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Examples of light pollution from cannabis cultivation operations in southern Humboldt
County, 2018-2020. Photo credit: LoMaX




California Fish and Wildlife, Cannabis Special Issue; 75-90; 2020

A review of the potential impacts of artificial lights on fish
and wildlife and how this may apply to cannabis cultivation

LINDSEY N.RICH", ERIN FERGUSON?, ANGE DARNELL BAKER®,
AND ERIN CHAPPELL*

L4California Department of Fish and Wildlife, Nongame Wildlife Program, 1010 Riverside
Phkwy, West Sacramento, CA 95605, USA

2 California Department of Fish and Wildlife, Fisheries Branch, 1010 Riverside Pkwy, West
Sacramento, CA 95605, USA

3 California Department of Fish and Wildlife, Habitat Conservation and Planning Branch,
1010 Riverside Pkwy, West Sacramento, CA 95605, USA

*Corresponding Author: lindsey.rich@wildlife.ca.gov

Artificial lighting is used at cannabis cultivation sites in California to promote
yield, for task lighting, and to provide security. While our understanding of how
fish and wildlife respond to the artificial lights associated with cannabis cultivation
specifically is in its infancy, studies assessing species’ responses to other forms
of artificial lighting at night have been ongoing for decades. We provide a review
of these studies, with the goal of illuminating how artificial lights may influence
the activity, movement, navigation, migration, phenology, and physiology of fish
and wildlife populations.
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Light plays a vital role in ecosystems by functioning as both an energy and an
information source (Gaston et al. 2012, 2013). The addition of artificial light (i.e., light
produced by humans) into a landscape can disrupt this role, altering the natural diel, lunar,
and seasonal cycles under which species have evolved. This can influence a broad range of
system processes including primary productivity in plants, wildlife activity patterns, species
interactions, availability and detectability of food resources, movement and migration, tim-
ing of phenological events, and physiological functions (Longcore and Rich 2004, Da Silva
et al. 2015, Bliss-Ketchum et al. 2016, Spoelstra et al. 2017). Further, because of sky glow
(i.e., scattered light in the atmosphere), the reach of artificial light can extend far beyond
the area that is directly illuminated (Longcore and Rich 2004). On cloudy nights in urban
and suburban areas, for example, the sky glow effect can be of an equivalent or greater
magnitude than high-elevation summer moonlight (Kyba and Hélker 2013).
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Artificial lighting is increasingly being used in indoor and mixed-light (i.e., greenhouse)
cannabis cultivation to promote yield, and for security around the perimeter of cannabis
cultivation sites (CDFA 2017). While understanding how fish and wildlife respond to the
artificial lights associated with cannabis cultivation, specifically, is an emerging question,
studies aimed at assessing species’ responses to other forms of artificial light have been
ongoing for decades (Rowan 1929, Lashbrook and Livezey 1970, Pedersen and Larsen
1982, Thorpe 1987). Prior knowledge of how artificial light influences fish and wildlife
species led the California Department of Food and Agriculture (CDFA), the primary com-
mercial cannabis licensing authority, to require cannabis cultivation licensees to comply
with several environmental protection measures pertaining to artificial light (CDFA 2017).
These include ensuring that all outdoor lighting used for security purposes is shielded and
downward facing, and that all lights used for cultivation are shielded from sunset to sunrise
to avoid nighttime glare (CDFA 2017). To elucidate why these protective measures were
put into place, and to predict how artificial lights associated with cannabis cultivation may
influence fish and wildlife species across California, we review prior studies that assessed
the influence of artificial light on species’ 1) activity patterns, 2) movement, navigation,
and migration, and 3) phenology and physiology. In this paper, we review these potential
impacts to fish and wildlife resources, as well as potential approaches for mitigating the
impacts of artificial lights.

ACTIVITY PATTERNS

Artificial light improves diurnal and crepuscular species’ ability to see at night, al-
lowing them to extend their period of activity into hours of natural darkness (Boujard and
Leatherland 1992; Longcore and Rich 2004; Gaston et al. 2013). This activity pattern shift
has been predominantly documented in birds, with bird species like the American Robin
(Turdus migratoriusi) and Northern Mockingbird (Mimus polyglottos) beginning morning
choruses earlier in the dawn and earlier in the year in areas with artificial lights (Table 1;
Derrickson 1988; Miller 2006). For some species, this effect was found to be strongest at
higher light intensities (Da Dilva et al. 2014, 2015). Diurnal bird species and salmonid fishes
such as Lesser Kestrels (Falco naumanni), plover species, European Robins (Erithacus
rubecula), Blue Tits (Cyanistes caeruleus), Rainbow Trout (Oncorhynchus mykiss), and
Atlantic Salmon (Salmo salar) (Boujard and Leatherland 1992; Boeuf and Le Bail 1999;
Negro et al. 2000; Santos et al. 2010; Byrkjedal et al. 2012), have also been shown to extend
their foraging activities into the night in artificially illuminated areas. In the salmonid spe-
cies, this extended feeding period led to increased growth rates and muscle mass (Boujard
and Leatherland 1992; Boeuf and Le Bail 1999).

Conversely, other species may have reduced foraging success or reduced nighttime
activity in artificially illuminated environments (Vogel and Beauchamp 1999; Gaston et al.
2013). Prey detection in some drift feeding and piscivorous fish species, for example, is
dependent on the contrast between prey and background lighting. Consequently, these spe-
cies exhibit greater visual sensitivity under low light conditions, and their ability to detect
prey may be reduced in artificially lit environments (Tanaka 1970; Blaxter 1975). Artificial
night lighting has also been found to impact juvenile salmonid overwintering success by
delaying the emergence of salmonids from benthic refugia and reducing their ability to feed
during the winter (Contor and Griffith 1995; Bradford and Higgins 2001).

A species may reduce their nighttime activity, alternatively, if their vulnerability to
predation increases in brighter conditions (Navara and Nelson 2007; Gaston et al. 2013).
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This pattern appears to be widespread, having been documented in species ranging from
small mammals to snakes to amphibians to invertebrates (Table 1). Insectivorous bat species
in Europe, including the lesser horseshoe bat (Rhinolophus hipposideros), Geoftroy’s bat
(Myotis emarginatus), and lesser mouse-eared bat (M. oxygnathus), for example, showed
significantly decreased activity and/or a delay in the start of commuting behavior when
exposed to light, likely as a predator avoidance strategy (Stone et al. 1999; Boldogh et al.
2007; Spoelstra et al. 2017).

One species altering its activity patterns due to artificial light can have cascading
impacts on numerous other animals, including the species’ predators, competitors, and prey.
If prey species reduce their nighttime activity in areas with artificial light, for example, it
can make prey detection harder and increase the energy demands of the respective preda-
tor (Table 1; Buchanan 1993). Alternatively, if prey species are attracted to artificial light,
it can make prey detection easier and may result in changes in the movement patterns or
distributions of the species’ predators (Longcore and Rich 2004; Becker et al. 2013; Gaston
et al. 2013). Artificial light tends to attract insects from the orders Lepidoptera, Diptera,
Trichoptera, Hemiptera, Coleoptera, and Hymenoptera, for example, which then attract
insectivorous bird and bat predators (Table 1; Santos et al. 2010; Longcore et al. 2015;
Minnaar et al. 2015; Spoelstra et al. 2017; Welbers et al. 2017). Lastly, artificial light may
make prey detection easier for predators that rely on visual cues to locate prey, as has been
found with certain species of owls, toads, and salmon (Table 1; Dice 1945; Pedersen and
Larsen 1982; Mazur and Beauchamp 2003).

MOVEMENT, NAVIGATION, AND MIGRATION

Artificial light can function as a barrier to connectivity, which may contribute to
isolated populations, reduced genetic diversity, increased species’ susceptibility to disease,
and limited access to resources (Table 2; Bliss-Ketchum et al. 2016). Some mammal species,
for example, are less likely to use road under-crossings that are illuminated when compared
to those that are dark (Bliss-Ketchum et al. 2016). Plecotus and Myotis bat species in the
Netherlands, alternatively, avoided areas that were illuminated by white or green light,
resulting in the loss of these areas as potential habitat (Spoelstra et al. 2017).

By masking the natural light signals (e.g., through sky glow) that guide species’
movements, artificial light can also have major disruptive effects on navigation and migra-
tion patterns in a variety of species (Table 2; Rowan 1932; Lowe 1952; Gaston et al. 2013;
Bennie et al. 2015). In Pacific salmon (Oncorhynchus spp.), for instance, adult migrations
and the out-migration of juveniles can be slowed or halted by the presence of artificial lights
(Tabor et al. 2004; Nightingale et al. 2006). Similarly, the orientation of nocturnally migrat-
ing birds, the homing behavior of Red-Spotted Newts (Notophthlamus viridescens), and
the vertical migration of larval salamanders (Ambystoma spp.), have all been documented
to be disrupted by artificial light (Anderson and Graham 1967; Phillips and Borland 1992,
1994; Poot et al. 2008).

PHENOLOGY AND PHYSIOLOGY
Light mediates species’ input and interpretation of day length, which can affect the

output of certain hormones that regulate physiological events like development, reproduc-
tion, hibernation, dormancy, smoltification, and migration (Table 3; Hoffnagle and Fiviz-
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Table 2. Examples of altered animal movement or migration patterns associated with artificial nighttime lighting.

Taxa

Species

Response

Source

Mammals

Herpetofauna

Invertebrates

Fish

Black-tailed deer
(Odocoileus hemionus
columbianus)

Deer mice (Peromyscus
maniculatus), opossum
(Didelphis virginiana)

California bat species

Common Toad (Bufo
bufo)

Larval salamanders
(Ambystoma spp.)

Monarch Butterfly (Da-
naus plexippus)

Juvenile Pacific salmo-
nids (Oncorhynchus
sp.)

Rainbow Trout (On-
corhynchus mykiss) and
Atlantic Salmon (Salmo
salar)

General

Deer showed sensitivity even to
nearby lights, using under-road
crossings less often when neigh-
boring sections were lit (high =
172.00 Ix; low = 54.00 1x) com-
pared to when none were lit.

Mice and opossum used under-
road crossings significantly more
often in ambient conditions than
in lit (high = 172.00 1x; low =
54.00 Ix).

Artificial lights can disturb roost-
ing bats and potentially lead to the
abandonment of maternity roosts.

During mass emigration of newly
metamorphosed toads away from
their aquatic environment, more
toads aggregated in areas illu-
minated by streetlamps than in
unlit areas.

Vertical migration, which is asso-
ciated with feeding, was correlated
with decreased light intensity.

In a lab, Monarch’s circadian
clock was disrupted when exposed
to constant light, likely because
they rely on light cues to migrate.
Further, they were unable to ori-
ent in the correct direction when
exposed to advanced light (i.e.,
sun compass had been advanced
by 6 hours).

Salmon fry migrated downstream
at a slower rate under higher light
intensities (1.08 and 5.40 1x) than
under complete darkness (0.00 Ix).

Locomotor activity of salmonids is
strongly influenced by an endog-
enous circadian clock entrained to
12L:12D cycles.

Input of artificial light increases
species abundance by attracting
fish to light sources, potentially
concentrating predator and prey
fish species. This can cause un-
natural top-down regulation of fish
populations.

Bliss-Ketchum et al.
2016

Bliss-Ketchum et al.
2016

Johnston et al. 2004

Baker 1990

Anderson and Gra-
ham 1967

Froy et al. 2003

Tabor et al. 2004

ligo and Tibata 1997,
Richardson and Mc-
Cleave 1974, Thorpe
1987

Nightingale et al.
2006, Becker et al.
2013
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zani 1998; Bradshaw and Holzapfel 2010). Further, photoperiodic control allows species
to synchronize reproductive activities and to coordinate key life cycle events with suitable
weather conditions (Gaston et al. 2013). When natural photoperiods are disrupted by artifi-
cial lights, species may become asynchronous with climatic and environmental conditions
(e.g., mismatched reproductive activity with new plant growth or the reproductive activity
of prey), which in turn, may negatively impact the species’ fitness (Bradshaw and Holza-
pfel 2010; Bedrosian et al. 2011). The introduction of artificial night lights can shift entire
breeding phenologies in temperate zone birds, for example, given that singing behavior,
timing of gonadal growth, and egg laying are all proximately controlled by photoperiod (Da
Silva et al. 2015). In addition to birds, artificial lights have also been shown to influence
the reproductive activities of bats, frogs, fish, and beetles (Table 3).

Continuous periods of darkness also play an important role in controlling the repair
and recovery of certain physiological functions (Gaston et al. 2013). Darkness is vital to the
production of melatonin, the hormone that orchestrates changes in body mass, metabolic
rates, hormone synthesis, and immunity that, in turn, influence processes ranging from
reproductive development to skin coloration to thermoregulation (Table 3; Zubidat et al.
2007; Da Silva et al. 2015; Dominoni et al. 2016). By disrupting the production of mela-
tonin, artificial light can suppress species’ immune responses, alter species’ perception of
day length, or change a species’ metabolic rate requiring them to spend more time foraging
(Leonardi and Klempau 2003; Navara and Nelson 2007; Perry et al. 2008; Da Silva et al.
2015). Constant illumination may even cause results as extreme as altering a species’ gene
expression (Perry et al. 2008).

MITIGATING THE IMPACTS OF ARTIFICIAL LIGHT

The impacts of artificial lighting on ecosystems can be mitigated using numerous
approaches of varying intensity (Gaston et al. 2012). The most effective option would be
to prohibit the use of artificial night lighting or restrict its use. Restrictions may include,
for example, limiting the use of artificial lights to 1-2 hours following sunset and 1-2 hours
preceding sunrise (vs. all night), switching lights off or dimming lights during critical
times of the year such as when foraging, breeding, or dispersal and migratory activities
are happening, or only allowing the use of motion-activated lights (Gaston et al. 2012;
International Dark Sky Association- IDA 2019). Less restrictive options for mitigating
the impacts of artificial night lighting are to ensure 1) lights are only used where they are
needed, 2) lights are only illuminated when they are useful, 3) lights only illuminate the
target area (i.e., trespass of light is minimized), and 4) lights are no brighter than necessary
(IDA 2019). Trespass of light typically happens when lights are unshielded, which includes
when light fixtures have an exposed bulb, and can be addressed by fully shielding fixtures
and ensuring they are downward facing, as is required by CDFA for commercial cannabis
cultivators (CDFA 2017; IDA 2019).

The impacts of artificial lighting may also be mitigated by changing the intensity
or spectrum of the lighting (Gaston et al. 2012). Each type of lamp has a unique spectral
signature, emitting light at differing intensities and over distinctive ranges of wavelengths
(Gaston et al. 2013). This is true of both artificial light and natural light. In a natural pho-
toperiod, for example, blue light increases as dusk falls, especially when the moon is new
or absent (Sweeney et al. 2011). Blue light is then replaced by moonlight and/or starlight,
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which is red-shifted relative to sunlight (Sweeney et al. 2011). These spectral characteristics
are used by wildlife species as sources of information regarding their location and the time
of day, triggering numerous behavioral and physiological processes (Sweeney et al. 2011;
Longcore et al. 2015). White light-emitting diodes (LEDs), which emit a large fraction of
their energy as blue light, have rapidly become the most common type of outdoor lighting,
with higher Color Correlated Temperature (CCT) LEDs emitting more blue light than lower
CCT LEDs (e.g. a 4000° Kelvin CCT LED typically emits more than a 2700° Kelvin CCT
LED). This may be problematic for local wildlife populations as blue light produces more
sky glow than lower color temperatures (e.g., yellow or red light) and contains the most
biologically active wavelengths for physiological processes like hormone production and
daily activity (Gaston et al. 2012; Kyba and Holker 2013; Brainard et al. 2015; IDA 2019).
The spectral composition of LEDs can be custom-built, however, to mitigate the effects
of artificial night light on ecosystems (Table 4; Poot et al. 2008; Gaston et al. 2012; Ouyang
et al. 2015; De Yong et al. 2018). The IDA (2019) recommends using LEDs with color
temperatures less than 3000 Kelvins when white lighting is needed and there are no specific
wildlife concerns. When there are wildlife concerns, the recommended spectral composition
of LEDs is species-specific. Green, yellow, phosphor-coated amber, and white LEDs with
filters that remove blue wavelengths have all been found to help minimize the responses of
certain wildlife species to artificial light (Longcore and Rich 2016; Longcore et al. 2018).

FUTURE DIRECTIONS

Artificial lights associated with cannabis cultivation may differ from lights associated
with other forms of human development both temporally and spatially. They may differ
temporally if lights are on continuously during nighttime hours, as compared to motion-
activated lights or lights that are only on in the daytime. They may differ spatially if lights
are operating in areas that are predominantly rural and forested, as compared to lights that
are clustered in housing developments or in large agricultural areas. As of August 2019, 43%
of commercial cannabis cultivation licenses issued by CDFA have been for mixed-light can-
nabis cultivation, which uses artificial lights to extend the number of growing hours in a day
and the number of growing days in a year (i.e., the lights function during nighttime hours).
The majority of these mixed-light licenses have been issued in Humboldt and Mendocino
counties in northwestern California, one of the least developed regions of the state, with
most cannabis-related development in this region occurring in areas previously covered in
natural vegetation, notably old growth and second growth forests (Butsic et al. 2018). While
this suggests that artificial lighting associated with cannabis cultivation may be distributed
differently across the landscape than other types of artificial lighting, empirical data are
desperately needed. Thus, in relation to cannabis cultivation, we encourage assessments
on 1) the proportion of cultivators using artificial light in an outdoor or mixed light setting,
and whether these lights are fully contained (i.e., such that no light escapes), 2) the number
of nighttime hours when artificial lights are illuminated and how this varies throughout the
year, and 3) the spatial distribution of artificial light sources and resulting skyglow at both
local (e.g., within a forested or urban environment) and statewide scales. This information
is imperative for developing our understanding of how artificial lighting is used in cannabis
cultivation, how it may be impacting fish and wildlife populations in California, and how
we can proactively mitigate any potential impacts.
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Table 4. Examples of how different light colors impact wildlife.

Color  Species Response Source
White Nocturnally migrat- 60.5—80.8% of observed birds were disori- Poot et al. 2008
ing birds ented by and attracted to white light.
Plecotus and Myotis These bat species avoided transects illumi- Spoelstra et al. 2017
bat species nated by white light (via light posts).
Pipistrellus bat spe- These bat species were more abundant in  Spoelstra et al. 2017
cies transects illuminated by white light (via
light posts) than in darkness, likely because
of the accumulation of insects.
Common toads Toads avoided sections of road illuminated Grunsven et al. 2016
in white light.
Red Nocturnally migrat- 53.8 — 54.2% of birds were disoriented by Poot et al. 2008
ing birds and attracted to red light.
Common toads The toads showed no response if the road Grunsven et al. 2016
was illuminated in red light.
Plecotus, Myotis, Bats were equally abundant in transects il- Spoelstra et al. 2017
and Pipistrellus bat luminated by red light (via light posts) and
species in darkness, which suggests they were least
disturbed by red light.
House flies Flies were attracted to red light. Longcore et al. 2015
Green Nocturnally migrat- Birds were less disoriented by green light Poot et al. 2008
ing birds than by red and white light, with only
12.5 —27.3% of observed birds reacting to
green light.
Plecotus and Myotis These bat species avoided transects illumi- Spoelstra et al. 2017
bat species nated by green light (via light posts).
Mosquitos, midges, These insects are attracted to green light.  Longcore et al. 2015
house flies
Blue  Nocturnally migrat- Birds were the least disoriented by blue light Poot et al. 2008

ing birds

Most insects

Coho Salmon (On-
corhynchus kisutch)
and Chinook Salm-
on (Oncorhynchus
tshawytscha)

(2.7—-5.3% of observed birds reacted), when
compared to red, white, and green light.

Many insects are attracted to blue light.

In a lab setting, salmonids were more active
(90% increase in activity) under lights in the
blue and ultraviolet spectrum (mercury va-
por lamps), when compared to strobe lights.

Longcore et al. 2015

Puckett and Anderson
1988, Nemeth and
Anderson 1992
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