristic Province.

STAND TABLE

Carex serratodens Alliance

Lifeform Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
Herb									
CASE2	Carex serratodens	100	60.0	60	60	X		X	
HOBR2	2 Hordeum brachyantherum	100	7.0	7	7			Χ	
JUBU	Juncus bufonius	100	5.0	5	5			Χ	
HERBA	C unknown	100	5.0	5	5			Χ	
MIGU	Mimulus guttatus	100	2.0	2	2			Χ	
ALLIU	Allium	100	1.0	1	1			Χ	
SIBE	Sisyrinchium bellum	100	1.0	1	1			Χ	
DEDA	Deschampsia danthonioides	100	0.2	0.2	0.2			Χ	
LOPU3	Lotus purshianus	100	0.2	0.2	0.2			Χ	
Cryptogam									
MOSS	Moss	100	0.2	0.2	0.2	Χ		Χ	

Centaurea (melitensis, solstitialis) Herbaceous Semi-Natural Stands Star Thistle (Maltese, Yellow) Herbaceous Semi-Natural Stands

Described for the first time in the state, *Centaurea melitensis* and/or *C. solstitialis* are/is dominant or co-dominant in the herbaceous layer. Stands have an intermittent to continuous canopy that is depauperate of species. Trees do not occur and shrubs rarely occur as emergents in this seminatural type. Stands of *Centaurea solstitialis* are invasive and occur on all aspects, in disturbed, often overgrazed grasslands, with other disturbance-related grasses and forbs.

Although very common in California currently, the type has not been described before this study. It is clearly related to other annual herbaceous semi-natural types described in this report, including the *Bromus* (*diandrus*, *hordeaceus*, *madritensis*) and *Avena* (*barbata*, *fatua*) Semi-Natural Stands types. Resolute placement of these upland herbaceous stands await more detailed analysis. One association was described for the Star Thistle Semi-Natural Stands, and the type was not well-sampled in proportion to its relatively common presence in the study area. Stands contained *Centaurea solstitialis* and other non-native forbs and grasses such as *Bromus diandrus* or *B. hordeaceus*, *Taeniatherum caput-medusae*, and *Trifolium hirtum*. Natives such as *Amsinckia menziesii*, *Elymus glaucus*, or *Brodiaea elegans* subsp. *elegans* were occasionally present. Similar stands dominated by *C. melitensis* have been described for southern coastal California (Keeler-Wolf and Evens 2006).

Centaurea solstitialis Herbaceous Association (Provisional) Yellow Star Thistle Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and dominated by the non-native forb *Centaurea solstitialis* at 8-75% cover. *Bromus diandrus*, *Bromus hordeaceus*, *Taeniatherum caput-medusae*, *Torilis arvensis*, *Trifolium hirtum*, and *Vulpia myuros* were often present in the herbaceous layer.

In this study, this association was sampled infrequently within the Cascade Range Foothills and High Cascade Ranges and somewhat infrequently in the northern Sierra Nevada Foothills Subregions (Hickman 1993). However, we suspect that the association is far more prevalent than the sampling suggests. Stands usually occurred on igneous substrates (including granitic, volcanic, and basalt) and infrequently on metamorphic or mixed alluvium substrates. This invasive non-native star thistle occupied lower slopes to upper slopes that were gentle to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, Nevada, Placer, Shasta, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

	Mean %	Range %	Height (m)
Total vegetation cover	62.1	17-90	-
Herb	61.9	15-90	>0.3
Shrub	0.1	0-1	<1
Low Tree/Tall Shrub	0	-	-

Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	96.9	91-100	-

Aspect: Variable (3), W (1), SW (1), S (1), NW (1), NE (1)

Macrotopography: lower slope (3), lower to upper slope (1), middle slope (3), middle to upper

slope (1)

Microtopography: undulating (4), flat (3), convex (1)

Parent Material: granitic (2), metamorphic (2), volcanic (2), basalt (1), mixed alluvium (1) Soil Texture: clay or clay loam (2), silt or silt loam (2), loam or sandy loam (1), sand (1)

	Mean	Range
Elevation	1053 ft.	567-1915 ft.
Slope	8°	1-30°
Large rock cover	1%	0-5%
Small rock cover	10.1%	0-65%
Bare ground cover	14.3%	2-37%
Litter cover	70.4%	5-94%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=8)

Rapid Assessments: SNNR0089, SNNR0408, SNNR0525, SNNR0532, SNNR0910,

SNNR1231, SNNR1261, SNNR1380 Relevés: none

Rank: Unranked, non-native type

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills from data collected for this project. Stands similar to this association have been classified and mapped, where *C. solstitialis* is dominant in narrow upland belts as on levee tops in Suisun Marsh (Keeler-Wolf and Vaghti 2000). Also, NatureServe et al. (2003b) defined a provisional *Centaurea solstitialis* Alliance in lower elevation foothills (< 1000 m) in or near Yosemite and near El Portal. This association is likely to occur throughout much of cismontane northern and central California.

STAND TABLE Centaurea solstitialis Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	CESO3	Centaurea solstitialis	100	33.1	8	75	X		X	X
	BRDI3	Bromus diandrus	88	3.0	0.2	15			Χ	Χ
	BRHO2	Bromus hordeaceus	75	7.5	1	35				Χ
	TACA8	Taeniatherum caput-medusae	63	4.1	0.2	28				Χ
	TRHI4	Trifolium hirtum	63	3.9	1	20				Χ
	VUMY	Vulpia myuros	50	2.0	0.2	10				Χ
	TOAR	Torilis arvensis	50	0.8	1	3				Χ
	LOMU	Lolium multiflorum	38	3.9	0.2	30				Χ
	AVBA	Avena barbata	38	0.4	0.2	3				Χ
	AMME	Amsinckia menziesii	38	0.3	0.2	2				
	CYEC	Cynosurus echinatus	38	0.3	0.2	2				Χ
	BRELE	Brodiaea elegans subsp. elega	ns38	0.1	0.2	0.2				
	ELGL	Elymus glaucus	38	0.1	0.2	0.2				
	GAPA5	Galium parisiense	38	0.1	0.2	0.2				Χ
	BRMA3	Bromus madritensis	25	0.4	0.2	3				Χ
	MAGR3	Madia gracilis	25	0.2	0.2	1				
	PLLA	Plantago lanceolata	25	0.2	0.2	1				Χ
	CEMU2	Centaurium muehlenbergii	25	0.1	0.2	0.2				
	CHPO3	Chlorogalum pomeridianum	25	0.1	0.2	0.2				
	CLPU2	Clarkia purpurea	25	0.1	0.2	0.2				
	HYPE	Hypericum perforatum	25	0.1	0.2	0.2				Χ
	LUNA3	Lupinus nanus	25	0.1	0.2	0.2				
	PEDU2	Petrorhagia dubia	25	0.1	0.2	0.2				Χ
	SIMA3	Silybum marianum	25	0.1	0.2	0.2				Χ

Eleocharis acicularis Herbaceous Alliance (Provisional) Needle Spikerush Herbaceous Alliance (Provisional)

Described for the first time in the state, *Eleocharis acicularis* is dominant with other wetland herbaceous species. Herbs that may attain co-dominance include *Eryngium* spp., *Rorippa nasturtium-aquaticum*, *Mimulus guttatus*, *Lolium multiflorum*, or *Veronica anagallis-aquatica*. The stands sampled appear in shallow vernal pools and spring-developed pools on volcanic substrates, along rocky and clayey streambanks with running water in the Cascade Range Foothills.

In the study area, one association was described below. Smith (1998) described similar stands found on rocky volcanic streambanks and clayey floodplains in the Cascade Ranges of northwestern California, where *E. acicularis* var. *acicularis* occurs in high constancy and cover within a *Plagiobothrys mollis* community type along with *Eryngium mathiasiae*. Smith (1998) also proposed a *Navarretia* community type with high cover of *E. acicularis* var. *bella* and *Eryngium alismifolium*, in silty stream bars and drying vernal pools. Other stands observed in the Cascade foothills often contain *E. acicularis* with *Isoetes nuttallii*, *Centaurium venustum*, *Epilobium pallidum*, *Eryngium articulatum*, and *M. guttatus* (C. Witham, pers. obs. 2003). More data and analysis are needed to fully describe the alliance and associations.

Eleocharis acicularis - Eryngium castrense Herbaceous Association (Provisional) Needle Spikerush - Coyote-thistle Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and dominated by *Eleocharis acicularis* at 12-35% cover. Other taxa that were characteristically present included *Epilobium pallidum*, *Eryngium castrense*, *Lolium multiflorum*, *Mimulus guttatus*, *Paspalum dilatatum*, *Polypogon monspeliensis*, *Rorippa nasturtium-aquaticum*, and *Trifolium variegatum*.

This association was sampled infrequently in the study area within the Cascade Range Foothills Subregion (Hickman 1993). Stands occurred in a localized area on wet volcanic substrates. They occupied wetland seeps on mesas/plateaus and adjacent streambanks.

DISTRIBUTION IN STUDY AREA

This association was sampled in Shasta County, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	51.7	39-65	-
Herb	51.7	39-65	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	32.8	15-64	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (2), W (1)

Macrotopography: ridgetop (3)

Microtopography: flat (2), convex (1)

Parent Material: volcanic (3)

Soil Texture: muck (2), clay or clay loam (1)

	Mean	Range
Elevation	1256 ft.	1252-1260 ft.
Slope	00	_0
Large rock cover	9.4%	0.2-25%
Small rock cover	5.8%	3-10%
Bare ground cover	56.3%	46-64%
Litter cover	3.6%	0.9-5%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: SNNR1315, SNNR1316, SNNR1318 Relevés: none

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the northern Sierra Nevada Foothills and Cascade Ranges.

STAND TABLE Eleocharis acicularis - Eryngium castrense Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	ELAC	Eleocharis acicularis	100	19.7	12	35		X	X	
	RONA2	Rorippa nasturtium-aquaticum	100	10.1	0.2	30			Χ	
	MIGU	Mimulus guttatus	100	5.7	0.2	16			Χ	
	LOMU	Lolium multiflorum	100	5.4	0.2	10			Χ	Χ
	ERCA33	Eryngium castrense	100	2.7	1	5			X	
	PADI3	Paspalum dilatatum	100	1.1	0.2	3			Χ	Χ
	EPPA7	Epilobium pallidum	100	0.2	0.2	0.2			Χ	
	POMO5	Polypogon monspeliensis	100	0.2	0.2	0.2			Χ	Χ
	TRVA	Trifolium variegatum	100	0.2	0.2	0.2			Χ	
	BRMI2	Briza minor	67	0.1	0.2	0.2				Χ
	HOMA2	Hordeum marinum	67	0.1	0.2	0.2				Χ
	VEAN2	Veronica anagallis-aquatica	33	8.7	26	26				Χ
	BRHO2	Bromus hordeaceus	33	0.1	0.2	0.2				Χ
	CEVE3	Centaurium venustum	33	0.1	0.2	0.2				
	HEFI	Hemizonia fitchii	33	0.1	0.2	0.2				
	JUNCU	Juncus	33	0.1	0.2	0.2				
	LETA	Leontodon taraxacoides	33	0.1	0.2	0.2				Χ
	MICA	Micropus californicus	33	0.1	0.2	0.2				
	RAAQ	Ranunculus aquatilis	33	0.1	0.2	0.2				
	RUCR	Rumex crispus	33	0.1	0.2	0.2				Χ
	TRLA4	Trichostema lanceolatum	33	0.1	0.2	0.2				
	TRFU	Trifolium fucatum	33	0.1	0.2	0.2				
Cryptoga	am									
	MOSS	Moss	67	0.4	0.2	1				

Eleocharis macrostachya Herbaceous Alliance Pale Spikerush Herbaceous Alliance

As defined in the state, stands of this alliance have an intermittent to continuous herbaceous layer dominated by *Eleocharis macrostachya*. Stands may contain high cover of other species, including *Cynodon dactylon*. Stands are usually associated with standing water in depressions, ponds, and shallow lakes - in meadow systems that are seasonally or permanently flooded or saturated (Potter 2005), including deeper vernal pools where water ponds for much of the spring season. Stands may contain high cover of other species including *Cynodon dactylon.*, *Carex*, *Juncus*, *Eryngium*, *Orcuttia*, or *Perideridia*.

In the study area, stands of the Pale Spikerush Alliance sometimes contain *Lolium multiflorum*, *Ranunculus muricatus*, *Glyceria* spp., *Pleuropogon californicus*, or *Marsilea vestita* subsp. *vestita*. Three associations were classified and are described below. Four stands (SNNR0999, SNNR0828, SNNR0284, SNNR0115) showed additional variation because of high cover of other herbs such as *Holozonia filipes*, *Damasonium californicum*, or *Xanthium strumarium*. One stand contained the rare grass, *Orcuttia tenuis*. These four stands were classified to the alliance level only.

Eleocharis macrostachya Herbaceous Association Pale Spikerush Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and dominated by *Eleocharis macrostachya* at 3-67% cover. *Lolium multiflorum* was often present, while *Aira carophyllea*, *Centaurea solstitialis*, *Juncus effusus*, *Lythrum hyssopifolia*, and *Rumex crispus* were occasionally present in the herbaceous layer.

This association was sampled consistently throughout the study area, but infrequently within each of the following Subregions: central and northern Sierra Nevada Foothills, Cascade Range Foothills, and High Cascade Range (Hickman 1993). Stands usually occurred on volcanic (including basalt), metamorphic (including slate), mixed alluvium, or sandstone substrates. They occupied wetland habitats in bottoms or on lower and middle slopes, sometimes at the edges of basins/wetlands. Slopes were flat to moderate. In general, stands can be found in natural or created ponds, pools, and shallow lake areas.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Mariposa, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

	Mean %	Range %	Height (m)
Total vegetation cover	49.5	20-79	-
Herb	50.2	20-79	variable
Shrub	0.8	0-5	1-2
Low Tree/Tall Shrub	0	0-0.2	5-10
Hardwood	0.2	0-2	5-20
Conifer	0.2	0-2	10-20
Relative non-native to native cover	19.6	0-60	-

Aspect: Flat (6), S (3), W (2), SW (1), SE (1)

Macrotopography: bottom (4), lower slope (2), middle slope (6), edge of basin/wetland (1)

Microtopography: concave (5), flat (5), undulating (3)

Parent Material: volcanic (5), metamorphic (3), basalt (2), mixed alluvium (1), sandstone (1), slate

(1)

Soil Texture: clay or clay loam (5), muck (3), sand (2), loam or sandy loam (1), silt or silt loam (1)

	Mean	Range
Elevation	1457 ft.	377-2205 ft.
Slope	1.8°	0-8°
Large rock cover	3.6%	0-20%
Small rock cover	5.3%	0-20%
Bare ground cover	37.2%	7-98%
Litter cover	35.2%	0.2-78%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=13)

Rapid Assessments: SNNR0351, SNNR0352, SNNR0381, SNNR0531, SNNR0569,

SNNR0703, SNNR0844, SNNR0993 Relevés: SNFN0221, SNFN0223, SNFN0224, SNFN0321,

SNFN0664

Rank: G4S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the foothills and montane zones of the Sierra Nevada (Potter 2005) and in southern California (Klein and Evens 2006). Similar stands with strongly dominant *E. macrostachya* occur elsewhere in cismontane California, including Humboldt Bay National Wildlife Refuge (Pickart 2006).

STAND TABLE

Eleocharis macrostachya Herbaceous Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	ELMA5	Eleocharis macrostachya	100	29.8	3	67	X		X	
	LOMU	Lolium multiflorum	62	4.3	0.2	25				Χ
	LYHY2	Lythrum hyssopifolia	46	1.3	0.2	8				Χ
	JUEF	Juncus effusus	38	1.6	0.4	10				
	RUCR	Rumex crispus	31	1.6	0.2	15				Χ
	CESO3	Centaurea solstitialis	31	0.3	0.2	2				Χ
	AICA	Aira caryophyllea	31	0.1	0.2	0.2				Χ
	TRVA	Trifolium variegatum	23	1.2	0.2	15				
	CYDA	Cynodon dactylon	23	0.6	0.2	7				Χ
	BRMI2	Briza minor	23	0.2	0.2	2				Χ
	CEMU2	Centaurium muehlenbergii	23	0.1	0.2	1				
	HERBAC	unknown	23	0.1	0.2	1				
	GEDI	Geranium dissectum	23	0.0	0.2	0.2				Χ
	PLST	Plagiobothrys stipitatus	23	0.0	0.2	0.2				
	POMO5	Polypogon monspeliensis	23	0.0	0.2	0.2				Χ

Eleocharis macrostachya - (Pleuropogon californicus) Herbaceous Association (Provisional)

Pale Spikerush - (Semaphore Grass) Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was typically continuous, and characterized by *Briza minor* (<1% cover), *Eleocharis macrostachya* (<1-22% cover), *Lolium multiflorum* (<1-17% cover), and *Ranunculus muricatus* (<1-40% cover). Other taxa that were often present included *Hemizonia fitchii*, *Hordeum marinum*, *Juncus bufonius*, *Mimulus guttatus*, *Pleuropogon californicus*, *Poa annua*, *Rorippa nasturtium-aquaticum*, *Trifolium variegatum*, *Veronica*, and *Vulpia bromoides*. Because of difficulty in identifying *Pleuropogon californicus* versus *Glyceria*, a provisional association name with *Pleuropogon californicus* is used in this report.

In the study area, this association was sampled infrequently within the central Sierra Nevada Foothills and Sacramento Valley and somewhat infrequently in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands consistently occurred on metamorphic substrates. They occupied wetland habitats in bottoms and on lower to middle slopes, in draws, or edges of basins/wetlands. Slopes were gentle to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Calaveras, Mariposa, and Sacramento Counties, within the Camanche Terraces (262Ao) and Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	75.5	64-83	-
Herb	75.5	64-83	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	47.2	17-87	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NE (3), SW (1), S (1), NW (1)

Macrotopography: bottom (1), middle slope (1), draw (2), edge of basin/wetland (2)

Microtopography: concave (3), flat (2), undulating (1)

Parent Material: metamorphic (6)

Soil Texture: silt or silt loam (4), muck (1)

	Mean	Range
Elevation	466 ft.	200-850 ft.
Slope	2.30	1-6°
Large rock cover	1.7%	0-5%
Small rock cover	3.1%	0.2-7%
Bare ground cover	56.7%	35-79%
Litter cover	34.7%	14-50%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=6)

Rapid Assessments: none Relevés: SNFN0263, SNFN0388, SNFN0394, SNFN0422,

SNFN0423, SNFN0424

Rank: G4S3?

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on the data collected for this project. This provisional association is similar to other *E. macrostachya* associations. Since fewer than ten samples represent this association, further sampling and analysis are necessary for substantiation of this type.

STAND TABLE Eleocharis macrostachya - (Pleuropogon californicus) Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	ELMA5	Eleocharis macrostachya	83	9.0	0.2	22			X	
	RAMU2	Ranunculus muricatus	83	6.9	0.2	40			Χ	Χ
	LOMU	Lolium multiflorum	83	6.4	0.2	17			Χ	Χ
	BRMI2	Briza minor	83	0.2	0.2	0.2			Χ	Χ
	HOMA2	Hordeum marinum	67	8.1	0.2	25				Χ
	RONA2	Rorippa nasturtium-aquaticum	67	7.7	0.2	45				
	JUBU	Juncus bufonius	67	0.4	0.2	1				
	PLCA6	Pleuropogon californicus	50	4.4	0.2	22				
	VERON	Veronica	50	1.5	0.2	8				Χ
	MIGU	Mimulus guttatus	50	1.3	1	6				
	TRVA	Trifolium variegatum	50	1.3	1	6				
	HEFI	Hemizonia fitchii	50	0.7	0.2	4				
	POAN	Poa annua	50	0.7	0.2	4				Χ
	VUBR	Vulpia bromoides	50	0.1	0.2	0.2				Χ
	LOPU3	Lotus purshianus	33	2.5	0.2	15				
	RUPU3	Rumex pulcher	33	0.5	1	2				Χ
	JUTE	Juncus tenuis	33	0.4	0.2	2				
	RUSA	Rumex salicifolius	33	0.4	0.2	2				
	BRHO2	Bromus hordeaceus	33	0.1	0.2	0.2				Χ
	CEGL2	Cerastium glomeratum	33	0.1	0.2	0.2				Χ
	CYDA	Cynodon dactylon	33	0.1	0.2	0.2				Χ
	GEDI	Geranium dissectum	33	0.1	0.2	0.2				Χ
	HYGL2	Hypochaeris glabra	33	0.1	0.2	0.2				Χ
	MOFO	Montia fontana	33	0.1	0.2	0.2				
	HERBAC	unknown	33	0.1	0.2	0.2				

Eleocharis macrostachya - Marsilea vestita Herbaceous Association (Provisional) Pale Spikerush - Hairy Waterclover Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was open to intermittent and dominated by *Eleocharis macrostachya* at 3-40% cover. Aquatic taxon *Marsilea vestita* subsp. *vestita* was consistently present with <1-16% cover. A variety of facultative and obligate wetland taxa were sometimes present (see stand table below).

This association was sampled infrequently in the study area within the Cascade Range Foothills Subregion (Hickman 1993). Stands usually occurred on volcanic (including basalt), or sandy alluvium substrates. They occupied flat, wetland habitats, on bottom slopes or in washes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Shasta, and Tehama Counties, within the Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	27.2	14-45	-
Herb	27.2	14-45	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0.2	0-1	5-10
Conifer	0	-	-
Relative non-native to native cover	3.8	0-11	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (5)

Macrotopography: bottom (4), wash (1) Microtopography: flat (3), concave (2)

Parent Material: volcanic (3), basalt (1), sandy alluvium (1) Soil Texture: sand (3), loam or sandy loam (1), silt or silt loam (1)

	Mean	Range
Elevation	1449 ft.	661-2800 ft.
Slope	Oo	_0
Large rock cover	29.5%	29-30%
Small rock cover	62.5%	60-65%
Bare ground cover	3%	3-3%
Litter cover	2.5%	1-4%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=5)

Rapid Assessments: SNNR0194, SNNR0213 Relevés: SNFN0306, SNFN0364, SNFN0384

Rank: G4S3?

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills, based on the data collected for this project. Stands of this provisional association may be related to other stands of the *E. macrostachya* Herbaceous Alliance and may vary in their representation of *M. vestita*, depending upon whether sampling occurred during early or late phenology.

STAND TABLE

Eleocharis macrostachva - Marsilea vestita Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	ELMA5	Eleocharis macrostachya	100	16.0	3	40		X	X	
	MAVEV	Marsilea vestita subsp. vesti	ta 100	5.8	0.2	16			X	
	ELAC	Eleocharis acicularis	60	0.3	0.2	1				
	HERBAC	unknown	60	0.1	0.2	0.2				
	ERCA33	Eryngium castrense	40	3.4	6	11				
	POACXX	Poaceae	40	0.4	0.2	2				
	CYDA	Cynodon dactylon	40	0.2	0.2	1				Χ
	MIGU	Mimulus guttatus	40	0.2	0.2	1				
	ODHA	Odontostomum hartwegii	40	0.2	0.2	1				
	LOMU	Lolium multiflorum	40	0.1	0.2	0.2				Χ
	PLGL2	Plagiobothrys glyptocarpus	40	0.1	0.2	0.2				
	POAN	Poa annua	40	0.1	0.2	0.2				Χ
	PODI	Potamogeton diversifolius	40	0.1	0.2	0.2				
	RAAQ	Ranunculus aquatilis	40	0.1	0.2	0.2				
	RAMU2	Ranunculus muricatus	40	0.1	0.2	0.2				Χ
	RUCR	Rumex crispus	40	0.1	0.2	0.2				Χ

Juncus (balticus, mexicanus) Herbaceous Alliance Rush (Baltic, Mexican) Herbaceous Alliance

As defined in the state, *Juncus balticus* and/or *J. mexicanus* dominate(s) or co-dominate(s) with a variety of other wetland species. In some cases, *Carex praegracilis* may dominate, but *J. balticus* and/or *J. mexicanus* are/is present in an intermittent to continuous herbaceous layer. A diverse variety of other wetland native and non-native species occupy the herb overstory at low cover. Trees, such as *Pinus sabiniana*, and shrubs, such as *Juniperus californica* and *Rhamnus tomentella*, may occur in the overstory at trace cover. Both *J. balticus* and the less widespread *J. mexicanus* are ecologically similar and have overlapping morphological traits. They are thus combined into a single alliance (per Sawyer et al. 2007 MS). Both species have been observed in stands in the Foothills.

In the Foothills, stands contain other wetland species such as *Carex praegracilis*, *Epilobium* spp., *Juncus* spp., *Rumex crispus*, and *R. pulcher*. Two associations were classified for this alliance and are described below.

Juncus balticus Herbaceous Association Baltic Rush Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to intermittent and dominated by *Juncus balticus* at 3-52% cover. Other taxa that were occasionally present included *Epilobium*, *Geranium dissectum*, *Mimulus guttatus*, and *Rumex crispus*.

In the study area, this association was sampled infrequently within the central Sierra Nevada Foothills and Cascade Range Foothills, and somewhat frequently in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occasionally occurred on metamorphic (including gabbro) substrates, and infrequently on granitic, ultramafic, basalt, or mixed alluvium substrates. They occupied a variety of wetland settings, from bottoms to middle slopes, or on the edges of basins/wetlands. Slopes were flat to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Calaveras, El Dorado, Nevada, Placer, Tuolumne, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

	Mean %	Range %	Height (m)
Total vegetation cover	52.4	20-95	-
Herb	51.2	16-95	variable
Shrub	1	0-4	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.3	0-3	5-10
Conifer	0	-	-
Relative non-native to native cover	29.7	0-63	-

Aspect: W (2), SW (2), SE (2), Variable (1), S (1), NE (1), Flat (1)

Macrotopography: bottom (3), lower slope (2), middle slope (3), edge of basin/wetland (2)

Microtopography: undulating (5), flat (3), concave (1), convex (1)

Parent Material: metamorphic (3), granitic (2), ultramafic (2), basalt (1), gabbro (1), mixed

alluvium (1)

Soil Texture: clay or clay loam (5), loam or sandy loam (1), muck (1), sand (1), silt or silt loam (1)

	Mean	Range
Elevation	881 ft.	454-1452 ft.
Slope	3.7°	0-8°
Large rock cover	1.4%	0-5%
Small rock cover	1.5%	0-6%
Bare ground cover	32.6%	5-66%
Litter cover	53.4%	25-90%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=10)

Rapid Assessments: SNNR0266, SNNR0609, SNNR0707, SNNR1397 Relevés: SNFN0039,

SNFN0055, SNFN0220, SNFN0291, SNFN0356, SNFN0689

Rank: G5S

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills, Yosemite National Park (Keeler-Wolf et al 2003b), the eastern Sierra Nevada and Carson Range (Manning and Padgett 1995), the Great Valley area in Suisun Marsh (Keeler-Wolf and Vaghti 200), and southern California (Evens and San 2006). It is likely widespread in cismontane and transmontane California, including the central Mojave Desert (Thomas et al. 2004).

STAND TABLE Juncus balticus Herbaceous Association

Lifefo	rm Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	JUBA	Juncus balticus	90	21.5	3	52		Χ	X	
	GEDI	Geranium dissectum	40	0.6	0.2	5				Χ
	MIGU	Mimulus guttatus	30	0.3	0.2	3				
	RUCR	Rumex crispus	30	0.2	0.2	2				Χ
	EPILO	Epilobium	30	0.2	0.2	1				

Juncus balticus - Carex praegracilis Herbaceous Association (Provisional) Baltic Rush - Clustered Field Sedge Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was open to intermittent and dominated by *Carex praegracilis* at 5-44% cover. Other taxa that were often present included *Juncus* spp., *Juncus balticus*, and *Rumex pulcher. Salix laevigata* sometimes occurred as a scattered emergent tree.

This association was sampled infrequently in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on metamorphic or sandy alluvium substrates. They occupied gentle, sloping wetland sites in bottoms and on lower to middle slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

Mean %	Range %	Height (m)
27	15-44	-
27	15-44	variable
0	-	-
0	-	-
0.1	0-0.2	<5
0	-	-
5.1	4-6	-
	27 27 0 0 0.1	27 15-44 27 15-44 0 - 0 - 0.1 0-0.2 0 -

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (3)

Macrotopography: bottom (1), lower slope (1), middle slope (1)

Microtopography: undulating (2), concave (1)

Parent Material: metamorphic (2), sandy alluvium (1) Soil Texture: clay or clay loam (2), loam or sandy loam (1)

	Mean	Range
Elevation	486 ft.	330-749 ft.
Slope	3°	2-4°
Large rock cover	0%	-%
Small rock cover	0%	-%
Bare ground cover	7%	7-7%
Litter cover	91%	91-91%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: SNNR0925 Relevés: SNFN0040, SNFN0041

Rank: G4S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based currently on the data collected for this project. It likely occurs elsewhere in cismontane California, especially the Central Valley, and may occur in transmontane California east of the Sierra Nevada. Holstein (2001) specifically notes that stands where *Carex praegracilis* is dominant occur in the Central Valley. More sampling and analysis is needed to determine if *C. praegracilis* is important and diagnostic enough for a separate alliance, or if it should be retained within the *J. balticus* Alliance.

STAND TABLE

Juncus balticus - Carex praegracilis Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	SALA3-M	Salix laevigata	33	0.1	0.2	0.2				
	SALA3-L	Salix laevigata	33	0.1	0.2	0.2				
Herb										
	CAPR5	Carex praegracilis		20.7		44	X		X	
	JUBA	Juncus balticus	67	4.7	7	7				
	JUNCU	Juncus	67	0.4	0.2	1				
	RUPU3	Rumex pulcher	67	0.4	0.2	1				Χ
	HERBAC	unknown	67	0.1	0.2	0.2				
	CADE8	Carex densa	33	1.0	3	3				
	EPILO	Epilobium	33	1.0	3	3				
	RONA2	Rorippa nasturtium-aquaticum	33	0.7	2	2				
	STACH	Stachys	33	0.7	2	2				
	CIVU	Cirsium vulgare	33	0.3	1	1				Χ
	JUTE	Juncus tenuis	33	0.3	1	1				
	TACA8	Taeniatherum caput-medusae	33	0.3	1	1				Χ
	ANVI2	Andropogon virginicus	33	0.1	0.2	0.2				Χ
	BRELE	Brodiaea elegans subsp. elega	ns33	0.1	0.2	0.2				
	CYPER	Cyperus	33	0.1	0.2	0.2				
	CYER	Cyperus eragrostis	33	0.1	0.2	0.2				
	ELMA5	Eleocharis macrostachya	33	0.1	0.2	0.2				
	ERSE3	Eremocarpus setigerus	33	0.1	0.2	0.2				
	GEMO	Geranium molle	33	0.1	0.2	0.2				Χ
	HYPE	Hypericum perforatum	33	0.1	0.2	0.2				Χ
	JUME4	Juncus mexicanus	33	0.1	0.2	0.2				
	KIEL	Kickxia elatine	33	0.1	0.2	0.2				Χ
	LYHY2	Lythrum hyssopifolia	33	0.1	0.2	0.2				Χ
	MYOSO	Myosotis	33	0.1	0.2	0.2				Χ
	RUCR	Rumex crispus	33	0.1	0.2	0.2				Χ
	RUSA	Rumex salicifolius	33	0.1	0.2	0.2				
	TYPHA	Typha	33	0.1	0.2	0.2				

Juncus (oxymeris, xiphioides) Herbaceous Alliance Rush (Pointed, Irisleaf) Herbaceous Alliance

Evens and San (2004) and Alexander et al. (2006) define a *J. xiphioides* alliance as typical of serpentine seeps in the Central Coast and the California Floristic Province. We are redefining the *Juncus xiphioides* Alliance in the state, whereby either *J. oxymeris* or *J. xiphioides* dominates in the herbaceous layer. This alliance is found in seeps and on riparian margins, which often have ultramafic soils. Other native and non-native species may be present, but with lower numbers and abundance than *J. oxymeris* or *J. xiphioides*. Such species include *Carex* spp., *Juncus balticus*, *Lolium multiflorum*, and *Lythrum* spp. This alliance has been found in natural, wetland habitats such as streams of serpentine alluvial substrates from the Central Coast and North Coast Ranges of California (CNPS 2006, J. Evens, pers. obs. 2003, Evens and San 2004). The alliance also is likely to occur in small patches in other parts of California, Nevada, Arizona, New Mexico, Idaho, Oregon, and Washington.

In the study area, *Juncus oxymeris* was sampled more commonly than *Juncus xiphioides*. Stands contained herbs and grasses such as *Lotus purshianus*, *Lolium multiflorum*, *Eleocharis acicularis* or *E. macrostachya*. There are two associations described for the Rush (Pointed, Irisleaf) Alliance - one for each of the two *Juncus* species.

Juncus oxymeris Herbaceous Association (Provisional) Pointed Rush Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and dominated by *Juncus oxymeris* at 9-50% cover. Other taxa that were often present included *Briza minor*, *Lolium multiflorum*, *Lotus purshianus*, *Mimulus guttatus*, *Rumex crispus*, and *Triteleia hyacinthina*.

This association was sampled infrequently in the study area within the central and northern Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands occurred on metamorphic, ultramafic, or volcanic substrates. They occupied wetland sites on bottom to middle slopes that were flat to gentle.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado, Mariposa, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

	Mean %	Range %	Height (m)
Total vegetation cover	64.8	39-95	-
Herb	64.4	37-95	variable
Shrub	0.4	0-2	1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	30.3	10-52	-

Aspect: Flat (4), SE (1)

Macrotopography: bottom (3), bottom to lower slope (1), middle slope (1)

Microtopography: flat (3), concave (2)

Parent Material: metamorphic (2), ultramafic (2), volcanic (1)

Soil Texture: loam or sandy loam (1), sand (1), silt or silt loam (1), unknown (1)

	Mean	Range
Elevation	1273 ft.	869-2061 ft.
Slope	0.40	0-10
Large rock cover	20%	0-60%
Small rock cover	6.7%	0-20%
Bare ground cover	26.7%	5-40%
Litter cover	40.7%	10-62%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=5)

Rapid Assessments: SNNR0108, SNNR0212, SNNR0690, SNNR1411, SNNR1490

Relevés: none

Rank: G3S3?

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on data collected for this project. It appears that wetland stands on ultramafics contain falcate-leaved rushes, such as *J. oxymeris* or *J. xiphioides*. However, we need more data and analysis to determine if stands where either species is dominant are significantly different from each other and from the non-serpentine stands with other wetland species.

STAND TABLE

Juncus oxymeris Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
Herb										
	JUOX	Juncus oxymeris	100	26.8	9	50		X	X	
	LOPU3	Lotus purshianus	80	2.5	0.2	10			Χ	
	LOMU	Lolium multiflorum	60	2.1	0.2	10				Χ
	MIGU	Mimulus guttatus	60	1.1	0.2	5				
	RUCR	Rumex crispus	60	0.9	0.2	4				Χ
	BRMI2	Briza minor	60	0.1	0.2	0.2				Χ
	TRHY3	Triteleia hyacinthina	60	0.1	0.2	0.2				
	POMO5	Polypogon monspeliensis	40	6.4	10	22				Χ
	HOBR2	Hordeum brachyantherum	40	3.0	0.2	15				
	SIBE	Sisyrinchium bellum	40	1.4	0.2	7				
	ELMA5	Eleocharis macrostachya	40	0.6	0.2	3				
	HECA	Helianthella californica	40	0.6	1	2				
	CYDA	Cynodon dactylon	40	0.4	0.2	2				Χ
	HEFI	Hemizonia fitchii	40	0.2	0.2	1				
	PHAQ	Phalaris aquatica	40	0.2	0.2	1				Χ
	TRWI3	Trifolium willdenovii	40	0.2	0.2	1				
	POA	Poa	40	0.1	0.2	0.2				

Juncus xiphioides Herbaceous Association (Provisional) Irisleaf Rush Herbaceous Association (Provisional)

SUMMARY

In the one stand sampled, the herbaceous canopy was intermittent and dominated by *Juncus xiphioides* at 28% cover. A variety of facultative and obligate wetland taxa were present with sparse cover (see stand table below). *Quercus douglasii* occurred as a scattered emergent tree.

This association was sampled once in the study area within the Cascade Range Foothills Subregion (Hickman 1993). Stands occurred on volcanic substrates. They occupied wetland habitats on bottom slopes that were gentle.

DISTRIBUTION IN STUDY AREA

This association was sampled in Shasta County, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	40	40-40	-
Herb	40	40-40	>0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	1	1-1	5-10
Conifer	0	-	-
Relative non-native to native cover	5	5-5	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (1)

Macrotopography: bottom (1)
Microtopography: concave (1)
Parent Material: volcanic (1)

Soil Texture: loam or sandy loam (1)

	Mean	Range
Elevation	1370 ft.	1370-1370 ft.
Slope	30	3-3°
Large rock cover	10.9%	10.9-10.9%
Small rock cover	25.5%	25.5-25.5%
Bare ground cover	31.8%	31.8-31.8%
Litter cover	1.8%	1.8-1.8%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=1)

Rapid Assessments: SNNR0834 Relevés: none

Rank: G3S3?

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described on volcanics in the Sierra Nevada Foothills based on data from this project; it has also been described on serpentine in the Central Coast, specifically on serpentine seeps in Santa Clara County (Evens and San 2004). This sample in the Foothills appears similar to surveys in the *Eleocharis acicularis - Eryngium castrense* Association - both types are found on volcanic wetlands and have similar species composition. More sampling and analysis is needed to determine if this plot should be merged into the volcanic wetland association with *Eleocharis acicularis*, instead of the *J. xiphioides* association.

STAND TABLE

Juncus xiphioides Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	QUDO-T	Quercus douglasii	100	1.0	1	1	Χ		Χ	
Herb										
	JUXI	Juncus xiphioides	100	28.0	28	28	X		X	
	ELAC	Eleocharis acicularis	100	4.0	4	4			Χ	
	ERCA33	Eryngium castrense	100	2.0	2	2			Χ	
	HOMA2	Hordeum marinum	100	2.0	2	2			Χ	Χ
	JUTE	Juncus tenuis	100	1.0	1	1			Χ	
	LOOB2	Lotus oblongifolius	100	1.0	1	1			Χ	
	ASFA	Asclepias fascicularis	100	0.2	0.2	0.2			Χ	
	CAHE3	Callitriche heterophylla	100	0.2	0.2	0.2			Χ	
	ELMA5	Eleocharis macrostachya	100	0.2	0.2	0.2			Χ	
	HERA3	Heterocodon rariflorum	100	0.2	0.2	0.2			Χ	
	ISHO	Isoetes howellii	100	0.2	0.2	0.2			Χ	
	LOMAT	Lomatium	100	0.2	0.2	0.2			Χ	
	MIGU	Mimulus guttatus	100	0.2	0.2	0.2			Χ	
	NATA3	Navarretia tagetina	100	0.2	0.2	0.2			Χ	
	ODHA	Odontostomum hartwegii	100	0.2	0.2	0.2			Χ	
	PAVI3	Parentucellia viscosa	100	0.2	0.2	0.2			Χ	Χ
	TRVA	Trifolium variegatum	100	0.2	0.2	0.2			Χ	
	HERBAC	unknown	100	0.2	0.2	0.2			Χ	
Cryptog	am									
. · · ·	MOSS	Moss	100	3.0	3	3	Χ		Χ	

Juncus effusus Herbaceous Alliance Common Rush Herbaceous Alliance

As defined in the state, *Juncus effusus* is dominant or co-dominant with other graminoids such as *Carex praegracilis*, *C. subfusca*, and *J. xiphioides* in an intermittent to dense herbaceous layer. The shrub and tree layers are absent or sparse. This alliance grows on silty or clayey loam soils, in flats and depressions with high water tables, or on gentle slopes of all aspects that have saturated or at least moist soils throughout most of the growing season. *Juncus effusus* stands are often able to persist in degraded sites such as heavily grazed pastures where some species associates are largely non-native. The *Juncus effusus* Alliance has been described previously as abundant in low elevation wetland sites in western Oregon (Christy 2004), as sporadic in the San Dieguito River Park Region, San Diego County (Evens and San 2006) with *Juncus effusus* var. *pacificus*, and in coastal sites in Marin County including the Point Reyes National Seashore area and Mount Tamalpais (NatureServe et al. 2003a, Evens and Kentner 2006) with *J. effusus* var. *brunneus*.

In the Foothills, this alliance was sampled twice and one association was described. Stands contained other riparian/wetlands herbs and occasional trees and shrubs such as *Rubus discolor*, *Holcus lanatus*, *Epilobium ciliatum*, and *Quercus lobata*.

Juncus effusus Herbaceous Association Common Rush Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was continuous and dominated by *Juncus effusus* at 65-89% cover. Other taxa that were characteristically present included *Cirsium vulgare Epilobium ciliatum*, and *Holcus lanatus*. *Quercus lobata* often occurred as a scattered emergent tree, and *Rhamnus tomentella*, *Rosa californica*, and *Rubus discolor* often occurred as emergent shrubs.

This association was sampled twice in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands occurred on metamorphic substrates with silty or clayey loam soils. They occupied wetland habitats on lower and middle slopes. Stands typically have water throughout the growing season from natural drainage and/or freshwater seeps.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador and Nevada Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

	Mean %	Range %	Height (m)
Total vegetation cover	87.5	85-90	-
Herb	86.5	83-90	>0.3
Shrub	3.5	2-5	1-2
Low Tree/Tall Shrub	0	-	-
Hardwood	0.1	0-0.2	5-10
Conifer	0	-	-
Relative non-native to native cover	11.3	8-15	-

Aspect: W (1), SE (1)

Macrotopography: lower slope (1), middle slope (1)

Microtopography: concave (2) Parent Material: metamorphic (2)

Soil Texture: clay or clay loam (1), silt or silt loam (1)

	Mean	Range
Elevation	1154 ft.	1008-1300 ft.
Slope	2.5°	2-3°
Large rock cover	0.1%	0-0.2%
Small rock cover	0.1%	0-0.2%
Bare ground cover	40%	40-40%
Litter cover	47.5%	45-50%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR0624, SNNR1064 Relevés: none

Rank: G4S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described in inland wetlands in California, including the Sierra Nevada Foothills and the San Dieguito River Park in San Diego County (Evens and San 2006). It has also been described in coastal to inland wetlands of western Oregon (Christy 2004).

STAND TABLE
Juncus effusus Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree		Overson labora	50	0.4	0.0	0.0				
	QULO-M	Quercus lobata	50	0.1	0.2					
Ola marala	QULO-T	Quercus lobata	50	0.1	0.2	0.2				
Shrub	RUDI2	Rubus discolor	100	3.0	1	5	Χ		Х	Х
	RHTO6	Rhamnus tomentella	50	0.1	0.2	0.2	^		^	^
	ROCA2	Rosa californica	50	0.1	0.2	0.2				
Herb	1100/12	Noda damennida	00	0.1	0.2	0.2				
11015	JUEF	Juncus effusus	100	77.0	65	89	X		Χ	
	HOLA	Holcus lanatus	100	2.0	1	3			Χ	Χ
	EPCI	Epilobium ciliatum	100	1.1	0.2	2			Χ	
	CIVU	Cirsium vulgare	100	0.6	0.2	1			Χ	Χ
	TYLA	Typha latifolia	50	3.5	7	7				
	POPE3	Polygonum persicaria	50	2.0	4	4				Χ
	MEPU	Mentha pulegium	50	1.5	3	3				Χ
	RORA	Rotala ramosior	50	1.5	3	3				
	MIGU	Mimulus guttatus	50	0.5	1	1				
	POMO5	Polypogon monspeliensis	50	0.5	1	1				Χ
	STACH	Stachys	50	0.5	1	1				
	AVBA	Avena barbata	50	0.1	0.2	0.2				Χ
	CEMU2	Centaurium muehlenbergii	50	0.1	0.2	0.2				
	COAR4	Convolvulus arvensis	50	0.1	0.2	0.2				Χ
	GAVE3	Gastridium ventricosum	50	0.1	0.2	0.2				Χ
	GEDI	Geranium dissectum	50	0.1	0.2	0.2				Χ
	HOMA2	Hordeum marinum	50	0.1	0.2	0.2				Χ
	HYPE	Hypericum perforatum	50	0.1	0.2	0.2				Χ
	JUOX	Juncus oxymeris	50	0.1	0.2	0.2				
	MEAR4	Mentha arvensis	50	0.1	0.2	0.2				
	PADI6	Paspalum distichum	50	0.1	0.2	0.2				
	RONA2	Rorippa nasturtium-aquaticum	50	0.1	0.2	0.2				
	RUCR	Rumex crispus	50	0.1	0.2	0.2				Χ
	RUPU3	Rumex pulcher	50	0.1	0.2	0.2				Χ
	SOAS	Sonchus asper	50	0.1	0.2	0.2				Χ
	TRPO	Tragopogon porrifolius	50	0.1	0.2	0.2				Χ
	VEBL	Verbascum blattaria	50	0.1	0.2	0.2				Χ

Lasthenia fremontii - Downingia (bicornuta) Herbaceous Alliance Fremont's Goldfields - Calicoflower Herbaceous Alliance

As defined for the state, *Lasthenia fremontii*, *Downingia* spp., *Navarretia leucocephala*, and/or *Eryngium* (*castrense* or *vaseyi*) are present and characteristic species. Stands are characterized by an open to continuous herbaceous canopy. They occur in ephemeral wetlands with very gradual or no significant slope, in swales and vernal pools of the Northern Hardpan, Northern Mudflow, and Northern Basalt Flow Vernal Pool types (Holland 1986). These wetlands have standing water during the winter and early spring, which may fill and empty multiple times during a normal rainy season.

In the study area, the calicoflowers in this alliance were primarily *Downingia ornatissima*, *D. cuspidata*, and *D. bicornuta*. Stands contained other vernal pool species such as *Deschampsia danthonioides*, *Eryngium castrense*, and *Plagiobothrys stipitatus* var. *micranthus*. Five associations are described for the Fremont's Goldfields - Calicoflower Alliance. Three samples (SNFN0307, SNFN0367, SNFN0362) showed additional variation and were classified to the alliance level only because of high cover of other forbs such as *Navarretia leucocephala*, *Alopecurus saccatus*, and *Gratiola ebracteata*, but little or no cover of *Lasthenia fremontii* or *Downingia* species.

Downingia (cuspidata, bicornuta) Herbaceous Association Calicoflower (Toothed, Doublehorn) Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous, with the consistent presence of *Downingia bicornuta* and/or *Downingia cuspidata* at <1-16% cover. *Deschampsia danthonioides*, *Eryngium castrense*, and *Psilocarphus brevissimus* were characteristically present, while *Eleocharis macrostachya*, *Lasthenia californica*, and *Navarretia leucocephala* subsp. *leucocephala* were often present.

This association was sampled infrequently in the study area within the Cascade Range Foothills Subregion (Hickman 1993). Stands consistently occurred on volcanic substrates. They usually occupied flats, edges of basins/wetlands, or bottoms - usually in northern hardpan vernal pools or infrequently in vernally wet habitats.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tehama County, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	54	35-72	-
Herb	54	35-72	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	15.8	0-73	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (5)

Macrotopography: bottom (1), edge of basin/wetland (4)

Microtopography: flat (3), undulating (2)

Parent Material: volcanic (5)

Soil Texture: clay or clay loam (3), silt or silt loam (2)

	Mean	Range
Elevation	670 ft.	361-881 ft.
Slope	Oo	_0
Large rock cover	0%	-%
Small rock cover	6%	6-6%
Bare ground cover	14%	14-14%
Litter cover	70%	70-70%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=5)

Rapid Assessments: none Relevés: SNFN0237, SNFN0239, SNFN0240, SNFN0323,

SNFN0324

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills and adjacent Great Valley (Barbour et al. 2007). According to Barbour et al. (2007), the *Downingia cuspidata/bicornuta* herbaceous Association is relatively common in volcanic pools on high terrace, or mud flow landforms, with Red Bluff, Tuscan, or Holocene geomorphic surfaces, and on Toomes, Tuscan, or Anita soil series. Vernal pools are usually large (ca. 2500 m²). This type is found in the Northeastern Sacramento Valley region, and it fits within the "Northern Mudflow" category of Sawyer and Keeler-Wolf (1995).

STAND TABLE Downingia (cuspidata, bicornuta) Herbaceous Association

Lifeform C	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	PSBR	Psilocarphus brevissimus	80	6.8	0.2	24			Χ	
I	DEDA	Deschampsia danthonioides	80	5.7	0.2	27			Χ	
1	DOCU	Downingia cuspidata	80	3.7	0.2	16			X	
	ERCA33	Eryngium castrense	80	1.5	0.2	5			Χ	
	NALEL	Navarretia leucocephala subspleucocephala	60	12.2	6	45				
	LACA7	Lasthenia californica	60	3.0	1	10				
	ELMA5	Eleocharis macrostachya	60	1.4	0.2	6				
1	LOMU	Lolium multiflorum	40	5.4	4	23				Χ
	DOBIP	Downingia bicornuta var. pic	ta 40	3.2	0.2	16				
	PLSTS	Plagiobothrys stipitatus var. stipitatus	40	3.2	2	14				
	ALSA3	Alopecurus saccatus	40	1.2	3	3				
	PLST	Plagiobothrys stipitatus	40	0.8	0.2	4				
1	LAFR4	Lasthenia fremontii	40	0.1	0.2	0.2				

Downingia bicornuta - Lasthenia fremontii Herbaceous Association Doublehorn Calicoflower - Fremont's Goldfields Herbaceous Association

SUMMARY

In the one stand sampled, the herbaceous canopy was intermittent, with *Downingia bicornuta* (9% cover), *Eleocharis acicularis* (10% cover), *Lasthenia fremontii* (30% cover), and *Ranunculus bonariensis* (38% cover) having the highest cover values. A variety of facultative and obligate wetland species were present (see stand table below).

This association was sampled once in the study area within the Sacramento Valley Subregion (Hickman 1993). The stand occurred on clayey alluvium substrate. It occupied a gently sloping bottom in a northern hardpan vernal pool.

DISTRIBUTION IN STUDY AREA

This association was sampled in Sacramento County, within the Camanche Terraces (262Ao) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	65	65-65	-
Herb	65	65-65	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	0.7	1-1	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SE (1)

Macrotopography: bottom (1) Microtopography: flat (1)

Parent Material: clayey alluvium (1) Soil Texture: clay or clay loam (1)

	Mean	Range
Elevation	174 ft.	174-174 ft.
Slope	1º	1-10
Large rock cover	0%	-%
Small rock cover	0%	-%
Bare ground cover	59%	59-59%
Litter cover	40%	40-40%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=1)

Rapid Assessments: none Relevés: SNFN0710

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills and adjacent Great Valley (Barbour et al. 2007). According to Barbour et al. (2007), the *Downingia bicornuta - Lasthenia fremontii* Herbaceous Association occurs in hardpan pools on low terrace, high terrace, and (occasionally) on volcanic landforms, with Riverbank, Modesto, Turlock, Laguna, Valley Springs, Mehrten, and China Hat geomorphic surfaces, and on a wide variety of soils series. Vernal pools are small (ca. 700 m²). This common association occurs in the Southeastern Sacramento Valley and Southern Sierra Foothills vernal pool regions, and it fits within the "Northern Hardpan" category of Sawyer and Keeler-Wolf (1995).

STAND TABLE

Downingia bicornuta - Lasthenia fremontii Herbaceous Association

Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
RABO	Ranunculus bonariensis	100	38.0	38	38		Χ	Χ	
LAFR4	Lasthenia fremontii	100	30.0	30	30			X	
ELAC	Eleocharis acicularis	100	10.0	10	10			Χ	
DOBI	Downingia bicornuta	100	9.0	9	9			X	
ERVA5	Eryngium vaseyi	100	6.0	6	6			Χ	
DEDA	Deschampsia danthonioides	100	5.0	5	5			Χ	
PIAM	Pilularia americana	100	5.0	5	5			Χ	
PLSTM	Plagiobothrys stipitatus var. micranthus	100	5.0	5	5			X	
NALE	Navarretia leucocephala	100	2.0	2	2			Χ	
CAMA3	Callitriche marginata	100	1.0	1	1			Χ	
CACA79	Castilleja campestris	100	1.0	1	1			Χ	
ALSA3	Alopecurus saccatus	100	0.2	0.2	0.2			Χ	
CRAQ	Crassula aquatica	100	0.2	0.2	0.2			Χ	
ELMA5	Eleocharis macrostachya	100	0.2	0.2	0.2			Χ	
GREB	Gratiola ebracteata	100	0.2	0.2	0.2			Χ	
HYGL2	Hypochaeris glabra	100	0.2	0.2	0.2			Χ	Χ
JUBU	Juncus bufonius	100	0.2	0.2	0.2			Χ	
LETA	Leontodon taraxacoides	100	0.2	0.2	0.2			Χ	Χ
LYHY2	Lythrum hyssopifolia	100	0.2	0.2	0.2			Χ	Χ
POAN	Poa annua	100	0.2	0.2	0.2			Χ	Χ
	LAFR4 ELAC DOBI ERVA5 DEDA PIAM PLSTM NALE CAMA3 CACA79 ALSA3 CRAQ ELMA5 GREB HYGL2 JUBU LETA LYHY2	RABO Ranunculus bonariensis LAFR4 Lasthenia fremontii ELAC Eleocharis acicularis DOBI Downingia bicornuta ERVA5 Eryngium vaseyi DEDA Deschampsia danthonioides PIAM Pilularia americana PLSTM Plagiobothrys stipitatus var. micranthus NALE Navarretia leucocephala CAMA3 Callitriche marginata CACA79 Castilleja campestris ALSA3 Alopecurus saccatus CRAQ Crassula aquatica ELMA5 Eleocharis macrostachya GREB Gratiola ebracteata HYGL2 Hypochaeris glabra JUBU Juncus bufonius LETA Leontodon taraxacoides LYHY2 Lythrum hyssopifolia	RABO Ranunculus bonariensis 100 LAFR4 Lasthenia fremontii 100 ELAC Eleocharis acicularis 100 DOBI Downingia bicornuta 100 ERVA5 Eryngium vaseyi 100 DEDA Deschampsia danthonioides 100 PIAM Pilularia americana 100 PLSTM Plagiobothrys stipitatus var. 100 micranthus 100 CAMA3 Callitriche marginata 100 CACA79 Castilleja campestris 100 ALSA3 Alopecurus saccatus 100 CRAQ Crassula aquatica 100 ELMA5 Eleocharis macrostachya 100 GREB Gratiola ebracteata 100 HYGL2 Hypochaeris glabra 100 LETA Leontodon taraxacoides 100 LYHY2 Lythrum hyssopifolia 100	RABO Ranunculus bonariensis 100 38.0 LAFR4 Lasthenia fremontii 100 30.0 ELAC Eleocharis acicularis 100 10.0 DOBI Downingia bicornuta 100 9.0 ERVA5 Eryngium vaseyi 100 6.0 DEDA Deschampsia danthonioides 100 5.0 PIAM Pilularia americana 100 5.0 PLSTM Plagiobothrys stipitatus var. micranthus 100 5.0 NALE Navarretia leucocephala 100 2.0 CAMA3 Callitriche marginata 100 1.0 CACA79 Castilleja campestris 100 1.0 ALSA3 Alopecurus saccatus 100 0.2 CRAQ Crassula aquatica 100 0.2 ELMA5 Eleocharis macrostachya 100 0.2 GREB Gratiola ebracteata 100 0.2 HYGL2 Hypochaeris glabra 100 0.2 JUBU Juncus bufonius 100 0.2 LETA Leontodon taraxacoides 100 0.2 LYHY2 Lythrum hyssopifolia 100 0.2	RABO Ranunculus bonariensis 100 38.0 38 LAFR4 Lasthenia fremontii 100 30.0 30 ELAC Eleocharis acicularis 100 10.0 10 DOBI Downingia bicornuta 100 9.0 9 ERVA5 Eryngium vaseyi 100 6.0 6 DEDA Deschampsia danthonioides 100 5.0 5 PIAM Pilularia americana 100 5.0 5 PLSTM Plagiobothrys stipitatus var. micranthus 100 5.0 5 NALE Navarretia leucocephala 100 2.0 2 CAMA3 Callitriche marginata 100 1.0 1 CACA79 Castilleja campestris 100 1.0 1 ALSA3 Alopecurus saccatus 100 0.2 0.2 CRAQ Crassula aquatica 100 0.2 0.2 ELMA5 Eleocharis macrostachya 100 0.2 0.2 GREB <	RABO Ranunculus bonariensis 100 38.0 38 38 LAFR4 Lasthenia fremontii 100 30.0 30 30 ELAC Eleocharis acicularis 100 10.0 10 10 DOBI Downingia bicornuta 100 9.0 9 9 9 ERVA5 Eryngium vaseyi 100 6.0 6 6 6 DEDA Deschampsia danthonioides 100 5.0 5 5 5 PIAM Pilularia americana 100 5.0 5 5 5 PLSTM Plagiobothrys stipitatus var. micranthus 100 5.0 5 5 5 NALE Navarretia leucocephala 100 2.0 2 2 2 2 CAMA3 Callitriche marginata 100 1.0 1 1 1 CACA79 Castilleja campestris 100 1.0 1 1 1 ALSA3 Alopecurus saccatus 100 0.2 0.2 0.2 0.2 CRAQ Crassula aquatica 100 0.2 0.2 0.2 0.2 ELMA5 Eleocharis macrostachya 100 0.2 0.2 0.2 0.2 GREB Gratiola ebracteata 100 0.2 0.2 0.2 0.2 HYGL2 Hypochaeris glabra 100 0.2 0.2 0.2 0.2 JUBU Juncus bufonius 100 0.2	RABO Ranunculus bonariensis 100 38.0 38 38 LAFR4 Lasthenia fremontii 100 30.0 30 30 ELAC Eleocharis acicularis 100 10.0 10 10 DOBI Downingia bicornuta 100 9.0 9 9 9 ERVA5 Eryngium vaseyi 100 6.0 6 6 6 DEDA Deschampsia danthonioides 100 5.0 5 5 5 PIAM Pilularia americana 100 5.0 5 5 5 PLSTM Plagiobothrys stipitatus var. micranthus 100 5.0 5 5 5 NALE Navarretia leucocephala 100 2.0 2 2 2 2 CAMA3 Callitriche marginata 100 1.0 1 1 1 CACA79 Castilleja campestris 100 1.0 1 1 1 ALSA3 Alopecurus saccatus 100 0.2 0.2 0.2 0.2 CRAQ Crassula aquatica 100 0.2 0.2 0.2 0.2 ELMA5 Eleocharis macrostachya 100 0.2 0.2 0.2 0.2 GREB Gratiola ebracteata 100 0.2 0.2 0.2 0.2 HYGL2 Hypochaeris glabra 100 0.2 0.2 0.2 0.2 JUBU Juncus bufonius 100 0.2	RABO Ranunculus bonariensis 100 38.0 38 38 X LAFR4 Lasthenia fremontii 100 30.0 30 30 ELAC Eleocharis acicularis 100 10.0 10 10 DOBI Downingia bicornuta 100 9.0 9 9 ERVA5 Eryngium vaseyi 100 6.0 6 6 DEDA Deschampsia danthonioides 100 5.0 5 5 PIAM Pilularia americana 100 5.0 5 5 PLSTM Plagiobothrys stipitatus var. micranthus 100 5.0 5 5 PLSTM Plagiobothrys stipitatus var. micranthus 100 5.0 5 5 PLSTM Plagiobothrys stipitatus var. micranthus 100 5.0 5 5 PLSTM Plagiobothrys stipitatus var. micranthus 100 5.0 5 5 PLSTM Plagiobothrys stipitatus var. micranthus 100 2.0 2 2	RABO Ranunculus bonariensis 100 38.0 38 38 X X LAFR4 Lasthenia fremontii 100 30.0 30 30 X ELAC Eleocharis acicularis 100 10.0 10 10 X DOBI Downingia bicornuta 100 9.0 9 9 X ERVA5 Eryngium vaseyi 100 6.0 6 6 X DEDA Deschampsia danthonioides 100 5.0 5 5 X PIAM Pilularia americana 100 5.0 5 5 X PLSTM Plagiobothrys stipitatus var. micranthus 100 5.0 5 5 X NALE Navarretia leucocephala 100 2.0 2 2 X CAMA3 Callitriche marginata 100 1.0 1 1 X CACA79 Castilleja campestris 100 0.2 0.2 0.2 X CR

Downingia ornatissima - Lasthenia fremontii Herbaceous Association Folded Calicoflower - Fremont's Goldfields Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to intermittent and characterized by *Alopecurus saccatus* (1-6% cover), *Deschampsia danthonioides* (<1-21% cover), *Downingia ornatissima* (<1-19% cover), and *Plagiobothrys stipitatus* var. *micranthus* (<1-9% cover). Other taxa that were often present included *Blennosperma nanum* var. *nanum*, *Eryngium castrense*, *Lasthenia fremontii*, *Lolium multiflorum*, and *Navarretia leucocephala* subsp. *leucocephala*.

In the study area, this association was sampled somewhat infrequently within the Cascade Range Foothills, and infrequently in the Sacramento Valley Subregions (Hickman 1993). Stands usually occurred on metamorphic or volcanic substrates. They often occupied flat bottoms or mesa/plateaus, and infrequently occupied flat edges of a basin/wetland, usually in Northern Hardpan Vernal Pools and occasionally in Northern Basalt Flow Vernal Pools.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Shasta Counties, within the North Valley Alluvium (262Aa) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	35	17-65	-
Herb	34.9	17-64	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	5	0-14	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (8), N (1)

Macrotopography: bottom (4), edge of basin/wetland (1), mesa/plateau (4)

Microtopography: concave (4), flat (4), undulating (1)

Parent Material: metamorphic (5), volcanic (4)

Soil Texture: clay or clay loam (5), silt or silt loam (2), sand (1)

	Mean	Range
Elevation	504 ft.	206-880 ft.
Slope	Oo	_0
Large rock cover	4%	0-13%
Small rock cover	4.7%	0.4-11%
Bare ground cover	83.6%	71-93%
Litter cover	5.8%	2-16%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=9)

Rapid Assessments: none Relevés: SNFN0117, SNFN0118, SNFN0120, SNFN0126, SNFN0120, SNFN0202, SNFN0274, SNFN0274

SNFN0129, SNFN0365, SNFN0368, SNFN0373, SNFN0374

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills. According to Barbour et al. (2007), the *Downingia ornatissima - Lasthenia fremontii* Association is common in hardpan vernal pools on high terrace and low terrace landforms in the northern Foothills on Tuscan and related soils. It occurs in the Northeastern Sacramento Valley and foothills, and it fits into the "Northern Hardpan" category of Sawyer and Keeler-Wolf (1995). It is possibly endemic to this region.

STAND TABLE Downingia ornatissima - Lasthenia fremontii Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
Herb										
	DEDA	Deschampsia danthonioides	100	4.4	0.2	21			Χ	
	PLSTM	Plagiobothrys stipitatus var. micranthus	100	2.4	0.2	9			Χ	
	ALSA3	Alopecurus saccatus	100	2.2	1	6			Χ	
	DOOR	Downingia ornatissima	89	4.7	0.2	19			X	
	ERCA33	Eryngium castrense	67	3.4	0.2	10				
	LOMU	Lolium multiflorum	67	0.5	0.2	3				Χ
	NALEL	Navarretia leucocephala subsp leucocephala	. 56	13.8	1	60				
	LAFR4	Lasthenia fremontii	56	4.0	1	16				
	BLNAN	Blennosperma nanum var. nanum	56	0.2	0.2	1				
	HOMA2	Hordeum marinum	44	0.7	0.2	3				Χ
	GREB	Gratiola ebracteata	44	0.5	0.2	2				
	PSBR	Psilocarphus brevissimus	44	0.2	0.2	1				
	POZI	Pogogyne ziziphoroides	33	0.5	0.2	3				
	ERYNG	Eryngium	33	0.1	0.2	0.2				
	HEFI	Hemizonia fitchii	33	0.1	0.2	0.2				
	LACA7	Lasthenia californica	33	0.1	0.2	0.2				
	POAN	Poa annua	33	0.1	0.2	0.2				Χ
	MYMI2	Myosurus minimus	22	8.0	0.2	7				
	BRODI	Brodiaea	22	0.6	1	4				
	TRDE	Trifolium depauperatum	22	0.4	0.2	3				
	ISHO	Isoetes howellii	22	0.2	0.2	2				
	JUBU	Juncus bufonius	22	0.2	0.2	2				
	ACMO2	Achyrachaena mollis	22	0.1	0.2	1				
	NALE	Navarretia leucocephala	22	0.1	0.2	1				
	CIQU3	Cicendia quadrangularis	22	0.0	0.2	0.2				
	CYDA	Cynodon dactylon	22	0.0	0.2	0.2				Χ
	LEPID	Lepidium	22	0.0	0.2	0.2				
	LYHY2	Lythrum hyssopifolia	22	0.0	0.2	0.2				Χ
	MIAC	Microseris acuminata	22	0.0	0.2	0.2				
	PLER3	Plantago erecta	22	0.0	0.2	0.2				
	TRERE2	Triphysaria eriantha subsp. eriantha	22	0.0	0.2	0.2				

Eryngium (vaseyi, castrense) Herbaceous Association Coyote-thistle Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to intermittent and characterized by *Eryngium castrense* at 1-36% cover. Other taxa that were often present included *Deschampsia danthonioides* and *Plagiobothrys stipitatus* var. *micranthus*. In the local northern Foothills, stands appear to be dominated by *E. castrense* without *E. vaseyi*. According to Barbour et al. (2007), this association does not have many diagnostic species within the *Downingia bicornuta - Lasthenia fremontii* Herbaceous Alliance, other than the *Eryngium* species, *Plagiobothrys stipitatus* var. *micranthus*, and *Psilocarphus brevissimus*. However, diagnostic species of class and order are present, which places this type within the order *Downingia-Lasthenia*.

In the study area, this association was sampled somewhat frequently in the Cascade Range Foothills and infrequently in the central and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic, and infrequently on metamorphic or granitic substrates. They were found in vernal pools, along valley bottoms to lower slopes, in wetlands on flat or gently sloping mesa/plateaus.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, Madera, Shasta, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb), Lower Granitic Foothills (M261Fc), and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	30.3	10-66	-
Herb	30.3	10-66	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	10-20
Conifer	0	-	-
Relative non-native to native cover	12	0-64	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (9), NW (1), E (1)

Macrotopography: bottom (2), bottom to lower slope (1), lower slope (1), mesa/plateau (4),

ridgetop (3)

Microtopography: concave (6), flat (4), undulating (1) Parent Material: volcanic (8), metamorphic (2), granitic (1)

Soil Texture: silt or silt loam (5), sand (2), clay or clay loam (1), muck (1)

	Mean	Range
Elevation	1851 ft.	607-9146 ft.
Slope	0.40	0-30
Large rock cover	5.2%	0-30%
Small rock cover	14.8%	0-51%
Bare ground cover	66.9%	19-99%
Litter cover	11.2%	0.2-37%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=11)

Rapid Assessments: SNNR0124, SNNR0696, SNNR0831, SNNR0886, SNNR1171, SNNR1317 **Relevés:** SNFN0308, SNFN0370, SNFN0381, SNFN0383, SNFN0436

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills and adjacent Great Valley. According to Barbour et al. (2007), this basal community (or association) is similar to the *Downingia ornatissima - Lasthenia fremontii* and *Downingia cuspidata - Lasthenia fremontii* Associations in that they are found in the same geographic regions, geologic settings, and soils. However, this community differs in having an absence of *Downingia ornatissima* and *D. cuspidata*. In general, *Downingia* species have low persistence, and they might be temporarily absent from some vernal pool samples taken during dry years because these species' seeds may remain in the soil as a seed bank (Barbour et al. 2007). Some of the stands classified as this basal community may belong to associations of *Downingia ornatissima - Lasthenia fremontii* and *Downingia cuspidata - Lasthenia fremontii*; only further sampling and analysis will elucidate these relationships.

STAND TABLE Eryngium (vaseyi, castrense) Herbaceous Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
пегы	ERCA33	Eryngium castrense	100	10.1	1	36			X	
	PLSTM	Plagiobothrys stipitatus var. micranthus	64	1.1	0.2	6				
	DEDA	Deschampsia danthonioides	55	1.2	0.2	6				
	NALE	Navarretia leucocephala	45	6.3	0.2	50				
	ISHO	Isoetes howellii	45	3.4	0.2	15				
	ELMA5	Eleocharis macrostachya	45	2.8	0.2	26				
	GREB	Gratiola ebracteata	45	1.5	0.2	8				
	PSBR	Psilocarphus brevissimus	45	1.4	0.2	8				
	HOMA2	Hordeum marinum	36	1.3	0.2	6				Χ
	MITR3	Mimulus tricolor	36	0.4	0.2	2				
	POACXX	Poaceae	36	0.2	0.2	2				
	DOCU	Downingia cuspidata	36	0.1	0.2	1				
	LYHY2	Lythrum hyssopifolia	36	0.1	0.2	0.2				Χ
	LOMU	Lolium multiflorum	27	0.5	0.2	5				Χ
	ERSE3	Eremocarpus setigerus	27	0.1	0.2	1				
	EPPA7	Epilobium pallidum	27	0.1	0.2	0.2				
	POZI	Pogogyne ziziphoroides	27	0.1	0.2	0.2				

Lasthenia fremontii Herbaceous Association (Provisional) Fremont's Goldfields Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was open to intermittent, with the consistent presence of *Deschampsia danthonioides* (<1-4% cover), *Lasthenia fremontii* (7-30% cover), and *Lolium multiflorum* (<1-17% cover). *Achyrachaena mollis* and *Alopecurus saccatus* were characteristically present, while *Brodiaea*, *Eryngium castrense*, *Lepidium nitidum*, *Pogogyne ziziphoroides*, and *Triphysaria eriantha* subsp. *eriantha* were often present. These stands are related to other associations of the *Lasthenia fremontii* - *Downingia* (*bicornuta*) Alliance, but for various reasons, lack species of *Downingia*.

This association was sampled infrequently in the study area in the Cascade Range Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt) or infrequently on metamorphic substrates. They usually occupied vernal pools on flat, bottom slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte County, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	43.2	27-55	-
Herb	42.4	26-55	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	11.6	1-28	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (5)

Macrotopography: bottom (5)

Microtopography: flat (4), concave (1)

Parent Material: volcanic (3), basalt (1), metamorphic (1) Soil Texture: clay or clay loam (3), loam or sandy loam (2)

	Mean	Range
Elevation	285 ft.	230-319 ft.
Slope	Oo	_0
Large rock cover	0.2%	0.2-0.2%
Small rock cover	35%	35-35%
Bare ground cover	57%	57-57%
Litter cover	5%	5-5%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=5)

Rapid Assessments: none Relevés: SNFN0077, SNFN0127, SNFN0302, SNFN0425,

SNFN0428

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based currently upon the data collected for this project. Following Barbour et al. (2007), we may lump such stands into the *Downingia* (*ornatissima*) - *Lasthenia fremontii* Herbaceous Association. The lack of *Downingia* species in our plots may be the result of not sampling during peak phenology. This type remains provisional until further sampling can verify the presence or absence of *Downingia* species.

STAND TABLE

Lasthenia fremontii Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	LAFR4	Lasthenia fremontii	100	13.0	7	30			X	
	LOMU	Lolium multiflorum	100	4.1	0.2	17			Χ	Χ
	DEDA	Deschampsia danthonioides	100	2.0	0.2	4			Χ	
	ALSA3	Alopecurus saccatus	80	1.8	0.2	7			Χ	
	ACMO2	Achyrachaena mollis	80	0.2	0.2	0.2			Χ	
	BRODI	Brodiaea	60	1.2	0.2	5				
	ERCA33	Eryngium castrense	60	8.0	0.2	2				
	POZI	Pogogyne ziziphoroides	60	0.5	0.2	2				
	LENI	Lepidium nitidum	60	0.1	0.2	0.2				
	TRERE2	Triphysaria eriantha subsp. eriantha	60	0.1	0.2	0.2				
	LIDOR2	Limnanthes douglasii subsp. rosea	40	10.2	12	39				
	NALE	Navarretia leucocephala	40	4.2	4	17				
	PLSTM	Plagiobothrys stipitatus var. micranthus	40	1.2	2	4				
	CAMA3	Callitriche marginata	40	1.0	2	3				
	LAFR2	Layia fremontii	40	0.4	0.2	2				
	BLNAN	Blennosperma nanum var. nanum	40	0.4	1	1				
	MICA7	Minuartia californica	40	0.2	0.2	1				
	ALLIU	Allium	40	0.1	0.2	0.2				
	CIQU3	Cicendia quadrangularis	40	0.1	0.2	0.2				
	PLAU	Plagiobothrys austiniae	40	0.1	0.2	0.2				

Layia fremontii Herbaceous Alliance Fremont's Tidytips Herbaceous Alliance

As defined in the state, *Layia fremontii* is an indicator (and may be dominant to sub-dominant) forming colorful early spring floral displays along edges of vernal pools, swales, and vernally moist upland flats (see photo on page 301). Stands have open to continuous canopies and usually occur with *Bromus hordeaceus*, *Triphysaria eriantha* subsp. *eriantha*, *Lasthenia californica*, and *Achyrachaena mollis*. This is a transitionally mesic alliance found in both uplands and vernal pools. *Cicendia quadrangularis*, *Vulpia microstachys*, *Plantago erecta*, and other upland species, may combine (usually with low cover) with vernally moist site indicators such as *Deschampsia danthonioides*, *Plagiobothrys austiniae*, *Navarretia leucocephala*, and others. Nonnative species such as *Aira caryophyllea*, *Bromus hordeaceus*, *Hypochaeris glabra*, and *Taeniatherum caput-medusae* may be present, sometimes with just as much cover as the native species (or higher cover later in the season).

Barbour et al. (2007) define a synonymous *Layia fremontii - Achyrachaena mollis* Alliance, which they describe as occurring in hardpan vernal pools that develop on shallow rocky soils in the Northeastern Sacramento Valley and Northwestern Sacramento Valley vernal pool regions. These pools corresponds to the "Northern Hardpan" category of Sawyer and Keeler-Wolf (1995). Stands may include *Layia fremontii*, *Achyrachaena mollis*, *Triphysaria eriantha* subsp. *eriantha*, *Taeniatherum caput-medusae*, and *Clarkia purpurea*. However, we have found stands in non-pool settings dominated by *Layia fremontii*, including on Tuscan soils in vernally moist uplands that receive subsurface water flows in the spring. Thus, we are expanding the definition of the alliance and removing *A. mollis* from the name, since it is not a specific indicator of all associations.

In the Foothills, stands of *Layia fremontii* commonly occur in both upland flats and on wetland vernal pool edges with other herb species such as *Triphysaria eriantha* subsp. *eriantha*, *Bromus hordeaceus*, *Aira caryophyllea*, and *Navarretia tagetina*. Three associations described below contain a variety of forb species, including *Achyrachaena mollis*, *Lasthenia californica*, *Leontodon taraxacoides*, *Plagiobothrys austiniae*, and *P. greenei*. One sample (SNNR0880) showed additional variation and was classified to the alliance level only because of high cover of moss and grass.

Layia fremontii - Lasthenia californica - Achyrachaena mollis Herbaceous Association Fremont's Tidytips - California Goldfields - Blow Wives Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and characterized by Layia fremontii (<1-35% cover), Lasthenia californica (<1-20% cover), and Triphysaria eriantha subsp. eriantha (<1-6% cover). Other taxa that were present in at least 60% of the samples, include Achyrachaena mollis, Aira caryophyllea, Brodiaea, Bromus hordeaceus, Lolium multiflorum, Navarretia tagetina, Plantago erecta, Vulpia microstachys. Stands have a rich assortment of native forbs in the early to middle of spring, which then dry out and stands become dominated by grasses and later-flowering forbs in the late spring and summer.

In the study area, this association was sampled frequently within the Cascade Range Foothills and infrequently in the northern Sierra Nevada Foothills and Sacramento Valley Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt) or metamorphic substrates, but were found rarely on sedimentary substrates. They occupied a variety of primarily

upland slope positions, from bottoms to upper slopes and ridgetops, sometimes on mesas/plateaus, and infrequently at the edge of a basin/wetland. Slopes were flat to moderate. These stands occurred on vernally moist upland flats on rocky, clay soils in areas that typically have moderate grazing. Although some samples were adjacent to vernal pools, stands were technically not part of the pool proper at many sites.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Tehama Counties, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	37.2	10-72	-
Herb	36.8	6-72	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	27.1	0-78	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (7), NW (6), SW (4), W (2), Variable (1)

Macrotopography: bottom (5), lower slope (1), middle slope (3), upper slope (2), edge of

basin/wetland (1), mesa/plateau (4), ridgetop (3) Microtopography: flat (13), undulating (5), convex (2)

Parent Material: volcanic (9), metamorphic (8), sedimentary (2), basalt (1)

Soil Texture: clay or clay loam (13), loam or sandy loam (5), sand (1), silt or silt loam (1)

	Mean	Range
Elevation	488 ft.	207-1428 ft.
Slope	1.10	0-6°
Large rock cover	2.9%	0-15%
Small rock cover	8.7%	0-30%
Bare ground cover	48.8%	4-94%
Litter cover	37.2%	0.2-79%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=20)

Rapid Assessments: SNNR1502, SNNR1503 **Relevés:** SNFN0078, SNFN0115, SNFN0116, SNFN0119, SNFN0122, SNFN0123, SNFN0124, SNFN0125, SNFN0128, SNFN0301, SNFN0309, SNFN0310, SNFN0311, SNFN0342, SNFN0408, SNFN0699, SNFN0700, SNFN0708

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on data collected for this project. It is similar to the *Layia fremontii - Achyrachaena mollis* Herbaceous Association from

Barbour et al. (2007) where stands occur on vernal pool edges; however, some of our stands were found in uplands that still have shallow rocky soils that are winter-spring wet and summer dry.

STAND TABLE Layia fremontii - Lasthenia californica - Achyrachaena mollis Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	LAFR2	Layia fremontii	95	6.7	0.2	35			X	
	LACA7	Lasthenia californica	85	3.5	0.2	20			X	
	TRERE2	Triphysaria eriantha subsp. eriantha	85	1.2	0.2	6			X	
	BRHO2	Bromus hordeaceus	75	3.6	0.2	19				Χ
	PLER3	Plantago erecta	70	1.8	0.2	20				
	ACMO2	Achyrachaena mollis	65	2.0	0.2	16				
	VUMI	Vulpia microstachys	65	0.8	0.2	5				
	AICA	Aira caryophyllea	65	0.3	0.2	2				Χ
	NATA3	Navarretia tagetina	60	1.7	0.2	10				
	BRODI	Brodiaea	60	1.5	0.2	11				
	LOMU	Lolium multiflorum	55	3.7	0.2	23				Χ
	HYGL2	Hypochaeris glabra	55	3.5	0.2	26				Χ
	TACA8	Taeniatherum caput-medusae	55	3.3	0.2	24				Χ
	ERBO	Erodium botrys	55	8.0	0.2	7				Χ
	JUBU	Juncus bufonius	55	0.6	0.2	4				
	HEFI	Hemizonia fitchii	55	0.3	0.2	2				
	MIAC	Microseris acuminata	55	0.2	0.2	2				
	POZI	Pogogyne ziziphoroides	50	0.8	0.2	5				
	LIBI	Linanthus bicolor	45	0.5	0.2	3				
	TRMI4	Trifolium microcephalum	45	0.5	0.2	3				
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	40	0.5	0.2	5				
	TRDE	Trifolium depauperatum	40	0.4	0.2	5				
	MICA	Micropus californicus	40	0.4	0.2	2				
	LENI	Lepidium nitidum	40	0.1	0.2	0.2				
	BLNAN	Blennosperma nanum var. nanum	35	1.1	0.2	17				
	AVFA	Avena fatua	35	0.9	0.2	12				Χ
	MICA7	Minuartia californica	35	0.5	0.2	3				
	NAVAR	Navarretia	35	0.5	0.2	6				
	CHAN2	Chlorogalum angustifolium	35	0.1	0.2	1				
	ODHA	Odontostomum hartwegii	35	0.1	0.2	1				
	CIQU3	Cicendia quadrangularis	35	0.1	0.2	0.2				
	FIGA	Filago gallica	35	0.1	0.2	0.2				Χ
	TRHI4	Trifolium hirtum	30	0.3	0.2	3				Χ
	PEDU2 TRWI3	Petrorhagia dubia Trifolium willdenovii	30 25	0.2 0.4	0.2 0.2					Χ

STAND TABLE continued

Layia fremontii - Lasthenia californica - Achyrachaena mollis Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	DIMU5	Dichelostemma multiflorum	25	0.3	0.2	2				
	MESA	Medicago sativa	25	0.2	0.2	2				Χ
	PAPU10	Parvisedum pumilum	25	0.1	0.2	1				
	LETA	Leontodon taraxacoides	25	0.1	0.2	1				Χ
	TRHY3	Triteleia hyacinthina	25	0.1	0.2	1				
	LUBI	Lupinus bicolor	25	0.1	0.2	0.2				
Cryptog	am									
	MOSS	Moss	60	2.2	0.2	15				

Layia fremontii - Leontodon taraxacoides - Plagiobothrys greenei Herbaceous Association Fremont's Tidytips - Lesser Hawkbit - Greene's Popcornflower Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and characterized by Layia fremontii at <1-20% cover, Leontodon taraxacoides at 2-35% cover, and Plagiobothrys greenei at <1-3% cover. Other characteristic taxa included Aira caryophyllea, Briza minor, Brodiaea, Bromus hordeaceus, Cicendia quadrangularis, Erodium botrys, Hemizonia fitchii, Juncus bufonius, Juncus capitatus, Linanthus bicolor, Navarretia tagetina, Trifolium dubium, Trifolium microcephalum, Trifolium variegatum, Triphysaria eriantha subsp. eriantha, and Vulpia bromoides.

This association was sampled fairly frequently in the study area within the northern Sierra Nevada Foothills Subregion (Hickman 1993). Stands usually occurred on metamorphic (including slate) substrates and infrequently on mixed alluvium substrates. They occupied a variety of upland slope positions from lower to upper slopes that were gentle to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in Sacramento County, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997). Much of the data supporting this association came from the Deer Creek Hills.

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	54.2	43-68	-
Herb	54.4	43-68	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	37.7	7-55	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (3), SW (2), NW (2), N (2), E (2)

Macrotopography: lower slope (1), middle slope (1), upper slope (3)

Microtopography: flat (5)

Parent Material: metamorphic (8), slate (2), mixed alluvium (1)

Soil Texture: clay or clay loam (3), silt or silt loam (2)

	Mean	Range
Elevation	468 ft.	398-522 ft.
Slope	40	1-7°
Large rock cover	0.1%	0-0.2%
Small rock cover	2.2%	0.2-8%
Bare ground cover	42.8%	9-85%
Litter cover	50.2%	11-87%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=11)

Rapid Assessments: none **Relevés:** SNFN0208, SNFN0230, SNFN0234, SNFN0274, SNFN0281, SNFN0450, SNFN0451, SNFN0463, SNFN0464, SNFN0467, SNFN0522

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based currently upon data analyzed for this project. It appears to be replaced further north in the study area by the *Layia fremontii* - *Lasthenia californica* - *Achyrachaena mollis* Association. Soil texture, moisture, and chemistry may play a role in distinguishing between these two associations.

STAND TABLE

Layia fremontii - Leontodon taraxacoides - Plagiobothrys greenei Herbaceous Association

Lifeform Code Species Name Con Avg Min Max D cD C

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	LETA	Leontodon taraxacoides	100	18.7	2	35			X	X
	TRERE2	Triphysaria eriantha subsp. eriantha	100	15.3	4	30			Χ	
	JUBU	Juncus bufonius	100	4.5	1	15			Χ	
	AICA	Aira caryophyllea	100	2.7	1	7			Χ	Χ
	TRVA	Trifolium variegatum	100	2.5	0.2	8			Χ	
	ERBO	Erodium botrys	100	2.5	1	7			Χ	Χ
	NATA3	Navarretia tagetina	100	2.0	0.2	8			Χ	
	BRMI2	Briza minor	100	0.7	0.2	1			Χ	Χ
	PLGR	Plagiobothrys greenei	100	0.5	0.2	3			X	
	CIQU3	Cicendia quadrangularis	100	0.3	0.2	1			Χ	
	JUCA5	Juncus capitatus	100	0.3	0.2	1			Χ	X
	LAFR2	Layia fremontii	91	8.7	0.2	20			X	
	LIBI	Linanthus bicolor	91	0.5	0.2	2			Χ	
	BRHO2	Bromus hordeaceus	82	2.7	0.2	6			Χ	Χ
	BRODI	Brodiaea	82	1.1	0.2	6			Χ	
	TRDU2	Trifolium dubium	82	8.0	0.2	4			Χ	Χ
	VUBR	Vulpia bromoides	82	0.3	0.2	1			Χ	Χ
	TRMI4	Trifolium microcephalum	82	0.2	0.2	1			Χ	
	HEFI	Hemizonia fitchii	82	0.2	0.2	0.2			Χ	
	HYGL2	Hypochaeris glabra	73	2.7	0.2	12				X
	CEGL2	Cerastium glomeratum	73	0.1	0.2	0.2				Χ
	PLFU	Plagiobothrys fulvus	73	0.1	0.2	0.2				
	TACA8	Taeniatherum caput-medusae	73	0.1	0.2	0.2				Χ
	TRDED	Trifolium depauperatum var. depauperatum	64	1.1	0.2	4				
	LOMU	Lolium multiflorum	64	1.1	0.2	10				Χ
	POZI	Pogogyne ziziphoroides	64	0.5	0.2	2				
	CEMI	Centunculus minimus	64	0.3	0.2	1				
	CAAT25	Castilleja attenuata	64	0.1	0.2	0.2				
	LACA7	Lasthenia californica	55	3.7	0.2	19				
	CHAN2	Chlorogalum angustifolium	55	0.2	0.2	1				

STAND TABLE continued *Layia fremontii - Leontodon taraxacoides - Plagiobothrys greenei* Herbaceous Association

•										
Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	DICAC5	Dichelostemma capitatum subsp. capitatum	55	0.1	0.2	0.2				
	LOMI	Lotus micranthus	45	0.1	0.2	0.2				
	MOFO	Montia fontana	45	0.1	0.2	0.2				
	TRDE AVBA	Trifolium depauperatum Avena barbata	36 36	1.8 0.1	2 0.2	9 0.2				X
	ERSE3	Eremocarpus setigerus	36	0.1	0.2	0.2				
	FIGA	Filago gallica	36	0.1	0.2	0.2				Χ
	LENI	Lepidium nitidum	36	0.1	0.2	0.2				
	SIGA	Silene gallica	36	0.1	0.2	0.2				Χ
	ANAR	Anagallis arvensis	27	0.1	0.2	1				Χ
	CALU9	Calochortus luteus	27	0.1	0.2	0.2				
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	27	0.1	0.2	0.2				
	HORDE	Hordeum	27	0.1	0.2	0.2				Χ
	HOMAG	Hordeum marinum subsp. gussonianum	27	0.1	0.2	0.2				Χ
	LYHY2	Lythrum hyssopifolia	27	0.1	0.2	0.2				Χ
	POAN	Poa annua	27	0.1	0.2	0.2				Χ
	TRHI4	Trifolium hirtum	27	0.1	0.2	0.2				Χ
Cryptoga	am									
	MOSS	Moss	100	12.3	0.2	40	Χ		Χ	

Plagiobothrys austiniae - Achyrachaena mollis Herbaceous Association Austin's Popcornflower - Blow Wives Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous, with the frequent presence of *Achyrachaena mollis* at <1-22% cover and *Plagiobothrys austiniae* at <1-4% cover. Characteristic taxa included *Cicendia quadrangularis*, *Hypochaeris glabra*, *Layia fremontii*, *Pogogyne zizyphoroides*, *Taeniatherum caput-medusae*, and *Triphysaria eriantha* subsp. *eriantha*

In the study area, this association was sampled fairly frequently within the Cascade Range Foothills, and was sampled once in the northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt) substrates. They usually occupied short-inundated vernal pool edges in valley bottoms or in wet portions of vernal swales in hummock/swale landscapes found in valleys and on mesas/plateaus – sometimes termed "Tuscan swales". Slopes varied from flat to moderate. This association may co-occur with the Layia fremontii - Lasthenia californica - Achyrachaena mollis Association, but tends to occur in situations where inundation from winter rains is somewhat longer.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Tehama Counties, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	34.9	20-76	-
Herb	34.9	20-76	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	22.1	1-40	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (6), Variable (2), SE (1), N (1), E (1)

Macrotopography: bottom (8), upper slope (1), mesa/plateau (2)

Microtopography: flat (8), concave (2), undulating (1)

Parent Material: volcanic (8), basalt (3)

Soil Texture: clay or clay loam (4), loam or sandy loam (3), silt or silt loam (2)

	Mean	Range
Elevation	402 ft.	266-883 ft.
Slope	1.70	0-120
Large rock cover	0.5%	0-3%
Small rock cover	15.1%	2.2-32%
Bare ground cover	43.5%	9-91%
Litter cover	38.3%	1-81%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=11)

Rapid Assessments: none **Relevés:** SNFN0080, SNFN0081, SNFN0082, SNFN0198, SNFN0200, SNFN0312, SNFN0314, SNFN0338, SNFN0427, SNFN0430, SNFN0434

Rank: G3S3?

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based currently upon the data collected for this project. It is likely restricted to the northern Sierra (including the southern Cascades) Foothills area. This association appears similar to the *Layia fremontii - Lasthenia californica - Achyrachaena mollis* Herbaceous Association; further sampling and analysis is needed to confirm if these two types should remain separate associations.

STAND TABLE Plagiobothrys austiniae - Achyrachaena mollis Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
Herb										
	POZI	Pogogyne ziziphoroides	100	2.3	0.2	12			Χ	
	TRERE2	Triphysaria eriantha subsp. eriantha	91	2.7	0.2	20			Χ	
	BRHO2	Bromus hordeaceus	91	2.1	0.2	8			Χ	Χ
	LAFR2	Layia fremontii	82	4.4	1	12			Χ	
	HYGL2	Hypochaeris glabra	82	1.9	0.2	7			Χ	Χ
	TACA8	Taeniatherum caput-medusae	82	1.2	0.2	4			Χ	Χ
	CIQU3	Cicendia quadrangularis	82	0.3	0.2	1			Χ	
	ACMO2	Achyrachaena mollis	73	3.1	0.2	22				
	BLNAN	Blennosperma nanum var. nanum	73	2.2	0.2	14				
	NATA3	Navarretia tagetina	73	1.4	0.2	7				
	AICA	Aira caryophyllea	73	0.7	0.2	5				Χ
	PLAU	Plagiobothrys austiniae	73	0.6	0.2	4				
	TRDE	Trifolium depauperatum	73	0.2	0.2	1				
	LOMU	Lolium multiflorum	64	3.4	0.2	14				Χ
	BRODI	Brodiaea	64	0.4	0.2	2				
	HEFI	Hemizonia fitchii	64	0.3	0.2	1				
	PLER3	Plantago erecta	64	0.3	0.2	2				
	LACA7	Lasthenia californica	55	7.1	0.2	45				
	LENI	Lepidium nitidum	55	0.7	0.2	3				
	VUMI	Vulpia microstachys	55	0.6	0.2	3				
	CHAN2	Chlorogalum angustifolium	55	0.1	0.2	0.2				
	LAFR4	Lasthenia fremontii	45	1.7	0.2	11				
	LIFLC2	Limnanthes floccosa subsp. californica	45	1.5	1	7				
	DEDA	Deschampsia danthonioides	45	1.3	0.2	8				
	JUBU	Juncus bufonius	45	0.5	0.2	3				
	LIBI	Linanthus bicolor	45	0.4	0.2	4				
	LUNA3	Lupinus nanus	45	0.2	0.2	1				

STAND TABLE continued Plagiobothrys austiniae - Achyrachaena mollis Herbaceous Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	DOCLP	Dodecatheon clevelandii subsp patulum	. 36	0.3	0.2	2				
	ERBO	Erodium botrys	36	0.1	0.2	1				Χ
	MIAC	Microseris acuminata	36	0.1	0.2	1				
	ALLIU	Allium	36	0.1	0.2	0.2				
	NALE	Navarretia leucocephala	27	1.9	0.2	11				
	MICA7	Minuartia californica	27	0.5	0.2	5				
	LASE	Lactuca serriola	27	0.2	0.2	1				Χ
	BRMI2	Briza minor	27	0.1	0.2	0.2				Χ
	MEPO3	Medicago polymorpha	27	0.1	0.2	0.2				Χ
Cryptoga	ım									
	MOSS	Moss	73	8.9	0.2	50				
	LIVER	Liverwort	27	0.4	0.2	3				

Lolium multiflorum Herbaceous Semi-Natural Stands Italian Ryegrass Herbaceous Semi-Natural Stands

As defined in the state, *Lolium multiflorum* is dominant in these herbaceous stands with a slightly higher than ambient moisture regime. Other non-native annual grasses (e.g., *Bromus hordeaceus*, *Hordeum* spp.) may be present but in relatively low cover. This type is commonly found in California, within lowlands that have periodic flooding, within disked fields and managed uplands, and within coastal serpentine slopes that have well-developed clay soils with nitrogen deposition. The semi-natural type may extend into Alaska and eastern North America, though it is native to Europe (Keeler-Wolf and Vaghti 2001). It also was described previously by Pickart (2006) and Evens and San (2004).

In the study area, stands often occurred with other non-native grasses and herbs such as *Bromus hordeaceus*, *Taeniatherum caput-medusae*, *Centaurium muehlenbergii* and *Trifolium hirtum*. Two samples (SNFN0156 and SNFN0599) showed additional variation and were not classified to the association level because of significant presence or high cover of other forbs or grasses such as *Trifolium dubium* and *Hordeum marinum* subsp. *gussoneanum*. This semi-natural type is defined by strong dominance of *Lolium multiflorum*. Current taxonomic research denotes both *L. multiflorum* and *L. perenne* as a single species that includes *L. perenne* ssp. *multiflorum* (USDA-NRCS 2007), though other references suggest maintaining two separate species (UCB 2007). Most stands inventoried in this region appear to be dominated by annual rather than perennial plants.

Lolium multiflorum - Centaurium muehlenbergii Herbaceous Association Italian Ryegrass - Muhlenberg's Centaury Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and characterized by Bromus hordeaceus (<1-17% cover), Centaurium muehlenbergii (<1-25% cover), and Lolium multiflorum (3-45% cover). Other taxa that were often present included Briza minor, Brodiaea elegans subsp. elegans, Eremocarpus setigerus, Taeniatherum caput-medusae, and Trifolium hirtum.

In the study area, this association was sampled fairly frequently in the northern Sierra Nevada Foothills and infrequently in the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt) substrates, but were also found occasionally on gabbro or metamorphic substrates. They occupied a variety of slope positions, from bottoms to middle slopes that were gentle to somewhat steep. Both *Centaurium* and *Lolium* are often associated with somewhat mesic settings within a larger upland grassland context.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, Mariposa, Tehama, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

LOCAL VEGETATION DESCRIPTION			
	Mean %	Range %	Height (m)
Total vegetation cover	55.6	23-85	-
Herb	55.6	23-85	variable
Shrub	0	0-0.2	1-2
Low Tree/Tall Shrub	0	-	-
Hardwood	0.1	0-1	5-10
Conifer	0	-	-
Relative non-native to native cover	82	33-98	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (3), Variable (2), SE (2), NW (2), W (1), S (1), NE (1), E (1)

Macrotopography: bottom (3), lower slope (4), lower to middle slope (1), middle slope (5)

Microtopography: flat (6), undulating (6), convex (1)

Parent Material: volcanic (8), gabbro (2), metamorphic (2), basalt (1)

Soil Texture: clay or clay loam (6), silt or silt loam (2), loam or sandy loam (1), sand (1)

	Mean	Range
Elevation	630 ft.	316-1235 ft.
Slope	4.80	1-17º
Large rock cover	2.3%	0-15%
Small rock cover	5.8%	0-17%
Bare ground cover	23.2%	2-50%
Litter cover	64.7%	28-94%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=13)

Rapid Assessments: SNNR0207, SNNR0250, SNNR0371, SNNR0469, SNNR0476, SNNR0594, SNNR0930, SNNR0944, SNNR0949, SNNR0951, SNNR0952 Relevés: SNFN0159,

SNFN0358

Rank: G3S3?

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on data collected for this project. It is likely to be found in the northern Sierra Foothills and Great Valley, and potentially west to the Central and North Coasts of California.

STAND TABLE

Lolium multiflorum - Centaurium muehlenbergii Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Herb										
	BRHO2	Bromus hordeaceus	100	3.9	0.2	17			Χ	Χ
	CEMU2	Centaurium muehlenbergii	92	3.5	0.2	25			X	
	LOMU	Lolium multiflorum	85	13.8	3	45			X	X
	TACA8	Taeniatherum caput-medusae	77	15.0	0.2	75				Χ
	TRHI4	Trifolium hirtum	69	1.9	0.2	7				Χ
	BRELE	Brodiaea elegans subsp. elega	<i>ns</i> 69	0.4	0.2	3				
	BRMI2	Briza minor	69	0.4	0.2	3				Χ
	ERSE3	Eremocarpus setigerus	62	0.3	0.2	1				
	AVBA	Avena barbata	46	1.3	0.2	8				Χ
	NAPU2	Navarretia pubescens	46	0.2	0.2	2				
	CESO3	Centaurea solstitialis	38	1.6	0.2	10				Χ
	AETR	Aegilops triuncialis	38	1.6	0.2	12				Χ
	LETA	Leontodon taraxacoides	38	0.6	0.2	6				Χ
	HOMA2	Hordeum marinum	38	0.5	0.2	4				Χ
	LASE	Lactuca serriola	38	0.4	0.2	4				Χ
	LOPU3	Lotus purshianus	31	2.4	1	20				
	AVFA	Avena fatua	31	1.5	1	10				Χ
	NAPU4	Nassella pulchra	31	0.6	0.2	7				
	BRMA3	Bromus madritensis	31	0.6	0.2	4				Χ
	HEFI	Hemizonia fitchii	31	0.6	0.2	6				
	GAVE3	Gastridium ventricosum	31	0.3	0.2	2				Χ
	AICA	Aira caryophyllea	31	0.2	0.2	2				Χ
	CLPU2	Clarkia purpurea	31	0.2	0.2	2				
	HYRA3	Hypochaeris radicata	23	0.6	0.2	7				Χ
	TOAR	Torilis arvensis	23	0.5	1	4				Χ
	GAPA5	Galium parisiense	23	0.0	0.2	0.2				Χ

Lolium multiflorum (Zigadenus fremontii) Herbaceous Alliance (Provisional) Italian Ryegrass (Fremont's Deathcamas) Herbaceous Alliance (Provisional)

Described for the first time in the state, this alliance has *Zigadenus fremontii* in relatively high cover, usually with *Lolium multiflorum*. Stands have open to intermittent cover. Other species often present are *Achyrachaena mollis*, *Lasthenia californica*, *Taeniatherum caput-medusae*, *Fritillaria pluriflora*, *Brodiaea* spp., and others. Stands form on vernally wet or saturated clay soils.

In the study area, this alliance is related to the *Layia fremontii* Alliance, but with *Layia fremontii* infrequently present (<25% of samples) and usually below 1%. It is also related to the *Lolium multiflorum* Semi-Natural Stands type but has more cover and a characteristic presence of native species. One association has been described in the study area for the Italian Ryegrass (Fremont's Deathcamas) Alliance.

Zigadenus fremontii Herbaceous Association (Provisional) Fremont's Deathcamas Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was open to intermittent and characterized by Lolium multiflorum (<1-16% cover), Taeniatherum caput-medusae (<1-25% cover), and Zigadenus fremontii (2-25% cover). Other taxa that were often present included Achyrachaena mollis, Centaurea solstitialis, Erodium botrys, Fritillaria pluriflora, Geranium dissectum, Hypochaeris glabra, Lolium multiflorum, Medicago polymorpha, Taeniatherum caput-medusae, Triphysaria eriantha subsp. eriantha, and Zigadenus fremontii.

This association was sampled infrequently in the study area within the Cascade Range Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred in clayey or silty alluvium soils, especially on volcanic (including basalt) substrates. They occupied vernally moist sites on bottomlands that sometimes trended into lower slopes or toeslopes and rarely, middle slopes. Slopes varied from flat to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Shasta, and Tehama Counties, within the Northern Eastside Terraces (262Ab) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	37.2	22-55	-
Herb	36.5	22-55	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	54.9	23-79	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (4), S (1), N (1)

Macrotopography: bottom (3), bottom to lower slope (1), middle slope (1), toeslope (1)

Microtopography: flat (4), undulating (1), convex (1)

Parent Material: volcanic (3), basalt (2), clayey alluvium (1)

Soil Texture: clay or clay loam (4), silt or silt loam (1)

	Mean	Range
Elevation	451 ft.	279-1071 ft.
Slope	1.3°	0-6°
Large rock cover	0.1%	0-0.4%
Small rock cover	2.2%	0-5%
Bare ground cover	43.4%	25-90%
Litter cover	50.2%	2-68%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=6)

Rapid Assessments: SNNR0882 Relevés: SNFN0032, SNFN0168, SNFN0295, SNFN0398,

SNFN0400

Rank: G3S3?

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon data collected for this project. It appears to be restricted to vernally saturated, clayey, and silty soils in the northern Foothills. However, the broad distribution of the two characteristic taxa in this association suggests it should be found in other parts of cismontane California.

STAND TABLE Zigadenus fremontii Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	ZIFR	Zigadenus fremontii	100	8.0	2	25			X	
	TACA8	Taeniatherum caput-medusae	100	7.9	0.2	25			Χ	Χ
	LOMU	Lolium multiflorum	83	5.0	0.2	16			Χ	Χ
	HYGL2	Hypochaeris glabra	67	1.4	0.2	8				Χ
	GEDI	Geranium dissectum	67	1.3	0.2	7				Χ
	ERBO	Erodium botrys	67	0.3	0.2	1				Χ
	TRERE2	Triphysaria eriantha subsp. eriantha	67	0.1	0.2	0.2				
	CESO3	Centaurea solstitialis	50	2.6	0.2	15				X
	ACMO2	Achyrachaena mollis	50	0.9	0.2	3				
	FRPL	Fritillaria pluriflora	50	8.0	1	3				
	MEPO3	Medicago polymorpha	50	0.7	0.2	4				X
	AVBA	Avena barbata	33	1.2	2	5				Χ
	BRODI	Brodiaea	33	0.9	0.2	5				
	TRHI4	Trifolium hirtum	33	0.7	1	3				Χ
	LUBI	Lupinus bicolor	33	0.5	0.2	3				
	BRHO2	Bromus hordeaceus	33	0.2	0.2	1				Χ
	CAAT25	Castilleja attenuata	33	0.2	0.2	1				
	CEMU2	Centaurium muehlenbergii	33	0.2	0.2	1				
	TRIFO	Trifolium	33	0.2	0.2	1				
	CEGL2	Cerastium glomeratum	33	0.1	0.2	0.2				Χ
	ERSE3	Eremocarpus setigerus	33	0.1	0.2	0.2				
	GAPA5	Galium parisiense	33	0.1	0.2	0.2				Χ
	HEFI	Hemizonia fitchii	33	0.1	0.2	0.2				
	LACA7	Lasthenia californica	33	0.1	0.2	0.2				
	LENI	Lepidium nitidum	33	0.1	0.2	0.2				
	PLER3	Plantago erecta	33	0.1	0.2	0.2				
	SEVU	Senecio vulgaris	33	0.1	0.2	0.2				Χ
	TRDU2	Trifolium dubium	33	0.1	0.2	0.2				Χ
Cryptoga										
	MOSS	Moss	50	9.3	1	40				

Mimulus guttatus Herbaceous Alliance (Provisional) Seep Monkeyflower Herbaceous Alliance (Provisional)

In this alliance, *Mimulus guttatus* is dominant in the herbaceous layer with other wetland and upland herbs such as *Carex* sp., *Equisetum arvense*, *Juncus* sp., *Lactuca serriola*, *Lotus purshianus*, *Melilotus indicus*, *Poa tenerrima*, and *Sonchus asper* subsp. *asper*. Cover varies from sparse to continuous, depending on site environmental and disturbance conditions. Stands occur in seeps and springs, along streambanks, and in other wet places. Regular disturbance is likely to maintain stands with this rhizomatous forb. Willows such as *Salix laevigata* or *S. lucida* may be trace in cover. The species, *M. guttatus*, commonly occurs throughout California and the western states below 3,100 m. *M. guttatus* is a very widespread and genetically and phenotypic ally plastic annual. In California, the *M. guttatus* alliance is defined from this project and a study from Pinnacles National Monument (NatureServe 2007b), and it also is defined in Colorado and Utah (NatureServe 2007a, 2007b). Many other stands are likely to be identified throughout the state. It seems to be particularly diagnostic of vernally wet skeletal, oligotrophic soils, across a wide variety of substrates from volcanic to ultramafic.

In the Foothills, one provisional association was defined below. One survey (SNFN0341) showed additional variation with high cover of *Mimulus guttatus*, moss, and *Trifolium depauperatum* growing along a rocky stream corridor on volcanic substrate in Tehama County.

Mimulus guttatus - Vulpia microstachys Serpentine Herbaceous Association (Provisional) Seep Monkeyflower - Small Fescue Serpentine Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and dominated by *Mimulus guttatus* at 1-67% cover. Other taxa that were characteristic included *Lotus purshianus*, *Pentagramma triangularis*, and *Vulpia microstachys*; additional herbs that were often present included *Agoseris heterophylla*, *Agrostis microphylla*, *Poa tenerrima*, *Pseudobahia heermannii*, *Thysanocarpus curvipes*, *Trifolium microcephalum*, and *Triteleia hyacinthina*. Shrubs such as *Ceanothus cuneatus* sometimes occurred as emergents.

This association was sampled infrequently in the study area within the central and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands consistently occurred on serpentine substrates, along rocky streambeds with seasonal flooding. They occupied riparian areas in draws, stream bottoms, or terraces with slopes that were flat to gentle.

DISTRIBUTION IN STUDY AREA

This association was sampled in El Dorado and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	55.5	13-85	-
Herb	55	10-85	variable
Shrub	0.3	0-2	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-

Conifer	0	-	-
Relative non-native to native cover	4.9	0-22	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (1), NW (1), Flat (1), E (1), SW (1), SE (1)

Macrotopography: draw (2), lower slope (2), bottom (1), terrace (1)

Microtopography: concave (4), flat (1), undulating (1)

Parent Material: serpentine (6)

Soil Texture: clay or clay loam (2), sand (2), loam or sandy loam (1)

	Mean	Range
Elevation	997 ft.	850-1079 ft.
Slope	1.2°	0-2°
Large rock cover	2.8%	1-5%
Small rock cover	38%	6-73%
Bare ground cover	19.3%	10-30%
Litter cover	36.8%	10-57%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=6)

Rapid Assessments: SNNR0219, SNNR0221 Relevés: SNFN0084, SNFN0090, SNFN0131,

SNFN0178

Rank: G3S3?

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on the data collected for this project. The relationship of this association to associations of the *Vulpia microstachys-Lasthenia californica-Plantago erecta* Herbaceous Alliance needs further clarification, but basic hydrology and species compositions appear different between this *Mimulus guttatus - Vulpia microstachys* Association and associations of that alliance.

STAND TABLE

Mimulus guttatus - Vulpia microstachys Serpentine Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Shrub										
	CECU	Ceanothus cuneatus	33	0.1	0.20	0.40				
Herb										
	MIGU	Mimulus guttatus		24.0		67		X	X	
	VUMI	Vulpia microstachys	100		0.20				X	
	LOPU3	Lotus purshianus	83		0.20				Χ	
	PETR7	Pentagramma triangularis	83		0.20				Χ	
	AGHE2	Agoseris heterophylla	67	1.4	0.20	8				
	TRHY3	Triteleia hyacinthina	67	0.1	0.20	0.20				
	PSHE	Pseudobahia heermannii	50	3.7	0.20	15				
	POTE5	Poa tenerrima	50	2.9	0.20	12				
	TRMI4	Trifolium microcephalum	50	2.0	1	8				
	AGMI3	Agrostis microphylla	50	0.4	0.20	2				
	THCU	Thysanocarpus curvipes	50	0.1	0.20	0.20				
	ESCA2	Eschscholzia californica	33	7.8	12	35				
	BRHO2	Bromus hordeaceus	33	2.2	3	10				Χ
	ODHA	Odontostomum hartwegii	33	1.7	0.20	10				
	TRRU	Trichostema rubisepalum	33	1.2	3	4				
	CEVE3	Centaurium venustum	33	1.0	2	4				
	CASE2	Carex serratodens	33	0.5	0.20	3				
	HOBR2	Hordeum brachyantherum	33	0.4	0.20	2				
	DAPU3	Daucus pusillus	33	0.3	1	1				
	SICAC3	Sidalcea calycosa subsp. calycosa	33	0.2	0.20	1				
	TRWI3	Trifolium willdenovii	33	0.2	0.20	1				
	AVBA	Avena barbata	33	0.1	0.20	0.20				Χ
	CACI2	Calandrinia ciliata	33	0.1	0.20	0.20				
	GAAP2	Galium aparine	33	0.1	0.20	0.20				
	HERA3	Heterocodon rariflorum	33	0.1	0.20	0.20				
	LEVI8	Lessingia virgata	33	0.1	0.20	0.20				
	PLER3	Plantago erecta	33	0.1		0.20				
	HERBAC	unknown	33	0.1		0.20				
Cryptoga										
<i>.</i>	MOSS	Moss	50	1.8	1	5				

Muhlenbergia rigens Herbaceous Alliance Deergrass Herbaceous Alliance

As described in the state, stands of *Muhlenbergia rigens* are characterized by an open to continuous herbaceous layer, where *Muhlenbergia rigens* dominates or co-dominates. The shrub layer is open. Stands of this alliance may have *Muhlenbergia rigens* as the dominant grass, or may include other graminoids such as *Elymus glaucus* and *Juncus* spp. The shrub layer may include *Eriogonum fasciculatum* or *Eriogonum wrightii* (Klein and Evens 2006).

In the Foothills, stands usually form along edges of streams or swales surrounded by grasslands or oak woodlands, often with *Bromus hordeaceus* and occasionally with *Trifolium hirtum* and many other non-native herbs and grasses (occasionally shrubs). One association of the Deergrass Alliance, described below, was classified in the study area. Stands of this alliance have been inventoried intermittently throughout much of the state, including cismontane and warm desert portions of central and southern California (Klein and Evens 2006, NatureServe 2007b), and the lower Sierra Nevada Foothills. This report provides sufficient samples for an association level description.

Muhlenbergia rigens Herbaceous Association Deergrass Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and dominated by *Muhlenbergia rigens* at 14-65% cover. Other taxa that were often present included *Bromus hordeaceus*, *Petrorhagia dubia*, and *Trifolium hirtum*. Shrubs such as *Cytisus scoparius*, *Rubus discolor*, and *Toxicodendron diversilobum* sometimes occurred as emergents.

In the study area, this association was sampled fairly infrequently in the northern Sierra Nevada Foothills and infrequently in the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands sometimes occurred on mixed alluvium, metamorphic (including serpentine), or volcanic (including basalt) substrates. They usually occupied wetland bottoms, lower slopes, or benches, along riparian corridors or edges of wetlands. However, they were also found on upland middle and upper slopes, that were flat to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, Mariposa, Nevada, Placer, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	57.6	48-80	-
Herb	55.5	35-80	variable
Shrub	1.5	0-5	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	2.3	0-18	10-20

Conifer	0.4	0-3	20-35
Relative non-native to native cover	29.1	5-84	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (2), Flat (2), W (1), SW (1), S (1), N (1)

Macrotopography: bottom (2), bottom to lower slope (1), lower slope (2), middle slope (1), upper

slope (1), bench (1)

Microtopography: flat (4), undulating (3), concave (1)

Parent Material: mixed alluvium (3), metamorphic (2), basalt (1), serpentine (1), volcanic (1)

Soil Texture: sand (4), loam or sandy loam (2), clay or clay loam (1), silt or silt loam (1)

	Mean	Range
Elevation	791 ft.	296-1732 ft.
Slope	5.1°	0-23°
Large rock cover	12.2%	0.2-50%
Small rock cover	26%	1-55%
Bare ground cover	27.6%	12-62%
Litter cover	29.4%	3-72%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=8)

Rapid Assessments: SNNR0286, SNNR0628, SNNR0725, SNNR0877, SNNR1105 Relevés:

SNFN0292, SNFN0294, SNFN0317

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills, based largely upon the data collected for this project and another from central California in Pinnacles National Monument (NatureServe 2007b). At this point, it is unclear whether more than one association of this alliance occurs in the state.

STAND TABLE

Muhlenbergia rigens Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Shrub										
	RUDI2	Rubus discolor	25	0.4	1	2				Χ
	CYSC4	Cytisus scoparius	25	0.2	0.2	1				Χ
	TODI	Toxicodendron diversilobum	25	0.1	0.2	0.2				
Herb										
	MURI2	Muhlenbergia rigens		34.5		65	X		X	
	BRHO2	Bromus hordeaceus	75	3.7	0.2	15				Χ
	TRHI4	Trifolium hirtum	50	3.6	0.2	24				Χ
	PEDU2	Petrorhagia dubia	50	0.2	0.2	1				Χ
	LOMU	Lolium multiflorum	38	2.2	0.2	16				Χ
	HYGL2	Hypochaeris glabra	38	1.4	1	6				Χ
	BRMA3	Bromus madritensis	38	0.3	0.2	2				Χ
	HYPE	Hypericum perforatum	38	0.2	0.2	1				Χ
	LOPU3	Lotus purshianus	38	0.2	0.2	1				
	AICA	Aira caryophyllea	38	0.1	0.2	0.2				Χ
	CEMU2	Centaurium muehlenbergii	38	0.1	0.2	0.2				
	FIGA	Filago gallica	38	0.1	0.2	0.2				Χ
	GAPA5	Galium parisiense	38	0.1	0.2	0.2				Χ
	BRDI3	Bromus diandrus	25	0.9	0.2	7				Χ
	TRDU2	Trifolium dubium	25	0.7	0.2	5				Χ
	VELI	Verbena litoralis	25	0.5	2	2				Χ
	GRCA	Grindelia camporum	25	0.3	0.2	2				
	TOAR	Torilis arvensis	25	0.3	0.2	2				Χ
	VISA	Vicia sativa	25	0.3	0.2	2				Χ
	GRHID2	Grindelia hirsutula var. davyi	25	0.2	0.2	1				
	MEAL2	Melilotus albus	25	0.2	0.2	1				Χ
	PLER3	Plantago erecta	25	0.2	0.2	1				
	BRCA4	Brodiaea californica	25	0.1	0.2	0.2				
	CYEC	Cynosurus echinatus	25	0.1	0.2	0.2				Χ
	DAPU3	Daucus pusillus	25	0.1	0.2	0.2				
	ERSE3	Eremocarpus setigerus	25	0.1	0.2	0.2				
	ERCI6	Erodium cicutarium	25	0.1	0.2	0.2				Χ
	LOWR2	Lotus wrangelianus	25	0.1	0.2	0.2				
	MIGU	Mimulus guttatus	25	0.1	0.2	0.2				
	VUMI	Vulpia microstachys	25	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	25	8.0	3	3				

Nassella pulchra Herbaceous Alliance Purple Needlegrass Herbaceous Alliance

As described in the state, stands dominated or characterized by *Nassella pulchra* may also contain additional native and non-native grasses and forbs. *N. pulchra* may range as low as 5% cover, but is always well-distributed throughout a stand. This alliance consistently occurs in herbaceous stands that have deep soils with high clay content. Some locations are type-converting to annual non-native grasslands with minor components of native bunchgrass and forbs, whereby *N. pulchra* and native forbs are sub-dominant to non-native grass species. However, *N. pulchra* is still the indicator for such areas. Also described on Ring Mountain in Marin County, Fiedler and Leidy (1987) have described this community as serpentine bunchgrass, occurring on upper slopes and ridge tops that are flat to moderately steep (0-25%). Characteristic species include *Lolium multiflorum*, *Nassella pulchra*, and *Chlorogalum pomeridianum*. Other associations have been defined from northern to southern California (cf. Sawyer and Keeler-Wolf 1995), with the alliance extending into Baja California

In the study area, stands of *Nassella pulchra* often contain few other native species and many non-native species, such as *Leontodon taraxacoides*, *Taeniatherum caput-medusae*, and *Trifolium hirtum*. Two associations of the Purple Needlegrass Alliance were described below. One survey (SNFN0066) showed additional variation where *Trifolium hirtum* and *Bromus hordeaceus* had high cover as co-dominants with *N. pulchra*. This survey was classified to the alliance level only.

Nassella pulchra Herbaceous Association Purple Needlegrass Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and dominated by Nassella pulchra at 20-75% cover. Other taxa that were often present included non-natives Bromus hordeaceus, Taeniatherum caput-medusae, and Torilis arvensis.

This association was sampled somewhat frequently in the study area within the Cascade Range Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt) substrates, but were sometimes found on metamorphic (including greenstone) substrates. They usually occupied lower slopes, sometimes bottoms, and infrequently occurred on upper slopes or edges of basins/wetlands. Slopes varied from flat to gentle.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	61.3	35-80	-
Herb	61.5	35-80	variable

Shrub	0	0-0.2	<1
Low Tree/Tall Shrub	0	-	-
Hardwood	0.2	0-2	5-35
Conifer	0	-	-
Relative non-native to native cover	36.2	7-66	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (3), S (3), Flat (2), Variable (1), SE (1), NW (1)

Macrotopography: bottom (2), bottom to lower slope (1), lower slope (6), upper slope (1), edge of

basin/wetland (1)

Microtopography: flat (6), concave (3), undulating (2)

Parent Material: volcanic (5), metamorphic (4), basalt (1), greenstone (1) Soil Texture: clay or clay loam (5), silt or silt loam (4), loam or sandy loam (2)

	Mean	Range
Elevation	1002 ft.	360-1514 ft.
Slope	2.30	0-5°
Large rock cover	0.1%	0-1%
Small rock cover	1.5%	0-5%
Bare ground cover	13%	0.2-40%
Litter cover	79.4%	50-96%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=11)

Rapid Assessments: SNNR0119, SNNR0209, SNNR0509, SNNR0682, SNNR0691, SNNR0693, SNNR0695 **Relevés:** SNFN0160, SNFN0165, SNFN0290, SNFN0359

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based primarily upon the data collected for this project. Similar stands have been observed and sampled in the adjacent Great Valley and in the North Coast Ranges, including Marin Municipal Water District (Evens and Kentner 2006). Other associations of this alliance described from the Coast Ranges and southern California appear to be sufficiently distinct.

STAND TABLE
Nassella pulchra Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	NAPU4	Nassella pulchra	100	36.4	20	75	X		X	
	TACA8	Taeniatherum caput-medusae	100	9.8	0.2	26			Χ	Χ
	TOAR	Torilis arvensis	64	0.4	0.2	2				Χ
	BRHO2	Bromus hordeaceus	55	1.5	0.2	10				Χ
	CEMU2	Centaurium muehlenbergii	45	0.3	0.2	3				
	GAPA5	Galium parisiense	45	0.2	0.2	1				Χ
	BRMI2	Briza minor	45	0.1	0.2	0.2				Χ
	TRHI4	Trifolium hirtum	36	2.3	1	16				Χ
	CYEC	Cynosurus echinatus	36	1.2	0.2	12				Χ
	HYPE	Hypericum perforatum	36	0.9	0.2	8				Χ
	LOMU	Lolium multiflorum	36	0.8	0.2	6				Χ
	AVBA	Avena barbata	36	0.2	0.2	2				Χ
	ANAR	Anagallis arvensis	36	0.1	0.2	0.2				Χ
	VEBL	Verbascum blattaria	36	0.1	0.2	0.2				Χ
	CESO3	Centaurea solstitialis	27	0.9	1	5				Χ
	BRMA3	Bromus madritensis	27	0.7	1	6				Χ
	VUMY	Vulpia myuros	27	0.7	0.2	6				Χ
	SOAS	Sonchus asper	27	0.3	0.2	3				Χ
	BRELE	Brodiaea elegans subsp. elega	ns27	0.1	0.2	1				
	CLPU2	Clarkia purpurea	27	0.1	0.2	0.2				
Cryptoga	ım									
•	MOSS	Moss	36	3.8	0.2	40				

Nassella pulchra - Leontodon taraxacoides Herbaceous Association Purple Needlegrass - Lesser Hawkbit Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous, with the consistent presence of *Leontodon taraxacoides* at 5-27% cover and *Nassella pulchra* at 1-15% cover. Additional taxa that were characteristically present included *Aira caryophyllea*, *Briza minor*, *Bromus hordeaceus*, *Erodium botrys*, *Hypochaeris glabra*, *Juncus bufonius*, *Trifolium dubium*, *Trifolium hirtum*, *Trifolium microcephalum*, *Triphysaria eriantha* subsp. *eriantha*, and *Vulpia bromoides*.

This association was sampled somewhat frequently in the study area within the northern Sierra Nevada Foothills and Sacramento Valley Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates, but were occasionally found on sedimentary substrates. They occupied middle slopes that were gentle to very steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Calaveras and Sacramento Counties, within the Camanche Terraces (262Ao) and Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	73.1	40-90	-
Herb	73.1	40-90	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	0-0.2	5-10
Conifer	0	-	-
Relative non-native to native cover	76.4	63-86	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SE (3), NE (3), SW (2), NW (2), W (1), S (1)

Macrotopography: middle slope (1)

Microtopography: flat (1)

Parent Material: metamorphic (10), sedimentary (2)

Soil Texture: loam or sandy loam (1)

	Mean	Range
Elevation	666 ft.	666-666 ft.
Slope	12.9°	2-50°
Large rock cover	0%	-%
Small rock cover	7%	7-7%
Bare ground cover	16%	16-16%
Litter cover	70%	70-70%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=12)

Rapid Assessments: none Relevés: SNFN0248, SNFN0470, SNFN0476, SNFN0481, SNFN0512, SNFN0515, SNFN0526, SNFN0528, SNFN0558, SNFN0561, SNFN0564, SNFN0565

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills, based primarily upon data collected in the central Sierra Nevada Foothills. Data from the Deer Creek Hills is particularly representative of this association. Further data collection and analysis statewide is needed to provide a broader perspective on this type, as it could be viewed as a phase of a more widespread vegetation type.

STAND TABLE Nassella pulchra - Leontodon taraxacoides Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	LETA	Leontodon taraxacoides	100	16.6	5	27			X	X
	BRHO2	Bromus hordeaceus	100	14.3	2	25			Χ	Χ
	NAPU4	Nassella pulchra	100	6.0	1	15			X	
	TRDU2	Trifolium dubium	100	5.6	0.2	18			Χ	Χ
	ERBO	Erodium botrys	100	2.3	0.2	10			Χ	Χ
	TRHI4	Trifolium hirtum	100	2.1	0.2	5			Χ	Χ
	AICA	Aira caryophyllea	100	1.5	0.2	5			Χ	Χ
	BRMI2	Briza minor	100	0.4	0.2	2			Χ	Χ
	VUBR	Vulpia bromoides	92	5.9	1	25			Χ	Χ
	JUBU	Juncus bufonius	92	1.0	0.2	5			Χ	
	TRERE2	Triphysaria eriantha subsp. eriantha	83	1.7	0.2	8			X	
	HYGL2	Hypochaeris glabra	83	1.3	0.2	10			Χ	Χ
	TRMI4	Trifolium microcephalum	83	0.4	0.2	3			Χ	
	LOMU	Lolium multiflorum	75	1.4	0.2	5				Χ
	CAAT25	Castilleja attenuata	75	0.2	0.2	0.2				
	LIBI	Linanthus bicolor	67	0.6	0.2	6				
	SOSE2	Soliva sessilis	67	0.3	0.2	1				Χ
	TACA8	Taeniatherum caput-medusae	58	3.3	0.2	15				Χ
	HOVIV	Holocarpha virgata subsp. virga	ata58	1.6	0.2	8				
	TRVA	Trifolium variegatum	58	0.4	0.2	2				
	AVBA	Avena barbata	58	0.3	0.2	1				Χ
	CYEC	Cynosurus echinatus	50	0.5	0.2	5				Χ
	MICA	Micropus californicus	50	0.4	0.2	2				
	ANAR	Anagallis arvensis	50	0.3	0.2	3				Χ
	TRDED	Trifolium depauperatum var. depauperatum	50	0.3	0.2	2				
	GEDI	Geranium dissectum	50	0.1	0.2	0.2				Χ
	SIGA	Silene gallica	50	0.1	0.2	0.2				Χ

STAND TABLE continued

Nassella pulchra - Leontodon taraxacoides Herbaceous Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
пегы	AETR	Aegilops triuncialis	42	2.9	0.2	10				Х
	LOPU3	Lotus purshianus	42	2.0	0.2					
	BRELE	Brodiaea elegans subsp. elega		0.2	0.2					
	HEFI	Hemizonia fitchii	42	0.2	0.2					
	BRDI2	Brachypodium distachyon	33	2.2	1	16				Χ
	CALU9	Calochortus luteus	33	1.1	0.2					
	CEMU2	Centaurium muehlenbergii	33	0.1	0.2	1				
	GAPA5	Galium parisiense	33	0.1	0.2	1				Χ
	BRODI	Brodiaea	33	0.1	0.2	0.2				
	CEGL2	Cerastium glomeratum	33	0.1	0.2	0.2				Χ
	FIGA	Filago gallica	33	0.1	0.2	0.2				Χ
	JUCA5	Juncus capitatus	33	0.1	0.2	0.2				Χ
	NAINI	<i>Navarretia intertexta</i> subsp. <i>intertexta</i>	33	0.1	0.2	0.2				
	NATA3	Navarretia tagetina	33	0.1	0.2	0.2				
	PLFU	Plagiobothrys fulvus	33	0.1	0.2	0.2				
	SABI3	Sanicula bipinnatifida	33	0.1	0.2	0.2				
	HOMAG	Hordeum marinum subsp. gussonianum	25	0.2	0.2	1				Χ
	HYPE	Hypericum perforatum	25	0.1	0.2	1				Χ
	CIQU3	Cicendia quadrangularis	25	0.1	0.2	0.2				
	GAVE3	Gastridium ventricosum	25	0.1	0.2	0.2				Χ
	LOMI	Lotus micranthus	25	0.1	0.2	0.2				
	TRGL4	Trifolium glomeratum	25	0.1	0.2	0.2				Χ
	TRHY3	Triteleia hyacinthina	25	0.1	0.2	0.2				
Cryptoga	ım									
	MOSS	Moss	58	1.1	0.2	7				

Phalaris aquatica Herbaceous Semi-Natural Stands Harding Grass Herbaceous Semi-Natural Stands

As described in the state, *Phalaris aquatica* is dominant in an intermittent to continuous herbaceous layer. This semi-natural type is found in low elevation, inland sites in California. Significant variation in species composition and environmental settings (both upland and moist) occur across the stands. Most stands likely originate from intentional seeding for livestock forage. This type has been described in upland grasslands with *Avena barbata* in Santa Clara County (Evens and San 2006), with *Bromus hordeaceus* and *Centaurea solstitialis* in grasslands of the southern portion of the inner North Coast Ranges (Jimerson et al. 2000), and as a pure association in Suisun Marsh in small stands along levees (Keeler-Wolf and Vaghti 2000). It has also been inventoried in Southern California, in the Santa Monica Mountains (Keeler-Wolf and Evens (2006) and on Santa Cruz Island (AIS 2007). This type is native to Mediterranean Europe.

In the study area, stands are typically found in mesic settings, with underground water sources close to the soil surface and with a variety of non-native species. One association was described for the Harding Grass Semi-Natural Stands type, which included *Bromus hordeaceus* and *Centaurea solstitialis*.

Phalaris aquatica - Bromus hordeaceus - Centaurea solstitialis Herbaceous Association Harding Grass - Soft Chess - Yellow Star Thistle Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous, where *Phalaris aquatica* was dominant at 25-45% cover and *Centaurea solstitialis* was characteristic at <1-7% cover. Other taxa that were often present included *Bromus hordeaceus*, *Lactuca serriola*, *Taeniatherum caput-medusae*, *Trifolium hirtum*, and *Verbascum thapsus*. *Ailanthus altissima*, *Quercus lobata*, and *Salix laevigata* sometimes occurred as a scattered emergent trees, and *Cephalanthus occidentalis* var. *californicus* sometimes occurred as an emergent shrub.

This association was sampled infrequently in the study area within the central and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on metamorphic, mixed alluvium, or sedimentary substrates. The three surveys occupied a bottom, a lower slope, and a ridgetop, in upland or wetland habitats, on slopes that were flat to gentle.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Calaveras, and Mariposa Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	68.7	60-76	-
Herb	68.7	60-76	>0.3
Shrub	0.1	0-0.2	2.1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.1	0-0.2	10-20
Conifer	0	-	-
Relative non-native to native cover	87.7	68-99	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (1), Variable (1), Flat (1)

Macrotopography: bottom (1), lower slope (1), ridgetop (1)

Microtopography: convex (1), flat (1), undulating (1)

Parent Material: metamorphic (1), mixed alluvium (1), sedimentary (1)

Soil Texture: clay or clay loam (2), sand (1)

	Mean	Range
Elevation	1644 ft.	1168-1960 ft.
Slope	2°	0-4°
Large rock cover	13.7%	1-38%
Small rock cover	16.3%	2-44%
Bare ground cover	14.3%	5-33%
Litter cover	52.3%	10-87%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: SNNR0048, SNNR0758, SNNR0992 Relevés: none

Rank: Unranked, non-native type

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills and the inner North Coast Ranges (Jimerson et al. 2000) in upland sites that are usually disturbed and grazed. It is likely that this association occurs elsewhere in warm and less coastal portions of the state.

STAND TABLE Phalaris aquatica - Bromus hordeaceus - Centaurea solstitialis Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Tree										
	AIAL	Ailanthus altissima	33	0.1	0.2	0.2				Χ
	QULO-T	Quercus lobata	33	0.1	0.2	0.2				
	SALA3-T	Salix laevigata	33	0.1	0.2	0.2				
Shrub										
	HOMA4	Hoita macrostachya	33	0.3	1	1				
	CEOCC2	Cephalanthus occidentalis var. californicus	33	0.1	0.2	0.2				
Herb										
	PHAQ	Phalaris aquatica	100	38.3	25	45	X		X	X
	CESO3	Centaurea solstitialis	100	2.5	0.2	7			X	X
	BRHO2	Bromus hordeaceus	67	2.7	3	5				X
	TACA8	Taeniatherum caput-medusae	67	2.4	0.2	7				Χ
	LASE	Lactuca serriola	67	0.7	0.2	2				Χ
	TRHI4	Trifolium hirtum	67	0.4	0.2	1				Χ
	VETH	Verbascum thapsus	67	0.1	0.2	0.2				Χ
	HOFI	Holozonia filipes	33	6.7	20	20				
	AICA	Aira caryophyllea	33	4.0	12	12				Χ
	BRDI3	Bromus diandrus	33	3.3	10	10				Χ

STAND TABLE continued

Phalaris aquatica - Bromus hordeaceus - Centaurea solstitialis Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Shrub										
Herb										
	CYDA	Cynodon dactylon	33	1.7	5	5				Χ
	CAPY2	Carduus pycnocephalus	33	1.3	4	4				Χ
	DAPU3	Daucus pusillus	33	0.3	1	1				
	SOAS	Sonchus asper	33	0.3	1	1				Χ
	STST	Stachys stricta	33	0.3	1	1				
	ACMI2	Achillea millefolium	33	0.1	0.2	0.2				
	AGGR	Agoseris grandiflora	33	0.1	0.2	0.2				
	ASFA	Asclepias fascicularis	33	0.1	0.2	0.2				
	BRELE	Brodiaea elegans subsp. eleg	ans33	0.1	0.2	0.2				
	BRMA3	Bromus madritensis	33	0.1	0.2	0.2				Χ
	CAAT25	Castilleja attenuata	33	0.1	0.2	0.2				
	CECY2	Centaurea cyanus	33	0.1	0.2	0.2				Χ
	CEME2	Centaurea melitensis	33	0.1	0.2	0.2				Χ
	CLPU2	Clarkia purpurea	33	0.1	0.2	0.2				
	COTI	Collinsia tinctoria	33	0.1	0.2	0.2				
	CYER	Cyperus eragrostis	33	0.1	0.2	0.2				
	DIVO	Dichelostemma volubile	33	0.1	0.2	0.2				
	ELMA5	Eleocharis macrostachya	33	0.1	0.2	0.2				
	FIGA	Filago gallica	33	0.1	0.2	0.2				Χ
	GAPA5	Galium parisiense	33	0.1	0.2	0.2				Χ
	GEDI	Geranium dissectum	33	0.1	0.2	0.2				Χ
	GNCA	Gnaphalium californicum	33	0.1	0.2	0.2				
	HYPE	Hypericum perforatum	33	0.1	0.2	0.2				Χ
	JUNCU	Juncus	33	0.1	0.2	0.2				
	LETA	Leontodon taraxacoides	33	0.1	0.2	0.2				Χ
	MAGR3	Madia gracilis	33	0.1	0.2	0.2				
	PHNO2	Phyla nodiflora	33	0.1	0.2	0.2				
	RUCR	Rumex crispus	33	0.1	0.2	0.2				Χ
	SIMA3	Silybum marianum	33	0.1	0.2					Χ
	SPIRA2	Spiranthes	33	0.1	0.2					
	TRAGO	Tragopogon	33	0.1	0.2	0.2				Χ
	TRPO	Tragopogon porrifolius	33	0.1	0.2	0.2				Χ
	TRDU2	Trifolium dubium	33	0.1	0.2	0.2				Χ
	VISA	Vicia sativa	33	0.1	0.2	0.2				Χ
	VUMY	Vulpia myuros	33	0.1	0.2	0.2				Χ

Schoenoplectus (=Scirpus) acutus Herbaceous Alliance Common Tule Herbaceous Alliance

As described for the western and Midwestern United States to central Canada, NatureServe (2007a) classifies this as the *Schoenoplectus acutus* - (*Schoenoplectus tabernaemontani*) Semipermanently Flooded Herbaceous Alliance, where the most abundant species are typically *Schoenoplectus acutus* (=*Scirpus acutus*), *Schoenoplectus fluviatilis* (=*Scirpus fluviatilis*), and *Schoenoplectus tabernaemontani* (=*Scirpus tabernaemontani*). Species composition and abundance may vary yearly, particularly dependent on water level fluctuations. Species typically include *Lemna* spp., *Phragmites australis*, and *Typha latifolia* in freshwater to tidally influenced stands, and *Schoenoplectus americanus* (=*Scirpus americanus*) and *Triglochin maritima* in alkaline stands. In deeper wetland stands of this alliance, *Potamogeton* sp. often occurs, and emergent species are not densely packed. Shrubs, such as *Salix* spp., are not common but may become established in shallow water areas. During droughts, species more tolerant of low water, such as *Polygonum amphibium*, may invade and alter the species composition of stands (NatureServe 2007a).

In the study area, two associations of the Common Tule Alliance are described. They occur along lake margins, stream banks, and ponds as freshwater emergent wetlands.

Schoenoplectus (=Scirpus) acutus var. occidentalis Herbaceous Association Common Tule Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and dominated by *Schoenoplectus* (=*Scirpus*) acutus var. occidentalis at 38-70% cover. A variety of facultative and obligate wetland species were present (see stand table below). Shrubs such as *Rosa eglanteria* and *Toxicodendron diversilobum* sometimes occurred as emergents.

This association was sampled infrequently in the study area within the Cascade Range Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on metamorphic (including slate) or volcanic substrates. They occupied wetlands on bottom slopes that were flat to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, El Dorado, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	57.7	38-70	-
Herb	45.1	0-70	variable
Shrub	19	0-38	2.1-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	1	0-3	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SE (1), N (1), Flat (1) Macrotopography: bottom (3)

Microtopography: flat (1), undulating (1), concave (1) Parent Material: metamorphic (1), slate (1), volcanic (1)

Soil Texture: muck (2)

	Mean	Range
Elevation	1597 ft.	582-2800 ft.
Slope	2.7°	0-7°
Large rock cover	0%	-%
Small rock cover	0%	-%
Bare ground cover	1%	1-1%
Litter cover	10%	10-10%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=3)

Rapid Assessments: SNNR0193, SNNR0697, SNNR1199 Relevés: none

Rank: G5S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills. Similar, if not identical stands have been described for the Sacramento-San Joaquin River Delta as *Schoenoplectus acutus* – Pure Provisional Association (Hickson and Keeler-Wolf 2007).

STAND TABLE Schoenoplectus (=Scirpus) acutus var. occidentalis Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Shrub	ROEG	Rosa eglanteria	33	0.1	0.2	0.2				Χ
	TODI	Toxicodendron diversilobum	33	0.1	0.2					
Herb										
	SCACO2	Schoenoplectus acutus var. occidentalis	100	57.7	38	70	X		X	
	POTAM	Potamogeton	33	1.7	5	5				
	ANCA14	Anthriscus caucalis	33	0.1	0.2	0.2				Χ
	BRMI2	Briza minor	33	0.1	0.2	0.2				Χ
	GEDI	Geranium dissectum	33	0.1	0.2	0.2				Χ
	JUBA	Juncus balticus	33	0.1	0.2	0.2				
	JUME4	Juncus mexicanus	33	0.1	0.2	0.2				
	RUCR	Rumex crispus	33	0.1	0.2	0.2				Χ
	RUPU3	Rumex pulcher	33	0.1	0.2	0.2				Χ
	TYDO	Typha domingensis	33	0.1	0.2	0.2				
Cryptoga	am									
	ALGAE	Algae	33	0.3	1	1				

Schoenoplectus (=Scirpus) acutus - Typha domingensis Herbaceous Association Common Tule - Southern Cattail Herbaceous Association

SUMMARY

In the one stand sampled, the herbaceous canopy was continuous and dominated by Schoenoplectus (=Scirpus) acutus var. occidentalis at 40% cover. Other taxa that were present included Deschampsia danthonioides, Eleocharis macrostachya, Juncus nevadensis, Lolium multiflorum, and Typha domingensis.

This association was sampled once in the study area within the Cascade Range Foothills Subregion (Hickman 1993). The stand occurred on a volcanic substrate. It occupied a flat wetland on a bottom slope.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tehama County, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	80	80-80	-
Herb	80	80-80	>0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	0.2	-	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (1)

Macrotopography: bottom (1) Microtopography: flat (1) Parent Material: volcanic (1) Soil Texture: muck (1)

	Mean	Range
Elevation	364 ft.	364-364 ft.
Slope	Oo	_0
Large rock cover	0%	-%
Small rock cover	0%	-%
Bare ground cover	0%	-%
Litter cover	0%	-%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=1)

Rapid Assessments: SNNR0117 Relevés: none

Rank: G4S3?

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills and the transmontane eastern Sierra Nevada region (Fish Creek Slough, Mono County; Odion et al. 1992) in alkaline marshes. It is likely to occur elsewhere in the intermontane west. Other studies have documented more generic vegetation types such as *Schoenoplectus* (=*Scirpus*) spp. - *Typha* spp.(Atwater et al. 1979, NatureServe 2007a).

STAND TABLE Schoenoplectus (=Scirpus) acutus - Typha domingensis Herbaceous Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	SCACO2	Schoenoplectus acutus var. occidentalis	10040	.040	40	X		X		
	ELMA5	Eleocharis macrostachya	100	19.0	19	19			Χ	
	TYDO	Typha domingensis	100	17.0	17	17			Χ	
	DEDA	Deschampsia danthonioides	100	11.0	11	11			Χ	
	JUNE	Juncus nevadensis	100	2.0	2	2			Χ	
	LOMU	Lolium multiflorum	100	0.2	0.2	0.2			Χ	Χ

Trifolium variegatum Herbaceous Alliance Whitetip Clover Herbaceous Alliance

As described in the state, *Trifolium variegatum* is conspicuously dominant to co-dominant with other forbs and grasses in the early to mid spring. Stands occur in swales, seeps, moist grassy flats, and intermittent streams. They often have the following equally conspicuous non-native species, especially in late spring: *Erodium botrys*, *Hypochaeris glabra*, *Leontodon taraxacoides*, *Lolium multiflorum*, and *Vulpia bromoides*. Native species may be prominent including *Castilleja attenuata*, *Juncus bufonius*, *Hemizonia fitchii*, *Trifolium depauperatum*, *T. microcephalum*, and *Triphysaria eriantha* subsp. *eriantha*.

This alliance has been recognized in other reports with few data samples (Evens et al. 2004, Evens and Kentner 2006), and this report provides strong documentation of this alliance. Associations previously categorized for vernal pools had *Trifolium variegatum* as an important species (Barbour et al. 2003, 2005), though the most recent vernal pool classification placed associations with *T. variegatum* in a *Lasthenia glaberrima* Alliance (Barbour et al. 2007). While the work of Barbour et al. (2003, 2005, 2007) focused on vernal pools, many of the stands sampled for this project are not in vernal pools, but in seasonally moist or saturated upland settings. These stands provide a broader perspective of associations contained in this recently designated alliance.

In the study area, three associations of the Whitetip Clover Alliance have been described. One sample (SNNR0253) showed additional variation and was classified at the alliance level only because of high cover by *Deschampsia danthonioides*, *Hemizonia fitchii*, and *Lessingia virgata* (sampled late in season).

Trifolium variegatum Herbaceous Association Whitetip Clover Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and dominated by *Trifolium variegatum* at <1-60% cover. Other taxa that were often present included *Aira* caryophyllea, *Briza minor*, *Bromus hordeaceus*, *Hypochaeris glabra*, *Juncus bufonius*, *Lolium multiflorum*, *Mimulus guttatus*, and *Triphysaria eriantha* subsp. *eriantha*.

In the study area, this association was sampled frequently in the Cascade Range Foothills, less frequently in the central and northern Sierra Nevada Foothills, and infrequently in the Sacramento Valley Subregions (Hickman 1993). Stands usually occurred on volcanic substrates (including basalt), but were also found on metamorphic (including slate) substrates. They often occupied bottoms and occasionally occupied lower slopes to upper slopes, on benches, mesas/plateaus, or ridgetops. Stands occurred slightly more often in wetland than in upland habitats. Slopes varied from flat to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Mariposa, Sacramento, Shasta, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	56.4	15-80	-
Herb	56.3	15-80	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	0-0.2	5-10
Conifer	0	-	-
Relative non-native to native cover	22.6	1-74	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NW (5), Flat (5), W (4), S (3), SW (2), NE (1), N (1), E (1)

Macrotopography: bottom (7), lower slope (2), middle slope (4), upper slope (3), bench (1),

mesa/plateau (4), ridgetop (1)

Microtopography: flat (12), concave (7), undulating (2)

Parent Material: volcanic (15), metamorphic (4), basalt (2), slate (1)

Soil Texture: clay or clay loam (9), loam or sandy loam (6), sand (3), silt or silt loam (2), peat (1)

	Mean	Range
Elevation	1146 ft.	237-2253 ft.
Slope	3.40	0-16°
Large rock cover	14.1%	0-92%
Small rock cover	14.8%	0-88%
Bare ground cover	48%	2-91%
Litter cover	18.3%	1-66%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=22)

Rapid Assessments SNNR0744, SNNR0826, SNNR0965, SNNR1027, SNNR1075 **Relevés:** SNFN0073, SNFN0098, SNFN0101, SNFN0285, SNFN0297, SNFN0304, SNFN0305, SNFN0336, SNFN0379, SNFN0390, SNFN0405, SNFN0416, SNFN0418, SNFN0433, SNFN0444, SNFN0446, SNFN0640

Rank: G4S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills, based primarily upon the data collected for this project. Further relationships with the aforementioned *Lasthenia glaberrima* should be investigated; however, this study provides clear evidence that *T. variegatum* extends its influence far beyond vernal pools and away from settings where *Lasthenia glaberrima* is characteristic. Similar stands have been observed in the inner North Coast Ranges of Napa County, in the central Coast Ranges of Monterey County (T. Keeler-Wolf pers. obs. 2002-2007), and in Marin County (Evens and Kentner 2006).

STAND TABLE

Trifolium variegatum Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	TRVA	Trifolium variegatum	100	26.2	0.2	60		X	X	
	LOMU	Lolium multiflorum	91	3.5	0.2	18			Χ	Χ
	HYGL2	Hypochaeris glabra	77	1.0	0.2	4				Χ
	BRHO2	Bromus hordeaceus	68	2.0	0.2	8				Χ
	JUBU	Juncus bufonius	64	3.0	0.2	30				
	MIGU	Mimulus guttatus	59	7.0	0.2	37				
	AICA	Aira caryophyllea	59	0.4	0.2	3				Χ
	BRMI2	Briza minor	55	0.4	0.2	4				Χ
	TRERE2	Triphysaria eriantha subsp. eriantha	50	0.2	0.2	1				
	DEDA	Deschampsia danthonioides	45	1.1	0.2	16				
	MOFO	Montia fontana	45	0.4	0.2	5				
	HOMA2	Hordeum marinum	41	3.2	0.2	38				Χ
	POAN	Poa annua	41	0.6	0.2	6				Χ
	ERBO	Erodium botrys	41	0.3	0.2	4				Χ
	VUBR	Vulpia bromoides	41	0.3	0.2	3				Χ
	BRODI	Brodiaea	41	0.2	0.2	1				
	CEGL2	Cerastium glomeratum	41	0.1	0.2	1				Χ
	GEDI	Geranium dissectum	36	0.5	0.2	10				Χ
	HEFI	Hemizonia fitchii	36	0.3	0.2	2				
	LENI	Lepidium nitidum	36	0.2	0.2	2				
	LACA7	Lasthenia californica	32	0.3	0.2	2				
	ERCA33	Eryngium castrense	32	0.3	0.2	2				
	BLNAN	Blennosperma nanum var. nanum	27	0.8	0.2	17				
	TACA8	Taeniatherum caput-medusae	27	0.3	0.2	5				Χ
	VUMI	Vulpia microstachys	27	0.2	0.2	2				
	RAMU2	Ranunculus muricatus	27	0.1	0.2	1				Χ
	LETA	Leontodon taraxacoides	27	0.1	0.2	0.2				Χ
	PLAU	Plagiobothrys austiniae	27	0.1	0.2	0.2				
	TRDU2	Trifolium dubium	23	0.6	0.2	7				Χ
	TRDE	Trifolium depauperatum	23	0.2	0.2	3				
	CIQU3	Cicendia quadrangularis	23	0.1	0.2	2				
	HERA3	Heterocodon rariflorum	23	0.1	0.2	1				
	LIBI	Linanthus bicolor	23	0.1	0.2	1				
	CAAT25	Castilleja attenuata	23	0.0	0.2	0.2				
	ERSE3	Eremocarpus setigerus	23	0.0	0.2	0.2				
	GAPA5	Galium parisiense	23	0.0	0.2	0.2				Χ
	PAPU10	Parvisedum pumilum	23	0.0	0.2	0.2				
Cryptoga										
	MOSS	Moss	50	2.9	0.2	20				

Trifolium variegatum - Lolium multiflorum - Leontodon taraxacoides Herbaceous Association

Whitetip Clover - Italian Ryegrass - Lesser Hawkbit Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent to continuous and most strongly characterized by *Lolium multiflorum* (1-40% cover), *Leontodon taraxacoides* (<1-32% cover), and *Trifolium variegatum* (<1-34% cover). Additional characteristic taxa included *Juncus bufonius* and *Trifolium dubium*, and taxa that were often present included *Aira caryophyllea*, *Briza minor*, *Bromus hordeaceus*, *Geranium dissectum*, *Hemizonia fitchii*, *Hordeum marinum* subsp. *gussonianum*, *Lotus purshianus*, *Lythrum hyssopifolia*, *Navarretia intertexta* subsp. *intertexta*, *Ranunculus muricatus*, *Rumex pulcher*, and *Vulpia bromoides*.

In the study area, this association was sampled frequently in the northern Sierra Nevada Foothills and infrequently in the central Sierra Nevada Foothills and Cascade Range Foothills Subregions (Hickman 1993). Stands sometimes occurred on metamorphic or sedimentary substrates, and rarely on volcanic substrates. They occupied bottoms, middle slopes, ridgetops, benches, and edges of basins/wetlands. Stands were usually in uplands, but occasionally in wetland habitats, on slopes that were flat to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in Amador, Calaveras, Mariposa, Sacramento, Shasta, and Tehama Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	73.6	35-95	-
Herb	73.6	35-95	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0.1	0-1	5-20
Conifer	0	-	-
Relative non-native to native cover	64.5	37-87	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (5), W (4), SW (3), E (2), Variable (1), S (1), NE (1), N (1)

Macrotopography: bottom (2), middle slope (1), bench (1), edge of basin/wetland (1), ridgetop (2)

Microtopography: concave (4), flat (3)

Parent Material: metamorphic (8), sedimentary (7), volcanic (3)

Soil Texture: clay or clay loam (4), silt or silt loam (3)

	Mean	Range
Elevation	1046 ft.	442-1888 ft.
Slope	3.1°	0-10°
Large rock cover	0.7%	0-3%
Small rock cover	7.7%	0.2-25%
Bare ground cover	53.8%	27-86%
Litter cover	32.5%	5-65%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=18)

Rapid Assessments: SNNR0014, SNNR1320, SNNR1326 **Relevés:** SNFN0276, SNFN0337, SNFN0392, SNFN0395, SNFN0482, SNFN0542, SNFN0543, SNFN0546, SNFN0547, SNFN0548, SNFN0549, SNFN0550, SNFN0551, SNFN0552, SNFN0553

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon data collected for this project. It was sampled extensively at Deer Creek Hills, Sacramento County. Compared to the previous association of the *Trifolium variegatum* Herbaceous Alliance, this type is more restricted to deeper, fine-textured soils. It is likely to occur elsewhere in cismontane northern and central California.

STAND TABLE *Trifolium variegatum - Lolium multiflorum - Leontodon taraxacoides* Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	LOMU	Lolium multiflorum		21.7		40			X	X
	LETA	Leontodon taraxacoides	94	12.2		32			X	X
	TRVA	Trifolium variegatum	94	12.1	-	34			X	
	JUBU	Juncus bufonius	89	6.2	0.2	22			Χ	
	TRDU2	Trifolium dubium	83	8.7	0.2	35			Χ	Х
	BRMI2	Briza minor	78	0.5	0.2	3				X
	LYHY2	Lythrum hyssopifolia	72	3.7	0.2	12				Χ
	HEFI	Hemizonia fitchii	72	0.7	0.2	5				
	HOMAG	Hordeum marinum subsp. gussonianum	61	2.0	0.2	10				Χ
	BRHO2	Bromus hordeaceus	56	1.8	0.2	20				Χ
	VUBR	Vulpia bromoides	56	0.4	0.2	3				Χ
	RAMU2	Ranunculus muricatus	56	0.3	0.2	2				Χ
	RUPU3	Rumex pulcher	56	0.2	0.2	1				Χ
	LOPU3	Lotus purshianus	50	1.9	0.2	15				
	NAINI	Navarretia intertexta subsp. intertexta	50	1.4	0.2	18				
	GEDI	Geranium dissectum	50	0.3	0.2	3				Χ
	AICA	Aira caryophyllea	50	0.2	0.2	2				Χ
	TACA8	Taeniatherum caput-medusae	44	0.5	0.2	7				Χ
	BRELE	Brodiaea elegans subsp. elega	ns44	0.1	0.2	1				
	ERCA33	Eryngium castrense	39	0.4	0.2	3				
	MEPO3	Medicago polymorpha	39	0.2	0.2	2				Χ
	TRHI4	Trifolium hirtum	39	0.1	0.2	1				Χ
	CEMU2	Centaurium muehlenbergii	39	0.1	0.2	0.2				
	CEGL2	Cerastium glomeratum	39	0.1	0.2	0.2				Χ
	HOVIV	Holocarpha virgata subsp. virga	ata33	1.1	0.2	10				
	HYGL2	Hypochaeris glabra	33	0.9	0.2	10				Χ
	JUTE	Juncus tenuis	33	0.5	0.2	2				
	ANAR	Anagallis arvensis	33	0.1	0.2	0.2				Χ
	HOMA2	Hordeum marinum	28	1.4	0.2	24				Χ
	ELMA5	Eleocharis macrostachya	28	1.0	0.2	10				
	CAAT25	Castilleja attenuata	28	0.1	0.2	1				
	SIGA	Silene gallica	28	0.1	0.2	0.2				Χ
	SOSE2	Soliva sessilis	22	0.5	0.2	8				Χ
	ERBO	Erodium botrys	22	0.1	0.2	1				Χ
	EPTO4	Epilobium torreyi	22	0.0	0.2					
	MIGU	Mimulus guttatus	22	0.0	0.2	0.2				
	TRERE2	Triphysaria eriantha subsp. eriantha	22	0.0	0.2	0.2				

Trifolium variegatum - Vulpia bromoides - (Hypochaeris glabra - Leontodon taraxacoides) Herbaceous Association

Whitetip Clover - Brome Fescue - (Smooth Cat's-Ear - Lesser Hawkbit) Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and characterized by *Hypochaeris glabra* (<1-40% cover), *Leontodon taraxacoides* (<1-45% cover), *Trifolium variegatum* (<1-40% cover), and *Vulpia bromoides* (<1-25% cover). Additional taxa that were characteristically present included *Aira caryophyllea*, *Briza minor*, *Bromus hordeaceus*, *Castilleja attenuata*, *Cerastium glomeratum*, *Erodium botrys*, *Hemizonia fitchii*, *Juncus bufonius*, *Trifolium dubium*, and *Trifolium microcephalum*.

In the study area, this association was sampled frequently in the northern Sierra Nevada Foothills and infrequently in the central Sierra Nevada Foothills and Sacramento Valley Subregions (Hickman 1993). Stands usually occurred on metamorphic (including slate) and rarely on mixed alluvium substrates. They occupied a variety of upland slope positions, often bottoms and middle slopes, but also upper slopes, ridgetops, and draws. Slopes varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Sacramento, and Tuolumne Counties, within the Camanche Terraces (262Ao) and Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	73.6	55-90	-
Herb	73.6	55-90	variable
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	64.4	29-89	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: E (7), SE (6), S (5), W (4), SW (3), NW (3), Flat (2), N (2), NE (1)

Macrotopography: bottom (3), middle slope (3), upper slope (1), draw (1), ridgetop (1)

Microtopography: flat (7), concave (1), undulating (1)

Parent Material: metamorphic (30), slate (2), mixed alluvium (1)

Soil Texture: clay or clay loam (4), silt or silt loam (3)

	Mean	Range
Elevation	472 ft.	250-862 ft.
Slope	6.6°	0-35°
Large rock cover	0.9%	0-6.2%
Small rock cover	5.9%	0.2-23%
Bare ground cover	29.4%	5-70%
Litter cover	58.4%	24-92%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=33)

Rapid Assessments: none **Relevés:** SNFN0204, SNFN0210, SNFN0212, SNFN0266, SNFN0268, SNFN0280, SNFN0286, SNFN0289, SNFN0347, SNFN0449, SNFN0453, SNFN0454, SNFN0455, SNFN0456, SNFN0460, SNFN0461, SNFN0465, SNFN0468, SNFN0508, SNFN0509, SNFN0517, SNFN0524, SNFN0529, SNFN0531, SNFN0532, SNFN0533, SNFN0534, SNFN0535, SNFN0536, SNFN0537, SNFN0538, SNFN0539, SNFN0540

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon the data collected for this project. It was sampled extensively at Deer Creek Hills, Sacramento County. It is clearly related to the previously described *Trifolium variegatum* - *Lolium multiflorum* - *Leontodon taraxacoides* Herbaceous Association, but lacks the constant high cover of *Lolium multiflorum* and tends to have higher cover of other non-native plants such as *Erodium botrys*. It is also clearly related to the following described (*Trifolium variegatum* - *Vulpia bromoides*) - *Hypochaeris glabra* - *Leontodon taraxacoides* Herbaceous Association, which has higher abundance of the yellow-flowered, non-native plants. See comments in the following description, where that association may be seen as a phase of this *T. variegatum* - *V. bromoides* (*H. glabra* – *L. taraxacoides*) Association. The constancy of *T. variegatum* and associated species is apparent in these types, and differences across types may be an artifact of time, location of sampling, and/or amount of disturbance. Since it is currently unclear how these floristic differences are related to environmental distinctions, further data and analysis are needed to determine differences among these associations.

STAND TABLE

Trifolium variegatum - Vulpia bromoides - (Hypochaeris glabra - Leontodon taraxacoides) Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	LETA	Leontodon taraxacoides	100	13.0	0.2	45			X	X
	BRHO2	Bromus hordeaceus	100	10.1	2	35			Χ	Χ
	ERBO	Erodium botrys	100	4.5	0.2	13			Χ	Χ
	AICA	Aira caryophyllea	97	2.5	0.2	7			Χ	Χ
	TRVA	Trifolium variegatum	94	9.0	0.2	40			X	
	VUBR	Vulpia bromoides	94	9.0	0.2	25			X	X
	JUBU	Juncus bufonius	94	6.7	0.2	28			Χ	
	TRDU2	Trifolium dubium	94	2.1	0.2	12			Χ	Χ
	BRMI2	Briza minor	94	0.9	0.2	4			Χ	Χ
	CAAT25	Castilleja attenuata	94	0.2	0.2	1			Χ	
	TRMI4	Trifolium microcephalum	91	1.7	0.2	18			Χ	
	HYGL2	Hypochaeris glabra	88	11.5	0.2	40			X	X
	HEFI	Hemizonia fitchii	88	0.6	0.2	3			Χ	
	CEGL2	Cerastium glomeratum	85	0.3	0.2	2			Χ	Χ
	TRERE2	Triphysaria eriantha subsp. eriantha	79	2.4	0.2	10				
	TRDED	Trifolium depauperatum var. depauperatum	79	1.4	0.2	5				

STAND TABLE continued

Trifolium variegatum - Vulpia bromoides - (Hypochaeris glabra - Leontodon taraxacoides) Herbaceous Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
TICID	CIQU3	Cicendia quadrangularis	73	0.3	0.2	4				
	TACA8	Taeniatherum caput-medusae	70	1.2	0.2	10				Χ
	PLFU	Plagiobothrys fulvus	70	0.9	0.2	10				, ,
	SIGA	Silene gallica	70	0.2	0.2	1				Χ
	TRCI	Trifolium ciliolatum	67	1.3	0.2	18				
	LOMU	Lolium multiflorum	64	2.1	0.2	22				Χ
	JUCA5	Juncus capitatus	61	0.2	0.2	1				Χ
	NATA3	Navarretia tagetina	55	0.7	0.2	6				
	TRHI4	Trifolium hirtum	55	0.6	0.2	5				Χ
	DIMU5	Dichelostemma multiflorum	55	0.2	0.2	1				
	LIBI	Linanthus bicolor	48	0.8	0.2	7				
	TRLA4	Trichostema lanceolatum	45	0.1	0.2	1				
	PEDU2	Petrorhagia dubia	45	0.1	0.2	0.2				Χ
	CEMU2	Centaurium muehlenbergii	42	0.4	0.2	3				
	AVBA	Avena barbata	42	0.4	0.2	3				Χ
	BRODI	Brodiaea	42	0.3	0.2	4				
	FIGA	Filago gallica	42	0.1	0.2	0.4				Χ
	TRHY3	Triteleia hyacinthina	39	0.1	0.2	1				
	CEMI	Centunculus minimus	36	0.1	0.2	1				
	ERSE3	Eremocarpus setigerus	36	0.1	0.2	1				
	AETR	Aegilops triuncialis	33	1.4	0.2	10				Χ
	BRELE	Brodiaea elegans subsp. elega		0.4	0.2	2				
	DICAC5	Dichelostemma capitatum subsp. capitatum	30	0.1	0.2	2				
	AVFA	Avena fatua	30	0.1	0.2	2				Χ
	EPTO4	Epilobium torreyi	30	0.1	0.2	0.2				
	SADEO	Sagina decumbens subsp. occidentalis	30	0.1	0.2	0.2				
	LOMI	Lotus micranthus	27	0.1	0.2	2				
	HOMAG	Hordeum marinum subsp. gussonianum	24	0.4	0.2	5				Χ
	CRTI	Crassula tillaea	24	0.1	0.2	2				Χ
	LYHY2	Lythrum hyssopifolia	24	0.0	0.2	0.2				Χ
	GAVE3	Gastridium ventricosum	21	0.4	0.2	7				Χ
	GAPA5	Galium parisiense	21	0.0	0.2	0.2				Χ
	HOVIV	Holocarpha virgata subsp. virga	ata21	0.0	0.2	0.2				
Cryptoga										
	MOSS	Moss	70	4.3	0.2	20				

(Trifolium variegatum - Vulpia bromoides) - Hypochaeris glabra - Leontodon taraxacoides Herbaceous Association

(Whitetip Clover - Brome Fescue) - Smooth Cat's-Ear - Lesser Hawkbit Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and characterized by *Hypochaeris glabra* (<1-36% cover), *Leontodon taraxacoides* (<1-20% cover), *Trifolium variegatum* (<1-2% cover), and *Vulpia bromoides* (<1-25% cover). Additional characteristic taxa included *Aira caryophyllea*, *Bromus hordeaceus*, *Castilleja attenuata*, *Erodium botrys*, *Juncus bufonius*, *Trifolium dubium*, *Trifolium hirtum*, and *Trifolium microcephalum*.

In the study area, this association was sampled frequently within the northern Sierra Nevada Foothills and infrequently in the Sacramento Valley Subregions (Hickman 1993). Stands usually occurred on metamorphic substrates, and infrequently on mixed alluvium or granitic substrates. They consistently occupied upland slope positions, from bottoms to middle slopes that varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, and Sacramento Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	66.1	22-95	-
Herb	66.1	22-95	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	76.2	46-90	_

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (4), S (2), NW (2), NE (2), N (2), SE (1), Flat (1), E (1)

Macrotopography: bottom (1), lower slope (1), middle slope (1), edge of basin/wetland (1)

Microtopography: flat (2), undulating (1), convex (1)

Parent Material: metamorphic (12), mixed alluvium (2), granitic (1)

Soil Texture: clay or clay loam (2), loam or sandy loam (1), silt or silt loam (1)

	Mean	Range
Elevation	421 ft.	207-522 ft.
Slope	14.3°	0-40°
Large rock cover	0.2%	0-0.2%
Small rock cover	17.8%	1-56%
Bare ground cover	25.8%	7-43%
Litter cover	52.8%	1-75%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=15)

Rapid Assessments: none **Relevés:** SNFN0121, SNFN0269, SNFN0272, SNFN0355, SNFN0458, SNFN0459, SNFN0462, SNFN0503, SNFN0506, SNFN0516, SNFN0518, SNFN0519. SNFN0520. SNFN0523. SNFN0541

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon the data collected for this project and sampled extensively at Deer Creek Hills, Sacramento County. The relationship between this and the previous *Trifolium variegatum - Vulpia bromoides - (Hypochaeris glabra - Leontodon taraxacoides)* Herbaceous Association is evident by the similar names. The parentheses around the first two nominate species of the association discussed herein, imply a stronger dominance by *H. glabra*, *L. taraxacoides*, and other non-native species compared to a much lower but relatively constant presence of *T. variegatum*. Stands of this association are also verging upon the *Bromus hordeaceus - Erodium botrys - Plagiobothrys fulvus* Association of the *Bromus* (*diandrus*, *hordeaceus*, *madritensis*) Semi-Natural Stands type (see similarities in constancy and cover values for many of the main species), but this association maintains sufficient presence and constancy of the native white-tipped clover to be placed in the *Trifolium variegatum* Herbaceous Alliance. This underscores the importance of *T. variegatum* as an important indicator, despite its relatively low cover in this association.

STAND TABLE (*Trifolium variegatum - Vulpia bromoides*) - *Hypochaeris glabra - Leontodon taraxacoides* Herbaceous Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	HYGL2	Hypochaeris glabra	100	16.0	0.2	36			X	X
	VUBR	Vulpia bromoides	100	8.3	0.2	25			Χ	Χ
	BRHO2	Bromus hordeaceus	93	20.2	0.2	38			Χ	Χ
	LETA	Leontodon taraxacoides	93	5.7	0.2	20			X	X
	TRHI4	Trifolium hirtum	93	4.4	0.2	20			Χ	Χ
	ERBO	Erodium botrys	93	4.1	0.2	17			Χ	Χ
	CAAT25	Castilleja attenuata	93	1.8	0.2	18			Χ	
	AICA	Aira caryophyllea	93	0.7	0.2	3			Χ	Χ
	TRDU2	Trifolium dubium	87	1.6	0.2	7			Χ	Χ
	TRMI4	Trifolium microcephalum	87	1.5	0.2	8			Χ	
	JUBU	Juncus bufonius	80	0.6	0.2	2			Χ	
	TRVA	Trifolium variegatum	80	0.6	0.2	2			X	
	PLFU	Plagiobothrys fulvus	67	1.8	0.2	12				
	TRERE2	Triphysaria eriantha subsp. eriantha	67	1.3	0.2	7				
	BRMI2	Briza minor	67	0.1	0.2	0.2				Χ
	TRDED	Trifolium depauperatum var. depauperatum	60	2.2	0.2	15				
	TRCI	Trifolium ciliolatum	60	1.1	0.2	10				
	HEFI	Hemizonia fitchii	53	0.7	0.2	4				
	TACA8	Taeniatherum caput-medusae	53	0.5	0.2	5				Χ
	AVFA	Avena fatua	53	0.3	0.2	2				Χ
	CEGL2	Cerastium glomeratum	53	0.3	0.2	2				Χ
	LOMI	Lotus micranthus	47	0.5	0.2	3				
	DIMU5	Dichelostemma multiflorum	47	0.3	0.2	2				
	SIGA	Silene gallica	47	0.1	0.2	0.2				Χ
	LOMU	Lolium multiflorum	40	1.6	0.2	23				Χ
	BRDI3	Bromus diandrus	40	0.5	0.2	5				Χ
	TRHY3	Triteleia hyacinthina	40	0.1	0.2	1				
	LUBI	Lupinus bicolor	33	1.0	0.2	9				
	BRODI	Brodiaea	33	0.1	0.2	1				
	DICAC5	Dichelostemma capitatum subsp. capitatum	33	0.1	0.2	0.2				
	FIGA	Filago gallica	33	0.1	0.2	0.2				Χ
	LOPU3	Lotus purshianus	33	0.1	0.2	0.2				
	PEDU2	Petrorhagia dubia	27	0.3	0.2	2				Χ
	TRLA4	Trichostema lanceolatum	27	0.1	0.2	0.2				
Cryptoga										
	MOSS	Moss	40	4.7	0.2	40				

Typha (angustifolia, domingensis, latifolia) Herbaceous Alliance Cattail (Narrowleaf, Broad, Southern) Herbaceous Alliance

As described in the state, *Typha latifolia*, *T angustifolia*, and/or *T. domingensis* dominate(s) the herbaceous layer with intermittent to continuous cover. This alliance occurs near streams, rivers, and ponds that are typically freshwater wetlands. NatureServe (2007a) classifies this as the *Typha (latifolia, angustifolia)* Herbaceous Alliance, where the dominant species, either *Typha latifolia* or *Typha angustifolia*, often form dense, almost monotypic stands. Other species typical of wetlands may be found in lesser amounts; they include shallower wetland emergents such as *Carex* spp., *Eleocharis macrostachya*, *Eleocharis palustris*, *Glyceria* spp., *Juncus balticus*, *Juncus torreyi*, *Mentha arvensis*, *Schoenoplectus acutus*, and *Veronica* spp. In deeper water, *Lemna minor*, *Potamogeton* spp., *Sagittaria* spp., *Azolla filiculoides*, and other aquatics may be present in lesser amounts.

In the study area, one association of the Cattail (Narrowleaf, Broad, Southern) Alliance was classified and described below. It was dominated strongly by *T. latifolia* and found in drainage bottoms and ponds.

Typha latifolia Herbaceous Association Broadleaf Cattail Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was intermittent and dominated by *Typha latifolia* at 38-64% cover. Other taxa that were characteristically present included *Juncus effusus* and *Mimulus guttatus*. A variety of additional facultative and obligate wetland taxa were present (see stand table below). Trees such as *Juglans californica* var. *hindsii*, *Quercus wislizeni*, and *Salix laevigata* sometimes occurred as scattered emergents, and shrubs such as *Rubus discolor*, *Salix lasiolepis*, *Salix melanopsis*, and *Sambucus mexicana* sometimes occurred as emergents.

This association was sampled twice in the study area within the central and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands occurred on metamorphic or mixed alluvium substrates. They occupied wetland bottom slopes that were flat to gentle. As currently understood in the state, stands dominated strongly by *T. latifolia* are similar and are defined as an association of this mixed species alliance (Sawyer et al. 2007 MS).

DISTRIBUTION IN STUDY AREA

This association was sampled in Mariposa, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	63	60-66	-
Herb	61.5	58-65	>0.3
Shrub	2.6	0-5	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	1	0-2	5-10
Conifer	0	-	-
Relative non-native to native cover	1.2	0-2	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: W (1), Flat (1)

Macrotopography: bottom (2) Microtopography: concave (2)

Parent Material: metamorphic (1), mixed alluvium (1)

Soil Texture: clay or clay loam (1), muck (1)

	Mean	Range
Elevation	1593 ft.	921-2265 ft.
Slope	10	0-2°
Large rock cover	0.1%	0-0.2%
Small rock cover	2.5%	0-5%
Bare ground cover	20%	10-30%
Litter cover	60%	55-65%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=2)

Rapid Assessments: SNNR0473, SNNR1033 Relevés: none

Rank: G5S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada, Great Valley (e.g. Hickson and Keeler-Wolf 2007), inner Central Coast (Evens et al. 2006), and San Dieguito River watershed in southern California (Evens and San 2006). The *Typha latifolia* Southern Herbaceous Association, which is corollary with this association in California, has been identified across the southeastern United States (NatureServe 2007a).

STAND TABLE *Typha latifolia* Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Tree										
	SALA3-L	Salix laevigata	50	1.0	2	2				
	JUCAH	Juglans californica var. hindsii	50	0.1	0.2	0.2				
	QUWI2-L	Quercus wislizeni	50	0.1	0.2	0.2				
Shrub										
	SAME2	Salix melanopsis	50	1.5	3	3				
	RUDI2	Rubus discolor	50	0.5	1	1				Χ
	SALA6	Salix lasiolepis	50	0.5	1	1				
	HOMA4	Hoita macrostachya	50	0.1	0.2	0.2				
	SAME5	Sambucus mexicana	50	0.1	0.2	0.2				
Herb										
	TYLA	Typha latifolia	100	51.0	38	64	X		X	
	JUEF	Juncus effusus	100	5.6	0.2	11			Χ	
	MIGU	Mimulus guttatus	100	0.2	0.2	0.2			Χ	
	CYER	Cyperus eragrostis	50	2.5	5	5				
	MICA3	Mimulus cardinalis	50	0.5	1	1				
	URDI	Urtica dioica	50	0.5	1	1				
	XAST	Xanthium strumarium	50	0.5	1	1				
	CADE8	Carex densa	50	0.1	0.2	0.2				
	CEMU2	Centaurium muehlenbergii	50	0.1	0.2	0.2				
	CIRSI	Cirsium	50	0.1	0.2	0.2				
	EPCIC	Epilobium ciliatum subsp.								
		ciliatum	50	0.1	0.2	0.2				
	LASE	Lactuca serriola	50	0.1	0.2	0.2				Χ
	PAUR2	Paspalum urvillei	50	0.1	0.2	0.2				Χ
	RUSA	Rumex salicifolius	50	0.1	0.2	0.2				

Vulpia microstachys-Lasthenia californica-Plantago erecta Herbaceous Alliance Small Fescue - California Goldfields - Dwarf Plantain Herbaceous Alliance

Described for the first time in the state, this alliance represents a broad complex of herbaceous stands with the characteristic presence of Lasthenia californica, Plantago erecta, and/or Vulpia microstachys. Stands typically contain at least two, if not all three of these commonly occurring native species. Previously, three separate alliances have been classified with these species as indicators (Taylor et al. 1992, Evens et al. 2004, Evens and San 2004, Hickson and Keeler-Wolf 2007). Currently, we are taking a more expansive approach since these three species regularly co-occur at varying cover intervals. Cover variability may be due to inter-annual climatic or disturbance differences, including disruption of the soil by gophers (Hobbs and Mooney 1991). As currently understood, this alliance encompasses what is thought of as the "native annual herblands" in the California Floristic Province, including wildflower fields (sensu Holland 1986). One of the long standing questions of California plant ecology is, "what vegetation might have been present prior to the domination by the diverse suite of non-natives that occurs today across much of the state?". We have moved away from the standard pat answer of "Nassella pulchra Grassland" (e.g., Clements 1934) in many areas of the state, where soils are relatively rocky or otherwise shallow. Although the Vulpia microstachys - Lasthenia californica - Plantago erecta Herbaceous Alliance appears restricted to shallow, non-fertile, "oligotrophic" soils, where the nonnatives do not grow as well, this alliance may have been more widespread on somewhat deeper soils in pre-European days.

Nine associations of the Small Fescue - California Goldfields - Dwarf Plantain Alliance were sampled in the study area and are described below. These types represent a diversity of native-dominated vegetation. A number of mixed forb and grass samples were classified to this alliance, but did not conform to any of the associations. A total of twenty samples were classified to the alliance level only (SNNR0792, SNFN0299, SNFN0300, SNFN0303, SNFN0346, SNFN0397, SNNR0789, SNFN0704, SNFN0443, SNNR1505, SNNR1526, SNNR1528, SNFN0031, SNFN0076, SNFN0216, SNNR0427, SNNR0574, SNFN0426, SNFN0440, and SNFN0696). Along with the indicator species for the alliance, these stands included both native and non-native species such as *Aira caryophyllea*, *Hypochaeris glabra*, *Avena barbata*, *Taeniatherum caput-medusae*, and *Vulpia myuros* and native species such as *Dichelostemma capitatum* subsp. *capitatum*, *Trifolium hirtum*, *Micropus californicus*, *Linanthus bicolor*, and *Triphysaria eriantha* subsp. *eriantha*. The first three associations all contain high constancy of *Selaginella hansenii*, indicating shallow, rocky substrates that may be volcanic or ultramafic.

Selaginella hansenii - Vulpia microstachys Herbaceous Association Hansen's Spikemoss - Small Fescue Herbaceous Association

SUMMARY

In the stands sampled, the canopy was open to continuous, with the cryptogam *Selaginella hansenii* dominant at 1-76% cover and native grass *Vulpia microstachys* characteristic at 7-35% cover. Other herbaceous taxa that were often present included *Avena barbata*, *Bromus hordeaceus*, *Lessingia virgata*, *Petrorhagia dubia*, and *Plantago erecta*. *Ceanothus cuneatus* sometimes occurred as a scattered emergent shrub.

This association was sampled throughout the study area - frequently in the Cascade Range Foothills, somewhat frequently in the northern Sierra Nevada Foothills and High Cascade Range, and infrequently in the central Sierra Nevada Foothills Subregions (Hickman 1993). Stands

consistently occurred on volcanic (including basalt) substrates. They occupied a variety of upland slope positions from bottoms to ridgetops. They were found occasionally on mesas/plateaus, on slopes that varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Shasta, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsection(s) (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	38.4	18-80	-
Herb	38.4	18-80	variable
Shrub	0.3	0-4	0-5
Low Tree/Tall Shrub	0	-	-
Hardwood	0.2	0-5	<5
Conifer	0.2	0-3	<5-20
Relative non-native to native cover	18.2	1-48	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (8), SW (7), SE (6), W (5), Variable (2), E (2), NW (1), NE (1), Flat (2)

Macrotopography: entire slope (1), bottom (2), lower slope (4), middle slope (12), upper slope (6),

upper slope to ridgetop (1), mesa/plateau (3), ridgetop (4)

Microtopography: undulating (17), convex (8), flat (8), concave (1)

Parent Material: volcanic (32), basalt (2)

Soil Texture: loam or sandy loam (14), clay or clay loam (4), sand (3), silt or silt loam (2)

	Mean	Range
Elevation	1352 ft.	285-3111 ft.
Slope	11.9°	0-36°
Large rock cover	21.2%	0.2-72.2%
Small rock cover	25.9%	1.2-88.2%
Bare ground cover	25.4%	2-75%
Litter cover	23.4%	1-70%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=34)

Rapid Assessments: SNNR0029, SNNR0033, SNNR0075, SNNR0178, SNNR0195, SNNR0196, SNNR0243, SNNR0325, SNNR0426, SNNR0448, SNNR0457, SNNR0465, SNNR0572, SNNR0791, SNNR0794, SNNR0957, SNNR0958, SNNR1071, SNNR1072, SNNR1304, SNNR1306 Relevés: SNFN0052, SNFN0096, SNFN0100, SNFN0171, SNFN0202, SNFN0203, SNFN0351, SNFN0353, SNFN0372, SNFN0403, SNFN0431, SNFN0439, SNFN0445

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills. It is likely to be endemic to the northern and central Foothills.

STAND TABLE Selaginella hansenii - Vulpia microstachys Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Shrub	CECU	Ceanothus cuneatus	24	0.1	0.2	1				
Herb	CECO	Ceanotrus curieatus	24	0.1	0.2	ı				
Herb	VUMI	Vulpia microstachys	94	4.1	0.2	21			Χ	
	PLER3	Plantago erecta	76	1.9	0.2	15				
	BRHO2	Bromus hordeaceus	71	1.7	0.2	11				Χ
	PEDU2	Petrorhagia dubia	71	1.6	0.2	15				Χ
	LEVI8	Lessingia virgata	62	1.7	0.2	12				
	AVBA	Avena barbata	62	0.4	0.2	2				Χ
	AICA	Aira caryophyllea	47	0.6	0.2	9				Χ
	BRMA3	Bromus madritensis	44	0.1	0.2	1				Χ
	TRERE2	Triphysaria eriantha subsp. eriantha	44	0.1	0.2	1				
	HYGL2	Hypochaeris glabra	38	1.2	0.2	11				Χ
	DICAC5	Dichelostemma capitatum subsp. capitatum	38	0.1	0.2	1				
	CATR3	Calycadenia truncata	35	1.0	0.2	10				
	CLPU2	Clarkia purpurea	35	0.7	0.2	7				
	TRMI4	Trifolium microcephalum	35	0.1	0.2	1				
	TRHI4	Trifolium hirtum	32	0.4	0.2	4				Χ
	ERBO	Erodium botrys	29	0.6	0.2	12				Χ
	NAPU2	Navarretia pubescens	26	1.0	0.2	12				
	VUMY	Vulpia myuros	26	0.6	0.2	6				Χ
	LACA7	Lasthenia californica	26	0.5	0.2	8				
	GITR2	Gilia tricolor	26	0.5	0.2	6				
	MICA	Micropus californicus	26	0.1	0.2	1				
	BRDI3	Bromus diandrus	24	0.1	0.2	2				Χ
	TRWI3	Trifolium willdenovii	24	0.1	0.2	2				
	LUNA3	Lupinus nanus	24	0.1	0.2	1				
	TRDE	Trifolium depauperatum	24	0.1	0.2	1				
	ERCI6	Erodium cicutarium	24	0.0	0.2	0.2				Χ
	MICA7	Minuartia californica	21	0.6	0.2	15				
	CEMU2	Centaurium muehlenbergii	21	0.3	0.2	7				
	BRELE	Brodiaea elegans subsp. elega	ans21	0.2	0.2	5				
	PAPU10	Parvisedum pumilum	21	0.1	0.2	2				
	LENI	Lepidium nitidum	21	0.0	0.2	0.2				
Cryptoga										
	SEHA2 MOSS	Selaginella hansenii Moss	100 53	18.6 3.8	1 0.2	76 30	Х		X	

Selaginella hansenii - Vulpia microstachys - Lupinus nanus Herbaceous Association (Provisional)

Hansen's Spikemoss - Small Fescue - Sky Lupine Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous, with cryptogam *Selaginella hansenii* occurring often at 1-55% cover, and with characteristic species *Lupinus nanus* at <1-17% cover and *Vulpia microstachys* at 3-35% cover. These species were usually codominant. Additional characteristic taxa included *Bromus hordeaceus*, *Dichelostemma capitatum* subsp. *capitatum*, *Hypochaeris glabra*, and *Triphysaria eriantha* subsp. *eriantha*. Shrubs such as *Eriodictyon californicum* and *Eriophyllum lanatum* var. *grandiflorum* sometimes occurred as emergents.

This association was sampled infrequently in the study area within the central and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands consistently occurred on volcanic (including basalt) substrates. These upland stands occurred on lower slopes, upper slopes, ridgetops, and occasionally on mesas/plateaus. Slopes varied from flat to steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	52.1	27-75	-
Herb	51.9	27-75	< 0.3
Shrub	0.3	0-2	0-2
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	21.8	1-75	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (3), SW (2), W (1), Variable (1)

Macrotopography: lower slope (1), upper slope (1), mesa/plateau (2), ridgetop (3)

Microtopography: flat (3), undulating (3), convex (1)

Parent Material: volcanic (5), basalt (2)

Soil Texture: loam or sandy loam (3), sand (2), clay or clay loam (1)

	Mean	Range
Elevation	1586 ft.	1117-1933 ft.
Slope	6.9°	0-40°
Large rock cover	27.5%	0-80%
Small rock cover	30.1%	2-60%
Bare ground cover	29.3%	2-72%
Litter cover	9.1%	1-22%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=7)

Rapid Assessments: none Relevés: SNFN0069, SNFN0102, SNFN0437, SNFN0589,

SNFN0595, SNFN0596, SNFN0686

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon data collected for this project and for the Peoria Wildlife Area project in Tuolumne County (Evens et al. 2004). It is likely to be endemic to the northern and central Foothills. It is indicative of slightly deeper soils than the *Selaginella hansenii - Vulpia microstachys* Herbaceous Association of this alliance.

STAND TABLE
Selaginella hansenii - Vulpia microstachys - Lupinus nanus Herbaceous Association
(Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Shrub	ERCA6	Eriodictyon californicum	29	0.3	0.2	2				
	ERLAG	Eriophyllum lanatum var. grandiflorum	29	0.2	0.2	1				
Herb										
	LUNA3	Lupinus nanus	100	7.3	0.2	17			X	
	HYGL2	Hypochaeris glabra	100	1.4	0.2	4			Χ	Χ
	VUMI	Vulpia microstachys	86	14.3	3	35		X	X	
	BRHO2	Bromus hordeaceus	86	1.6	0.2	7			Χ	Χ
	DICAC5	Dichelostemma capitatum subsp. capitatum	86	0.2	0.2	0.2			Χ	
	TRERE2	<i>Triphysaria eriantha</i> subsp. eriantha	86	0.2	0.2	0.2			Χ	
	LACA7	Lasthenia californica	71	0.9	0.2	3				
	MICA7	Minuartia californica	71	0.1	0.2	0.2				
	VUMY	Vulpia myuros	57	0.9	0.2	4				Χ
	PLER3	Plantago erecta	57	0.9	1	2				
	BRMA3	Bromus madritensis	57	0.6	0.2	3				Χ
	AICA	Aira caryophyllea	57	0.2	0.2	1				Χ
	POCA7	Polygonum californicum	57	0.2	0.2	1				
	TRHY3	Triteleia hyacinthina	57	0.1	0.2	0.2				
	PAPU10	Parvisedum pumilum	43	0.9	0.2	5				
	ERNUP4	Eriogonum nudum var. pubiflorum	43	0.5	0.2	2				
	TRVA	Trifolium variegatum	43	0.3	0.2	2				
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	43	0.1	0.2	0.2				
	PSTEG	Psilocarphus tenellus var. globiferus	43	0.1	0.2	0.2				
	TRDE	Trifolium depauperatum	43	0.1	0.2	0.2				

STAND TABLE
Selaginella hansenii - Vulpia microstachys - Lupinus nanus Herbaceous Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	TRWI3	Trifolium willdenovii	29	1.2	0.2	8				
	ERBR14	Erodium brachycarpum	29	1.0	0.2	7				Χ
	LOMI	Lotus micranthus	29	0.7	1	4				
	LETA	Leontodon taraxacoides	29	0.3	0.2	2				Χ
	TRDET	Trifolium depauperatum var. truncatum	29	0.3	0.2	2				
	CHLOR3	Chlorogalum	29	0.1	0.2	0.2				
	CLARK	Clarkia	29	0.1	0.2	0.2				
	CRCOE	Crassula connata var. Erectoides	29	0.1	0.2	0.2				
	ERCI6	Erodium cicutarium	29	0.1	0.2	0.2				Χ
	NAIN2	Navarretia intertexta	29	0.1	0.2	0.2				
	POSE	Poa secunda	29	0.1	0.2	0.2				
	SIGA	Silene gallica	29	0.1	0.2	0.2				Χ
Cryptoga	am									
	SEHA2	Selaginella hansenii	71	23.3	1	55				
	MOSS	Moss	43	3.6	2	20				
	LICHEN	Lichen	29	2.3	4	12				

Selaginella hansenii - Vulpia microstachys - Lupinus spectabilis Herbaceous Association (Provisional)

Hansen's Spikemoss - Small Fescue - Shaggyhair Lupine Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the canopy was open to intermittent, with Selaginella (hansenii) characterizing the cryptogam layer at <1-55% cover. Lupinus spectabilis (<1-7% cover), Plantago erecta (<1-5% cover), and Vulpia microstachys (<1-2% cover) were frequently present in the herbaceous canopy. Other taxa that were often present included Dudleya cymosa subsp. cymosa, Eschscholzia lobbii, Holocarpha virgata subsp. virgata, and Trifolium willdenovii.

In the study area, this association was sampled somewhat frequently in the central Sierra Nevada Foothills Subregion (Hickman 1993). Stands consistently occurred on serpentine substrates. They occupied a variety of upland slope positions, from lower to upper slopes and ridgetops, with moderate to steep slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Mariposa and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	28.3	9-65	-
Herb	28.2	7-65	< 0.3
Shrub	0.4	0-2	1-2
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	11.9	0-47	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: S (3), E (2), W (1), SE (1), NE (1), Flat (1)

Macrotopography: lower slope (1), middle slope (5), upper slope (1), ridgetop (2)

Microtopography: undulating (6), flat (3)

Parent Material: serpentine (9)

Soil Texture: sand (3), unknown (2), clay or clay loam (1), loam or sandy loam (1)

	Mean	Range
Elevation	1719 ft.	874-2501 ft.
Slope	22.4°	8-35°
Large rock cover	20%	5.2-50.4%
Small rock cover	52.7%	28-74.2%
Bare ground cover	18.8%	9-43%
Litter cover	6%	1-20%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=9)

Rapid Assessments: none Relevés: SNFN0114, SNFN0138, SNFN0140, SNFN0141,

SNFN0410, SNFN0697, SNFN0701, SNFN0702, SNFN0703

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon the data collected for this project. This association is endemic to serpentine substrates of the central Sierra Foothills and often contains sensitive and localized species.

STAND TABLE
Selaginella hansenii - Vulpia microstachys - Lupinus spectabilis Herbaceous Association (Provisional)

•	Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
	Shrub	ERCA6	Eriodictyon californicum	22	0.2	0.2	2				
	Herb	LITO/TO	Enocioty on bamoniloum		0.2	0.2	_				
		LUSP3	Lupinus spectabilis	78	3.1	0.2	7				
		PLER3	Plantago erecta	78	1.4	0.2	5				
		VUMI	Vulpia microstachys	78	0.7	0.2	2				
		ESLO	Eschscholzia lobbii	67	0.7	0.2	2				
		HOVIV	Holocarpha virgata subsp.	virgata56	2.4	0.2	18				
		TRWI3	Trifolium willdenovii	56	0.2	0.2	1				
		DUCYC3	Dudleya cymosa subsp.	56	0.1	0.2	0.2				
		BRHO2	Bromus hordeaceus	44	0.7	0.2	5				Χ
		DICAC5	Dichelostemma capitatum subsp. capitatum	44	0.4	0.2	3				
		BRMA3	Bromus madritensis	44	0.3	0.2	1				Χ
		ERNU3	Eriogonum nudum	44	0.2	0.2	1				
		LOWR2	Lotus wrangelianus	44	0.1	0.2	0.2				
		TRAL5	Trifolium albopurpureum	44	0.1	0.2	0.2				
		LACA7	Lasthenia californica	33	0.8	1	5				
		CRFL4	Cryptantha flaccida	33	0.2	0.2	1				
		PETR7	Pentagramma triangularis	33	0.2	0.2	1				
		ERIOG	Eriogonum	33	0.1	0.2	0.4				
		ASTEXX	Asteraceae	33	0.1	0.2	0.2				Χ
		CAAT25	Castilleja attenuata	33	0.1	0.2	0.2				
		GICA5	Gilia capitata	33	0.1	0.2	0.2				
		MIAC	Microseris acuminata	33	0.1	0.2	0.2				
		PEMU	Pellaea mucronata	33	0.1	0.2	0.2				
		POSE	Poa secunda	33	0.1	0.2	0.2				
		THCU	Thysanocarpus curvipes	33	0.1	0.2	0.2				
		URLI5	Uropappus lindleyi	33	0.1	0.2	0.2				
		TRHI4	Trifolium hirtum	22	0.4	1	3				Χ
		BRMAR	Bromus madritensis subsp. rubens	22	0.4	0.2	3				Χ
		MIDO	Microseris douglasii	22	0.4	0.2	3				
		VUBR	Vulpia bromoides	22	0.1	0.2	1				Χ
	Cryptoga										
		SEHA2	Selaginella hansenii	56	10.1		55				
		MOSS	Moss	44	4.9	3	20				
		SELAG	Selaginella	33	4.6	0.2	40				

Vulpia microstachys - Elymus elymoides - Achnatherum lemmonii Herbaceous Association (Provisional)

Small Fescue - Squirreltail - Lemmon's Needlegrass Herbaceous Association (Provisional)

SUMMARY

In the stands sampled, the herbaceous canopy was open to intermittent and characterized by Elymus elymoides (<1-7% cover), Petrorhagia dubia, (1-6% cover), and Vulpia microstachys (<1-5% cover). Other taxa that were often present included Achnatherum lemmonii, Aira caryophyllea, Brodiaea elegans subsp. elegans, Calycadenia, Clarkia purpurea, Eriogonum, Lessingia virgata, Minuartia, Poa secunda, Polygonum bolanderi, Trifolium, Vulpia microstachys, and Vulpia myuros. Shrubs such as Ceanothus cuneatus and Eriodictyon californicum sometimes occurred as emergents.

This association was sampled somewhat infrequently in the study area within the High Cascade Range Subregion (Hickman 1993). Stands consistently occurred on volcanic substrates. They occupied middle to upper slopes and ridgetops, on gentle to somewhat steep slopes.

DISTRIBUTION IN STUDY AREA

This association was sampled in Tehama County, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	28.3	15-50	-
Herb	27.2	15-45	variable
Shrub	2	0-5	0-2
Low Tree/Tall Shrub	0	-	-
Hardwood	0.1	0-0.2	<5-10
Conifer	0	0-0.2	10-20
Relative non-native to native cover	22	4-45	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: NE (2), Variable (1), SW (1), SE (1), N (1)

Macrotopography: middle to upper slope (1), upper slope (3), ridgetop (2)

Microtopography: convex (3), flat (2), undulating (1)

Parent Material: volcanic (6)

Soil Texture: sand (4), loam or sandy loam (1)

	Mean	Range
Elevation	3366 ft.	3035-3753 ft.
Slope	13.2°	2-240
Large rock cover	9%	3-15%
Small rock cover	51.2%	24-67%
Bare ground cover	22.5%	10-45%
Litter cover	13.5%	3-43%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=6)

Rapid Assessments: SNNR0374, SNNR0387, SNNR0439, SNNR0443, SNNR0450,

SNNR0491 Relevés: none

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based on data collected for this project. It is characteristic of extremely shallow, rocky volcanic soils over the Tuscan and related geologic formations of the northern Foothills. Save the *Selaginella hansenii - Vulpia microstachys - Lupinus spectabilis* Serpentine Association, this association has the lowest cover of plants and the highest cover of small and large rocks of the other regionally occurring associations in this alliance.

STAND TABLE

Vulpia microstachys - Elymus elymoides - Achnatherum lemmonii Herbaceous

Association (Provisional)

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	Ν
Shrub										
	CECU	Ceanothus cuneatus	100	1.5	0.2	5	Χ		Χ	
	ERCA6	Eriodictyon californicum	67	0.6	0.2	2				
Herb										
	PEDU2	Petrorhagia dubia	100		1	6			Χ	Χ
	VUMI	Vulpia microstachys	100		0.2				X	
	ELEL5	Elymus elymoides	83	1.3	0.2	7			X	
	ACLE8	Achnatherum lemmonii	67	3.4	0.2	_				
	TRIFO	Trifolium	67	0.7	0.2	3				
	VUMY	Vulpia myuros	67	0.7	0.2	2				Χ
	POBO3	Polygonum bolanderi	67	0.7	0.2	2				
	LEVI8	Lessingia virgata	50	3.7	1	12				
	MINUA	Minuartia	50	1.7	1	6				
	CALYC	Calycadenia	50	0.5	1	1				
	AICA	Aira caryophyllea	50	0.2	0.2	1				Χ
	BRELE	Brodiaea elegans subsp. eleg	ans50	0.1	0.2	0.2				
	CLPU2	Clarkia purpurea	50	0.1	0.2	0.2				
	ERIOG	Eriogonum	50	0.1	0.2	0.2				
	POSE	Poa secunda	50	0.1	0.2	0.2				
	LESSI	Lessingia	33	3.0	3	15				
	BRHO2	Bromus hordeaceus	33	1.5	1	8				Χ
	AVBA	Avena barbata	33	0.7	0.2	4				Χ
	POBI4	Polygonum bidwelliae	33	0.5	0.2	3				
	CESO3	Centaurea solstitialis	33	0.2	0.2	1				Χ
	CHST5	Chorizanthe stellulata	33	0.2	0.2	1				
	MICA7	Minuartia californica	33	0.2	0.2	1				
	BRMA3	Bromus madritensis	33	0.1	0.2	0.2				Χ
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	33	0.1	0.2	0.2				
	LUNA3	Lupinus nanus	33	0.1	0.2	0.2				

Vulpia microstachys - Lasthenia californica - Agrostis elliottiana Herbaceous Association Small Fescue - California Goldfields - Elliott's Bentgrass Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to intermittent and most strongly characterized by *Aira caryophyllea* (<1-27% cover), *Bromus hordeaceus* (<1-7% cover), *Juncus bufonius* (<1-5% cover), and *Lasthenia californica* (<1-12% cover). Additional taxa that occurred frequently included *Briza minor*, *Chlorogalum angustifolium*, *Cicendia quadrangularis*, *Hypochaeris glabra*, *Navarretia tagetina*, *Plantago erecta*, and *Vulpia microstachys*.

This association was sampled fairly frequently in the study area within the Cascade Range Foothills and Sacramento Valley Subregions (Hickman 1993). Stands often occurred on volcanic (including basalt), sometimes on sedimentary, and rarely on metamorphic substrates. These upland stands were found on bottoms, upper slopes and ridgetops, and sometimes on mesas/plateaus. Slopes were flat to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Sacramento and Shasta Counties, within the Camanche Terraces (262Ao) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	38.9	22-60	-
Herb	38.9	22-60	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	0-0.2	5-10
Conifer	0	-	-
Relative non-native to native cover	31.8	5-81	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (5), Flat (4), W (3), S (2), Variable (1), SE (1), E (1)

Macrotopography: bottom (1), upper slope to ridgetop (1), mesa/plateau (6), ridgetop (2)

Microtopography: flat (4), concave (3), convex (2), undulating (1)

Parent Material: volcanic (9), sedimentary (6), basalt (1), metamorphic (1)

Soil Texture: silt or silt loam (5), loam or sandy loam (2), clay or clay loam (1)

	Mean	Range
Elevation	962 ft.	850-1428 ft.
Slope	4.8°	0-19°
Large rock cover	2.3%	0-5%
Small rock cover	13.8%	0.2-45%
Bare ground cover	64.1%	29-85%
Litter cover	16.9%	5-50%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=17)

Rapid Assessments: SNNR0817, SNNR0978, SNNR1328 **Relevés:** SNFN0360, SNFN0361, SNFN0363, SNFN0366, SNFN0369, SNFN0371, SNFN0380, SNFN0471, SNFN0472, SNFN0473, SNFN0474, SNFN0510, SNFN0525, SNFN0527

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon the data collected for this project. The presence of *Lasthenia californica* as a strong indicator with other species such as *Chlorogalum angustifolium*, appears to be associated with relatively fine-textured mesic soils, compared with the above described associations of this alliance.

STAND TABLE

Vulpia microstachys - Lasthenia californica - Agrostis elliottiana Herbaceous Association

• •		Studiny's Et	istricina vamorinoa Agrostis	Ciliot	uuna		uocou	3 A3.	30010		
	Lifeform C	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
	Herb										
		AICA	Aira caryophyllea	100		0.2	27			Χ	Χ
		LACA7	Lasthenia californica	94	5.6	0.2	12			X	
	!	BRHO2	Bromus hordeaceus	94	2.5	0.2	7			Χ	Χ
	,	JUBU	Juncus bufonius	94	1.8	0.2	5			Χ	
	(CHAN2	Chlorogalum angustifolium	88	0.6	0.2	3			Χ	
		PLER3	Plantago erecta	88	0.4	0.2	1			Χ	
	ļ	BRMI2	Briza minor	88	0.2	0.2	0.2			Χ	Χ
	,	VUMI	Vulpia microstachys	76	2.1	0.2	10				
		HYGL2	Hypochaeris glabra	76	1.6	0.2	6				Χ
		NATA3	Navarretia tagetina	76	1.3	0.2	8				
	(CIQU3	Cicendia quadrangularis	76	0.2	0.2	1				
	•	TRERE2	Triphysaria eriantha subsp. eriantha	65	1.8	0.2	12				
		ERBO	Erodium botrys	65	1.8	0.2	10				Χ
	1	HEFI	Hemizonia fitchii	65	0.4	0.2	1				
		AGEL4	Agrostis elliottiana	65	0.1	0.2	0.2				
		LETA	Leontodon taraxacoides	53	3.9	0.2	30				Χ
	•	TRDU2	Trifolium dubium	53	1.3	0.2	13				Χ
		POZI	Pogogyne ziziphoroides	53	0.5	0.2	3				
	•	TRDE	Trifolium depauperatum	53	0.5	0.2	2				
		MIAC	Microseris acuminata	53	0.2	0.2	1				
		LAFR2	Layia fremontii	47	0.9	0.2	10				
		DEDA	Deschampsia danthonioides	47	0.2	0.2	1				
	I	BRODI	Brodiaea	47	0.2	0.2	1				
	(CAAT25	Castilleja attenuata	47	0.1	0.2	1				
	•	TRDED	Trifolium depauperatum var. depauperatum	41	0.5	0.2	3				
		LOMU	Lolium multiflorum	41	0.1	0.2	1				Χ
		TRHI4	Trifolium hirtum	41	0.1	0.2	1				Χ
		ERSE3	Eremocarpus setigerus	41	0.1	0.2	0.2				
		FIGA	Filago gallica	41	0.1	0.2	0.2				Χ
		TRMI4	Trifolium microcephalum	41	0.1	0.2	0.2				

STAND TABLE continued Vulpia microstachys - Lasthenia californica - Agrostis elliottiana Herbaceous Association

Taipia iiiioi	octaon, y o	Lactricina damorrida 7 igrocuo	011100	uu		u000.	40 / 10	000.0		
Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	VUBR	Vulpia bromoides	35	0.8	1	5	Χ			
	TRVA	Trifolium variegatum	35	0.3	0.2	4				
	TRHY3	Triteleia hyacinthina	35	0.2	0.2	3				
	LIBI	Linanthus bicolor	35	0.2	0.2	1				
	ALAM2	Allium amplectens	35	0.1	0.2					
	NALE	Navarretia leucocephala	29	3.6	0.2	34				
	HOMA2	Hordeum marinum	29	2.2	0.2	35				Χ
	TACA8	Taeniatherum caput-medusae	29	0.3	0.2	2				Χ
	CAMU3	Calycadenia multiglandulosa	29	0.3	0.2	3				
	ODHA	Odontostomum hartwegii	29	0.2	0.2	1				
	GAVE3	Gastridium ventricosum	29	0.1	0.2	0.2				Χ
	JUCA5	Juncus capitatus	29	0.1	0.2	0.2				Χ
	SIGA	Silene gallica	29	0.1	0.2	0.2				Χ
	CEMI	Centunculus minimus	24	0.3	0.2	4				
	ERCA33	Eryngium castrense	24	0.3	0.2	2				
	AVBA	Avena barbata	24	0.0	0.2	0.2				Χ
	LENI	Lepidium nitidum	24	0.0	0.2	0.2				
	LOCA5	Lomatium caruifolium	24	0.0	0.2	0.2				
	POAN	Poa annua	24	0.0	0.2	0.2				Χ
	SCBO	Scribneria bolanderi	24	0.0	0.2	0.2				
	VUMY	Vulpia myuros	24	0.0	0.2	0.2				Χ
Cryptoga	ım									
	MOSS	Moss	82	8.7	0.2	40	Χ		Χ	

Vulpia microstachys - Lasthenia californica - Parvisedum pumilum Herbaceous Association

Small Fescue - California Goldfields - Sierra Mock Stonecrop Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous and characterized most strongly by *Lasthenia californica* (<1-34% cover), *Plantago erecta* (<1-5% cover), and *Vulpia microstachys* (<1-55% cover). Additional characteristic taxa included *Hypochaeris glabra*, *Lepidium nitidum*, *Parvisedum pumilum*, and *Triphysaria eriantha* subsp. *eriantha*.

In the study area, this association was sampled frequently in the Cascade Range Foothills and somewhat frequently in the northern and central Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on volcanic (including basalt) and rarely on metamorphic (including serpentine) substrates. They occupied a variety of upland slope positions, from bottoms to upper slopes and ridgetops, and were sometimes found on mesas/plateaus. Slopes were flat to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, Mariposa, Shasta, Tehama, and Tuolumne Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	32.2	3-72	-
Herb	32.1	3-72	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	13.7	0-59	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: N (7), NW (6), Flat (6), W (5), SW (2), SE (2), S (1), E (1)

Macrotopography: bottom (1), lower slope (5), middle slope (3), upper slope (5), mesa/plateau (10), ridgetop (5), toeslope (1)

Microtopography: flat (17), undulating (10), convex (2), concave (1)

Parent Material: volcanic (20), basalt (8), metamorphic (1), serpentine (1)

Soil Texture: clay or clay loam (13), loam or sandy loam (11), sand (1), silt or silt loam (1)

	Mean	Range
Elevation	1115 ft.	324-2250 ft.
Slope	2.6°	0-19°
Large rock cover	12%	0-65%
Small rock cover	27.7%	1.2-79%
Bare ground cover	43.6%	1-88%
Litter cover	15%	0.2-90%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=30)

Rapid Assessments: SNNR1029, SNNR1172 **Relevés:** SNFN0029, SNFN0034, SNFN0053, SNFN0054, SNFN0071, SNFN0072, SNFN0293, SNFN0313, SNFN0335, SNFN0340, SNFN0343, SNFN0345, SNFN0354, SNFN0386, SNFN0396, SNFN0401, SNFN0402, SNFN0404, SNFN0406, SNFN0407, SNFN0415, SNFN0417, SNFN0432, SNFN0438, SNFN0441, SNFN0442, SNFN0586, SNFN0587

Rank: G4S4

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon data collected for this project. The presence of *Lasthenia californica* as a major indicator is related to the relatively fine-textured, mesic soils in these stands; shallow and rocky soils also appear to be characteristic of most of these stands.

STAND TABLE

Vulpia microstachys - Lasthenia californica - Parvisedum pumilum Herbaceous

Association

Lifeform Herb	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
пеги	VUMI	Vulpia microstachys	100	5.9	0.2	55			X	
	LACA7	Lasthenia californica	97	9.6	0.2	34			X	
	PLER3	Plantago erecta	97	1.2	0.2	5			Χ	
	TRERE2	Triphysaria eriantha subsp. eriantha	90	8.0	0.2	5			X	
	PAPU10	Parvisedum pumilum	80	2.8	0.2	20			X	
	HYGL2	Hypochaeris glabra	80	1.0	0.2	7			Χ	Χ
	LENI	Lepidium nitidum	80	0.3	0.2	2			Χ	
	ERBO	Erodium botrys	73	1.9	0.2	30				Χ
	TRDE	Trifolium depauperatum	70	1.4	0.2	10				
	BRHO2	Bromus hordeaceus	67	1.5	0.2	12				Χ
	AICA	Aira caryophyllea	63	0.6	0.2	10				Χ
	MICA7	Minuartia californica	57	0.4	0.2	2				
	DICAC5	Dichelostemma capitatum subsp. capitatum	50	0.2	0.2	2				
	JUBU	Juncus bufonius	47	0.5	0.2	3				
	HEFI	Hemizonia fitchii	47	0.2	0.2	4				
	CRTI	Crassula tillaea	43	0.6	0.2	15				Χ
	NATA3	Navarretia tagetina	40	0.4	0.2	4				
	PEDU2	Petrorhagia dubia	40	0.2	0.2	3				Χ
	TACA8	Taeniatherum caput-medusae	40	0.2	0.2	3				Χ
	MIAC	Microseris acuminata	40	0.2	0.2	2				
	CRCO34	Crassula connata	40	0.1	0.2	0.2				
	LAFR2	Layia fremontii	37	0.7	0.2	5				
	TRHI4	Trifolium hirtum	37	0.1	0.2	2				Χ
	LIBI	Linanthus bicolor	33	0.7	0.2	10				
	BRODI	Brodiaea	33	0.5	0.2	6				

STAND TABLE continued Vulpia microstachys - Lasthenia californica - Parvisedum pumilum Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	CHAN2	Chlorogalum angustifolium	33	0.1	0.2	2				
	PLAU	Plagiobothrys austiniae	33	0.1	0.2	1				
	TRVA	Trifolium variegatum	30	0.2	0.2	3				
	MICA	Micropus californicus	30	0.1	0.2	1				
	CIQU3	Cicendia quadrangularis	30	0.1	0.2	1				
	CEGL2	Cerastium glomeratum	30	0.1	0.2	0.2				Χ
	LEVI8	Lessingia virgata	27	0.1	0.2	1				
	TRMI4	Trifolium microcephalum	27	0.1	0.2	1				
	BRMA3	Bromus madritensis	23	0.1	0.2	3				Χ
	AVBA	Avena barbata	23	0.0	0.2	0.2				Χ
	CLPU2	Clarkia purpurea	23	0.0	0.2	0.2				
	MEPO3	Medicago polymorpha	23	0.0	0.2	0.2				Χ
	POAN	Poa annua	23	0.0	0.2	0.2				Χ
	HERBAC	unknown	23	0.0	0.2	0.2				
Cryptoga	ım									
	MOSS	Moss	90	14.8	0.2	60	Χ		Χ	
	SEHA2	Selaginella hansenii	47	2.6	0.2	50				
	LIVER	Liverwort	27	0.2	0.2	3				

Vulpia microstachys - Navarretia tagetina Herbaceous Association Small Fescue - Marigold Pincushionplant Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to intermittent and characterized most strongly by *Navarretia tagetina* at <1-14% cover and *Vulpia microstachys* at <1-40% cover. Additional characteristic taxa included *Bromus hordeaceus*, *Hemizonia fitchii*, and *Plantago erecta*.

In the study area, this association was sampled frequently within the Cascade Range Foothills and infrequently in the High Cascade Range Subregions (Hickman 1993). Stands consistently occurred on volcanic (including basalt) substrates. They occupied a variety of upland slope positions, from bottoms to upper slopes and ridgetops, and were found occasionally on mesas/plateaus. Slopes twere flat to moderate.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte and Tehama Counties, within the Tuscan Flows (M261Fa) USDA Ecological Subsection (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	38.3	18-65	-
Herb	38.2	18-65	< 0.3
Shrub	0	-	-
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0	-	-
Relative non-native to native cover	10.9	2-45	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: Flat (6), SE (5), W (3), NW (3), SW (2), E (1)

Macrotopography: bottom (1), lower slope (1), middle slope (6), upper slope (6), mesa/plateau

(3), ridgetop (3)

Microtopography: flat (13), undulating (7) Parent Material: volcanic (16), basalt (4)

Soil Texture: clay or clay loam (8), loam or sandy loam (7), silt or silt loam (3)

	Mean	Range
Elevation	1039 ft.	312-2907 ft.
Slope	4.10	0-12°
Large rock cover	6.5%	0-48%
Small rock cover	21.5%	2-43%
Bare ground cover	25.9%	6-55%
Litter cover	42.1%	12-87%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=20)

Rapid Assessments: SNNR0071, SNNR0091, SNNR0121, SNNR0166, SNNR0167, SNNR0170, SNNR0315, SNNR0391 **Relevés:** SNFN0157, SNFN0161, SNFN0167, SNFN0169, SNFN0235, SNFN0241, SNFN0242, SNFN0243, SNFN0318, SNFN0319, SNFN0328, SNFN0378

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon the data collected for this project. This is another association that is characteristic of shallow volcanic soils, but it tends to have slightly higher cover and greater soil depth than several others. Soil textures are intermediate between associations in this alliance with high *Lasthenia* cover and those with high *Selaginella* cover. This association appears related to the *Layia fremontii - Lasthenia californica - Achyrachaena mollis* and the *Layia fremontii - Achyrachaena mollis* Herbaceous Associations; stands of these associations may be adjacent to stands of this *V. microstachys* alliance. These related types overlap in species composition (e.g., *Navarretia tagetina*, *Triphysaria eriantha*, *Lasthenia californica*, etc.) and environmental setting (e.g., on Tuscan soils in Butte and Tehama Counties).

STAND TABLE

Vulpia microstachys - Navarretia tagetina Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	VUMI	Vulpia microstachys	95	5.8	0.2	40			X	
	NATA3	Navarretia tagetina	95	4.4	0.2	14			X	
	PLER3	Plantago erecta	90	2.5	0.2	10			Χ	
	BRHO2	Bromus hordeaceus	90	1.0	0.2	8			Χ	Χ
	HEFI	Hemizonia fitchii	85	2.9	0.2	30			Χ	
	PEDU2	Petrorhagia dubia	75	0.8	0.2	5				Χ
	GAVE3	Gastridium ventricosum	70	0.7	0.2	4				Χ
	TRERE2	Triphysaria eriantha subsp. eriantha	65	0.5	0.2	3				
	AICA	Aira caryophyllea	60	0.7	0.2	4				Χ
	JUBU	Juncus bufonius	55	1.9	0.2	12				
	AVBA	Avena barbata	55	0.2	0.2	1				Χ
	CEMU2	Centaurium muehlenbergii	50	1.3	0.2	7				
	TACA8	Taeniatherum caput-medusae	50	0.5	0.2	3				Χ
	CLPUQ	Clarkia purpurea subsp. quadrivulnera	50	0.4	0.2	3				
	POBI4	Polygonum bidwelliae	45	1.1	0.2	6				
	POZI	Pogogyne ziziphoroides	45	0.6	0.2	6				
	PAPU10	Parvisedum pumilum	45	0.2	0.2	2				
	BRELE	Brodiaea elegans subsp. elega	<i>n</i> s40	0.4	0.2	5				
	TRLA4	Trichostema lanceolatum	40	0.4	0.2	2				
	CLPU2	Clarkia purpurea	40	0.3	0.2	2				
	LACA7	Lasthenia californica	40	0.3	0.2	2				
	ALAM2	Allium amplectens	35	1.8	0.2	17				
	DEDA	Deschampsia danthonioides	35	8.0	0.2	6				
	CHAN2	Chlorogalum angustifolium	35	0.2	0.2	2				
	VUMY	Vulpia myuros	35	0.2	0.2	2				Χ
	MIAC	Microseris acuminata	35	0.2	0.2	1				
	TRDE	Trifolium depauperatum	35	0.2	0.2	1				

STAND TABLE continued Vulpia microstachys - Navarretia tagetina Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Herb										
	ERSE3	Eremocarpus setigerus	35	0.1	0.2	0.2				
	TRHI4	Trifolium hirtum	35	0.1	0.2	0.2				Χ
	NAPU2	Navarretia pubescens	30	2.9	1	26				
	BRCA4	Brodiaea californica	30	1.1	0.2	15				
	LAFR2	Layia fremontii	30	0.5	0.2	5				
	POCA7	Polygonum californicum	30	0.3	0.2	4				
	FIGA	Filago gallica	30	0.1	0.2	0.2				Χ
	LEVI8	Lessingia virgata	25	1.0	0.2	15				
	TRDED	Trifolium depauperatum var. depauperatum	25	0.2	0.2	2				
	MICA7	Minuartia californica	25	0.1	0.2	1				
	ODHA	Odontostomum hartwegii	25	0.1	0.2	0.2				
Cryptoga	ım									
	MOSS	Moss	55	10.3	1	54				

Vulpia microstachys - Plantago erecta - Calycadenia (truncata, multiglandulosa) Herbaceous Association

Small Fescue - Dwarf Plantain - Rosinweed (Oregon Western, Sticky Western) Herbaceous Association

SUMMARY

In the stands sampled, the herbaceous canopy was open to continuous with *Plantago erecta* (1-10% cover) and *Vulpia microstachys* (<1-18% cover) occurring frequently, and either *Calycadenia multiglandulosa* or *Calycadenia truncata* occurring in most stands. Other taxa that were often present included *Avena barbata*, *Bromus hordeaceus*, *Castilleja lacera*, *Trifolium willdenovii*, and/or other *Calycadenia* species.

In the study area, this association was sampled somewhat frequently within the central Sierra Nevada Foothills, and infrequently in the Cascade Range Foothills and northern Sierra Nevada Foothills Subregions (Hickman 1993). Stands usually occurred on serpentine and other ultramafic (including gabbro) substrates, occasionally on volcanic (including basalt) substrates, and rarely on metamorphic substrates. These stands were typically found in upland settings, on bottoms, lower to upper slopes, ridgetops, and rarely edges of basins/wetlands. Slopes were flat to somewhat steep.

DISTRIBUTION IN STUDY AREA

This association was sampled in Butte, El Dorado, Tehama, Tuolumne, and Yuba Counties, within the Lower Foothills Metamorphic Belt (M261Fb) and Tuscan Flows (M261Fa) USDA Ecological Subsections (Miles and Goudey 1997).

LOCAL VEGETATION DESCRIPTION

	Mean %	Range %	Height (m)
Total vegetation cover	41.5	10-75	-
Herb	40.9	7-75	variable
Shrub	0.9	0-5	0.9-2
Low Tree/Tall Shrub	0	-	-
Hardwood	0	-	-
Conifer	0.3	0-4	10-20
Relative non-native to native cover	31.4	2-67	-

LOCAL ENVIRONMENTAL DESCRIPTION

Aspect: SW (3), Flat (3), S (2), NE (2), W (1), Variable (1), SE (1), NW (1)

Macrotopography: bottom (2), lower slope (2), middle slope (3), upper slope (4), edge of

basin/wetland (1), ridgetop (2)

Microtopography: flat (5), undulating (4), concave (4), convex (1)

Parent Material: serpentine (7), ultramafic (2), volcanic (2), basalt (1), gabbro (1), metamorphic

(1)

Soil Texture: clay or clay loam (5), loam or sandy loam (5), unknown (1)

	Mean	Range
Elevation	1073 ft.	660-2045 ft.
Slope	8.9°	0-24°
Large rock cover	11.3%	0-50%
Small rock cover	25.6%	1-70%
Bare ground cover	26.7%	5-60%
Litter cover	32.9%	3-69%

SAMPLES USED TO DESCRIBE ASSOCIATION (n=14)

Rapid Assessments: SNNR0153, SNNR0205, SNNR0249, SNNR1488, SNNR1494, SNNR1496 **Relevés:** SNFN0083, SNFN0173, SNFN0201, SNFN0584, SNFN0590, SNFN0597, SNFN0601, SNFN0707

Rank: G3S3

GLOBAL DISTRIBUTION AND COMMENTS

This association has been described for the Sierra Nevada Foothills based upon data collected for this project and for the Peoria Wildlife Area project in Tuolumne County (Evens et al. 2004). It appears largely restricted to serpentine or other ultramafic substrates in the northern and central Sierra Nevada Foothills.

STAND TABLE

Vulpia microstachys - Plantago erecta - Calycadenia (truncata, multiglandulosa)

Herbaceous Association

Lifeform Shrub	Code	Species Name	Con	Avg	Min	Max	D	сD	С	N
Om ab	CECU	Ceanothus cuneatus	21	0.1	0.2	1				
Herb										
	BRHO2	Bromus hordeaceus	100	8.6	0.2	50			Χ	Χ
	VUMI	Vulpia microstachys	71	4.0	0.2	18				
	PLER3	Plantago erecta	64	2.6	1	10				
	CALA68	Castilleja lacera	57	1.0	0.2	3				
	AVBA	Avena barbata	50	3.6	0.2	25				Χ
	TRWI3	Trifolium willdenovii	50	8.0	0.2	6				
	CATR3	Calycadenia truncata	43	7.6	10	30				
	HYGL2	Hypochaeris glabra	43	1.7	0.2	15				Χ
	BRMA3	Bromus madritensis	43	0.2	0.2	1				Χ
	GAVE3	Gastridium ventricosum	43	0.1	0.2	0.2				Χ
	TRHI4	Trifolium hirtum	36	2.4	0.2	16				Χ
	AICA	Aira caryophyllea	36	1.2	0.2	15				Χ
	LOWR2	Lotus wrangelianus	36	0.8	0.2	10				
	TRMI4	Trifolium microcephalum	36	0.7	0.2	5				
	DAPU3	Daucus pusillus	36	0.2	0.2	2				
	TRERE2	Triphysaria eriantha subsp. eriantha	36	0.1	0.2	1				
	CEME2	Centaurea melitensis	36	0.1	0.2	0.2				Χ
	CAMU3	Calycadenia multiglandulosa	29	5.7	2	40				
	BRDI2	Brachypodium distachyon	29	2.1	0.2	20				Χ
	GITR2	Gilia tricolor	29	1.4	0.2	8				
	LACA7	Lasthenia californica	29	1.0	0.2	12				
	CHME2	Chorizanthe membranacea	29	0.3	0.2	3				

STAND TABLE continued

Vulpia microstachys - Plantago erecta - (Calycadenia truncata - Calycadenia multiglandulosa) Herbaceous Association

Lifeform	Code	Species Name	Con	Avg	Min	Max	D	cD	С	N
Herb	BRELE	Brodiaea elegans subsp.								
		elegans	29	0.1	0.2	1				
	CASU3	Calochortus superbus	29	0.1	0.2	1				
	SIGA	Silene gallica	29	0.1	0.2	1				Χ
	DICAC5	Dichelostemma capitatum subsp. capitatum	29	0.1	0.2	0.2				
	PETR7	Pentagramma triangularis	29	0.1	0.2	0.2				
	NAPU2	Navarretia pubescens	21	0.9	0.2	12				
	SIHI2	Sidalcea hirsuta	21	0.8	0.2	10				
	PEDU2	Petrorhagia dubia	21	0.2	0.2	3				Χ
	GAPA5	Galium parisiense	21	0.2	0.2	1				Χ
	TACA8	Taeniatherum caput-medusae	21	0.2	0.2	1				X
	CYEC	Cynosurus echinatus	21	0.1	0.2	1				Χ
	ERSE3	Eremocarpus setigerus	21	0.1	0.2	1				
	ASGA	Astragalus gambelianus	21	0.0	0.2	0.2				
	CAAT25	Castilleja attenuata	21	0.0	0.2	0.2				
	CHLOR3	Chlorogalum	21	0.0	0.2	0.2				
	ELMU3	Elymus multisetus	21	0.0	0.2	0.2				
	PTDR	Pterostegia drymarioides	21	0.0	0.2	0.2				
	TRAL5	Trifolium albopurpureum	21	0.0	0.2	0.2				
	HERBAC	unknown	21	0.0	0.2	0.2				
Cryptoga	m									
	MOSS	Moss	36	0.1	0.2	1				
	LICHEN	Lichen	21	0.4	0.2	5				