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In the western U.S., long-term fire suppression has led to a build-
up of surface and ladder fuels, increasing the severity of fires. Coupled 
with increased home building in the wildland urban interface and global 
climate change, much of the western U.S. is facing unprecedented risk of 
catastrophic wildland fires. Given the almost 30 million acres of forestland 
in California, and the impacts to human community health and safety and 
natural systems that stem from uncontrolled fires, it is imperative that we 
understand the underlying processes and conditions in the landscape that 
determine fire impacts. In October of 2017, Sonoma County, California 
experienced three significant fires that resulted in loss of life and property, 
as well as impacts to natural systems. Sonoma County Ag + Open Space—
with support from a team of technical consultants and in partnership with 
NASA and other experts—researched the impacts of the fires to woody 
vegetation within areas that burned during wind-driven and non-wind 
driven events. Using high-resolution aerial imagery, we mapped canopy 
condition of woody vegetation and used machine learning techniques to 
determine the importance of landscape measures of vegetation structure, 
land cover type, topography, climate and weather, and nearness to streams 
as predictors of woody canopy condition for areas that burned during the 
October 2017 fires. Across the landscapes, riparian and mesic vegetation 
types exhibited the least canopy damage, followed by upland hardwood 
forest types. Shrub and upland conifer types exhibited the most canopy 
damage. Measures of vegetation structure derived from lidar data are the 
most important predictors of post-fire woody canopy condition, in addi-
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tion to slope-aspect, proximate vegetation community types, and distance 
to streams. In general, the higher the density of shrubs and fire-adapted 
vegetation types, the higher the density of ladder fuels, and the greater the 
distance from streams, the higher the canopy damage. This study empha-
sizes the value of high resolution airborne lidar for mapping vegetation 
type and structure and building locations at a scale large enough to inform 
local management decisions. The study also documents pre- and post-fire 
baseline conditions to support the long-term evaluation of vegetation 
impacts and provides remote sensing and analysis tools to better plan for, 
manage, and mitigate future extreme wildfire through the lens of climate 
and extreme event resiliency, community safety and ecosystem health.

Key words: biodiversity, climate resiliency, data collaborations, fire, forest health, fuel 
loading, land conservation, land management, remote sensing, Sonoma County, vegetation 
structure, vegetation type
__________________________________________________________________________

California’s wildlands are critically important in maintaining the state’s biological 
diversity, as well as providing myriad other benefits related to human health and vitality. 
Forested watersheds provide clean and abundant drinking water for millions of people, 
sequester substantial amounts of carbon, provide revenue and jobs from the sale of wood 
products, create opportunities for recreation, and are important scenic attributes in Califor-
nia’s tourism economy.

In California, 15 of the most destructive wildfires in the state’s history occurred in 
the last 20 years (CAL FIRE 2019). The underlying causes of these wildfires stem from a 
variety of factors, including climate change, tree disease, drought, and land-use policies, as 
well as over 100 years of fire suppression (Keane et al. 2002; Miller 2012; Smith et al. 2016). 
These landscapes are home to a diversity of plant and animal species as well as millions 
of people who live in rural watersheds or in the wildland urban interface (WUI). Given the 
fact that forests cover about a third the California landscape (USDA Forest Service 2014) 
and forest conditions are influenced by vast temporal and spatial scales, high quality remote 
sensing data and analysis is critical for efficiently and effectively managing forests for both 
ecosystem and human community resiliency.

Sonoma County, California is a million-acre county situated at the northern boundary 
of the San Francisco Bay Area and the southern boundary of the rural North Coast counties 
of Mendocino, Humboldt, and Del Norte (Figure 1). A biologically rich area with a high 
degree of endemism, Sonoma County’s wildlands are characterized by a relatively undevel-
oped coastline, a diversity of geologic features, three sizable rivers (Russian, Petaluma, and 
Gualala), numerous creeks and streams, and a variety of vegetation types including forests, 
woodlands, grasslands, salt and freshwater wetlands, and the Geysers geothermal area.

In 1990, Sonoma County voters created the Sonoma County Agricultural Preservation 
and Open Space District (Ag + Open Space) to permanently protect the diverse agricultural, 
natural resource, and scenic open space lands of Sonoma County for future generations. Along 
with its partners, the agency has permanently protected over 49,000 ha (121,000 acres) of 
land in Sonoma County, using the best available science and data to prioritize its actions. 



CALIFORNIA FISH AND WILDLIFE, FIRE SPECIAL ISSUE 202016

Figure 1. Location of Sonoma County in 
California, USA.

Sonoma Veg Map: Foundational Data

Ag + Open Space relies on high quality data, ongoing analysis and modeling, and 
collaboration with a diversity of experts to inform decisions regarding the most important 
lands to conserve. To this end, Ag + Open Space led and managed the Sonoma County 
Vegetation Mapping and Lidar Program (Sonoma Veg Map Program) to create a suite of 
datasets to inform its land conservation objectives, supported by a highly qualified team 
of consultants including the authors of this paper. In addition to Ag + Open Space funding 
and staff and consultant contributions, substantial funding and guidance was provided by a 
consortium of organizations including NASA, California Department of Fish and Wildlife, 
California Native Plant Society, United States Geological Survey and the Sonoma County 
Water Agency, as well as two technical committees. In May of 2017, Ag + Open Space 
completed and provided public access to a robust and comprehensive suite of fine-scale 
landscape datasets for the entirety of Sonoma and portions of Mendocino Counties.

Based on 2013 high resolution imagery, lidar data and field samples, the datasets 
provide fine-scale information about the County’s topography, land use, vegetation, and 
hydrology. Specific datasets important for landscape planning and land conservation include 
forest metrics, digital surface and digital elevation models, ortho-photography, watershed 
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boundaries, flow accumulation/direction, lifeform, croplands, fine-scale vegetation maps, 
pervious/impervious surfaces, high resolution building footprints, contours, stream center-
lines, and aboveground biomass and carbon. These data are available for download at the 
Ag + Open Space site sonomavegmap.org.

Sonoma Complex Fires

Wildfires are an integral part of life in Sonoma County and multiple fires have burned 
across the Sonoma County landscape over the last century (Figure 2). However, over the 
last decade, the size, frequency, intensity, and costs of wildfires throughout the west have 
increased as a result of a century of fire exclusion, global climate change, and increased con-
struction in the wildland urban interface (Mitchell 2013; Syphard and Keeley 2015; Mann et 
al. 2016). On the evening of 8 October 2017, the Tubbs, Nuns, and Pocket Fires (termed the 
Sonoma Complex Fires) ignited and burned for 20 days, leaving 44,800 ha (110,700 acres) 
burned, 6,997 structures destroyed, and causing 24 fatalities in Sonoma and Napa Counties. 

Fire perimeters in Sonoma County and vicinity between 1937 and 2019. Source: Fire and Resource 
Assessment Program (FRAP) fire perimeter layer developed by BLM, CAL FIRE, NPS, and USFS.
Figure 2. 

Research objectives

To better plan for future wildfire events and mitigate wildfire risk, Ag + Open Space 
sought and received NASA Rapid Response Research funding (grant number 80NS-
SC18K0683) to employ the Sonoma Veg Map Program and other datasets to better understand 

http://www.sonomavegmap.org
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the Sonoma Complex Fires. Research tasks included: (1) mapping woody canopy condition 
(percent woody canopy damage) as a result of the 2017 fires from pre- and post-fire imagery 
and lidar data; and (2) discovering and quantifying relationships between post-fire woody 
canopy condition and landscape characteristics such as weather, vegetation type, fuel load-
ing, land use, and land management patterns. The results of these analyses are being used 
to inform strategies for land conservation, land use, and land management activities that 
enhance ecosystem and human community resiliency to wildfire. 

This paper summarizes the methods and results of the research effort, and presents the 
major project conclusions. The first section reviews the methods used to accomplish each 
research task. The second section reports on research results, and the final sections discuss 
the impact of the results and present thoughts for future research.

METHODS

Study area

The study area includes portions of the Nuns, Tubbs, and Pocket fires that burned within 
Sonoma County in 2017 plus portions of Napa County captured by the imagery (Figure 3). 
All three fires are located primarily in the eastern mountains of Sonoma County. The Pocket 
fire was located within the Big Sulphur Creek and Middle Russian River watersheds in the 
northern Mayacamas Mountains, draining into the Alexander Valley. The Tubbs fire was 
located within the Middle Russian River and Mark West Creek watersheds, with portions 
of the fire extending into urban areas within the city of Santa Rosa. The Nuns fire was situ-
ated in the Sonoma Creek, Napa River, and Carneros Creek watersheds on the west and 
east flanks of the southern Mayacamas Mountains and portions of the Sonoma Mountains. 
Areas that burned east of Santa Rosa are within the Santa Rosa Creek watershed. Terrain 
of the study areas ranges from flat to steep with elevations ranging from 60 to 1,050 m. 
Vegetation across the study areas is largely comprised of oak woodland, mixed chaparral, 
mixed hardwood/conifer forest, grassland, and vineyards.

Post-fire woody canopy condition mapping

The first step of this project was to map woody canopy condition following the Sonoma 
Complex Fires. We acquired 0.305 m (1 foot) resolution stereo, digital airborne, 4-band (red, 
green, blue, near-infrared) optical imagery over the areas of the Pocket, Tubbs, and Nuns 
fires in Sonoma County (Figure 4). The imagery was collected using a Vexcel UltraCam 
Eagle M3 camera flown at 5,054-m (1-foot) altitude on a Beechcraft Airliner twin turboprop 
aircraft. Airborne imagery was selected over satellite imagery because it can be collected 
cloud-free and carries no license restrictions, allowing the imagery to be freely shared in 
the public domain. The imagery was flown by Quantum Spatial (quantumspatial.com) in 
June of 2018, and provides a smoke- and cloud-free view of all areas within the footprint 
of the Sonoma Complex Fires in Sonoma County. Following quality control, the post-fire 
imagery was made available to the public on sonomavegmap.org.

We evaluated the condition of woody canopy for vegetation communities mapped in 
the Sonoma County Fine-Scale Vegetation and Habitat Map, which characterizes 82 classes 
of land use and vegetation across the county at the alliance-level with minimum mapping 

http://www.quantumspatial.com
http://www.sonomavegmap.org
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Figure 3. The study areas include portions of the Sonoma Complex Fires within Sonoma County, CA.

Figure 4. Comparison of 2013 pre-fire imagery (a) to the 2018 post-fire infra-red imagery (b) for the Mark 
West Creek area of Sonoma County.
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units ranging from 0.1–0.4 ha (0.25–1 acre). Please see the Sonoma Vegetation and Habitat 
Map Final Report for descriptions of each of the map classes (https://sonomaopenspace.
egnyte.com/dl/1SWyCSirE9/).

First, due to variability of post-fire woody canopy condition within the fire-affected 
polygons of the Sonoma County Fine-scale Vegetation and Habitat Map, we created ¼ to 
20 acre homogenous sub-polygons based on similar Normalized Difference Vegetation In-
dex (NDVI) values in post-fire imagery using Trimble’s eCognition software (http://www.
ecognition.com/suite) (Figure 5d). 

Figure 5. Comparison of the fine-scale vegetation map polygon classes (a), to the fine-scale vegetation polygons 
over pre-fire 2013 infrared imagery (b), over post-fire 2018 imagery (c), and the sub-polygons of homogeneous 
damage within the fine-scale polygons (d).

Next, we quantified percent damage of each sub-polygon by calculating the relative 
proportion of burned versus unburned canopy based on NDVI values from the post-fire 
imagery. To do this, we further broke the sub-polygons into tiny segments (approximately 
0.5-5.5 m2) in eCognition based on NDVI value (Figure 6a), and classified them as shadowed 
or illuminated using the average near-infrared band value of the tiny segments. Segments 
with low near-infrared values were classified as shadowed and segments with high near-
infrared were classified as illuminated. 

Figure 6. Tiny segments within the sub-polygons (a), and the resulting classification of the tiny segments into 
burned (red) and unburned (green) vegetation (b).

https://sonomaopenspace.egnyte.com/dl/1SWyCSirE9/
https://sonomaopenspace.egnyte.com/dl/1SWyCSirE9/
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Next, we quantified percent damage of each sub-polygon by calculating the relative 
proportion of burned versus unburned canopy based on NDVI values from the post-fire 
imagery. To do this, we further broke the sub-polygons into tiny segments (approximately 
0.5-5.5 m2) in eCognition based on NDVI value (Figure 6a), and classified them as shadowed 
or illuminated using the average near-infrared band value of the tiny segments. Segments 
with low near-infrared values were classified as shadowed and segments with high near-
infrared were classified as illuminated. 

Finally, we established NDVI and Visual Atmospheric Resistance Index (VARI) thresh-
olds to classify the segments as burned versus unburned. Because the thresholds differed 
for shadowed verses illuminated segments, the thresholds were identified through the use of 
density slices. Density slicing is the process of binning the range of one band or derivative 
band of imagery into different classes depending on both the distribution of band values and 
visual interpretation of the imagery. We then applied separate NDVI/VARI density slices on 
the illuminated and shadowed tiny segments to label each segment as having damaged or 
undamaged post-fire woody canopies (Figure 6b). In the NDVI histogram of the Pocket Fire 
there is a clear bimodal distribution of values distinguishing burned from unburned woody 
canopies (Figure 7). The histograms of the Tubbs and Nuns Fires are similarly bimodal. We 
calculated percent woody canopy damage for each sub-polygon based on the relative area 
of burned tiny segments to unburned tiny segments within a sub-polygon. 

Figure 6. Tiny segments within the sub-polygons (a), and the resulting classification of the tiny segments into 
burned (red) and unburned (green) vegetation (b).

Figure 7. Histogram of NDVI values (converted to a scale from 0-255 and represented as a digital number) for 
the post-fire imagery of the Pocket Fire area showing a clear bimodal distribution. Damaged canopies have lower 
NDVI values than undamaged canopies.
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Due to the acquisition of aerial imagery in spring following the fire—a time when 
grasses and forbs have already sprouted and are thus captured as unburned in the post-fire 
imagery—this project focused on assessing only woody canopy condition within the study 
area. As a final step in developing the canopy damage maps, we used the 2013 lidar digital 
surface model to segregate pre-fire woody vegetation (i.e., forests and shrublands) from 
herbaceous areas based on canopy height of each tiny segment. We classified tiny segments 
with pre-fire vegetation taller than seven feet as woody vegetation and included these tiny 
segments in the canopy damage maps. We excluded tiny segments with vegetation height 
lower than seven feet from the canopy damage maps and subsequent analysis.

We performed an accuracy assessment of the woody canopy condition maps by com-
paring manually interpreted woody canopy condition (measured in 1% cover increments) 
from the 2013 and 2018 airborne imagery to the canopy condition map labels for 240 sample 
sub-polygons (Congalton and Green 2019). Forty samples from each of six canopy condi-
tion classes (<5%, 5–20%, 20–40%, 40–60%, 60–80%, 80–100%) were randomly selected. 
To assure that the analysis was not impacted by spatial autocorrelation, samples were not 
allowed to be within 365 m (1,200 ft) of one another. Overall accuracy of post-fire woody 
canopy condition classification was 85%.

Analyzing factors influencing fire behavior and outcomes

The first step in this task involved identifying factors known to affect wildland fire 
behavior so that measures of these factors could be developed from the Sonoma Veg Map 
Program and other datasets. Early researchers of fire behavior identified that fire behavior 
is influenced by factors spanning multiple spatial and temporal scales, and that the most 
indicative factors were measures of vegetation structure, vegetation type, topography, and 
climate and weather (Fons 1946; Von Wagner 1969; Rothermel 1972, 1983; Andrews 1986).

Fine scale.—At the finest spatial scale, combustion is controlled by available oxygen, 
heat, and fuels over seconds (McGranahan and Wonkka 2018). Broadening the scale to a 
forest stand or vegetation patch, fire behavior is determined by the three-dimensional ar-
rangement of vegetation fuels on the ground and in the canopy, topography, and weather 
over time. Surface fuels are characterized by size classes, and with all else being equal, 
smaller-sized fuels (e.g., grasses, shrubs, twigs, leaves) burn more quickly than larger 
downed wood (Rothermel 1972). For example, “flashy” fuels such as dried grass will burn 
quickly, but with relatively low intensity. Surface fires will spread more readily with drier 
fuels and higher wind (Agee et al. 2002). In forests, more severe fires occur when flames 
reach the tree crown. This generally occurs when surface fires create enough energy to pre-
heat and then combust live fuels in the canopy. Crown fires are initiated with “torching” of 
lower canopy fuels (e.g., branches, leaves, lichen) that “ladder” the fire to the crown. The 
higher the canopy fuels are above the surface, as determined by crown base height (CBH), 
or higher canopy moisture content, the less chance of torching (Agee et al. 2002; Agee and 
Skinner 2005). Once in the crown, the sustained spread of fire to other crowns occurs with 
high fuel density (i.e., canopy bulk density) and high rate of spread, which increases with 
wind speed (Agee et al. 2002; Hall and Burke 2006). 

Landscape scale.—At the landscape scale of a wildfire, fire behavior is controlled by 
variation in topography, weather, and the spatial and vertical pattern of fuels (McGranahan 
and Wonkka 2018). Forested landscapes with heterogenous patches of different fuel types, 
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moisture content, and natural (e.g., riparian areas) or managed surface fuel breaks can slow 
fire spread (Weatherspoon and Skinner 1996; Agee et al. 2000; Schmidt et al. 2008). 

Regional scale.—At the regional scale, constraints on fire behavior and severity are 
related to mean climate, patterns of ignition, and broad patterns of vegetation that define 
fire regimes over decades or longer (McGranahan and Wonkka 2018). In their analysis of 
Western U.S. forested ecoregions spanning years 2002–2015 and including 2,061 unique 
fires, Parks and colleagues (2018) found that fire severity at these spatiotemporal scales was 
primarily determined by variables related to live fuels, followed by variables related to fire 
weather, climate (i.e., 30-year normals), and topography. 

Weather is another critical factor that controls the behavior and severity of a wildland 
fire over a landscape. In the Western U.S., years with high precipitation in winter and spring 
can promote vegetation growth, thereby increasing fine-fuel loads, while a dry and hot sum-
mer and fall can remove moisture from fuels, making them more combustible (Balch et al. 
2018). In California, extreme wind events in the fall can exacerbate pre-existing dry condi-
tions that can lead to more severe fires. For example, the most severe damage inflicted by 
the Sonoma Complex Fires occurred in the first 14 hours, when strong Diablo winds were 
channeled by topography through a wind corridor, moving through fuels that had built-up 
during a wet winter—preconditioned for fire by the warmest summer and autumn on record 
(Nauslar et al. 2018). 

Machine learning

Variable development.—Based on information from the literature and from local 
wildland fire experts, we used machine learning techniques (Kane et al. 2015) to determine 
the importance of specific spatial variables for predicting percent woody canopy damage. 
Machine learning is an artificial intelligence method that analyzes sample data to identify 
patterns in large, diverse datasets. In this project, the dependent variable in each fire analy-
sis was the percent woody canopy damage of each sub-polygon. We created 66 landscape 
and weather/climate spatial datasets used as independent variables in the machine learning 
analysis (Table 1).

There are a total of 46,835 woody canopy condition sub-polygons across the study 
areas. We calculated landscape and weather/climate variables for each of the sub-polygons 
using python, pandas and arcpy, and stored these data in a table with each row represent-
ing a sub-polygon and each column representing the values of one of the 66 independent 
variables. Many of the variables were derived from topographic and elevation data from the 
Sonoma Veg Map Program. For example, based on work by Kramer (Kramer et al. 2014, 
2016) and Hoff (Hoff et al. 2019) we used LasTools to create a 20-m resolution ladder fuel 
proxy derived from the Sonoma County 2013 countywide QL1 (8 points per square meter) 
lidar point cloud. These data provide information about the density of living and dead 
vegetation in vertical strata between one and four meters, and from four and eight meters 
above the ground. 

The values of cells in the table represented the mean value for the independent variable 
for that sub-polygon if the independent variable was continuous, and the plurality value if 
the independent variable was thematic. In addition to the variables characterizing the sub-
polygons themselves, a number of independent variables were created for the sub-polygon 
plus its surrounding neighborhood. These variables were created in the same manner as those 
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Table 1. Independent variables used in the machine learning analysis. LC = measure of land cover type; T = 
measure of topography; S = measure of nearness to streams; V = measure of vegetation structure; C = measure 
of climate/weather condition

Description of Independent Variables Abbreviation Measurement 
Type

1Fine-scale vegetation class of the sub-polygon Veg LC
1Majority fine-scale vegetation class within 1000 ft 
(304.8 m) of sub-polygon

MajVeg-1000 LC

1Majority fine-scale vegetation class within 500 ft 
(152.4 m) of sub-polygon

MajVeg-500 LC

3Percent of sub-polygon that is impervious %Imperv LC
3Percent of sub-polygon that is structure %Struc LC
1Percent of area surrounding sub-polygon that is forest 
within 1000 ft (304.8 m)

%Surr-For-1000 LC

1Percent of area surrounding sub-polygon that is forest 
500 ft (152.4 m) 

%Surr-For-500 LC

1Percent of area surrounding sub-polygon that is im-
pervious within 1000 ft (304.8 m)

%Surr-Imperv-1000 LC

3Percent of area surrounding sub-polygon that is im-
pervious 500 ft(152.4 m)

%Surr-Imperv-500 LC

1Percent of area surrounding sub-polygon that is shrub 
within 1000 ft (304.8 m)

%Surr-Shrb-1000 LC

1Percent of area surrounding sub-polygon that is shrub 
500 ft (152.4 m) 

%Surr-Shrb-500 LC

1Percent of area surrounding sub-polygon that is not 
forest or shrub within 1000 ft (304.8 m)

%Surr-NoFor-
Shrb-1000

LC

1Percent of area surrounding sub-polygon that is not 
forest or shrub 500 ft (152.4 m) 

%Surr-NoForShrb-500 LC

1Percent of area surrounding sub-polygon that is 
vineyard within 1000 ft (304.8 m)

%Surr-Vine-1000 LC

1Percent of area surrounding sub-polygon that is 
vineyard 500 ft (152.4 m) 

%Surr-Vine-500 LC

1Percent of sub-polygon cone area that is vineyard %Cone-Vine LC
3Percent of sub-polygon cone area that is structure %Cone-Struc LC
3Percent of sub-polygon cone area that is impervious %Cone-Imperv LC
1Area of Eucalyptus stand nearest to sub-polygon Area-Euca LC
1Distance of sub-polygon to nearest Eucalyptus stand Dist-Euca LC
1Distance of sub-polygon to nearest conifer stand Dist-Conif LC
1Distance of sub-polygon to nearest irrigated area Dist-Irrig LC
1Distance of sub-polygon to nearest knobcone pine 
stand

Dist-Knob LC

1Distance of sub-polygon to nearest riparian stand Dist-Rip LC
1Distance of sub-polygon to nearest shrub stand Dist-Shrb LC
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Description of Independent Variables Abbreviation Measurement 
Type

1Distance of sub-polygon to nearest structure Dist-Struc LC
2Percent of sub-polygon burned in fires from 1939–
present

%Burn-39-2020 LC

2Percent of sub-polygon burned in fires from 
1939–1969

%Burn-39-69 LC

2Percent of sub-polygon burned in fires from 
1970–1991 

%Burn-70-91 LC

2Percent of sub-polygon burned in fires from 
1992–2017

%Burn-92-17 LC

4Distance of sub-polygon to nearest property with a 
conservation easement

Dist-Ease LC

4Distance of sub-polygon to protected lands (park, 
preserve etc.)

Dist-Prot LC

3Sub-polygon majority aspect Maj-Asp T
3Sub-polygon majority 32-class slope aspect index Maj-SlpAsp T
5Topographic index for majority of the sub-polygon Maj-TopoInd T
3Sub-polygon mean ground elevation Mn-Elev T
5Topographic index within 1000 ft (304.8 m) of sub-
polygon

TopoInd-1000 T

5Topographic index within 500 ft (152.4 m) of sub-
polygon

TopoInd-500 T

3Sub-polygon mean slope from bare earth DEM Mn-Slp T
3Sub-polygon mean horizontal distance from nearest 
stream

Mn-DistStr S

3Sub-polygon mean height above river (relative to 
nearest large stream)

Mn-HtRiv S

3Sub-polygon [# of lidar returns from 1–4m/# of lidar 
returns from 0–4 m]

Lad-1-4 V

3[# of lidar returns from 1–4 m /# of lidar returns from 
0–4 m] within 1000 ft (304.8 m) of sub-polygon

Lad-1-4-1000 V

3[# of lidar returns from 1–4 m /# of lidar returns from 
0–4 m] within 500 ft (152.4 m) of sub-polygon

Lad-1-4-500 V

3Sub-polygon [# of lidar returns from 4–8 m/# of lidar 
returns from 0–8 m]

Lad-4-8 V

3[# of lidar returns from 4–8 m /# of lidar returns from 
0–8 m] within 1000 ft (304.8 m) of sub-polygon3

Lad-4-8-1000 V

3[# of lidar returns from 4–8 m /# of lidar returns from 
0–8 m] within 500 ft (152.4 m) of sub-polygon

Lad-4-8-500 V

3Sub-polygon percent canopy density in the 15–60 ft 
(4.6–18.3 m) range

%CnpDen-15-60 V

Table 1 continued
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Description of Independent Variables Abbreviation Measurement 
Type

3Sub-polygon percent canopy density in the 60–100 
ft (18.3–30.5 m) range

%CnpDen-60-100 V

3Sub-polygon percent canopy density in the 100–150 
ft (30.5–45.7 m) range

%CnpDen-100-150 V

3Sub-polygon percent canopy density in the 150–200 
ft (45.7–61.0 m) range

%CnpDen-150-200 V

3Sub-polygon percent canopy density in the 200–250 
ft (61.0–76.2 m) range

%CnpDen-200-250 V

3Sub-polygon mean absolute canopy cover Mn-CnpCov V
3Sub-polygon mean canopy height Mn-CnpHt V
3Sub-polygon mean canopy slope Mn-CanSlp V
3Standard deviation of sub-polygon canopy cover SD-CnpCov V
3Standard deviation of sub-polygon canopy height SD-CnpHt V
3Presence of woody land cover above 6 ft (1.8 m) 
in height

%Wood>6ft V

8Sub-polygon mean climatic water deficit (September 
2017)

Mn-CWD C

8Sub-polygon mean evapotranspiration (1980-2010 ) Mn-Evap C
6Sub-polygon mean summer fog (June to August) Mn-Fog C
8Sub-polygon mean average annual precipitation 
(1980-2010 )

Mn-Precip C

6,7Humidity at the nearest weather station at the time 
MODIS/VIRS first detected the fire at the sub-
polygon

Humid C

6,7Wind direction at nearest weather station at the 
time MODIS/VIRS first detected the fire at the 
sub-polygon

WndDir C

6,7Wind speed at nearest weather station at the time 
MODIS/VIRS first detected the fire at the sub-
polygon

WndSpd C

6,7Wind gust speed at nearest weather station at the 
time MODIS/VIRS first detected the fire at the 
sub-polygon

WndGustSpd C

Sources:
1Sonoma Veg Map Program Vegetation Products
2CAL FIRE
3Sonoma Veg Map Program Lidar Products
4California Protected Areas Database/ California Conservation Easement Database
5California Landscape Conservation Partnership
6NASA MODIS/VIIRS
7Weather Stations
8Basin Characterization Model (270 m) (Flint et al. 2013)

Table 1 continued
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for the sub-polygons, except that the variable values were calculated for areas within a fixed 
distance radius (152 or 305 m (500 or 1000 ft)) from the sub-polygon and for areas within 
cones extending a half mile northeast (340 to 120 degrees) from the sub-polygons. Inde-
pendent variables are grouped into five variable types based on their foundation as follows:

• Measures of land cover type
• Measures of topography
• Measures of nearness to streams 
• Measures of vegetation structure
• Measures of climate/weather condition

Initially the sub-polygons were segregated by fire (Nuns, Tubbs, and Pocket fires) 
and further by the areas where fire progression was wind-driven or not. To determine wind-
driven verses non-wind-driven fire areas, we used NASA Moderate Resolution Imaging 
Spectroradiometer (MODIS) and Visible and Infrared Scanner (VIRS) imagery to map the 
perimeters of each fire during (1) the extreme wind-driven fire events which spanned from 
the time of fire ignition on the late evening of 8 October 2017 continuing to early morning 
on 9 October 2017 and (2) the non-wind-driven fire events which burned from the morning 
of 9 October 2017 to 18 October 2017 (Figure 8) (Schroeder et al. 2014). Consequently, the 
machine learning analysis was initially performed separately on six fire events:

• Nuns fire wind-driven event
• Nuns fire non-wind-driven post wind event
• Tubbs fire wind-driven event
• Tubbs fire non-wind-driven post wind event
• Pocket fire wind-driven event
• Pocket fire non-wind-driven post wind event

In addition, the machine learning analysis was performed on a combination of all 
fires, segregated only by whether the fire was wind-driven or not. 

Random Forests Analysis.—Next, we ran a Random Forests (Breiman and Cutler 
2014) machine learning regression analysis against the data set to determine which inde-
pendent variables are most predictive of percent woody canopy damage (measured in 1% 
increments) resulting from each fire. Random Forests is a supervised ensemble machine 
learning technique that uses the values of sample data (i.e., training data) to construct 
multiple decision trees for modelling the relationships between a dependent variable and 
the independent variables. The final model output of Random Forests is the most common 
(i.e., modal) prediction from all of the trees (Green et al. 2017).

To complete the analysis, we first implemented multiple runs of Random Forests with 
R’s randomForest package with different parameters (e.g. number of trees, tree depth), and 
used the caret package to determine the optimal mtry parameter for each fire event (i.e., 
the number of variables available for splitting at each tree node). We chose parameters that 
resulted in the highest testing accuracy. Second, we ran each of the six fire events through 
Random Forests 100 times with different random selections of 80% of the sub-polygons for 
model training and 20% for model testing. Lastly, we calculated the average (for 100 runs 
per event) R2 for the linear relationship between predicted and estimated percent woody 
canopy damage, the root-mean square error (RMSE) of predictions, and the increase in 
mean squared error of the Random Forests model for when each independent variable was 
excluded from the model.
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Figure 8.  The Tubbs fire 
segregated into areas that burned 
during (orange) and after the 
wind event (yellow).

Finally, we evaluated the importance of each of the 64 independent variables in each 
of the six fire event models (Genuer et al. 2010). We measured variable importance as the 
percent increase in mean square error that can be attributed to the exclusion of the variable 
in the model (Liaw and Wiener 2002). Random Forests calculates this statistic by running 
the analysis first with the measured value for each variable sample, and then a second time, 
but letting the value of the variable change randomly. The resulting change in the mean 
square error measures how the exclusion of a variable decreases the accuracy of the model 
versus if the variable was included. 

RESULTS

Post-fire woody canopy condition mapping

The amount of area in each percent canopy damage classes for the Tubbs and Nuns 
fires are very similar, with large expanses of higher woody canopy damage; 42–43% of the 
fire areas are in the 80–100% woody canopy damage percent class. Conversely, the Pocket 
Fire presents more of a mosaic of woody canopy damage across the landscape with only 
19.6 % of the fire area in the 80–100% woody canopy damage percent class (Figure 9).
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Figure 9. Woody canopy condition maps and proportion of each fire area in each of the percent canopy damage 
classes for the Pocket (a), Tubbs (b), and Nuns (c) fires. The continuous woody canopy condition values for each 
of the three fires have been consolidated into percent classes (e.g. <5%, 5–20%, etc.).

Machine learning

Six fire event analysis.— All of the fire events show that a significant amount of 
variation in woody canopy condition can be explained by the models (Table 2). For each 
of the six fire events, we determined the 10 most important independent variables in model 
development and associated percent improvement in mean square error (Figure 10). 
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Table 2. Comparison of average R2, RMSE, and MSE for Random Forests models for each of the fire events.

Fire Event Average R2 Average RMSE Average MSE
Nuns Non-Wind 0.55 0.22 0.048

Nuns Wind 0.45 0.24 0.058
Pocket Non-Wind 0.51 0.22 0.048

Pocket Wind 0.50 0.20 0.040
Tubbs Non-Wind 0.56 0.21 0.044

Tubbs Wind 0.52 0.23 0.053

Vegetation structure measures are the most important for all six events and the sec-
ond most important for all but one event. For example, the ladder fuel metric is 1.5 times 
more important than the next most important variable (mean canopy height) for the Nuns 
non-wind-driven event and 1.7 times more important than the next most important variable 
(horizontal distance to stream) in the Tubbs wind-driven event. Additionally, 32% of the 
top 10 important variables are measures of vegetation structure.

Climate/weather variables are less important than vegetation structure, but still appear 
in the top 10 important variables for all six events. Climatic water deficit in 2017, mean 
evapotranspiration, and wind direction are each listed three times in the top 10 variables. 
However, wind direction is important only for the non-wind-driven event models which is 
understandable, as the wind direction during the wind events was fairly constant from the 
northeast. Measures of how close a sub-polygon is to a stream are in the top 10 important 
variables for all six events, with the exception of the Tubbs non-wind-driven event. Measures 
of topography appear as a top 10 variable in only two events. There are more land-cover 
type variables in Figure 10 than any other variable type, comprising 37% of the ten most 
important variables. The Pocket wind-driven event is notably different from the other events 
in that the percent increase in the mean square error attributable to the variables is lower (by 
a half or a quarter) than that of the top variables of the other events. 

While they tend to be less important than vegetation structure measures, there are 
some additional patterns in the six fire analysis which are of note:

• Distance to nearest Eucalyptus polygon is listed as one of the most important variables 
three times. This was surprising given the small amount of Eucalyptus occupying 
the study area prior to the fires (61 acres). 

• Distance to nearest shrub stand appears three times as one of the most important 
variables. 

• Measures of the proximity of a building structure to a sub-polygon appears twice. 
• The majority fine-scale vegetation class within 500 or 1000 feet of the sub-polygon 

appears seven times. 
• Distance to knobcone pine stands appears twice.

Combined event analysis.— We removed the stratification of the fires based on location 
and ran Random Forest on all fires combined, stratifying only by wind-driven or non-wind-
driven events. The average variance in the data explained by the models (R2) increased for 
both wind- and non-wind-driven events (Table 3), suggesting that the general location of 
the fires within Sonoma County was not an important factor in fire behavior.

Table 3. Average R2, RSME, and MSE for the combined fires Random Forests model runs.

Fire Event Average R2 Average RMSE Average MSE
Combined Fires Non-wind-driven 0.63 0.27 0.073
Combined Fires Wind-Driven 0.56 0.29 0.084
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Figure 10. Comparison of the 10 most important independent variables for the six fire events (10 = more important; 
1 = less important). Data labels represent the average percent increase in MSE resulting from the exclusion of the 
variable from the model for 100 runs.

Table 3. Average R2, RSME, and MSE for the combined fires Random Forests model runs.

Fire Event Average R2 Average RMSE Average MSE
Combined Fires Non-wind-driven 0.63 0.27 0.073
Combined Fires Wind-Driven 0.56 0.29 0.084
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	 For the two-event analysis, where events were stratified by whether or not they 
were wind- or non-wind-driven, we determined the 10 most important independent variables 
in model development and associated percent improvement in mean square error (Figure 
11). Like the six-event models, measures of vegetation structure, topography, and nearness 
to streams are the most important variables that affect woody canopy condition, and wind 
direction is important only in the non-wind event. In contrast to the six-event analysis, the 
slope-aspect index of the sub-polygon appears at the first (non-wind-driven event) and 
second position (wind-driven event).

Figure 11. Comparison of the 10 most important independent variables for the two-event analysis (10 = more 
important; 1 = less important). Data labels represent the average percent increase in MSE resulting from the 
exclusion of the variable from the model for 100 runs.

There is notably less variability in the measures when comparing the results of 
the combined fire analysis (Figure 11) versus the six-fire event analysis (Figure 10). For 
example, only one variable related to nearness to stream appears, rather than the three dif-
ferent variables in Figure 10. Fewer land cover type variables appear to be important and 
most of those are a measure of the fine-scale vegetation class within 500 or 1000 ft of the 
sub-polygon. The only climate/weather variable identified as important is wind direction, 
and it only appears in the non-wind-driven event.

Effect of discontinuous variables

To understand the marginal effect of discontinuous variables, we examined the dis-
tribution of the independent variables by percent woody canopy damage. The fine-scale 
vegetation class is a variant in over 37% of independent variables in Figure 10 (the six event 
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analysis) and in 30% of the variables in Figure 11 (the combined event analysis). Riparian 
and mesic types have the lowest percent canopy damage, followed by the open hardwood 
woodland types such as blue oak (Quercus douglasii), black oak (Quercus kelloggii), valley 
oak (Quercus lobata), and Oregon white oak (Quercus garryana). Shrub and upland conifer 
types exhibited the most percent canopy damage, including fire-adapted knobcone pine 
(Pinus attenuata) and chamise (Adenostoma fasciculatum) vegetation alliances (Table 4).

Table 4. Area weighted average canopy damage by fine-scale vegetation class.

Fine-scale Vegetation Map Class Percent 
Canopy 

Damaged
Populus fremontii Alliance 15%
Vancouverian Riparian Deciduous Forest Group 19%
Southwestern North American Riparian Evergreen and Deciduous 26%
Acer macrophyllum Alliance 28%
Southwestern North American Riparian/Wash Scrub Group 30%
Quercus chrysolepis Alliance 30%
Quercus lobata Alliance 31%
Quercus garryana Alliance 35%
Quercus douglasii Alliance 37%
Quercus kelloggii Alliance 38%
Rubus armeniacus Alliance 39%
Arctostaphylos viscida Alliance 41%
Quercus wislizeni (tree) Alliance 43%
Quercus (agrifolia, douglasii, garryana, kelloggii, lobata, wislizenii) Alliance 43%
Non-native Forest & Woodland 48%
Pseudotsuga menziesii Alliance 48%
Aesculus californica Alliance 48%
Quercus agrifolia Alliance 50%
Umbellularia californica Alliance 52%
Arbutus menziesii Alliance 55%
Hesperocyparis sargentii Alliance 55%
Pseudotsuga menziesii - Notholithocarpus densiflorus Alliance 56%
Sequoia sempervirens Alliance 58%
Hesperocyparis macnabiana Alliance 67%
Non-native Shrub 67%
Eriodictyon californicum - Lupinus albifrons Alliance 69%
Pinus sabiniana / Quercus durata Provisional Alliance 70%
Quercus wislizeni (shrub) Alliance 71%
Notholithocarpus densiflorus Alliance 71%
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Table 4. continued
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Fine-scale Vegetation Map Class Percent 
Canopy 

Damaged
Pinus ponderosa - Pseudotsuga menziesii Alliance 71%
Eucalyptus (globulus, camaldulensis) Semi-natural Alliance 77%
Ceanothus cuneatus Alliance 80%
Baccharis pilularis Alliance 82%
Quercus durata Alliance 83%
Adenostoma fasciculatum Alliance 89%
Californian Mesic Chaparral Group 90%
Arctostaphylos (canascens, manzanita, stanfordiana) A. glandulosa Mapping Unit 93%
Pinus attenuata Alliance 95%
Pinus lambertiana Alliance 99%
Pinus radiata Alliance 99%
Ceanothus thyrsiflorus Alliance 99%

High proportions of the shrubs (88%) and eucalyptus (77%) in the study areas were 
damaged in contrast to low proportions of riparian hardwoods (20%) and deciduous hard-
woods (36%) (Figure 12).

Figure 12. Acres of canopy damage across all fires versus the acres occupied by combined vegetation groups in 
the study areas before the fires. 
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While knobcone pine (Pinus attenuata) occupies only a small portion of the fire area 
(1,417 acres or 2.5%), a substantially higher proportion of it (90%) was damaged compared 
to other conifers such as Douglas fir (Pseudotsuga menziesii) (48%) and Sargent cypress 
(Hesperocyparis sargentii) (55%) (Figure 13). Among hardwoods, greater portions of Eu-
calyptus and tanoak (Notholithocarpus densiflorus) were damaged, while riparian hardwood 
communities exhibited the lowest percent woody canopy damage (Figure 14).

Figure 13. Comparison across conifer vegetation classes of the area damaged by the fires as a percent of total area 
occupied by the class within the study areas.

Figure 14. Comparison across hardwood vegetation classes of the area damaged by the fires as a percent of total 
area occupied within the study areas.
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In addition to fine-scale vegetation class, slope-aspect is an important independent 
variable in the combined event analysis. Sub-polygons with steep south, southwest, and 
southeast facing slopes experienced the highest percent canopy damage for both the wind-
driven and non-wind-driven events (Figures 15 and 16). In addition to ladder fuels, slope 

Figure 15. Area weighted average canopy damage by slope-aspect class for the combined wind-driven event. Figure 16. Area weighted average canopy damage by slope-aspect class for the combined non-wind-driven event. 
Slope was not a strong predictor of damage in non-wind-driven fires.
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In addition to fine-scale vegetation class, slope-aspect is an important independent 
variable in the combined event analysis. Sub-polygons with steep south, southwest, and 
southeast facing slopes experienced the highest percent canopy damage for both the wind-
driven and non-wind-driven events (Figures 15 and 16). In addition to ladder fuels, slope 

Figure 15. Area weighted average canopy damage by slope-aspect class for the combined wind-driven event.

appears to be the primary driving factor for post-fire canopy condition in the wind-driven 
fires (Figure 15), with percent canopy damage directly related to slope class—the steeper 
the slope, the higher the percent damage. Damage in the non-wind-driven fires is much less 
affected by slope, with steep north and northeast areas sustaining the lowest canopy damage. 

Figure 16. Area weighted average canopy damage by slope-aspect class for the combined non-wind-driven event. 
Slope was not a strong predictor of damage in non-wind-driven fires.
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Effect of continuous variables

To better understand the relationship between the important independent variables and 
woody canopy condition, we developed partial dependence graphs for the more important 
continuous independent variables (Figure 17). Partial dependence plots show the marginal 
effect an independent variable has on the prediction of the dependent variable in Random 
Forests models, and can help show the direction of the relationship and whether the relation-
ships between dependent and independent variables are linear, quadratic or more complex 

Figure 17. Partial dependence plots for five continuous variables for the six fire events.

(Friedman 2001).
The greater the density of ladder fuels, the higher mean climatic water deficit, and the 

further away from a stream, the greater the predicted percent canopy damage. The greater 
the mean canopy height and mean canopy density in the 15–60 ft. range, the lower the 
predicted percent canopy damage. 

Ladder fuels and vegetation type are both important independent variables in all of 
the machine learning models, and the density of pre-fire ladder fuels varies across vegeta-
tion communities within the study area (Figure 18). Knobcone pine (Pinus attenuata) and 
upland shrubs have higher percentages of ladder fuels than other vegetation types in Figure 
18, as well as a higher percentage of canopy damage (Table 4). 

DISCUSSION

Results of our analysis showed that high resolution airborne imagery and semi-
automated techniques can be effectively used to create highly accurate maps of woody 
canopy condition following a wildfire, and that those maps can be used to better understand 
how different landscape variables contribute to woody canopy damage from fire. Vegeta-
tion structure and type, weather/climate variables, slope, and distance from streams are the 
primary variables that affect post-fire woody canopy condition in the landscapes of eastern 
Sonoma County. The higher the density of shrubs and fire-adapted vegetation types, and 
the higher the density of ladder fuels, the higher the damage. The closer to streams, the 
lower the damage. During wind-driven fire events, the steepness of slope is also indicative 
of damage, with steeper slopes experiencing more damage. 

Applications for land management, land conservation, land use

The woody canopy condition maps and the replicable approach to mapping and 
modeling support a wide variety of wildfire recovery and resiliency efforts that protect and 

Figure 18. Density of pre-fire ladder fuels by vegetation type within the study areas. Deciduous oaks include blue 
oak woodland, leather oak chaparral, Oregon white oak woodland, black oak woodland, and valley oak woodland; 
live oaks include coast live oak woodland, canyon live oak woodland, and interior live oak woodland; upland shrubs 
include chamise chaparral, hazelnut scrub, Ceanothus chaparral, manzanita chaparral, coyote brush, Californian 
mesic and maritime chaparral, poison oak scrub, and interior live oak chaparral.
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(Friedman 2001).
The greater the density of ladder fuels, the higher mean climatic water deficit, and the 

further away from a stream, the greater the predicted percent canopy damage. The greater 
the mean canopy height and mean canopy density in the 15–60 ft. range, the lower the 
predicted percent canopy damage. 

Ladder fuels and vegetation type are both important independent variables in all of 
the machine learning models, and the density of pre-fire ladder fuels varies across vegeta-
tion communities within the study area (Figure 18). Knobcone pine (Pinus attenuata) and 
upland shrubs have higher percentages of ladder fuels than other vegetation types in Figure 
18, as well as a higher percentage of canopy damage (Table 4). 

DISCUSSION

Results of our analysis showed that high resolution airborne imagery and semi-
automated techniques can be effectively used to create highly accurate maps of woody 
canopy condition following a wildfire, and that those maps can be used to better understand 
how different landscape variables contribute to woody canopy damage from fire. Vegeta-
tion structure and type, weather/climate variables, slope, and distance from streams are the 
primary variables that affect post-fire woody canopy condition in the landscapes of eastern 
Sonoma County. The higher the density of shrubs and fire-adapted vegetation types, and 
the higher the density of ladder fuels, the higher the damage. The closer to streams, the 
lower the damage. During wind-driven fire events, the steepness of slope is also indicative 
of damage, with steeper slopes experiencing more damage. 

Applications for land management, land conservation, land use

The woody canopy condition maps and the replicable approach to mapping and 
modeling support a wide variety of wildfire recovery and resiliency efforts that protect and 

Figure 18. Density of pre-fire ladder fuels by vegetation type within the study areas. Deciduous oaks include blue 
oak woodland, leather oak chaparral, Oregon white oak woodland, black oak woodland, and valley oak woodland; 
live oaks include coast live oak woodland, canyon live oak woodland, and interior live oak woodland; upland shrubs 
include chamise chaparral, hazelnut scrub, Ceanothus chaparral, manzanita chaparral, coyote brush, Californian 
mesic and maritime chaparral, poison oak scrub, and interior live oak chaparral.

benefit California ecosystems and human communities. Fire behavior experts have long 
recognized that wildfire behavior is affected by topography, weather, and vegetation type 
and structure (Finney 1998; Scott and Burgan 2005). This study validates the importance 
of those variables, but more importantly it offers tools to support the management of those 
within our control. While we cannot directly manage weather or topography, we can man-
age wildland fuels, and policy makers can make informed decisions about whether or not 
valuable assets should be placed in landscapes with heavy fuels and limited access and 
egress. With this information, we can deploy effective fuel management appropriate for 
given ecosystem types to promote ecological integrity of the system and support commu-
nity safety and disaster preparedness. There is neither the funding available nor the need 
to treat all of the landscape. Now that we can accurately and efficiently map ladder fuels, 
vegetation type, and vegetation structure, treatments can be prioritized based on the location 
of heavy fuel loads vis a vis the location of features and assets in need of protection. For 
example, now that we understand that stream beds are important barriers to fire damage, we 
can tailor those treatments to account for their importance and the ecological sensitivity of 
riparian areas. Additionally, fuel reduction efforts such as prescribed or managed fire can be 
used effectively in these landscapes with less potential damage to nearby structures. Land 
conservation investments can be targeted in areas of high repetitive fire damage, or in the 
WUI that surrounds human settlements, and these land conservation easements or fee title 
purchases can be managed in a way to reduce fuel loading or create fire breaks. Examples 
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of this might include a conservation easement that is intended for cultivated agriculture, 
grazing, or riparian corridor protection, or a park that has extensive thinning of ladder fuels. 
Sonoma County Ag + Open Space and other land conservation partners are using the results 
of this research to prioritize long term conservation investments that support ecosystem and 
community resiliency and achieve multiple benefits—including sustaining local food sup-
plies, biodiversity, scenic open space, naturally filtered drinking water, as well as positive 
climate change action related to adaptation, carbon sequestration, and avoided emissions. 

Sonoma County, like the State of California, has a strong land use policy focus on 
infill, combined with a publicly funded land conservation agency that protects working and 
natural lands. This research provides additional information to inform elected officials and 
policy makers about how and where development can take place in a way that meets housing 
demand, protects agricultural and natural lands, supports climate change action and helps 
to protect public health and safety due to extreme events such as wildfires. 

Shared data and shared learning

One of the most important outcomes from this research has been the ability to share 
data and analysis methods and results with other entities working on related ecosystem and 
community issues. Starting with the Sonoma Veg Map Program foundational datasets, and 
continuing on with the research focused on the Sonoma Complex Fires, our data collec-
tion and modeling work has been useful beyond the original intent of informing Sonoma 
County land conservation, land use policy and land management. Lidar and other data from 
the Sonoma Veg Map Program have contributed to a wide variety of applications includ-
ing environmental planning, flood risk assessment, carbon mapping, easement monitoring, 
habitat assessments and ecological restoration, climate adaptation planning, engineering 
design, agricultural planning, and scientific research (Green 2017). 

This research has enhanced the capacity of conservation organizations, land managers, 
decision makers, and the public to understand the relationships between landscape character-
istics, weather, and wildfire-caused woody canopy damage. As a result, public policy, public 
outreach strategies, and land conservation and management practices are being modified and 
informed by the findings of this research. The subsequent canopy condition and fire model-
ing datasets are supporting multiple applications including the prioritization and location 
of fuels reduction and vegetation management projects, public safety and evacuation route 
analysis, and land conservation prioritization. Additionally, the findings from this research 
have helped spur other regions such as the North Coast and Sierra Nevada, as well as other 
Bay Area counties (including Santa Clara, San Mateo, Marin, and Santa Cruz) and CAL 
FIRE to build fine-scale landscape datasets, in part, so they can better plan for, manage, and 
mitigate future extreme wildfire events.

Recommendations for additional research and analysis 

Expand statistical analysis.—This project benefitted from an abundance of high-
quality spatial data available in Sonoma County. The data created through the Sonoma 
Veg Map Program provided detailed datasets available in few other places in the country 
and this research would not have been possible without it. Yet even with the plethora of 
data available for inclusion in the modeling, the models do not fully explain the observed 
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variance and relationship between woody canopy condition and the landscape and weather 
variables included in the study. More research and funding are needed to determine ad-
ditional landscape variables that might improve the models, including measures of surface 
fuels and land management history (including the use of grazing for fuel management). In 
addition, our research evaluated the importance of vegetation type in predicting canopy 
damage, but additional research is needed to better understand the impact of the vegetation 
type variables. Closeness to vegetation type repeatedly appears as an important variable 
that influences woody canopy condition, but which of those vegetation types increases or 
decreases the likelihood of woody canopy damage is not fully understood. The distance 
to vegetation type variables need to be parsed apart (i.e., into groups such as fire-adapted 
species, versus riparian species, deciduous oaks, shrubs, etc.) and studied in more depth. 

Expand scope of study.—This research focused on the variables that impact damage to 
the woody canopies of forests and shrublands, but additional research is needed to analyze 
the landscape variables that contribute to building structure damage. Further, fire modeling 
is just one application for these datasets—there are other critical issues related to extreme 
events, ecosystem health and community safety that also rely on these types of data, and 
additional work is needed to identify landscape datasets that are relevant to multiple cli-
mate change and extreme event issues—such as emissions reduction/avoidance, fire, flood, 
drought, public health and safety—and articulate this need to policy and decision makers.

Expand study across space.— In addition, additional resources are needed to expand the 
analyses into other ecosystems. This research has provided meaningful analysis for wildfires 
in eastern Sonoma County, and repeating this research in other ecosystems with different 
dynamics would be useful in prioritizing fuel treatments in those areas and in determining 
if any statewide patterns emerge. 

This research highlights the importance of lidar data in assessing wildfire risk, and 
expanding this study beyond Sonoma County is contingent upon lidar data being available. 
Until recently, many of the variables determined to be important in this study were not 
measurable, including the ladder fuel metrics, distance from fine-scale streams (i.e., both 
horizontal and vertical distance from the thalweg of streams at high resolution), mean canopy 
height, and mean canopy density in the 15 to 60 ft range. Additionally, lidar data are a criti-
cal input for the creation of the fine-scale vegetation type map which is also an important 
independent variable in the canopy condition machine learning analysis. Sonoma County is 
fortunate that its 2013 QL1 lidar collect was substantially funded by NASA research. The 
National Oceanic and Atmospheric Administration (NOAA) and the United States Geologic 
Survey (USGS) have done an admirable job supporting QL2 lidar collects in portions of 
California, but the USGS cost-sharing requirements are often a high hurdle for rural counties. 
The broad usefulness and value of lidar data demonstrated by this study points to the need 
for a partnership between federal and state agencies to complete a statewide lidar dataset.

Expand study across time.— In addition, the damage maps are critical in updating 
fine-scale vegetation maps for fire damage and providing baseline conditions from which 
we can further evaluate vegetation impacts over time. More funding is needed to remap the 
burned areas 3–5 years after the fires to fully understand the mid- and long-term impacts 
of the fires on the landscape. Finally, this study highlights the need for the development 
of semi-automated fine-scale change monitoring methods. The methods used in this study 
were highly successful in mapping woody canopy condition; however, the Sonoma datas-
ets are based on 2013 data which are now seven years old. As other counties in California 
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and regions in the United States migrate to reliance on fine-scale datasets, cost effective 
methods must be developed for keeping the datasets current. Rather than expensively rec-
reating the datasets from scratch, updating methods should focus only in areas that have 
changed. Great strides have been made in using Landsat imagery for moderate resolution 
change monitoring (Huang et al. 2010; Kennedy et al. 2010; Hansen et al. 2013; Zhu and 
Woodcock 2014). However, fine-scale mapping and monitoring to support local decision 
making remains expensive, inconsistent, and primarily reliant on manual image interpreta-
tion. Research is needed which combines the temporal resolution and scientific calibration 
of Sentinel and Landsat imagery with the high spatial resolution of commercial imagery to 
monitor change at fine-scales.
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