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Notes from the Editor

The fall issue of 2020 comes a bit later than normal—our staff were consumed with 
the 3 special issues that we put out this year (more info on that at the end). Although not 
intentional, the issue seems to have a theme: water—all of the articles and one of the book 
reviews are about aquatic animals and water in California. The issue begins with an article 
by Kim Walker and her colleagues from both CDFW and the Scripps Institution of Ocean-
ography about updated life history information—age and growth—of Barred Sand Bass. 
Next, Bob Sullivan and John Hileman from CDFW’s Northern Region provide an interesting 
use of time series modeling and forecasting of the Trinity River in northwestern California; 
their results provide implications for fisheries management in this area. Following the two 
full research articles are two notes: one by Dave Germano, from CSU-Bakersfield, about 
the ecology of a Sierran foothill population of northwestern pond turtles and the other a new 
record of Green Sturgeon in the San Joaquin River from Shaun Root and his colleagues at the 
Bureau of Reclamation. Lastly, the issue finishes with two book reviews: one on mountain 
lions and the other covering how the development of the San Joaquin Valley influenced 
water law in California.

Our editorial team both grew and shrank this quarter. We have four new Associate 
Editors, while one is leaving us. Erica Meyers and John Kelly join us as much-needed 
fisheries editors. Erica has been with the Department since 2012, working for six years in 
the San Joaquin River Restoration Program prior to taking a position in Fisheries Branch as 
the Central Valley Chinook Salmon Coordinator. In 2003, she earned her bachelor’s degree 
at the University of Wisconsin, Madison, studying Conservation Biology in the Wildlife 
Ecology department founded by Aldo Leopold. She began her career rearing whooping 
cranes for reintroduction at the International Crane Foundation in Baraboo, Wisconsin, 
before moving to California to monitor salmonid populations in the Klamath Basin for 
CDFW. Erica received her Master of Environmental Science and Management degree 
from the University of California, Santa Barbara, in 2009. Her graduate studies focused on 
stream ecology, river restoration, and water resources management. Erica is particularly 
interested in applied science, anadromous fishes, hydrology, aquatic habitats, and the pursuit 
of elegant solutions to complex problems. John Kelly completed his bachelor’s degree at 
the University of Miami, FL, in 1995 before beginning his career as a reef fish biologist 
with The Nature Conservancy. He earned his PhD in 2006 at the University of California, 
Davis, where he studied Green Sturgeon movement and orientation. His areas of exper-
tise include fish ecophysiology and behavior, and he has particular interests in euryhaline 
and anadromous fishes, osmoregulation, swimming performance, metabolism, stress, and 
biotelemetry. Dr. Kelly conducted postdoctoral research at the USGS Conte Anadromous 
Fish Research Center and the University of Massachusetts, Amherst, prior to serving as a 
tenured Associate Professor and Marine Biology Program Coordinator at the University of 
New Haven, CT. After nine years, Dr. Kelly chose to leave academia to return to California 
and follow his passion for fish conservation and management. He joined CDFW in 2018 
and now serves in Fisheries Branch as Sturgeon Coordinator.
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We also gained two wildlife editors, Matt Meshriy and Megan (Mayo) Crane. Matt 
Meshriy is an Environmental Scientist in CDFW’s Upland Game Program at the Wildlife 
Branch. Matt serves as a coordinator for policy and management with statewide responsi-
bilities for upland game birds, small game, furbearing and nongame mammals. Matt holds 
a bachelor’s degree in Ecology and Evolution and a master’s degree in Animal Physiology 
and Behavior from San Francisco State University where his thesis work involved field 
investigations of the endangered giant kangaroo rat. Matt has banded spotted owls with the 
U.S. Forest Service and worked in California’s Central Valley to lead USGS field investi-
gations of giant garter snakes. Matt joined CDFW in his current role in 2012. Mayo Crane 
is a Florida native who came to California to study birds. She completed her PhD at UC 
Davis in Ecology, focusing on population genomics in avian systems. Currently, she is an 
Environmental Scientist with CDFW; she focuses on migratory upland game and runs the 
mourning dove banding program.

We also lost a great editor this quarter—Paul Reilly has been an AE for the Journal 
for many years and resigned in order to give others the chance to provide their expertise 
to the Journal. Paul, a Senior Environmental Scientist (Supervisor), began his career with 
CDFW as a Seasonal Aid in October 1975 in Menlo Park, fresh out of the University of 
Rhode Island’s Graduate School of Oceanography, and then became a Biologist in 1976. He 
applied his knowledge of zooplankton by studying Dungeness crab larval dynamics, as well 
as Dungeness crab fish predators. In 1980 as an Associate Biologist in Santa Barbara, he led 
a 2-year field study of fishes and invertebrates in Little Cojo Bay, Santa Barbara County, 
and began the first of 20 years as a certified Department scuba diver. From 1982 to 1992 he 
focused on research and management for the San Francisco Bay Herring fishery, including the 
use of hydroacoustics for biomass estimates. In 1992, he became a Supervisor in Monterey 
and led a scuba and commercial passenger fishing vessel study of nearshore and shelf rocky 
reef fishes. In 1999 he was designated as the Department’s expert on marine protected areas 
and for the next 7 years became immersed in the Marine Life Protection Act process, but 
also developed regulations for the restricted access spot prawn trap fishery and supervised 
his staff who were all working on projects other than marine protected areas. In 2006, Paul 
became the Supervisor of the Northern and Central California Finfish Research and Man-
agement Project, currently with a staff of eight. Focal species include California Halibut, 
Surfperches, Pacific Hagfish, White Seabass, and True Smelt. He and Travis Tanaka have 
aged more than 4,000 halibut otolith thin sections. Paul has continued a long-term database 
for beach fishing effort in Monterey County since 2007. He reviews many documents and 
has participated in the hiring of many Marine Region staff over the years.

We also had an excellent guest editor this issue that filled the gap we had for fish 
biologists before John and Erica joined our team. Claire Ingel is a Senior Environmental 
Scientist (Specialist) in the Native Fishes Conservation and Management program of Fisher-
ies Branch. She earned a Bachelor of Science degree in Biological Sciences from UC-Davis 
and a Master of Science in Natural Resources from Cornell University. Claire has worked 
for CDFW for 7 years within fisheries and habitat conservation programs, and approximately 
two years in her current role as Statewide Coordinator for the Native Fishes Conservation 
and Management Program. Her experience includes aquatic and fisheries management, 
habitat conservation and cannabis program review and permitting, grants management and 
coordination, aquatic education, and drought response.
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With a lot of help from our editorial staff—particularly my amazing layout editor, 
Lorna Bernard, the Journal published its three—first ever—special issues this year. The issues 
focused on the impacts of cannabis, wildfire, and recreation on fish and wildlife resources. 
Please check out these issues as well as our upcoming ones on the California Endangered 
Species Act and Human-Wildlife Interactions (https://wildlife.ca.gov/Publications/Journal/
Special-Issues).

Ange Darnell Baker, PhD
Editor-in-Chief
California Fish and Wildlife Journal

https://wildlife.ca.gov/Publications/Journal/Special-Issues
https://wildlife.ca.gov/Publications/Journal/Special-Issues


FULL RESEARCH ARTICLE

Validated age and growth of Barred Sand Bass within the 
Southern California Bight

KIMBERLY M. WALKER1 *, KIMBERLY M. PENTTILA2, ERICA T.
JARVIS-MASON3, AND CHARLES F. VALLE1

1 California Department of Fish and Wildlife, Marine Region, 4665 Lampson Ave., Suite 
C, Los Alamitos, CA 90720, USA 

2 California Department of Fish and Wildlife, Office of Spill Prevention and Response, 
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3 Scripps Institute of Oceanography, Marine Biology PhD Program, 9500 Gilman Drive, 
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*Corresponding Author: kim.walker@wildlife.ca.gov

The recreational fishery for Barred Sand Bass (Paralabrax nebulifer) has 
recently shown declines in catch prompting a need for updating life-history 
attributes. The objective of this study was to provide a more extensive and 
current examination of Barred Sand Bass age and growth. Fish were collected 
from the southern California bight from 2011 to 2015. Using Akaike Informa-
tion Criteria analysis we determined that the three-parameter von Bertalanffy 
growth model was the best fit out of the four tested models (Gompertz, Lo-
gistic, Power, and von Bertalanffy). Males grew slightly quicker than females 
(k, males = 0.10, females = 0.08). Males and females did not differ in length, 
weight, or the length-weight relationship. We also validated yearly banding 
of Barred Sand Bass with oxytetracycline marking of two fish in captivity for 
one year. Location of the first annulus was also validated with otolith diameter 
measurements. Finally, we compared the current study to a past 1990’s study 
and observed different growth parameters. The growth difference after thirty 
years showed that possible fishing pressure and environmental factors might 
have influenced changes in growth. This study provides current information 
on age, growth over time and, otolith morphometrics, for Barred Sand Bass. 

Key words: age estimation, age validation, Barred Sand Bass; growth; otolith, Paralabrax 
nebulifer
__________________________________________________________________________

Barred Sand Bass (Paralabrax nebulifer) range from Central California to Baja Cali-
fornia (Miller and Lea 1972) and can be found at depths up to 183 m (Eschmeyer and Herald 

California Fish and Wildlife 106(4):205-220; 2020
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1983). Barred Sand Bass has been a popular sportfish in southern California since the early 
1900s (Collyer 1949) and caught commercially until 1953 when commercial fishing of 
Barred Sand Bass was prohibited in California. They are most often targeted during summer 
months when they form large spawning aggregations (Love et al. 1996; Allen and Hovey 
2001; Jarvis et al. 2010). Barred Sand Bass along with its congener Kelp Bass (Paralabrax 
clathratus) are held in high esteem by recreational anglers in southern California and together 
the two fisheries earned 2.9 billion dollars in 2015 (NMFS 2017). They consistently have 
been in the top ten ranked fish caught in California on CPFVs (Commercial Passenger Fish-
ing Vessels) since the late 1970s; however, overall catch of Barred Sand Bass has decreased 
dramatically since 2004 (Erisman et al. 2011; Jarvis et al. 2014), and in 2013 a regulation 
change occurred for all three Paralabrax species, including kelp bass and spotted sand bass. 
The daily bag limit decreased from ten to five fish in combination of all three species and 
the size limit increased from 12 to 14 inches total length. In the years after the regulation 
change (2014 to 2019), landings data indicate kelp bass are re-bounding while Barred Sand 
Bass numbers continue to decline (CDFW, unpublished data). 

Determination of life history traits of marine fishes provides an increased understand-
ing of population dynamics and sustainable fishery yields which support better manage-
ment decisions (Treble et al. 2008; Zischke et al. 2013). The age of a fish is one of the most 
important biological factors measured, and informs researchers about recruitment, growth, 
and mortality (Leung and Allen 2016; McBride et al. 2008). These biological estimates are 
essential when managing marine fisheries, especially an overfished species like Barred Sand 
Bass. For example, life history traits may change over time in response to fishing pressures 
(Enberg et al. 2010). These changes are likely to require re-evaluation of fishery management 
tools that are based on specific life-history parameters (e.g., size at age). Thus, it appears 
prudent that age and growth rates of fishes be evaluated regularly (Ong et al. 2015; Williams 
et al. 2007). A study published over 30 years ago by Love et al. (1996) explored life history 
traits of Barred Sand Bass and included an assessment of age and growth and age and size at 
maturity. However, sample size for Barred Sand Bass were very limited (109 fish) and age 
validation was conducted using only marginal increment analysis (MIA). Currently, Barred 
Sand Bass are managed without sex-specific regulations. Sexes were previously determined 
to not differ for age and growth (Love et al. 1996). However, males and females of many 
species of fish grow at different rates, possibly because of resource partitioning (Enberg et 
al. 2010), and growth differences between sexes should be explored. 

Aging of fish hard structures can prove to be quite difficult and is often subjective. 
Although many validating methods are available (radiochemical dating, bomb carbon dat-
ing for long-lived fishes, tag-recapture, and MIA to ensure aging accuracy, there are also 
many roadblocks enlisting these methodologies (time constraints, cost, and utility in the 
case of MIA). Alternative ways to assess individual ages of fish would be beneficial and 
should be explored within the aging community. One possible method for estimating fish 
ages outside of traditional methods (band pair reading of hard parts and scales) is assessing 
morphometrics of otoliths. Otolith morphometrics (width, thickness, length and mass) may 
be a good predictor of fish age (Doering-Arjes et al. 2008; Matic-Skoko et al. 2011; Lepak 
et al. 2012) and the cost and time spent on this method is relatively low. 

When evaluating age and growth of fish species, the von Bertalanffy growth model 
(VBGM) is most often chosen for both sex-specific and for non-sex-specific growth mod-
els, with the assumption that this single model will describe growth best. Often, using the 
von Bertalanffy model a priori has been found to poorly describe growth, with negative 



207Fall 2020 207VALIDATED AGE AND GROWTH OF BARRED SAND BASS

results on the fishery (Katsanevakis and Maravelias 2008). Because of this, it is important 
to evaluate more than one growth model to determine which best fits the available data; 
other common models used to assess length at age of fish include Gompertz, Power, and 
Logistic (Williams et al. 2012). 

The objective of this study was to provide a more extensive and current examination 
of Barred Sand Bass age and growth by: 1) aging a large number of otoliths from both males 
and females; 2) validating annual periodicity of the observed growth pattern; 3) determining 
the relationship between otolith morphometrics and Barred Sand Bass age; 4) determining the 
model that best describes Barred Sand Bass growth; and 5) comparing the present models to 
the past study and its implications for current management of the Barred Sand Bass fishery.

METHODS

Sample collection and length-weight relationship

We collected Barred Sand Bass from 2011 to 2015 in coastal waters from Santa Barbara 
County to Orange County on predominantly sandy substrate and patch reef habitat using a 
variety of methods: 1) spearfishing on SCUBA, hook and line, and fish traps, 2) Los Angeles 
County Sanitation District’s Ocean Monitoring hook and line surveys, and 3) donations from 
anglers on CPFVs. Fish were measured for total length (mm) and whole weight (mg) (n = 
736) and sexed by macroscopic examination of gonads. We were unable to collect gonads 
from all fish, so some individuals were left as unsexed. We extracted and cleaned both right 
and left sagittal otoliths from all usable fish. After otoliths were cleaned with deionized water 
and air-dried, they were placed in gelatin capsules until further processing could occur. We 
fit the Barred Sand Bass data to a length-weight model. The logarithmic transformation of 
the two-parameter power function,, was used where W is whole body weight, TL is total 
length, and the parameters a and b are estimated using least square linear regression. Length 
and weight data were log-transformed to linearize the length-weight model. Homogeneity 
of slopes for length versus weight were compared between sexes with analysis of covari-
ance (ANCOVA). 

Otolith processing

We selected one otolith from each pair at random and marked at the nucleus, epoxied 
dorsally/ventrally onto thick paper labeling tags, and cured for 24 hours. Otoliths were cut 
along the transverse plane through the marked nucleus with a Buehler ISOMET low speed 
saw using two NORTON Superabrasive Diamond Grinding Wheels set 0.3 to 0.5 mm apart. 
Otolith wafers were then checked for the least marred side and then affixed that side down 
with CytosealTM 60 adhesive. The slides cured for an additional 24 hours. We wet polished 
otolith wafers using 600 grit waterproof sandpaper and deionized water with frequent 
checks under the stereo microscope for the best view of bands to prevent over polishing 
and diminishing the banding pattern. 

Otolith reading/aging

Attempts to read all (n = 736) otoliths were made by two readers from a live image 
that was projected onto a TV screen using a Sony Handycam HDR-SR7 Digital HD Video 
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Camera Recorder attached to a compound microscope under low magnification (4x). We aged 
otoliths twice on two separate occasions by each reader (= four assigned ages per otolith) 
no less than two weeks and no more than four weeks apart. We counted the combination of 
an opaque and translucent band (annulus) as one whole year of growth. A band is defined 
as a distinct color change on the otolith; the translucent band is clear and the opaque band 
is white under the transmitted light of a compound microscope (Beamish and McFarlane 
1983; Campana and Neilson 1985). We assigned final ages from the total number of counted 
annuli. Otoliths that were given the same age three out of four times were considered aged 
and were not assessed again. If an age was not agreed upon three out of four times, then the 
readers observed the otolith together and attempted to come to an agreement for an age of the 
fish. Otoliths that were deemed unreadable, or when the readers could not agree upon an age, 
were not included in the final analysis. The precision of age estimates between readers was 
calculated with Chang’s coefficient of variation (CV) (Chang 1982). Equation is as follows:

Otolith morphometrics

We obtained measurements for 608 otoliths; the remaining otoliths were missing 
or damaged in some way and not used in the analyses. Otoliths were measured for mass 
(gram,g) and length (millimeter, mm) to establish a possible relationship with fish age. Mass 
was measured with an analytical balance to the 0.0001 g. The length of the whole otolith 
was measured with calipers to the 0.01 mm, from the longest axis along the anterior and 
posterior surface of the otolith. Initially, thickness and width were also measured (n = 24) 
but preliminary regression analysis showed them to be poor potential predictors for age, 
(r2 = 0.41 and 0.53, respectively) so these measurements were not obtained for all otoliths. 
A random otolith of the pair was then chosen and the relationship of mass and length with 
age was determined through linear regression.

Validation of annual periodicity and edge analysis

The annual periodicity of banding in Barred Sand Bass was evaluated by oxytetra-
cycline (OTC) marking of live fish. To confirm that Barred Sand Bass produce two distinct 
bands per year, we chemically marked one opaque (white band) and one translucent (clear 
band) of two adult Barred Sand Bass with OTC by injection. Two adult fish measuring 
334- and 349-mm total length caught in Orange County at the same general area as most 
fish aged in this study were injected in the dorsal muscle with 0.2 to 0.3 mL of OTC. The 
fish were kept in outside aquaria pens (2013 January to 2014 January) at California State 
University, Long Beach, then sacrificed for otolith removal after one year. Otoliths were read 
with an Olympus BX51 microscope under ultraviolet light, and images were taken with an 
attached digital camera Olympus camera. A green fluorescing band across the face of the 
otolith indicated the location of the OTC mark. Images were also taken under transmitted 
light and compared with the fluorescent otolith image so that the matched bands could be 
visualized. Together, the opaque and translucent banding after the OTC mark and up to the 
leading edge of the otolith were counted as one full year of growth.

√CV=                          *100% 

(XiJ —Xj)2
N — 1∑i=1

Xj

N
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We also performed an edge analysis by recording the growing edge (margin zone) 
of all otoliths as either opaque or translucent in relation to the fish’s month of capture to 
determine the seasonality of the banding pattern within the year. Although edge analysis is 
not as reliable a technique for age validation as an OTC marking because light refraction 
and thinning of the otolith edge may cause misinterpretation (Campana 2001), edge analysis 
was used to reaffirm annual periodicity of banding.

The first-year annulus was validated by taking measurements of young-of-the-year 
otolith diameters from fish collected in October to December. We captured images of ten 
otoliths with a Sony Handycam Digital HD Video Camera Recorder (HDR-SR7) and 
digitized into ImageJ (version 1x) (Schneider et al. 2012). A digital micrometer within the 
program was calibrated using an image of a calibration slide. The images were then measured 
across the otoliths’ diameter with the add-in, ObjectJ. We created a regression plot of otolith 
diameter-total fish length to determine the relationship between the two measurements. 
The modal total length (mm) of the young-of-the-year measurements was inserted into the 
young-of-the-year length-otolith diameter regression and the regression line was used to 
estimate the diameter of the first year annulus.

Growth curve determination and historical comparison

We evaluated four different models that are commonly used to describe fish growth 
for males, females and the sexes combined. We included smaller unsexed juvenile fish (n = 
21, TL < 205 mm) in all models to increase an accurate estimate of the parameters (Craig 
1999). The sexes combined model also included an additional 100 fish of larger sizes but 
unknown sex. The model equations are as follows: 3-parameter Gompertz = L∞ [exp (− exp 
( − k * (t − t0))))), Logistic = L∞ /1 + exp (−k (t − t0)), 2-parameter Power = a * (tb), and 
3-parameter von Bertalanffy = L∞ [1 − e−K(t−t )]. Parameters are defined as follows for all 
equations: L∞ maximum asymptotic length, k = relative growth rate, t = age of fish, and t0 
= theoretical age at time that length is zero, and a and b = describe the shape of the curve 
with no biological meaning. The models were compared using Akaike Information Crite-
rion (AIC) to determine which model fitted the data best; the lowest AIC being the better 
fit model (Katsanevakis and Maravelias 2008).

We determined if growth was equal between males and females with a family of six 
nested models. We used planned contrasts to compare all combinations of the VBGF pa-
rameters to a general model. Separate parameters were estimated between groups (sexes) 
with analysis of variance.

The observable change in age and growth over time was evaluated by comparing 
parameters from Love et al. (1996) to the current study. We did not have access to the 
raw historic data, so no statistical analysis was conducted, and parameters were compared 
qualitatively.

All data analysis was conducted in R package v3.3.2 (R Core Team, 2017) unless 
otherwise noted. 

RESULTS

Sample collection and length-weight relationship

We prepared 736 Barred Sand Bass otoliths for aging. Of the 736 fish assigned ages, 
370 were female, 245 were male, and 121 were of unknown sex. The male: female ratio was 

0
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1:1.5 and was significantly different from a 1:1 expected ratio (Chi-Square analysis; χ2 = 
25.407, d.f = 1, P < 0.001). The total length (TL) of female Barred Sand Bass ranged from 
245 to 600 mm and males from 146 to 593 mm TL. The total length of fish with unknown 
sex ranged from 117 - 566 mm. The total body weight for females ranged from 180 to 3400 g 
and 220 to 2310 g for males. There was no significant difference of distribution between male 
and female total length (mm) or total body weight (g) (two-sample Kolmogorov-Smirnov 
test, D (615) = 0.06442, P = 0.5734, and D (381) = 0.11271, P = 0.1993, respectively). The 
length-weight parameters were estimated to be a = -4.5935 and b = 2.8868 for males, a = 
-5.1121 and b = 3.0951 for females, and a = -5.0147 and b = 3.0546 for sexes combined 
(Table 1). Analysis of covariance for length-weight relationship of males and females were 
found to not have significantly different slopes (ANCOVA, P = 0.9904) and were pooled 
together for fitting of the power curve. The pooled data showed a strong relationship (R2

 = 
0.9320) between length and weight (Table 1, Figure 1). 

Table 1. Barred Sand Bass length-weight parameters estimated from the two-parameter power function, W = aTLb. 
Where W is log-weight and TL is log-length. 

Sex n a (intercept) b (slope) SE of b r2

Male 149 -4.6742 2.9219 0.3240 0.7833
Female 232 -5.1121 3.0951 0.0558 0.9305

All 381 -5.0192 3.0579 0.0503 0.9062

Total Length (mm)
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Figure 1. Total length (mm) and whole weight (g) relationship of barred sand bass, all sexes combined. Dashed 
line represents fitted power curve. Power function and R2 value is reported. n = 379.
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Otolith aging

Barred Sand Bass otoliths exhibited the common pattern of alternating translucent and 
opaque bands radiating out from a central opaque zone (nucleus). The bands started wide 
then became thinner as they radiated towards the edge until they were no more than a thin 
line. From the thin otolith wafers, the maximum age given to a female, also the oldest aged 
fish in the sample, was 25 years old (600 mm TL), and the oldest male was aged at 19 years 
(453 mm TL). The coefficient of variation (CV) was calculated as 9.9%. Bias plots showed 
that both agers tended to age younger fish older than the final agreed upon age, and older 
fish younger than the final agreed upon age. (Figure 2, A and B). Bias plots also showed that 
agers differed from each other, on average, and generally underaged otoliths (Figure 2, C). 
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Figure 2. Age bias plots of average (n=4) age assigned by readers A and B for Barred Sand Bass, plots A and 
B. Comparison is between each reader’s age and average age against the final agreed upon age. Letters indicate 
different agers, A and B. Numbers indicate different readings, 1 and 2. Number of otoliths read (n): A1 = 756, A2 
= 751, B1 = 740, and B2 = 741. Error bars are 95% confidence intervals.
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Otolith morphometrics

Otolith length and mass increased curvilinearly with age reaching an asymptote. There 
was a significant difference between sexes for mass and length measurements (ANCOVA; 
p < 0.05 for both measures), so sexes were analyzed separately. Linear regression models 
showed that otolith mass explained 72% female and 70% male variation; otolith length 
explained 53% female and 64% male variation of Barred Sand Bass ages (Figure 3). 
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Figure 3. Linear relationships between otolith morphology and age estimates of Paralabrax nebulifer, within the 
Southern California Bight. The coefficient of determination (r2) values are reported for the relationship between 
both length and mass with age. n = 581, for both length and mass measurements. Panels A and B are Females, 
panels C and D are Males. Solid lines are regression lines.

Validation of annual periodicity and edge analysis

The OTC mark was observed as a fluorescing line on both sagittal otoliths of injected 
Barred Sand Bass (TL = 426, aged as a 10-year-old fish). One of each translucent and opaque 
band followed the fluorescing mark and were of the same width as bands before the OTC 
mark indicating an annual banding pattern (Figure 4). 
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OTC OTC Mark Band past OTC 

a b 

Figure 4. Oxytetracycline treated barred sand bass (TL = 426, aged as a 10-year-old fish) thin-sectioned sagittal 
otolith. a. under fluorescent lighting and b. without. Oxytetracycline mark is indicated by white line and black 
arrow; the year of growth is also marked. Scale bar is equal to 1 mm.

Opaque bands were found most frequently in the summer months (June to September) 
and translucent bands were more prevalent during the other months (January to May and 
October to December). The proportion of opaque and translucent bands during the summer 
months was approximately 50% for each and during the other months, edges were > 70% 
translucent (Figure 5) suggesting a seasonal growth pattern. 
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Validation of the first annulus was confirmed by establishing a relationship between 
otolith diameters of zero and fish total length of zero and one-year aged fish. None of the 
fish in our sample (n = 10) were the exact total length, so fish were binned in 20 mm incre-
ments and the most common mode was the 140 mm bin. Based on a total length of 140 mm 
for age one fish, the annulus diameter of age one fish was estimated as 2.2 mm. This value 
corresponded with the predicted annulus diameter of age one fish when otoliths of fish of all 
ages were included in the regression. Regression analysis showed fish total length explained 
73% of otolith diameter (Figure 6). 
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Figure 6. Validation of the annulus on first-year barred sand bass otoliths. Scatter plot of otolith diameter (mm) and 
fish total length (mm) including distribution of fish at size (total length, mm). Solid line is a regression of otolith 
diameter and fish total length. Inserted into the graph is the mode of one-year old fish. n = 309.

Growth curve determination 

We found that the VBGM was the best fit to the size-at-age curve for the male, female 
and sexes combined (includes unsexed fish) data sets (Table 2). The power function was 
the next best fit for females and sexes combined; however, it was the poorest fit for males.

Significant differences were found between male and female von Bertalanffy growth 
model parameters Linf (ANOVA: F = 5.6326, P = 0.01792). Therefore, von Bertalanffy 
growth curves were fit separately for male and female Barred Sand Bass Both sexes grew 
relatively fast in early years but slowed down around age five (Figure 7). 

Growth parameters for the current study of all sampled fish (n=736) were estimated 
to be Linf = 606, k = 0.09, and t0 = -2.32 

DISCUSSION

We found and verified that sectioned sagittal otoliths were useful and reliable for 
estimating age of Barred Sand Bass in southern California. This finding is in line with the 
previous study from Love et al. (1996) that also found sagittal otoliths of Barred Sand Bass 
to be appropriate for estimating age. The CV calculated for this species also indicates the 
viability of using sagittal otoliths for aging of Barred Sand Bass. Campana (2001) sug-
gests that designated CV target levels may be difficult to attain because of morphological 
and environmental species differences and the complex nature of otoliths. They found that 
across 117 studies, the median CV was 7.6% and the mode was 5%. Barred Sand Bass are 
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Table 2. Results for model selection. Models ranked by lowest difference in AIC scores (ΔAIC) and larger weight 
(Wi). A lower model AIC and ΔAIC indicates a better fit model to the data. 

AIC ΔAIC Wi

Both Sexes VBGM 7322.97 0 0.98
Power 7330.37 7.4 0.02

Gompertz 7338.5 15.53 0
Logistic 7357.12 34.15 0

Female VBGM 3911.64 0 0.91
Power 3916.4 4.76 0.08

Gompertz 3920.99 9.35 0.01
Logistic 3932.42 20.78 0

Male VBGM 2614.23 0 0.85
Gompertz 2617.68 3.45 0.15
Logistic 2625.97 11.74 0
Power 2723.17 108.94 0
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Figure 7. Length at age data (open circles) of fit 
with the von Bertalanffy growth curve (solid black 
line) of female (a) and male (b) barred sand bass 
collected within the Southern California Bight. and 
n = 391, female and n = 266, male.
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relatively long-lived fish and the otolith-banding pattern was more complex than other spe-
cies with shorter life spans. Therefore, our reported CV was deemed acceptable and within 
the range of other long-lived species. 

There was a slight sex skew towards more females than males, also a finding from the 
past study, although the implications of this for Barred Sand Bass populations is not well 
known. It has been noted that a small number of Barred Sand Bass may be hermaphroditic, 
which may explain the sex skew (Baca-Hovey et al. 2002). We found the length-weight rela-
tionship to be strong, with length a good predictor of weight for males and females combined. 
Male and female length-weight relationships did not differ significantly from each other,

Otolith banding was also validated with OTC marking of captive adult fish. Often, 
OTC marking of captive fish is not a reliable method (Campana 2001), because of the in-
ability to control environmental factors. In the case of our captive fish, they were kept in 
temperature controlled outdoor aquaria that resembled their natural seasonal environment. 
The creation of both bands during the captive year was of similar width to those prior to 
OTC marking giving evidence that being in captivity did not inhibit the growth of our OTC 
marked fish. The location of the first annulus was also confirmed in this study. Establish-
ing the first annulus is an often neglected but important step in aging studies. Studies have 
found that previous age estimates were inaccurate based on newer studies’ location of the 
first-year annulus (Beamish and McFarlane 1995; Natanson et al. 2006). Edge analysis of 
Barred Sand Bass otoliths indicated seasonal band formation and reinforces annual peri-
odicity of banding in Barred Sand Bass otoliths. The banding pattern of Barred Sand Bass 
otoliths showed some seasonality trends. The observed edge pattern consisted of translucent 
bands appearing more frequently during winter months compared to opaque bands, which 
were observed in the summer months. The mechanisms of band formation are not well 
understood but it is widely accepted that they are influenced by temperature and nutrient 
availability (Weidman and Miller 2000). The winter months produce slow growth with 
narrow translucent banding (Campana 1999). The summer months of fast growth produce 
wide opaque bands (Campana 1999).

Very few species of fish are re-evaluated over time for age and growth. Most often, 
once an analysis occurs and growth parameters have been calculated the data are used for 
many years to follow, and for some species, this may be appropriate. Commonly, the data 
are used in stock assessments and other studies that describe a stock to determine the best 
management strategy. The fit of fish growth to an appropriate growth model is dependent 
on life history, environment and unseen properties. The shape of the curve may vary, again 
depending on variations in fish species. The best-fit model for age and growth of Barred Sand 
Bass was determined to be the von Bertalanffy Growth Model (VBGM). The VBGM is the 
most used growth model for most marine fish and was used in the past study for Barred Sand 
Bass (Love et al. 1996). However, unlike the past study, our sample size was large enough 
to allow accurate fitting of the Von Bertalanffy curve separately for males and females and 
showed that females grew faster than males, and that females were larger.

The utility of using morphometrics was also explored in this study and we found 
otolith length and mass may be good indicators of Barred Sand Bass age. Otolith mass was 
the better predictor of age explaining about 76% of the variation within ages. Considering 
the difficulty of aging fish species (otoliths of older/larger were difficult to differentiate the 
annulus versus checks), it seems some otolith morphometrics may be a better alternative 
to aging of fish otoliths.
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Despite a similar maximum age of 25 years in the current study versus 24 years in 
Love et. al (1996), current study had a much smaller Linf (606 mm) compared to the 1990’s 
study Linf (662 mm), indicating that maximum size of Barred Sand Bass has decreased over 
time. However, the growth coefficient k (0.08 for 1990’s and 0.09 for current study) is similar 
for both studies indicating that growth rate is approximately the same from both studies. 
Differences in Linf may be attributed to environmental factors and/or increased fishing pres-
sure. Within the Firth of Clyde in Scotland five species of marine fish were shown to have 
differing growth rates based on location (Hunter et al. 2016). The locations studied were 
experiencing different temperature regime changes over decades, starting in the 1980’s and 
continuing to today, like what Barred Sand Bass has experienced in southern California. 
Another explaining factor is size selective fishing. Changes in phenotype have long been 
associated with fishing pressure. For example, Sharpe and Hendry (2008) reviewed several 
studies of changes in commercial fisheries associated with increased fishing pressure and 
found evidence that fishing pressure is a major driver that influences life history traits that 
are heritable within a species. The large growth parameter differences found between the 
1990’s study and this study highlight the importance of updating life history traits for man-
aged marine species. 
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Here we apply seasonal time series modeling to flow and fisheries management 
in a highly regulated river system. Time series modeling is commonly employed 
to forecast future values of streamflow and extrinsic climate-related seasonal 
data based on historical information. This method has not been employed in 
evaluating fish-flow management in highly regulated rivers that experience 
regular and long-term hydrological fluctuations. Forecasting annual outflow 
volume and predicting and evaluating its effect on variability in the thermal 
regime of major river systems, is vital for addressing potential impacts to 
anadromous and non-anadromous fisheries. Autoregressive Integrated Moving 
Average (SARIMA) time series analysis was used to predict and describe seasonal 
variation in flow volume and water temperature for the upper Trinity River 
in northern California. The objectives were: 1) use a multivariate approach to 
SARIMA modeling to describe and evaluate seasonal patterns in environmental 
variables associated with the historical annual time series record in response 
to implementation of anthropogenic flow-type hydrographs; and 2) relate 
results to fisheries resources in the upper Trinity River through management 
recommendations. Raw data representing the historical time series for volume 
of flow and water temperature variables were partitioned into three time series 
subgroups. Each subgroup represented a specific flow-type following previous 
research into the effects of highly managed hydrographs in the upper Trin-
ity River. Subgroups were evaluated based on their efficiency to model and 
provide accurate operational forecasts of monthly environmental data. Results 
showed that subcomponents of the historical post-dam time series specific to 
managed flow-type hydrographs keyed to geomorphologic restoration actions 
significantly misrepresented the: 1) time series characteristics, 2) seasonal-trend 
decomposition patterns, and 3) forecast accuracy compared to the baseline 
pre-restoration time series model. These results effectively nullify use of 
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managed hydrographs in predicting future forecasts for flow-fish planning 
and management purposes. Use of time series modeling without reference to 
continuous intrinsic periods within the historical time series data where flow is 
anthropogenically manipulated will be misleading when attempting to evaluate 
the overall characteristics and subsequent future forecasting that derive from 
such models. By placing environmentally-driven historical time series models 
into perspective relative to anthropogenically manipulated flow management 
the needs of both current and future water and fisheries resources will be better 
optimized notwithstanding the inevitable long-term effects of climate change.

Key words: fisheries resources, flow-mediated water temperature, regulated river, river 
restoration, SARIMA, time series modeling 
_________________________________________________________________________

Historically, time series analysis has been employed in building models to detect 
seasonal trends and forecast future values of water temperature, precipitation, air tempera-
ture, evapotranspiration, streamflow, and other climate-based data using regionally-specific 
historical information (Salas 1993; Adeloye and Montaseri 2002; Papalaskaris and Kampas 
2017). Application of time series modeling is expanding with growing concerns about climate 
change and global warming. This approach requires accurate explanation of the underlying 
dynamics of river flow. Yet obtaining this kind of information may not always be possible 
by methods of statistical forecasting using conventional linear regression focused primar-
ily on average values of data (first-order moment) but not variance in data (second-order 
moment; Casella and Berger 2002; Martínez-Acosta 2020; Attar et al. 2020). Use of time 
series modeling has not been employed in evaluating issues related to fish-flow management 
in riverine systems. This observation is particularly true for rivers experiencing regular and 
long-term hydrological fluctuations keyed to dam operational releases for in-river geomor-
phological restoration actions, which is the primary focus of this paper.

Variability, uncertainty, and unpredictability are hallmarks of river systems and, by 
extension, of any in-river restoration initiative (Wissmar and Bisson 2003). Restoration 
projects on large river systems in the Pacific Northwest carry substantial ecological and 
economic risk, which highlights the need for improved restoration science (Woelfle-Erskin 
et al. 2012). Adding to the uncertainty and unpredictability of riverine restoration efforts is 
the tendency to implement prescriptions at a local-level without consideration of the link-
ages at nested temporal and spatial scales (Holčík 1996). This practice minimizes insight 
into modeling longer-term effects that contribute to variability and unpredictability in 
flow-related restoration efforts and their impacts to fisheries resources (Woelfle-Erskin et al. 
2012). For example, restoration flows have traditionally focused on discharge impacts over 
short time intervals (< 1 year). This strategy is driven primarily by annual needs for in-river 
geomorphic work without reference to “baseline” or “unimpaired” flow models (Shibatani 
2020) synchronized with historical and current tributary flow events that automatically fac-
tor in annual variability in climate change. Shortfalls in the outcomes of river restoration 
have prompted calls to identify and restore processes that support and sustain biological 
communities, rather than focusing only on river geomorphology (Palmer and Ruhi (2019). 

Stochastic Moving Average (ARMA) time series models are based on probability 
theory that represent the temporal uncertainty of data without a seasonal element (Martínez-
Acosta et al. 2020). Modification of ARMA analyses for evaluating stochastic seasonal time 
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series phenomenon involves Seasonal Autoregressive Integrated Moving Average (SARIMA) 
models. This technique in combination with the Box-Jenkins (Box and Jenkins 1976) ap-
proach, which evaluates autocorrelations among variables as well as lag-lead relationships 
between variables, has direct application to modeling seasonality and correlation structure 
in hydrological data associated with forecasting reservoir inflow, outflow discharge, and 
river water characteristics affecting flow-fish thermal regimes (Stergiou 1991; Pajuelo and 
Lorenzo 1995; Bari et al. 2015; Papalaskaris et al. 2016). Anthropogenically-induced vari-
able hydrology and its impact on thermal regimes of major riverine systems is a critical 
factor affecting the physiology, ecology, and life history strategies of resident salmonids 
and other aquatic organisms (Olden and Naiman 2010; Hallock et al. 1970; McCullough 
1999; Carter et al. 2006). Long-term patterns of flow variability have historically selected 
for organismal life histories related to growth, reproduction, dispersal, and the ability to 
persist under physical and chemical stress (Palmer and Ruhi 2019). Use of time series 
modeling is particularly relevant to management of fisheries resources given that most fish 
are ectothermic, and their life history strategies are directly and functionally affected by 
variable thermal regimes within their regional and local migratory landscapes (Hildebrand 
and Goslow 2001). When managing fisheries resources, forecasting outflow volume, and 
predicting its effect on variability of water temperature is particularly relevant in planning 
flow releases and understanding the hydrographic characteristics underlying potential im-
pacts to anadromous fisheries resources.

Flow dynamism also is central to a functioning river system and its ability to provide 
ecosystem services, yet flow alteration is rarely inconsequential (Palmer and Ruhi 2019). 
Variability in riverine thermal regimes as a function of anthropogenic flow scheduling has the 
potential to adversely affect run-timing, local migratory behavior, spawning, and early de-
velopment of juvenile anadromous species, including Coho Salmon (Oncorhynchus kisutch), 
spring- and fall-run Chinook Salmon, and steelhead (Oncorhynchus mykiss), together with 
resident non-anadromous Brown Trout (Salmo trutta) and Klamath Smallscale Suckers 
(Catostomus rimiculus; Sullivan and Hileman 2018, 2019, 2020). In northern California, 
populations of spring-run and fall-run Chinook Salmon (Oncorhynchus tshawytscha) in 
the Klamath Basin have declined significantly in the last 100 years as a function of several 
linked factors, including a series of dams on the mainstem Klamath and Trinity rivers (Rom-
berger and Gwozdz 2018). All stocks of salmonids in the upper Trinity River are at their 
lowest levels since 2007. The upper Trinity River has experienced repeated fluctuations in 
the seasonal volume of flow and thermal regime as a function of water management policy, 
in-river anthropogenic actions centered around geomorphological restoration activity, and 
attempts to control disease using artificially augmented pulsed flows since 2003 (Sullivan 
and Hileman 2018). These activities directly affect migration and run-timing in both non-
anadromous and anadromous salmonids linked to the expression of regionally adapted life 
history strategies (Sullivan and Hileman 2020).

The objectives of this research were threefold. First, a multivariate approach to 
SARIMA time series modeling was used to describe seasonal patterns in environmental 
variables potentially influenced by implementation of specific anthropogenic flow-type 
hydrographs. Second, we tested the hypothesis that subcomponents of the historical time 
series data representing specific in-river restoration actions significantly misrepresent the time 
series characteristics and forecast accuracy of seasonal flow volume and water temperature 
compared to a “baseline” pre-restoration time series model. Third, we relate results of our 
research to management of fisheries resources in the upper Trinity River through recommen-
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dations focused exclusively on time series modeling and analysis. Forecasting plays a critical 
role in fisheries management because it precedes planning which, in turn, precedes decision 
making (Makridakis et al. 1983; Stergiou et al. 1997). By placing environmentally-driven 
historical time series models into perspective relative to anthropogenically manipulated flow 
management, the needs of both current and future water and fisheries resources will be better 
optimized and managed notwithstanding the inevitable long-term effects of climate change.

METHODS
Study area

The Trinity River is in northwestern California and is the largest tributary of the 
Klamath River system (Figure 1A). Construction of Trinity and Lewiston dams occurred 
in the early 1960s.Trinity Dam creates Trinity Reservoir, storing up to 3,022 m3 of water. 
Lewiston Reservoir, formed by Lewiston Dam, is located 11.8 km downstream of Trinity 
Dam, which serves as a re-regulating reservoir for flow to the Trinity River and diversion 
to the Sacramento River Basin, comprising the Trinity River Division of the Central Val-
ley Project (Sullivan and Hileman 2019). The Trinity River system is not connected geo-
logically to the Sacramento River system of the Central Valley. From Lewiston Dam, the 
Trinity River flows ~ 180 kilometers before joining the Klamath River at the township of 
Weitchpec, California. The Klamath River flows for an additional 70 km before entering 
the Pacific Ocean. Trinity River Hatchery is located immediately below Lewiston Dam. 
From a management perspective, the upper 63.1 rkm of the Trinity River or “mainstem,” 
ends at the confluence of the North Fork Trinity River and the Trinity River proper. This 
section of the river is the primary focus of in-river restoration activities by the Trinity River 
Restoration Program (TRRP 2020). The focus of our study was the upper-most section of 
the mainstem just below Lewiston Dam and the Trinity River Hatchery, which is the upper 
limit to anadromy on mainstem. 

Managed flows and release schedule

The TRRP created by the Record of Decision, henceforth called “ROD” (USBR 
2000), mandated a plan for restoration of 63.1 km of the upper Trinity River and its fish 
and wildlife populations. The Trinity River Mainstem Fishery Restoration Environmental 
Impact Statement was the basis for the ROD (TRFES 1999). This restoration strategy in-
cluded: 1) flow management through manipulation of the annual hydrograph, 2) mechanical 
channel rehabilitation, 3) sediment management, 4) watershed restoration, 5) infrastructure 
improvements, 6) adaptive environmental assessment and monitoring, and 7) environmental 
compliance and mitigation. Schedules for annual flow releases for the Trinity River are 
established based on water year type1 and restoration needs (Appendix I; TRRP 2020). As 
of water year 2020 the proportion of water scheduled to be removed from the Lewiston 
Reservoir and diverted to the Central Valley is 61% of the allotment. The remainder (39%) 

1 The term “water year” defined by the United States Geological Survey is “the 12-month period 1 
October (of any given year) through 30 September of the following year.” The water year is desig-
nated by the calendar year in which it ends, and which includes 9 of the 12 months. Thus, the year 
ending September 30, 1999 is called the “1999” water year. https://water.usgs.gov/nwc/explain_data.
html

https://water.usgs.gov/nwc/explain_data.html
https://water.usgs.gov/nwc/explain_data.html
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is scheduled to be released into the into the Trinity River. Detailed descriptions and sum-
maries of specific flow schedules and restoration actions are provided elsewhere (TRRP 
2020; Sullivan and Hileman 2019).

Data collection and sampling

To test our hypothesis, raw data representing the historical time series data for volume 
of flow and water temperature were partitioned (fixed portioning; Prasad 2019) into three 
time series subgroups. Each subgroup corresponded to specific hydrological flow-types 
following previous research into the effects of highly managed hydrographs on the upper 
Trinity River and its fisheries resources (Figure 1B2; Sullivan and Hileman 2020). These 
subgroup flow-types included: 1) “baseline” PreROD flows (1995 – 2002), 2) ROD flows 
(2005 – 2011, 2017), and 3) Pulse flows (2012 – 2016, 2018). ROD and Pulse flow-types 
represented only those continuously unbroken sequences of years in which specific managed 

Figure 1. A) Map of Trinity 
Coun ty  and  loca t ion  o f 
Trinity Dam, Lewiston, Dam, 
Trinity River Hatchery, and 
Lewis ton  Water  Qual i ty 
Gauge (LWS) within the upper 
reach of traditional spawning 
grounds 1.7 rkm downstream 
of hatchery. B) Examples of 
hydrographs representative of 
different flow-types used in 
time series analyses. Managed 
hydrographs are associated 
with ROD and Pulse flow-types 
typically implemented between 
Julian week 13 and 40. Gray 
shaded areas correspond to run-
time presence of various species 
of salmonids in the upper river.

2 Hoopa Valley Tribal Boat Dance flows are scheduled in odd years for ceremonial purposes. During 
this time, the United States Bureau of Reclamation increases the volume of flow from Lewiston Dam 
into the Trinity River in support of this ceremony in the town of Hoopa, California.
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hydrographs were implemented. Daily recordings of telemetered digital data were used to 
assess the seasonal extent of variability in the annual thermal regime that characterizes the 
upper Trinity River. These data were obtained from the United States Bureau of Reclama-
tion, Lewiston Water Quality Gauge (LWS; DWR 2020) located 1.7 rkm downriver from 
Lewiston Dam (river-km 178.2; UTM 516,634 m E and 4,507,678 m N; elevation 558 m). 
Digital data obtained included averaged daily: 1) flow volume (ADFV m3/s), 2) minimum 
air temperature (MIAIR degrees Celsius [°C]), 3) maximum air temperature (MXAIR °C), 
4) minimum water temperature (MIWAT °C), maximum water temperature (MXWAT °C); 
and 5) a measure of extreme variability in water temperature (ADWTV [average – mini-
mum] + [maximum – average] °C). The LWS gauge was chosen because there are no other 
sources of inflow from the watershed or major tributaries between the LWS gauge and 
Lewiston Dam. As a result, this section of the river is not inadvertently influenced by other 
local watershed conditions. Further, this location was the “standard” used in all National 
Environmental Protection Act (NEPA) assessments and flow augmentation analyses of 
fluctuations in river water temperature, specific to the upper Trinity River out of Lewiston 
Dam since 1997 (Magneson and Chamberlain 2014). Importantly, this gauge provides the 
best location for measuring water temperature conditions nearest to the hatchery as hatchery-
origin Chinook Salmon as well as other natural-origin salmonids traditionally spawn in this 
segment of the upper-most reach.

Statistical analyses

Standard statistics.—All statistical tests performed used the R-suite of statistical 
programs (R Core Team 2020) and statistical significance for all analyses was set at p < 
0.05. Prior to implementing statistical analyses, visual assessment of each environmental 
variable was conducted using two goodness-of-fit plots: 1) theoretical density plots of 
histograms against fitted density functions; and 2) Q-Q plots of the theoretical quantiles 
against empirical ones with emphasis on lack-of-fit at the tails of distributions, which were 
evaluated by use of the Akaike information criterion (AIC; Package “MuMIn;” Appendix 
II). A follow-on statistical evaluation using the Anderson-Darling (A) test statistic (Ste-
phens 1986) similarly showed that all environmental metrics were not normally distributed 
(minimum air temperature: A = 14.7, p < 0.001, n = 5,752]; maximum air temperature: A = 
80.7, p < 0.001, n = 5,752]; minimum water temperature: A = 10.9, p < 0.001, n = 8,055]; 
maximum water temperature: A = 14.5, p < p < 0.001, n = 8,055]; extreme variability in 
water temperature: A = 276.1, p < 0.001, n = 8,042]; flow volume: A = 148.5, p < 0.001, n 
= 8,401]). Thus, all subsequent statistical analyses used non-parametric or semi-parametric3 
statistical methods (McDonald 2014; Tsiatis et al. 2006). Spearman’s rank correlation rho (rs) 
2-tailed test was used to calculate the strength and direction of the relationship between two 
variables, expressed as a monotonic relationship, whether linear or not (Corder and Foreman 
2014). Kruskal-Wallis Chi-square (ꭓ2) rank sum tests evaluated each designated variable 
accompanied by follow-on planned pairwise comparisons between each designated group 
using the Dunn test statistic (Z). All p-values were adjusted using the Benjamini-Hochberg 
method (Benjamini and Hochberg 2000; Machiwal and Madan 2006).

Principal components analysis (PCA; Program “FactoMineR”) was used to describe 
variation, identify variable selection, discard redundant variables, and assess seasonal varia-
3 In statistics, a semiparametric model is a statistical model that has parametric and nonparametric 
components. https://en.wikipedia.org/wiki/Semiparametric_model

https://en.wikipedia.org/wiki/Semiparametric_model
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tion in each environmental variable. Component axes that accounted for > 1% of the total 
variation in “attribute space” were retained for further analysis among flow-types for each 
time series. This method is generally preferred for numerical accuracy as resulting principal 
components are orthogonal, thus minimizing multicollinearity between model predictors, 
with the goal of identifying a smaller subset of variable components that capture the majority 
of variance in predictors (Everitt and Hothorn 2011).

Generalized additive models.—Semi-parametric generalized additive modeling (GAM; 
Package “mgcv;” Wood 2017) was used in regression of each environmental variable (Hastie 
and Tibshirani 1990; Madsen and Thyregod 2011; Wood 2017). Response curves generated 
from each GAM showed the relationship between the fitted function and the response vari-
able. Smooths were “centered” to ensure model identity and summed to zero over covariate 
values. Statistics reported by each GAM included: 1) F-statistic (approximate significance 
of smooth terms), 2) p-values and 95% confidence bands for spline lines (Nychka 1988), 
2) adjusted regression coefficients for each model (R2.Adj.), 3) estimated residual degrees 
of freedom (Ref.df.), and 4) proportion of null deviance explained (Dev.Exp.). The Spear-
man’s rank correlation coefficient was used as a follow-on procedure to assess strength and 
significance of trends in each variable delineated by smooth terms. Ranked correlation was 
used because GAMs lack a statistical inference procedure and formal parameter of goodness 
of the fit, which makes interpretation of output potentially complicated (Package “fitdis-
trplus;” Diankha and Thiaw 2016). The gamma error-structure (family = “Gamma” [link 
= “log”]) was used to assess the error distributions in fluctuations of each environmental 
variable; and the AIC information criterion was used to select the most parsimonious error 
distribution for each environmental attribute (Package “MuMIn;” Akaike 1973; Burnham 
and Anderson 1998).

Seasonal-trend decomposition and adjustment.—Historical annual data were aggregat-
ed by month. Months were used instead of Julian weeks (52 weeks/year) because the historical 
time series data were not detailed enough for each environmental variable to justify using 
weekly subdivisions. Use of Julian weeks would have been preferable because they would 
have imparted greater detail to the analyses. Seasonal-Trend-Loess (STL) decomposition 
component analysis was used to remove the seasonal effect from each time series variable 
to facilitate understanding of trends in the dataset. The STL method using local polynomial 
regression was fitted by a least squares algorithm to partition the time series of each dataset 
into three components: 1) trend (Tt), 2) seasonality-cycle (St), and 3) remainder (Rt), writ-
ten as: yt = St + Tt + Rt, for t =1 to N measured data points (Hydman and Athanasopoulos 
2014). Once each component was fit by the STL model, they were subtracted from the raw 
time series data for each environmental variable to give the remainder component of each 
model. Thus, the remainder component equates to the residuals derived from the seasonal 
plus trend fit, or “random” time series (Cleveland et al. 1990; Cleveland et al. 1992). Ability 
to determine if a single measurement was unusually low or high by looking at the remainder 
terms is a typical use of seasonal decomposition. Locally weighted regression and scatterplot 
smoothing (Loess) was used to estimate nonlinear relationships, in which the entire procedure 
is iterated using a back-fitting algorithm. Inter-quartile range (IQR) calculations for x-values 
were generated by STL modeling of the trend, seasonality, and remainder components used 
to gain a relative measure of how spread-out points were in the original time series dataset 
(Zar 2010). For a normal distribution with standard deviation σ, IQR = 1.35σ.

Time series modeling and seasonality.—Goals of the time series analyses were to: 1) 
describe the pattern indicated in the time series data, 2) identify the nature of the phenom-
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enon represented by the sequence of observations and integrate with seasonally variable 
environmental effects, and 3) forecast future values in each time series model for each 
environmental attribute. To accomplish these goals, time series analysis assumes that suc-
cessive values in the data file represent consecutive measurements taken at equally spaced 
time intervals (Hill and Lewicki 2007). Thus, years 2003, 2004, and 2018 were not included 
in the Pulse flow time series model, nor was 2017 included in the ROD flow time series 
model as illustrated in Figure 1A. Importantly, the years removed were consistent with the 
consecutive annual monthly patterns exhibited by both managed flow-types. Retention 
of these years and months would have provided additional detail by contributing to the 
robustness of statistical tests as a function increasing sample size for each anthropogenic 
subcomponent of each restoration time series model.

Seasonality is a significant concern when modelling time series weather data unique 
to a particular region. Because all environmental data evaluated herein exhibited seasonal-
ity, SARIMA modeling (Program “astsa;” Shumway and Stoffer 2017) was used to evaluate 
each univariate time series and to inspect model fit diagnostics (Nau 2017; Hyndman and 
Athanasopoulos 2018). A SARIMA model was fitted to each environmental variable for 
each flow-type subcomponent of the historical time series, with the intent to discover the 
most appropriate match of each time series data point to previous values of the same time 
series, and to perform future forecasts. Seasonal components of each model were written 
using uppercase letters, whereas non-seasonal components were referenced in lowercase 
letters and written in the form: SARIMA (p, d, q) (P, D, Q)m, where p = non-seasonal order 
(autoregressive model AR[p]), d = non-seasonal differencing, q = non-seasonal order moving 
average (MA), P = seasonal (AR) order, D = seasonal differencing, Q = seasonal (MA) order, 
and m = number of periods per season indicating the time interval of repeating seasonal 
sequences. The seasonal portion of each model was comprised of components resembling 
the stochastic non-seasonal terms of an ARIMA model but included backshift operators of 
the seasonal period and multiplied with the non-seasonal elements of the model (Brownlee 
2018). SARIMA models allow the user to generate synthetic time series considering cyclical 
variations in the observed series records (Cox and Miller 1977; Chatfield and Xing 2019). 
Differencing (d, D) is the difference between a value and a value with lag that is a multiple 
of m (Hyndman and Athanasopoulos 2018).

SARIMA, autocorrelation, and forecasting.—Each SARIMA model was fitted to 
monthly values of maximum air temperature, extreme variability in water temperature, 
and flow volume for each flow-type, which takes in arguments in the following order: data, 
ARIMA inputs (p, d, q), SARIMA inputs (P, D, Q), and seasonal lag S. A primary advantage 
of SARIMA is that it automatically differences (d = 1, D = 1) each seasonal time series model 
consistent with the number of differences recommended by use of the ndiff() function, along 
with estimating the lowest AIC values and measures of variance (σ2) for each data set as 
different choices of p and q were considered. This process generally results in the best-fit 
model for use in follow-on forecasting. The auto.arima() function without drift was used to 
determine the order of each SARIMA model (Package “forecast”) in which the algorithm 
conducts numerous iterations and checks in a search for all possible models within the order 
constraints provided (Hyndman and Khandakar 2008). This stepwise algorithm returns the 
best “fit” model with the lowest AIC value and automatically differences the time series to 
make it stationary (Hyndman and Khandakar 2008; Wang et al. 2006). Residuals were used 
to investigate the relationship of each time point to each previous time point in the distribu-
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tion of consecutive annual fluctuations in each environmental variable for each time series 
model. Follow-on assessment was conducted to ascertain if model residuals were random 
using autocorrelation (ACF) and partial autocorrelation (PACF) plots.

Augmented Dickey-Fuller tests gauged the extent of stationarity in each time series 
model and Box-Pierce tests (ꭓ2) determined whether any group of autocorrelations of a 
time series were different from zero (Box and Jenkins 1970; Fuller 1976; Ljung and Box 
1978). Parsimony was used to evaluate performance and to validate each model for each 
time series using the minimum AIC statistic prior to forecasting. Once the best-fit SARIMA 
model was identified, the function sarima.for() was used to provide a forecast for the next 
“future” 36-month time intervals for each time series (Package forecast v8.10). Accuracy of 
forecasting was evaluated by use of the Mean Absolute Percentage Error (MAPE) measure, 
which assumes that MAPE < 10% or 11 – 20% is considered an excellent to good forecast-
ing estimate, respectively (Lewis 1982; Moreno et al. 2013; Hyndman and Athanasopoulos 
2018). After estimating the parameters of each ARIMA model for each environmental vari-
able by flow-type, their adequacy was evaluated graphically by visually inspecting their 
standardized residuals, ACF graphs, Q-Q plots, and p-values for the Ljung-Box test. Due 
to space limitations and the number of panels that resulted for each variable by flow-type, 
a graphic illustration was provided only for the PreROD flow-type.

RESULTS

Historical annual fluctuations in flow volume and water temperature

Principal components analysis of months using environmental variables merged with 
plot loadings showed a gradation in the seasonal distribution from cold-wet (winter-fall) to 
warm-dry (spring-summer) climatic conditions along the axis of PC I for the surrounding 
riverine corridor downriver from Lewiston Dam (Figure 2; Table 1). A total of 91.2% of 
the variation among months was explained on the first three PCs. As shown by the loading, 
relationship, and direction of each arrow, all variables vectored heavy and positive along PC I 
(59.3%) except flow volume, which vectored positive along PC II (23.2%) particularly during 
the months of May followed by June. Because of the strong correlation between individual 
measures of air temperature (rs = 0.890, n = 204) and water temperature (rs = 0.920, n = 
276) only maximum water temperature, extreme variability in water temperature, and flow 
volume were kept for further analyses to reduce collinearity (Everitt and Hothorn 2011).

From 1994 to 2018, GAM regression identified a significant trend in the smooth term 
of the annual response curve in maximum air temperature for the upper-most section of the 
mainstem Trinity River above the Lewiston Water Quality gauge (Table 2). Yet deviance 
explained was not robust relative to all other environmental variables (Dev.Exp = 0.04%) 
and the strength of the relationship was extremely weak (rs = 0.038, p = 0.004, n = 5,752). 
Significant annual trends in flow volume, maximum water temperature, and extreme variabil-
ity in water temperature also were not robust. Whereas both measures of water temperature 
showed positive annual trends, this relationship was negative for flow volume (Figure 3). 
Additionally, the relationship between annual variation in maximum air temperature was 
significantly correlated with both water temperature variables but not with flow volume 
(Table 2; Figure 4). Thus, although the relationship between annual fluctuations in water 
temperature was significant and positive, both variables were inversely correlated with 
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Figure 2. Principal components analysis (PCA) of monthly variation in environmental variables plotted along 
the first two components: MIAIR = minimum air temperature, MXAIR = maximum air temperature, MIWAT = 
minimum water temperature, MXWAT = maximum water temperature, ADWTV = extreme variability in water 
temperature, and ADFV = flow volume. All temperatures in degrees Celsius (°C) and volume of flow in m3/second.

Table 1. Principal components analysis of similarities among months merged with plot loadings. Variables were 
average daily environmental attributes: MIAIR = minimum air temperature, MXAIR = maximum air temperature, 
MIWAT = minimum water temperature, MXWAT = maximum water temperature, ADWTV = extreme variability 
in water temperature, and ADFV = flow volume. All temperatures in degrees Celsius (°C) and volume of flow 
in m3/second.

Measure PC I
Dimension

PC II PC II

Variance 3.6 1.4 0.5
Percent 59.3 23.2 8.7
Cumulative percent 59.3 82.5 91.2

Variable
Percent

PC I
variable

PC II
contribution
   PC II

ADFV 0.03 57.26 29.60
MIAIR 20.95 8.46 2.14
MXAIR 21.84 6.78 0.32
MIWAT 22.92 0.15 10.28
MXWAT 24.14 3.81 0.01
ADWTV 10.12 23.54 57.66

Dimension
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Table 2. Summary of generalized additive modeling using GAM regression and the Spearman rank correlation 
coefficient (rs) statistics for average daily: ADFV = flow volume, 2) MXWAT = maximum water temperature, and 
3) ADWTV = extreme variability in water temperature. All temperatures in degrees Celsius (°C) and volume of 
flow in m3/second.

GAM regression model Spearman rank correlation
Variable comparison F-statistic Ref.df. p-value R2.Adj. Dev.Exp. n rs p

Relationships between environmental variables versus year
MXAIR ~ year 12.5 2.0 < 0.001 0.00 0.4% 5,752 0.038 < 0.004
MXWAT ~ year 164.1 2.0 < 0.001 0.04 3.6% 8,055 0.190 < 0.001
ADWTVI ~ year 766.3 2.0 < 0.001 0.13 13.4% 8,042 0.354 < 0.001
ADFV ~ year 19.1 1.8 < 0.001 0.00 0.8% 8,401 -0.061 < 0.001

Relationships among environmental variables
MXWAT ~ MXAIR 2,265.0 2.0 < 0.001 0.47 47.1% 5,664 0.672 < 0.001
ADWTVI ~ MXAIR 690.4 2.0 < 0.001 0.14 20.2% 5,664 0.369 < 0.001
ADFV ~ MXAIR 231.4 2.0 < 0.001 0.07 16.5% 5,721 0.211 < 0.001
ADWTVI ~ MXWAT 2,052.0 2.0 < 0.001 0.45 34.7% 8,042 0.626 < 0.001
MXWAT ~ ADFV 111.5 2.0 < 0.001 0.03 2.6% 8,012 -0.143 < 0.001
ADWTVI ~ ADFV 770.2 2.0 < 0.001 0.08 12.3% 7,999 -0.273 < 0.001
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Figure 3. Generalized additive model 
(GAM) regression plots of annual variation 
in averaged daily: flow volume (ADFV), 
maximum water temperature (MXWAT), 
and extreme variability in water temperature 
(ADWTV). Shaded smooth areas indicate 
95% point-wise standard error for each 
curve surrounding each fitted GAM function 
(centered black line).
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Figure 4. Generalized additive model (GAM) regression plots of annual variation in averaged daily: flow volume 
(ADFV), maximum water temperature (MXWAT), and extreme variability in water temperature (ADWTV) versus 
maximum air temperature (MXAIR; A – C), and between environmental variables (D – F) for each flow-type. 
Shaded smooth areas indicate 95% point-wise standard error for each curve surrounding each fitted GAM function 
(centered black line).
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fluctuations in flow volume such that when flow increases water temperature decreases as 
expected. Importantly, Kruskal-Wallis Chi-square (ꭓ2) rank sum tests revealed significant 
overall differences for each flow-type hydrograph for each measure of water temperature 
and flow volume. Follow-on post-hoc pairwise comparisons also showed significant dif-
ferences between flow-types for all environmental attributes (Table 3). To recap, not only 
were there significant annual trends in the raw data for the complete historical time series 
model for each environmental variable as illustrated by GAM regression, there also were 
significant overall and post-hoc pairwise annual differences between flow-types for each 
environmental attribute.

Table 3. Comparison of historical time series data based on raw data collected using the Kruskal-Wallis rank 
sum test (ꭓ2) for environmental variables by flow-type followed by planned post-hoc Dunn test statistics (Z) of 
all pairwise comparisons. Variables were average daily: ADFV = flow volume, 2) MXWAT = maximum water 
temperature, and 3) ADWTV = extreme variability in water temperature. All temperatures in degrees Celsius (°C) 
and volume of flow in m3/second; p-values were < 0.05 = *, < 0.01 = **, < 0.001 = ***.

ADFV (ꭓ2 = 176.2, df = 2, p < 0.001***)
Group(i) Group(j) Z p.adj
PreROD (n = 2,619) Pulse 9.7 < 0.001***
PreROD ROD (n = 2,885) 12.8 < 0.001***
Pulse (n = 2,897) ROD 3.2 < 0.001***

MXWAT (ꭓ2 = 330.0, df = 2, p < 0.001***)
Group(i) Group(j) Z p.adj
PreROD (n = 2,396) Pulse 16.9 < 0.001***
PreROD ROD (n = 2,908) 3.5 < 0.001***
Pulse (n = 2,751) ROD 14.1 < 0.001***

ADWTVI (ꭓ2 = 594.9, df = 2, p < 0.001***)
Group(i) Group(j) Z p.adj
PreROD (n = 2,383) Pulse 21.9 < 0.001***
PreROD ROD (n = 2,908) 2.7 < 0.006**
Pulse (2,751) ROD 20.1 < 0.001***

Seasonal-Trend-Loess (STL) decomposition

A comparison between the historical raw data (Figure 3) and subdivided monthly 
time series models using STL decomposition of each environmental variable by flow-type 
showed loss of detail, resolution, and therefore information content when partitioning on a 
monthly basis relative to Julian week or daily time series schedules (Figure 5 – Figure 7). 
Nonetheless, there were obvious qualitative visual differences in the subdivided monthly 
data among hydrographs. For example, seasonal components produced for each environ-
mental variable revealed distinct visual differences among flow-types for each time series 
model (Figure 5A – 5C). Each flow-type time series showed a regular pattern of variation 
in each environmental variable with monthly periodicity. This periodicity indicated that 
each month had the same repeating pattern that changed every 30 days reflecting long-term 
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Figure 5. Results of the time series decomposition analyses showing plots of the Seasonal-Trend-Loess (STL) 
seasonal monthly component for each environmental variable; including average daily: flow volume (ADFV), 
maximum water temperature (MXWAT), and extreme variability in water temperature (ADWTV) by flow-type 
(PreROD, ROD, Pulse).
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Figure 6. Results of the time series decomposition analyses showing plots of the Seasonal-Trend-Loess (STL) trend 
monthly component for each environmental variable; including average daily: flow volume (ADFV), maximum 
water temperature (MXWAT), and extreme variability in water temperature (ADWTV) by flow-type (PreROD, 
ROD, Pulse).
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Figure 7. Results of the time series decomposition analyses showing plots of the Seasonal-Trend-Loess (STL) 
remainder monthly component for each environmental variable; including average daily: flow volume (ADFV), 
maximum water temperature (MXWAT), and extreme variability in water temperature (ADWTV) by flow-type 
(PreROD, ROD, Pulse).
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annual patterns in each environmental attribute. Annual variation in the seasonal monthly 
component of flow volume was much more subdued and proportionally diverse in baseline 
PreROD flow-types compared to managed hydrographs. Managed flow-types exhibited a 
pattern of dramatic single spikes for flow volume, particularly in ROD flows followed by 
Pulse flows; a pattern not characteristic of baseline PreROD hydrographs (Figure 5A). In 
contrast, annual variation in the seasonal components of both water temperature attributes 
showed monthly spikes with: 1) greater variation, 2) more proportional diversity in second-
ary spikes, and 3) spikes with greater magnitude in managed flow-types relative to baseline 
PreROD hydrographs (Figure 5B and 5C).

Analysis of STL decomposition for the trend component also discovered conspicuous 
differences among flow-types for each environmental attribute. Not only did the magnitude 
in volume of flow and water temperature fluctuate dramatically but there were increased 
annual trends in both water temperature attributes in each managed flow-type hydrograph 
not observed in modeling of baseline flows (Figure 6; Table 4). For example, the trend 
component of flow volume exhibited a much more diversified annual pattern in baseline 
PreROD flow-types compared to managed hydrographs (Figure 6A). In contrast, annual 
trend components for both water temperature variables were more subdued in baseline 
flows relative to managed flow-types, with dramatic upward trends in maximum water 
temperature for ROD flows (2005 – 2011) and both water temperature attributes for Pulse 
flows (2012 – 2016; Figure 6B and 6C).

Lastly, STL decomposition of the remainder term for baseline flows showed that all 
environmental variables consisted of erratic monthly sequences with large positive and 
negative spikes. Such patterns are likely a reflection of stochastic annual flow and thermal 
regimes typical of seasonal climatic patterns unique to the region, which were not evident 

Table 4. Results of GAM regression analyses of the Trend component produced by the Seasonal-Trend-Loess 
(STL) decomposition method for each environmental variable by flow-type; including average daily: flow volume 
(ADFV), maximum water temperature (MXWAT), and extreme variability in water temperature (ADWTV).

Variable F-statistic Ref.df. p-value R2.Adj. Dev.Exp. n
ADFV 0.141 23.3% 240
PreROD 13.1 2.0 < 0.000***
ROD 11.9 2.0 < 0.000***
Pulse 24.2 1.0 < 0.000***
MXWAT
PreROD 1.8 1.0 0.180 0.644 62.8% 240
ROD 0.8 1.6 0.360
Pulse 137.6 2.0 < 0.000***
ADWTV
PreROD 4.2 2.0 < 0.016* 0.758 71.8% 240
ROD 41.0 1.5 < 0.000***
Pulse 132.1 1.9 < 0.000***      
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in highly regulated, and systematically and abruptly implemented managed hydrographs 
(Figure 7A – 7C). And, although STL seasonal and trend decomposition patterns were sig-
nificantly correlated in most all hydrographs for each environmental variable, there were 
significance differences between hydrographs for each trend component for all variables, 
but not in seasonal or random components for any environmental attribute (Table 5). These 
results clearly indicate that the STL decomposition factor that defined the most conspicuous 
difference among flow-types for each environmental variable was the trend component.

Inter-quartile range (IQR) calculations

Line and boxplot comparisons of each flow-type illustrate the significant and consis-
tent quantitative differences along the 12-month continuum for each environmental variable 
described by STL decomposition models and the IQR analyses for each time series segment 
(Figure 8A – I). The seasonal term for the STL decomposition models showed that IQR 
values for flow volume in PreROD flows exceeded all other flow-types by a considerable 
margin. ROD flows showed the largest IQR value for maximum water temperature and 
Pulse flows had a considerably larger IQR value for extreme variability in water temperature 
(Table 6). For the trend component, STL decomposition models showed that Pulse flows 
had considerably larger IQR values for both water temperature variables than any other 
flow-type hydrograph. For the remainder term, STL decomposition models showed that 
baseline PreROD flows had the largest IQR value for flow volume consistent with a more 
random “natural” expression of the historical post-dam flow pattern prior to implementa-
tion of managed hydrographs in 2003. In contrast, the large IQR value for the remainder 
term in extreme variability in water temperature for Pulse flows was likely a biproduct of 
altered seasonal fluctuations observed in the trend data caused by manipulated hydrographs 
post-2003 (Figure 6B and 6C). 

Time series

Visual assessment of time series plots for PreROD and ROD flow-types showed that 
an additive model was most appropriate for each environmental attribute because variation 
remained relatively constant over time and did not depend on the level of the time series 
(Figure 3). However, results indicate that for Pulse flow hydrographs an additive model 
was not appropriate for describing variation in each water temperature variable because 
of the size and increasing annual trend in values amplified with the level of the time series 
(Figure 3B; Hyndman and Athanasopoulos 2018). In other words, seasonality in the thermal 
regime of Pulse flows at the beginning was small but became larger in later years. This 
pattern suggested that a multiplicative decomposition model for both water temperature 
variables was appropriate for the Pulse flow time series. Thus, in developing a follow-on 
time series model using SARIMA modeling for forecasting, both water temperature vari-
ables required a natural log transformation of the original data for Pulse flows (Hyndman 
and ‎Athanasopoulos 2018). 

Autocorrelation and partial autocorrelation functions examined for each environmental 
variable by flow-type revealed that each time series model was significantly non-stationary 
as there were numerous autocorrelations lying outside the 95% confidence limits for all en-
vironmental attributes (Figure 9). For each environmental variable, the range in Ljung-Box 
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Table 5. Kruskal-Wallis rank sum test (ꭓ2) and Spearman ranked correlation coefficients (rs) showing overall 
significance of each decomposition component (season, trend, random), followed by planned post-hoc Dunn test 
statistics (Z) for all pairwise comparisons between flow-types (PreROD [n = 94], ROD [n = 84] , Pulse [n = 60]). 
Variables were average daily: ADFV = flow volume, 2) MXWAT = maximum water temperature, and 3) ADWTV 
= extreme variability in water temperature. All temperatures in degrees Celsius (°C) and volume of flow in m3/
second. Spearman rank correlation coefficients (rs) are below the diagonal and probabilities above the diagonal; 
p-values were < 0.05 = *, < 0.01 = **, < 0.001 = ***.

Decomposition components for season patterns

Flow-type ADFV MXWAT ADWTV

ꭓ2 = 7.3, df = 2, p = 0.030 ꭓ2 = 0.0, df = 2, p = 1.000 ꭓ2 = 0.4, df = 2, p = 0.830

Group(i) Group(j) Z p-adj Group(j) Z p-adj Group(j) Z p-adj

PreROD ROD 1.5 0.103 ROD 0.2 0.631 ROD 0.1 0.448

PreROD Pulse 1.4 0.080 Pulse 0.2 1.000 Pulse 0.5 0.448

ROD Pulse 2.7 0.010* Pulse 0.1 0.477 Pulse 0.6 0.855

Spearman rank correlations (rs) for seasonal components

Flow-type PreROD ROD Pulse PreROD ROD Pulse PreROD ROD Pulse

PreROD ------- 0.001*** 0.001*** ------- 0.001***    0.001*** ------- 0.001*** 0.001***

ROD 0.571 ------- 0.001*** 0.950 -------    0.001*** 0.750 ------- 0.001***

Pulse 0.540 0.780 ------- 0.910 0.970 ------- 0.550 0.810 -------

Decomposition components for trend patterns

Flow-type ADFV MXWAT ADWTV

ꭓ2 = 10.6, df = 2, p < 0.001*** ꭓ2 = 46.7, df = 2, p < 0.001*** ꭓ2 = 48.1, df = 2, p < 0.001***

Group(i) Group(j) Z p-adj Group(j) Z p-adj Group(j) Z p-adj

PreROD ROD 1.8 0.0587 ROD 3.2 < 0.001*** ROD 1.5 0.062

PreROD Pulse 3.2 0.002** Pulse 6.8 < 0.001*** Pulse 6.8 < 0.001***

ROD Pulse 1.6 0.056 Pulse 3.8 < 0.001*** Pulse 5.2 < 0.001***
Spearman rank correlations (rs) for trend components

Flow-type PreROD ROD Pulse PreROD ROD Pulse PreROD ROD Pulse

PreROD ------- 0.176 0.136 ------- 0.002** 0.001*** ------- 0.001*** 0.495

ROD 0.150 ------- 0.001*** -0.330 ------- 0.001*** 0.380 ------- 0.801

Pulse 0.190 0.460 ------- -0.610 0.580 ------- -0.090 0.030 -------
Decomposition components for remainder patterns

Flow-type ADFV MXWAT ADWTV

ꭓ2 = 2.8, df = 2, p = 0.250 ꭓ2 = 0.1, df = 2, p =0.950 ꭓ2 = 0.1, df = 2, p = 0.950

Group(i) Group(j) Z p-adj Group(j) Z p-adj Group(j) Z p-adj

PreROD ROD 1.5 0.199 ROD 0.3 1.000 ROD 0.1 0.609

PreROD Pulse 1.3 0.144 Pulse 0.0 0.486 Pulse 0.2 0.465

ROD Pulse 0.1 0.477 Pulse 0.2 0.615 Pulse 0.3 1.000
Spearman rank correlations (rs) for remainder components

Flow-type PreROD ROD Pulse PreROD ROD Pulse PreROD ROD Pulse

PreROD ------- 0.613 0.349 ------- 0.745 0.389 ------- 0.856 0.397

ROD 0.060 ------- 0.484 0.040 ------- 0.273 -0.020 ------- 0.419

Pulse -0.120 0.090 ------- -0.110 0.140 ------- -0.110 0.110 -------
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Figure 8. Line and box-plot comparisons of flow-types for each environmental variable based on the Seasonal-
Trend-Loess (STL) decomposition analysis, which reflects the level of statistical significance presented in Table 4.
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Table 6. Seasonal-Trend-Loess (STL) decomposition component summary of the computed interquartile range (IQR) 
of x-values, which measure how spread-out points were in the original time series data set for each environmental 
variable time series by flow-type. Variables were average daily: 1) ADFV = flow volume, 2) MXWAT = maximum 
water temperature, and 3) ADWTV = extreme variability in water temperature. All temperatures in degrees Celsius 
(°C) and volume of flow in m3/second. The higher the IQR the more spread-out the data points; the smaller the 
IQR the more aggregated the data points are around the mean. Right-hand bars on each STL plot were based on 
IQRs and allow a relative comparison of the magnitude of variation in each component.

Flow-type
Seasonal Trend Remainder (random)

1st 
Quartile

3rd 
Quartile IQR

1st 
Quartile

3rd 
Quartile IQR

1st 
Quartile

3rd 
Quartile IQR

ADFV
PreROD -15.00 12.80 27.80 22.10 30.60 8.50 -15.80 7.10 22.90
ROD -16.40 -2.60 13.70 20.50 27.40 6.90 -4.80 4.40 9.10
Pulse -12.70 0.30 13.00 18.50 26.90 8.50 -4.00 4.60 8.60

MAXWAT
PreROD -0.79 0.78 1.56 9.03 9.56 0.53 -0.32 0.30 0.62
ROD -0.86 1.03 1.89 9.11 9.79 0.69 -0.30 0.25 0.55
Pulse -0.70 1.02 1.72 9.42 10.58 1.16 -0.33 0.24 0.57

ADWTV
PreROD -0.26 0.22 0.48 0.82 0.95 0.13 -0.13 0.12 0.25
ROD -0.28 0.27 0.55 0.85 0.98 0.12 -0.08 0.08 0.16
Pulse -0.52 0.41 0.94 0.90 1.75 0.85 -0.20 0.20 0.40

statistics were: 1) flow volume: ꭓ2 = 8.0 in PreROD flows (df = 1, p = 0.005) to ꭓ2 = 10 in 
Pulse flows (df = 1, p = 0.003); 2) maximum water temperature: ꭓ2 = 50 in PreROD flows 
(df = 1, p < 0.001) to ꭓ2 = 30 in Pulse flows (df = 1, p < 0.001); and 3) extreme variability 
in water temperature: ꭓ2 = 40 in PreROD flows (df = 1, p < 0.001) to ꭓ2 = 20 in Pulse flows 
(df = 1, p < 0.001). All variables by flow-type showed a slow decay at multiple lags of 12 
suggesting coherent variance in the relationship indicative of monthly seasonal and cyclic 
variation in each environmental variable for all flow-types. These results support the earlier 
assertion of seasonality in each time series model necessitating the need for seasonal dif-
ferencing with a period of 12. Therefore, rather than manually fitting by ARIMA modeling, 
best fit models for each flow-type time series were generated using the auto.arima function 
summarized in Table 7. Following this procedure Ljung-Box statistics indicated that none 
of the autocorrelations in the time series were different from zero and visual assessments 
showed that each time series model was stationary (Figure 10). All model parameters were 
then verified with a graphic illustration described above for each environmental variable 
grouped by flow-type (Table 7). These results provided no evidence to reject the hypothesis 
that the distribution of residuals in any of the time series models were not normal. Instead, 
for each flow-type the distribution of residuals for each environmental model was Gaussian 
(white noise), which: 1) statistically justified each proposed model, 2) demonstrated how an 
analysis of time series data may be done accurately, and 3) allowed continued processing 
of data with the ultimate goal of forecasting estimates of each environmental variable by 
flow-type using SARIMA.
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Figure 9. Auto- and partial- autocorrelation functions (ACF, PACF) plots (correlograms) of raw data for averaged 
daily: flow volume (ADFV), maximum water temperature (MXWAT), and extreme variability in water temperature 
(ADWTV) by flow-type (PreROD, ROD, Pulse). Plot shows serial correlations that may change over time in each 
time series dataset where an error at one point in time travels to a subsequent point in time.
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A

B C

D

MXWAT: PreROD flow-type

Figure 10. Graphic illustration of the adequacy of parameters used to estimate SARIMA models for each 
environmental variable using the PreROD flow-type as an example: A) differenced time series data; B) auto 
correlation function (ACF) plot of standardized residuals showing that all autocorrelations were close to zero 
as no lag exceeded confidence limits of p > 0.05; C) normal Q-Q-plot of standardized residuals along with 95% 
confidence limits surrounding the diagonal of data points; and D) p-values for the Ljung-Box statistic.
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Forecasting using SARIMA

Analysis of the mean absolute percentage error showed that MAPE values for selected 
flow-type models were: 1) PreROD flow (flow volume = 81.7%, maximum water temperature 
= 4.9%, extreme variability in water temperature = 45.2%); 2) ROD flow (flow volume = 
37.8%, maximum water temperature = 5.0%; extreme variability in water temperature = 
15.0); and 3) Pulse flow (flow volume = 23.9%, maximum water temperature = 3.7%, extreme 
variability in water temperature = 20.0%). These empirical results signaled that the predic-
tion derived from PreROD flow-types was poor for flow volume and extreme variability in 
water temperature relative to error estimates produced for ROD and Pulse flow hydrographs. 
This pattern was likely a reflection of the more stochastic nature of a “natural” post-dam 
and relatively unmanaged flow regime except under extreme flood conditions, which would 
be expected in a rare “Emergency of Dams” release, which is what happened in 1974. In 
contrast, error estimates for ROD and Pulse flows were considerably “better” as a reflection 
of the systematic and regular managed releases linked with anthropogenic hydrographs. 
The same explanation can also be applied to extreme variability in water temperature for 
managed flow-types, all of which appear reasonably good as models for each managed time 
series dataset. Conversely, prediction models based on maximum water temperature were all 
highly accurate (< 5.0% error). And the empirical results indicated that each model was able 
to accurately represent the baseline as well as each managed hydrograph time series model.

The predictive power of each SARIMA model was illustrated graphically by forecast-
ing 36 months-ahead of the time series for each environmental variable by flow-type (Figure 
11; Table 7). Overlapping blue lines for each “fitted” model (black lines) were substantial 
as predictions fit well to each time series dataset. Levels of prediction were calculated at 
80% and 95% prediction confidence intervals as indicated by the light and dark shaded gray 
areas surrounding the red prediction line. Forecast values (red lines) were close to real values 
(black lines) and within the confidence intervals (grey shading). Thus, all monthly points 
plot very close to the actual prediction. In most models as time progresses beyond the first 
predicted point, uncertainty tends to increase, hence the prediction boundaries increase in 
amplitude. Importantly, follow-on forecasting of environmental variables for each flow-type 
over the next 3 years (36 months) showed: 1) that there were significantly different predic-
tions among segmented flow-type time series; 2) the time span for each model was relatively 
long, and 3) results provided reasonably accurate predictions. Generally, forecasting further 
into the future will become less reliable particularly in a highly managed river system. Ad-
ditionally, the fitted values for each forecast model were relatively close to the observed 
values. This means that the SARIMA models can be used to forecast future values because 
their forecasting accuracy is acceptable. Also, some lower predicted confidence limits, but 
not points, were negative for volume of flow, which is impossible for the flow of a river. 
In practice, confidences limit below zero are generally truncated when presenting them.

Consistent with graphic illustrations, SARIMA model predictions of future values over 
the next 36 months exhibited significant differences between flow-types in both the overall 
distribution of each environmental variable and in planned post-hoc paired comparisons of 
population mean ranks as reflected in mean values for each variable (Table 8). Noticeably 
for PreROD and ROD flow-types mean values of flow volume were greater than in Pulse 
flows, and projections of future ROD flows exceeded both other flow-types. Mean values 
of maximum water temperature for both PreROD and ROD flow-types were similar but the 
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Figure 11. Plots of future values based on SARIMA model forecasting of environmental variable values predicted 
for the next 36 months. Black colored lines are the original observed time series values and blue lines are the 
“fitted” values overlaid on top for comparison against the series itself. Means are given for each variable and their 
position on the graph indicated by a dashed black horizontal line. Dark gray shading represents 80% confidence 
intervals, light gray shading 95% confidence interval, and red lines and open circles represent predictions for 
future months. Temperature is found along the y-axis for each variable; A = PreROD flows, B = ROD flows, and 
C = Pulse flows for each environmental variable (ADFV = flow volume, MXWAT = maximum water temperature, 
ADWTV = extreme variability in water temperature).
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Table 8. Kruskal-Wallis rank sum test (ꭓ2) and Spearman ranked correlation coefficients (rs) showing differences 
in forecasting 36-months into the future using predictions of SARIMA modeling illustrated in Figure 11, followed 
by post-hoc Dunn tests (Z) of all planed pairwise comparisons between flow-types (PreROD, ROD, Pulse). 
Variables were average daily: ADFV = flow volume, 2) MXWAT = maximum water temperature, and 3) ADWTV 
= extreme variability in water temperature. All temperatures in degrees Celsius (°C) and volume of flow in m3/
second. Spearman rank correlation statistics are found below the diagonal and probabilities above the diagonal; n 
= 36 for all flow-type comparisons; p-values were < 0.05 = *, < 0.01 = **, < 0.001 = ***. 

Flow-type ADFV MXWAT ADWTV

ꭓ2 = 9.7, df = 2, p = 0.010 ꭓ2 = 64.7, df = 2, p < 0.001*** ꭓ2 = 42.4, df = 2, p < 0.001***

Group(i) Group(j) Z p-adj Group(j)   Z p-adj Group(j) Z p-adj

PreROD ROD 3.0 0.004** ROD 7.1 < 0.001*** ROD 3.2 0.001***

PreROD Pulse 2.1 0.026* Pulse 6.8 < 0.001*** Pulse 6.5 < 0.001***

ROD Pulse 0.9 0.178 Pulse 0.3 0.380 Pulse 3.4 0.001**

Spearman rank correlation (rs)

Flow-type PreROD ROD Pulse PreROD ROD Pulse PreROD ROD Pulse

PreROD ------- 0.001*** 0.001*** ------- 0.001*** 0.001*** ------- 0.001*** 0.001***

ROD 0.660 ------- 0.001*** 0.940 ------- 0.001*** 0.750 ------- 0.001***

Pulse 0.600 0.900 ------- 0.770 0.820 ------- 0.750 0.850 -------

range of variation in projected ROD flows (2006 – 2014) was greater than in future projec-
tions of PreROD flows (1995 – 2002). Width of confidence intervals in both flow-types 
tended to remain narrow throughout the predicted sequence of months, suggesting that the 
accuracy of the forecast for each PreROD and ROD flow-types effectively held over time 
through the prediction range.

In Pulse flows, however, not only was the mean and range of variation in maximum 
water temperature considerably greater than in other hydrographs, but an increasing trend 
was also evident based on dependent compounding effects of previous observations and 
errors. In extreme variability in water temperature the same overall pattern of flow-mediated 
variance was projected in both ROD and Pulse flow-types, which predicted trends of higher 
and increased extreme variation in water temperatures over the next 36 months, a pattern 
not seen in PreROD flow-type projections. Finally, width of confidence intervals in both 
managed flow types for each water temperature variable increased in future predictions 
as a direct function of greater variability associated with annually managed hydrographs. 
Generally, but not always, as the period between the date of a flow forecast and the actual 
forecast period narrows there also will be a corresponding reduction in model error.

DISCUSSION

In this study we focused on time series analysis and forecasting seasonal river flow 
volume and water temperature using SARIMA modeling. Results show that use of subcom-
ponents of the historical post-dam time series specific to managed flow-type hydrographs 
keyed to in-river geomorphologic restoration actions significantly misrepresented the: 1) 
time series characteristics, 2) seasonal-trend decomposition patterns, and 3) forecast accu-
racy compared to the baseline pre-restoration time series model. These results effectively 
nullify use of managed hydrographs in predicting future forecasts for flow-fish planning and 
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management purposes. Particularly revealing were significant differences in environmental 
time series data between flow-types in: 1) seasonal patterns among subcomponents of the 
historical hydrograph as illustrated in GAM regressions; 2) nonparametric methods; 3) STL 
decomposition analyses of season, trend, and random effects using both IQR values and 
nonparametric methods; and 4) future values of the thermal regime predicted by SARIMA 
forecasting 

In virtually every comparison, managed flow-type hydrographs showed significant 
increases in maximum water temperature and extreme variability in water temperature. 
These patterns were particularly characteristic of Pulse flows relative to baseline PreROD 
flows. Grabowski et al. (2014) suggested that while small shifts in flow releases may be a 
function of climate change, major shifts usually reflect human interventions, with dam hy-
dropeaking4 being a distinct indicator of artificiality in the flow regime that impact monthly 
and daily flows (Greimel 2018). Such flow-effects equate roughly to the implementation of 
ROD flow hydrographs individually and in combination with companion Pulse flows into 
the upper mainstem of the Trinity River for geomorphic restoration purposes since 2003, 
due to longer in duration and volumetric proportion relative to individual pulsed flow aug-
mentation releases.

Based on our results, we suggest that use of time series modeling and forecasting of 
seasonal trends in environmental data associated with large riverine systems without ref-
erence to continuous intrinsic periods within the historical time series model, where flow 
is anthropogenically manipulated, will be misleading when managers attempt to evaluate 
the overall characteristics and subsequent future forecasting that derive from such models. 
Results of our analysis have the potential to provide resource agencies with additional 
insight into strategic flow-mediated thermal planning that mimics a “natural” or regime 
standard for water temperature necessary to: 1) facilitate efficient use of water resources 
notwithstanding changing climate; and 2) prioritize management strategies and scheduling 
of flows for in-river restoration activity to increase efficiency in management of fisheries, 
aquatic habitat conservation, and water resources (Stanford et al. 1996; Poff et al. 1997; 
Fausch et al. 2002; Poole et al. 2004)

Time series and forecasting considerations

The efficacy of these results suggests that time series analysis using SARIMA meth-
odology is appropriate for modeling hydrological and water temperature data in the upper 
Trinity River in which the data exhibit autocorrelation with time in combination with 
semi-parametric regression (GAM). Application of linear models generally do not allow 
identification of nonlinear characteristics of hydrological data. This distinction is impor-
tant when working with changes in the variance of environmental variables that fluctuate 
overtime, as their application may not be suited for modeling stochastic nonstationary data 
(Machiwal and Jha 2006; Nazir et al. 2018). River flow and other hydrologically-related 
variables frequently exhibit nonlinear behavior. In modeling, resource managers should 
consider both deterministic (algebraic) and stochastic parts of this parameter when making 
4 Hydropeaking is a unique form of flow regulation, in that it introduces frequent, short duration, 
artificial flow events to the river. The impacts of hydropeaking on channel size and morphology are 
highly dependent on the size and frequency of hydropeaks in relation to size of geomorphological 
effective flows prior to regulation. http://wiki.reformrivers.eu/index.php/Hydropeaking

http://wiki.reformrivers.eu/index.php/Hydropeaking


249Fall 2020 249TIME SERIES MODELING AND FORECASTING OF A REGULATED RIVER

appropriate decisions for the purpose of fish-flow and water resource management. These 
conditions also apply to regionally specific assessments of climate change. Conversely, use 
of nonlinear models, such as GAM in combination with the Box-Jenkins method, allow 
options for nonlinear modeling and consideration of autocorrelations among variables as 
well as lag-lead relationships between variables. Adding variable effects of reach-specific air 
temperature, water temperature, precipitation, or other auxiliary environmental co-variates 
using a multivariate approach to forecasting also will assist in attaining a solid presump-
tion of a cause-effect relationship in historical time series analysis for flow and restoration 
managers to act upon.

Understanding variability and the limitations associated with management of river-
ine systems is essential for addressing the ever-increasing anthropogenic needs for water 
and the inescapable reality of climate change, which has advanced a theoretical construct 
known as “functional flows” (Zimmerman et al. 2020; CEFF 2020). This paradigm seeks 
to mimic natural flow regimes by incorporating regionally-specific ecological, geomorphic, 
and biogeochemical processes into a flow prescription that protects and supports relevant 
foundational physical and ecological processes, which it is hoped will sustain resident 
biological communities in some generally unknown, but viable capacity (Poff et al. 1997; 
CEFF 2020; Zimmerman et al. 2020). Increasingly, the extent of flow-mediated variance in 
water temperature also is a key component of regulations derived from valuations of water 
quality (Coutant 1999). Research focused on the implications of altered thermal variability 
can provide improved identification of conservation priorities, management of dam-derived 
hydropower, and sustainable fisheries management and restoration outcomes. Use of metrics 
that measure the extremes in thermal variance or evaluate the range of mean values rather 
than only the mean is also an important consideration in understanding variability in flow 
dynamics. This need is particularly relevant when evaluating the potential effects of short-
duration pulsed flows, which have not received the attention needed regarding flow-fish 
effects (Sullivan and Hileman 2020).

Inevitability this approach will require accurate understanding of the underlying dy-
namics of riverine flow that may not be possible by use of statistical forecasting methods 
using conventional linear regression. River restoration and conservation planning would 
benefit from consideration of the natural temperature regime of riverine systems in their full 
complexity, rather than create predictions based on total temperature units delivered in a short 
period of time or at lethal thresholds (Poole et al. 2004; Steel et al. 2012; Romberger and 
Gwozdz 2018). Future climates will invariably differ from current climates with respect to 
thermal variance. Yet there is remarkably little research exploring these effects on individual 
or population-level fitness of in-river spawning anadromous salmonids or the complexity 
and dynamics of aquatic community food webs subjected to anthropogenic management of 
riverine flows in the Trinity River and elsewhere (Hughes and Murdoc 2017).

Forecasting outflow volume and temperature variability are essential tools for planning 
and management of dam operations as these activities directly influence the availability of 
water and the variability in the resulting thermal regimes created. Efforts to return natural 
variability to regional riverscapes through formation of a diverse mosaic of habitats within 
riverine and riverscape communities is a vital precursor to being realistic in our expectations 
of the range of possible restoration outcomes (Peipoch et al. 2015; Yarnell et al. 2015). Such 
efforts are irrespective of whether the goal is to: 1) re-naturalize flows and thermal regimes 
as a basis for understanding variability, uncertainty, and unpredictability in concert with 
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restoration initiatives; or 2) implementation of a functional flow design to address realistic 
anthropogenic needs for water resources, while simultaneously attempting to maintain the 
regional biotic and physical integrity of the riverscape. Thus, it is imperative to understand 
the dynamics of riverine flows over both historical and recent time scales as a prerequisite 
to restoration and effectiveness monitoring of our fisheries resources.

Resource management considerations

Accurate forecasting of streamflow is a fundamental issue of interest to water re-
sources engineers, hydrologists, and fisheries scientists. Identification of accurate and 
reliable analyses to model future river flow is an important precondition for successful 
planning and management of water resources upon which fisheries resources depend. From 
a practical perspective, use of reliable models to forecast river flow could be instrumental 
for regional fisheries management and water resources planning keyed to the upper Trinity 
River watersheds. Detection of trends and stationarity is a major focus of past hydrological 
and climatological time series analyses with a wide application of semi-parametric regres-
sion methods such as GAM. Yet forecasting highly accurate estimates of the volume and 
variability in the thermal regime of riverine flow remains problematic given the nonlinearity 
and uncertainty hidden in the historical data, which requires an approach with high forecast-
ing precision and efficiency for effective application.

Future needs of water resource and fisheries management in the Trinity River would 
benefit significantly by placing environmentally-driven time series models into perspective 
relative anthropogenically-driven flow management hydrographs as part of flow-fish and 
river restoration management. Research designs that incorporate multivariate and dynamic 
conditional correlation methods would provide additional insights into the relationships 
between more “naturally” managed flow and thermal regimes relative to those forced upon 
the system by a highly manipulative anthropogenically-induced flow strategy (Pool 2004; 
Caissie 2006). In the Trinity River managed flows have not been mirrored historical re-
gional hydrographic patterns linked to upland watersheds of the Trinity River and Klamath 
Basin. Such considerations need to be fully vetted with the overarching management goals 
of flow-mediated hydrographs designed to mimic an “unimpeded”, “natural”, e-flow, or 
“functional” flow post-dam management strategy (Yarnell et al. 2015), while simultaneously 
accommodating riverine: 1) thermal criteria, 2) in-river restoration, 3) conservation of biotic 
communities, and 4) water conservation policies unique to the particular river system in 
northern California and elsewhere.

Palmer and Ruhi (2019) correctly state that effective river restoration requires ad-
vancing our mechanistic understanding of how flow regimes affect biota and ecosystem 
processes. Any attempt to derive insight into sustainable flow-fish management strategies for 
hatchery- and natural-area spawning salmonids based on time series modeling of post-2003 
ROD or Pulse hydrology will be less reliable than those based on long-term data collected 
simultaneously from: 1) unobstructed headwaters of the Trinity River above the Trinity 
Reservoir in combination with 2) the primary free flowing tributaries of the mainstem Trin-
ity River below Lewiston Dam. A prerequisite to management of riverine systems should 
be the incorporation of these kinds of “baseline” data into long-term restoration strategies 
coincidental with natural and historical events that shape the regions riverine hydrology to 
which life histories of resident salmonids have adapted. Distinguishing these elements in flow 
management could help managers restore ecologically important facets of the flow regime.
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We recommend that in projecting future flow conditions, restoration managers should 
consider use of environmental information that optimizes the operational time span of con-
tinuous uninterrupted and sequential collection of data to be as long-term as possible. Reli-
able predictions may be obtained over relatively shorter time spans by continuous operation, 
monitoring, and data gathering at gauging stations within the focal reach (Papalaskaris and 
Kampas 2017). Sequentially, the most accurate and complete data records come from river 
gauging stations, followed by supplemental information obtained from remotely sensed data 
and documentary sources (Grabowski et al. 2014). Numerous indicators may be extracted 
from river flow records (e.g., average, extreme flows, and their timing) and used to estimate 
hydrological alteration. Gauging station records minimally spanning several decades (e.g. 
> 30 years) are typically necessary for this type of analysis. This approach will allow the 
entire historical time series can be analyzed to investigate temporal trends, in magnitude, 
frequency, timing, duration, and rate of change in the flow-dynamic (Grabowski et al. 2014). 

Further, flows can be subdivided into time periods related to significant changes in the 
historical flow regime (e.g., baseline pre-dam construction, post-dam construction, in-river 
restoration flows, or fish-flows). Subdivided flows can also be applied to an “unimpeded”, 
“natural”, e-flow, “functional” flow post-dam management strategy, or other prescriptions 
attributable to natural flow abstractions. For the upper Trinity River, the post-dam “natural” 
riverine environment evaluated by the STL modeling using annual flow and thermal variance 
attributes was illustrated in the seasonal, trend, and remainder patterns of monthly variation 
produced by baseline PreROD flow-type models. However, we caution that use of subdi-
vided historical raw data can result in loss of detail, resolution, and therefore information 
content when partitioning monthly data compared to use of Julian weeks or a daily schedule. 
Clearly, results of out study would have been benefited had the data been detailed enough 
to accommodate smaller subdivisions. 

Once established, data can be feed into a standardized modeling procedure as additional 
raw data becomes available to develop a more accurate and reliable long-term model for 
use in monitoring seasonal variation in flow-fish thermal regimes (Grabowski et al. 2014). 
These datasets will facilitate annual: 1) monitoring, modeling, and gaming of hydrological 
conditions; 2) monitoring of riverine thermal regimes for use in flow-fish management, as-
sessment of in-river fitness metrics (fertility, productivity) for both hatchery- and natural-area 
spawning salmonids in cooperation and coordination with hatchery operations; 3) facilitate 
scheduling of specific river restoration actions; and 4) permit annual monitoring and assess-
ment of climate change effects within the mainstem of Trinity River in support of the above 
management recommendations.

In conclusion, time series modeling and forecasting with flow and thermal data devel-
oped during the period of managed hydrographs (post-2003) will greatly detract from the 
ability to accurately predict future thermal regimes in the upper Trinity River. Sustainable 
flow-fish management for hatchery- and natural-area spawning salmonids should consider 
watershed and unobstructed tributary characteristics in assessing the impacts to resident 
salmonids, which automatically incorporate the annual effects of climate change on riv-
erine systems within the greater Trinity Basin. Time series modeling using such criteria 
would facilitate development of a flow management strategy for river restoration that fit 
the historical characteristics of the regional watershed while simultaneously accommodat-
ing management of fisheries and other aquatic resources experiencing changing climatic 
conditions now and into the future. 
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A species with a broad geographic range can occur in various habitats and elevations, 
which can affect life-history traits such as individual growth rates and adult body sizes. 
In turn, these factors can influence survivorship and reproductive success (Schaffer 1974; 
Stearns 1992; Charlesworth 1994). Colleagues and I have studied populations of western 
pond turtles (Actinemys marmorata; sensu lato) across their range, including natural and 
artificial ponds, streams, rivers, and reservoirs in Oregon and northern California (Germano 
and Bury 2009; Bury et al. 2010), as well as in the Central Valley of California (Germano 
and Bury 2001; Germano 2010, 2016). Further, we studied turtles in natural ponds in coastal 
California (Germano and Rathbun 2008) and in the Tehachapi Mountains of Southern 
California (Germano and Riedle 2015). At most sites, we recorded population attributes 
and life-history traits to broaden the understanding of variability that this species displays 
along its long latitudinal range (Bury and Germano 2008; Bury et al. 2012). Here, I report 
on a new site in the foothills of the Sierra Nevada in the central part of the San Joaquin 
Valley of California, near the southern end of the range of the northwestern pond turtle (A. 
marmorata; sensu stricto).

Starting in 2017, I set traps at the approximately 1.7-ha pond on the Circle J-Norris 
Ranch (CJNR; Figure 1), east of Porterville, Fresno County, California. The ranch is a 251-
ha site in the Sierra foothills now used for environmental education (Tulare County Office 
of Education. 2020. Circle J-Norris Ranch. Tulare County Office of Education. Available 
at http://www.tcoe.org/circlej/ [Accessed 9 June 2020]). The pond is at an elevation of 598 
m and the surrounding habitat is an Oak Woodland with non-native grasses as the predomi-
nant understory (Figure 1). There was much algal growth and hornwort (Ceratophyllum 
demersum) in the water from the edge of the bank to about 7–8 m when I trapped this site. 
Algal growth was lower in April and early May but became thicker and spread out farther 
from shore as temperatures increased in May and June.

I captured turtles from 2017–2019 using both commercial nylon net traps with double 
funnels (model FTC-FTD; Memphis Net & Twine Company, Inc., Memphis, Tennessee) 
and homemade chicken wire-mesh traps with double funnels (modified from Iverson 1979). 
I baited traps with canned sardines, chicken, chicken livers, or commercial fish bait and I 

California Fish and Wildlife 106(4):260-267; 2020
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Figure 1. Satellite image of the pond (cattle tank) on the Circle J - Norris Ranch educational site, east of 
Porterville, California. The image was taken in 2016 after several years of drought and the water level was 
higher in the pond the years I trapped for turtles, 2017–2019. The educational facility is the white square in 
the upper left of the image. (Image taken from: Google Earth 2020).

left traps open for 3–4 days. I checked traps once daily, usually starting at 0900. I measured 
turtles on site and released turtles back into the pond after processing. I trapped the site three 
times in 2017 using 7 traps each session (17–20 May, 5–9 June, and 3–7 July), twice in 
2018 using 8 traps (21–25 May) and 7 traps (18–22 June), and twice in 2019 using 8 traps 
(15–19 April) and 6 traps (13–17 May).

For each captured turtle, I recorded carapace length (CL) to 1 mm, weight to 1 g, sex, 
and age following Germano (2010). Turtles at this site grow fairly rapidly and discernible 
scute rings become hard to detect at 12–15 y. I classified some turtles when first captured 
as older than 15 y when rings were still fairly distinct but the edges of scutes along the 
midline of the plastron were beveled and > 20 y when plastron rings were well worn and 
the midline beveled. I defined turtles as adults if they were 120 mm CL or larger, and I 
individually marked turtles by notching marginal scutes with a file (Cagle 1939; Bury and 
Germano 1998). To determine if females were gravid and how many eggs were present in 
a clutch, I radiographed female turtles on site using a portable X-ray machine (HF8020, 
Minxray, Inc., Northbrook, Illinois).

I tested for differences from a 1:1 sex ratio using Chi-square analyses with Yates 
correction for continuity. I estimated population size using the Schnabel estimator with the 
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number of individual turtles caught in 2017 as the initial number marked. Because CL data 
were normally distributed and homoscedastic, I compared the mean CL between the sexes 
using ANOVA. To minimize the effect of age structure on size estimates (Case 1976), I 
also determined the upper quartile CL (UQCL) of adult turtles. Despite small samples sizes, 
these data were also normally distributed and homoscedastic, and I compared mean UQCL 
between sexes using ANOVA. I compared mean weights between sexes with ANCOVA with 
CL as the covariate, excluding weights of females that were gravid. For all test, α = 0.05.

To determine growth rates of turtles, I fitted age and CL data to the Richards growth 
model (Richards 1959). This growth model estimates three parameters using CL and age 
data in the general formula to solve for CL at various ages:

CL = asymptotic size (1 + (M – 1) e (-K * (Age – I)) (1 / (1 - M)

where M is the shape of the growth curve, K is the growth constant, and I is the 
point at which curve inflection begins. To improve the fit of the curve, I used continuous 
age estimates (Lindeman 1997) based on a yearly period of 1 May to 30 September that 
could support growth. I set hatchling size to be 25–29 mm CL based on field data of recent 
hatchlings (Storer 1930; Feldman 1982; Lovich and Meyer 2002; Germano 2016) to anchor 
growth curves. To determine a parameter of growth that would allow comparisons with other 
populations, I used the statistic G, which represents the time required to grow from 10–90% 
of asymptotic size and is an indicator of the duration of primary growth (Bradley et al. 1984):

G = ln((1 - .101-M)/(1 - .901-M))/K

The best overall growth measure is G rather than raw parameters because it is less 
affected by instability of the non-linear fit than either K or M, and it produces values on an 
easily interpreted scale (Bradley et al. 1984); in this case, years.

In 2017, I trapped for turtles for 21 trap days (TD) in May, 28 TD in June, and 28 
TD in July, resulting in 31 captures of 25 individual turtles. Trap success in 2017 was 0.46 
turtles per trap (36 captures/77 TD). In 2018, I trapped for 32 TD in May and 28 TD in 
June, and in 2019, I trapped for 32 TD in April and 24 TD in May. In 2018, I only made 
nine captures of eight individuals (five were new) for a trap success of 0.15 turtles per trap 
(9 captures/60 TD). In 2019, I made 38 captures of 29 individuals (13 were new and not 
caught in the previous 2 y) for a trap success of 0.67 turtles per trap (38 captures/56 TD). 
The population estimate of northwestern pond turtles for the 3 y of trapping was 76.2 turtles 
(95% confidence interval, 52.2–140.7 turtles). Also, in 2017, I caught one female red-eared 
slider (Trachemys scripta elegans) that had a CL of 252 mm and weighed 2,389 g, and 
another female in 2019 with a CL of 252 mm weighing 2,535 g, which I removed from the 
site. I also caught non-native catfish (Ictaluridae), sunfish (Centrachidae), and American 
bullfrogs (Lithobates catesbeianus) each year.

Over the 3-y study, I caught 43 individual northwestern pond turtles: three juveniles 
(< 120 mm CL), 25 males, and 16 females (Figure 2). One juvenile I caught in 2017 was 
a male when I recaptured in 2019. Most of the northwestern pond turtles were large, with 
76.7% (33 of 43) in the 150 to 180 mm CL categories, and I could determine the age of 
32.6% (ages 1–13 y) of the turtles (Figure 2). Of the 43 individuals, 67.4% were older turtles 
for which I could not determine their age (Figure 2).
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Figure 2 .  Distribution of 
carapace lengths (mm) and 
ages (years) of northwestern 
pond  tu r t l e s  (Act inemys 
marmorata) at the Circle J - 
Norris Ranch educational site, 
California, 2017–2019. The 
data are individuals, and if an 
individual was recaptured, the 
largest carapace length was 
used. Juveniles are open bars, 
males are striped bars, and 
females are solid bars.

The adult sex ratio (25M:16F) was not significantly different from 1:1 (ꭓ2 = 1.561, df 
= 1, P = 0.212). Although CLs of a few females were larger than any males (Table 1), mean 
CLs did not differ significantly (F1,39 = 1.398, P = 0.246), nor did the mean upper quartile 
CLs (F1,9 = 0.407, P = 0.541). I found significant regressions of weight to CL for both males 
(F1,23 = 205.0, P < 0.001) and females (F1,9 = 83.10, P < 0.001) and mean weights were 
significantly different (F1,32 = 2.695, P = 0.110).

The mean clutch size of six gravid females was 7.3 +/− 0.494 SE eggs (range, 6–9). 
In 2017, I found females with eggs as early as 18 May and as late as 5 July. None of the five 
females I trapped 16–19 April 2019 were gravid, nor were two females on 14 and 17 May 
2019. The smallest female with eggs was 145 mm CL and was 20+ y old, and the youngest 
female with eggs was 10.28 y old and was 168 mm CL in length.

Northwestern pond turtles grew rapidly (Figure 3). Using the growth equation, turtles 
reached 120 mm CL (small adult) by 3.00 y and 150 mm CL by 5.97 y. The time to grow 
from 10–90% of asymptotic size (statistic G) was 6.76 y (Table 2).
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Table 1. Mean (range), sample size (n), and standard error (SE) of carapace length (CL) and weight, and mean 
upper-quartile CL (UQCL) and weight (UQW) of adult northwestern pond turtles (Actinemys marmorata) 
captured 2017–2019 at Circle J - Norris Ranch in Fresno County, California. Weights of females excludes 
those that were gravid. The asterisk (*) is for upper decile parameters.

CL (mm) Weight (g)
n Mean (range) SE UQCL n Mean (range) SE UQW

Males 25 157.3 2.75 174.2 25 539.2 24.1 681.8
(130–172) (314–767)

Females 16 162.5 3.28 175.5 11 675.1 43.1 829.0
(124–178) (318–886)

Adults 41 159.3 2.14 178.0* 36 580.8 23.7 813.5*
(124–178) (314–886)

Figure 3. Richards growth curve 
of northwestern pond turtles 
(Actinemys marmorata) from the 
Circle J - Norris Ranch site in 
the foothills of the Sierra Nevada 
in Fresno County, California. 
The dashed lines are the 95% 
confidence interval.

I was somewhat limited in the amount of data at this study site because of low trapping 
success (average trap success for 3 y was 0.40 turtles per trap), especially after the first trap-
ping session of each year. Unlike other sites I have worked at, there was much algal growth 
and hornwort in the water from the edge of the bank to about 7–8 m out. It may have been 
hard for turtles to find their way into traps, although I had the best trapping success the first 
day of trapping in the early months. I tried a variety of baits, but none increased trap success. 
In 2019, I may have had better success in April (n = 31) and in May (n = 7) because the 
temperatures were fairly cold and not much aquatic vegetation blocked the traps. Besides 
red-eared sliders, this site also had non-native catfish (Ictaluridae), sunfish (Centrachidae), 
and American bullfrogs (Lithobates catesbeianus). The effect of these non-native species 
have on populations of northwestern pond turtles is uncertain and has not been tested, but it 
does not seem likely that their presence would have affected the diminishing rate of capture 
of turtles that I found after initial trapping (day or session). The site would be better for 
the native northwestern pond turtles, however, if these non-native species were removed.
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Table 2. Growth parameters from Richards growth curves and the upper decile carapace length (UDCL) for 
northwestern pond turtles (Actinemys marmorata) from three foothill sites and one valley floor site in California. 
Turtles at the Gorman site now are considered Southwestern Pond Turtles (A. pallida). Parameters describing model 
fit and growth curves from the Richards growth model are shape of curve (M), growth constant (K), inflection 
point of curve (I), and time required to grow from 10–90% of asymptotic size (G) in years.

Site M K I G (y) UDCL (mm) Reference
Circle J - Norris ˗0.4121 0.2869 ˗1.459 6.76 178.0 This study
Gorman pond 0.0799 0.2415 ˗0.5625 9.33 171.2 Germano and Riedle 2015
Hell-to-Find Lake ˗0.3629 0.1150 ˗3.528 17.1 166.4 Bury et al. 2010
Fresno Wastewater 
Treatment Plant

0.0468 0.5582 ˗0.2355 4.00 181.7 Germano 2010

Turtles at this site are similar in body size and clutch size to those in other parts of its 
range from the San Joaquin Valley north (Bury and Germano 2008; Germano and Bury 2009; 
Bury et al. 2010; Germano 2010, 2016). The mean clutch size (7.3 eggs) is larger, however, 
than those found in turtles in the southern part of the range, which are now considered to be 
a separate species, the southwestern pond turtle (A. pallida). Mean clutch size was 6.3 eggs 
at Gorman pond, approximately 160 km south of this site (Germano and Riedle 2015), 5.7 
eggs at coastal streams in Central California (Scott et al. 2008), and 5.2 eggs at Vandenberg 
Air Force Base (Germano and Rathbun 2008).

Growth rate (as defined by the statistic G) at this site was higher than for turtles at 
Gorman pond, south of CJNR, and much higher than for turtles at Hell-To-Find Lake in 
northern California (Table 2), both of which are foothill to mountain ponds. In these three 
cases, elevation seems to affect growth rates: CJNR is at 598 m, Gorman pond is at 1,063 
m (Germano and Riedle 2015), and Hell-To-Find Lake is at 1,460 m and in a conifer forest 
(Bury et al. 2010). The growth rate at the study site is slower, however, than at the Fresno 
Wastewater Treatment Plant (Table 2), which is about 110 km northwest of the ranch but 
on the valley floor (76 m elevation). Northwestern pond turtles at the Fresno site grow at 
the fastest rate in the range of this species (Germano 2016).

The pond at CJNR is one of hundreds, if not thousands, of artificial water catchments 
that have provided habitat for northwestern pond turtles in the past century and a half through-
out the species range (Bury and Germano 2008). These sites likely have offset much of the 
loss of native habitats on valley floors within the range of the species (Bury and Germano 
2008). Continued severe drought periods predicted with climate change could be harmful 
to some population of northwestern pond turtles in these catchments established to water 
cattle. The recent 2012–2016 drought across California did not cause the pond at CJNR to 
dry completely, however (Nancy Bruce, personal communication). It will be important to 
monitor known sites with northwestern pond turtles to determine the effect of continued 
drought as well as climate change on this species.
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Green Sturgeon (Acipenser medirostris) are an anadromous species, known to occur 
along the North American Pacific coast and connected estuaries and rivers, from Ensenada, 
Mexico to the Bering Sea (Moyle 2002; Wydoski and Whitney 2003; Moser et al. 2016). 
As mature adults, they return to natal freshwater systems every two to four years to spawn 
(Moser et al. 2016). There are three known spawning populations of Green Sturgeon. The 
populations in the Klamath River, California, and Rogue River, Oregon, constitute the north-
ern Distinct Population Segment (DPS), and the spawning population in the Sacramento 
River Basin, California, constitutes the southern DPS (Adams et al. 2006; Moyle 2002; 
Moser et al. 2016). Green Sturgeon southern DPS were listed as “threatened” in 2006 under 
the Federal Endangered Species Act, largely due to loss of critical habitat and declining 
populations (National Marine Fisheries Service 2006).

During fisheries monitoring activities for the San Joaquin River Restoration Program 
(SJRRP; Bureau of Reclamation, Region 10 California Great Basin) a single Green Sturgeon 
was captured on the mainstem San Joaquin River (SJR), California, within the boundaries 
of the SJRRP Restoration Area (from Merced River confluence to Friant Dam) on 11 April 
2020 (Figure 1). The individual was incidentally captured in a fyke trap that was targeting 
salmonids. The fyke trap is constructed of 5.0-cm chain link formed over 6 consecutive 3.0-
m hoops (7-m long x 3-m height). The trap contained two throats with the smaller opening 
of 60-cm. Trapping location was approximately SJR river kilometer (RKM) 190.7, 300 m 
upstream of the SJR confluence with the Merced River (37.347065, -120.976280) in the 
vicinity of Hills Ferry, California. We identified the captured individual using commonly 
accepted external characteristics, including a noticeable olive green patch on the abdomen, 
a bony plate behind the anal and dorsal fin, and barbels positioned closer to the mouth than 

California Fish and Wildlife 106(4):268-270; 2020

mailto:sroot%40usbr.gov?subject=


269Fall 2020 NEW RECORD OF GREEN STURGEON IN CALIFORNIA 

Figure 1. Reclamation Fisheries Biologist with a Green Sturgeon captured incidentally while conducting 
fisheries monitoring in the mainstem San Joaquin River, California, approximately 300 m upstream of the 
Merced River confluence with the San Joaquin River, Stanislaus County, CA, USA.

snout (Moser et al. 2016). An adult White Sturgeon (Acipenser transmontanus) was also 
captured in the same trap and was opportunistically used for comparison. Green Sturgeon 
morphometrics were as follows; 1,260 mm fork length, 1,418 mm total length, and girth 
of 532 mm. We checked the individual with an Innovasea Systems (Boston, MA) VR100 
acoustic receiver and a passive integrated transponder (PIT) reader to determine if the indi-
vidual was previously tagged. No tissue sample was taken, nor was the individual tagged. We 
released the individual upstream of the trapping location and appeared healthy upon release.

This finding represents the second confirmed record of an adult Green Sturgeon in the 
San Joaquin River Basin, upstream of Stockton California, as an adult was confirmed in the 
Stanislaus River in 2017 (Anderson et al. 2018), and the furthest most upstream confirmed 
record in the SJR (Moyle 2002; Beamesderfer et al. 2004). Unconfirmed angler reports 
(Dubois and Danos 2016) have been discounted, for the purpose of this note, due to potential 
errors in reported capture locations (Dubois, J. California Fish and Wildlife, personal com-
munication). This record extends Green Sturgeon reported range ~71 RKM , and represents 
a new record for Stanislaus County, California, USA (Moyle 2002). Though spawning was 
not observed and has never been reported for the species in the SJR, the date of capture was 
within the timeframe of reported spawning immigrations of adult Green Sturgeon in the 
Sacramento River basin (March–June; Benson et al. 2006; Heublein et al. 2009).
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BOOK REVIEW

Ruling the Waters: California’s Kern River, the Environment, and the Making of 
Western Water Law
Douglas R. Littlefield. 2020. The Environment in Modern North America; Volume 4. Uni-
versity of Oklahoma Press, Norman, OK, USA. 278 pages (hard cover). $45.00. ISBN: 
978-0806164908

While you are most likely to find this book on a college 
syllabus, it does not necessarily read like a traditional piece of 
academic literature. This relatively short, but dense book is packed 
with facts and figures depicting how the development of the San 
Joaquin Valley influenced California water law. Specifically, how 
the water law of prior appropriation now legally exists simulta-
neously with the doctrine of riparian water rights in California.

The narrative takes on a story-like quality using clippings 
from newspapers such as Bakersfield California, the Mountain 
Democrat, and the San Francisco Chronicle, along with excerpts 
from journals and historical records. By using firsthand accounts, 
Littlefield takes you on a journey of land ‘reclamation’ and acqui-
sition to water management and ownership, describing the people, 
politics, and conflicts along the way. While the book provides the 
historical backdrop and political circumstances for the entire San Joaquin Valley during the 
eighteenth and nineteenth century, Littlefield largely focuses on the development of the Kern 
River watershed. This is because of the substantial number and importance of the lawsuits 
and resulting legislation derived in Kern County.

Central to the book, is Littlefield’s explanation of the importance of the 1886 Lux 
v Haggin water rights ruling involving the Kern River, discussing how the acceptance of 
riparian rights by the California Supreme Court endorsed a concept of private property that 
included water as a usufruct. Further, he describes why the recognition of riparianism was 
not favored by all and explains how the ruling set the stage for water disputes to proliferate 
throughout the state and the west in general. Reading through the various legal challenges, 
I can’t help but wonder what water management, in California, might look like today had 
courts only recognize appropriation, as many other states did when establishing their own 
water law.

Though this book touches on many issues that fundamentally shaped water manage-
ment in California, such as the gold rush and hydraulic mining, the displacement of Native 
Americans, resulting influences of the Civil War, and large infrastructure development, it 
really centers on the people and conflicts directly connected to the creation of the California 
Doctrine. Each chapter takes on an important milestone in the development of the Kern River 
watershed and California water law. Littlefield starts by describing the original motivation 
behind draining the San Joaquin Valley as the desire for increased navigable water transpor-
tation coupled with a strong public opinion that by draining the swamps, the water could be 
used “to suit the interests of agriculture, watering a large portion of the valley, and making 
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it a garden” (p.17). As time passes and legislation evolves there are many failed attempts 
to drain the San Joaquin Valley, causing the legislative focus to shift from transportation 
necessity to settlement, reliable water supply, and for some, profit. 

While each chapter generally tackles a new development in the efforts towards con-
verting the San Joaquin Valley from marshlands to managed agriculture, many conflicts 
and resulting legal challenges transpire. These issues were complex, and many remain 
to this day. As such, several of the key court cases and decisions presented, such as the 
California Supreme Court decision Lux v. Haggin and the 1888 Miller-Hagger Agreement, 
are discussed and referenced in multiple chapters. While this makes sense, it can lead to 
a bit of repetitiveness when following along in the book and sometimes confusion, as the 
storyline might jump forward in time or revisit the past to provide more context and detail 
to a focal point of a chapter.

An interesting facet of the book is the biographical examination of many influential 
people involved in altering the San Joaquin Valley. Take Thomas Baker, the namesake of 
Bakersfield, Littlefield not only describes how Baker led reclamation efforts in the Central 
Valley but also describes him through historical account as someone who sympathized 
with the south during the Civil War resulting in his arrest for sedition. After a short stint at 
Alcatraz and a few years of legal headache, Baker was acquitted of treason but nonetheless 
directly delayed reclamation efforts in the San Joaquin Valley. Much of the book is spent 
portraying influential figures such as Baker, Henry Miller, and Charles Lux and it helps 
humanize the story of water law in California. By understanding the personal and political 
gains of these individuals, we begin to understand the influences that helped to create the 
complex system of water management and law we operate under today.

In addition to detailing the progression of California water law, Littlefield provides 
commentary throughout the book on the environment. However, the discussion presented 
is mostly an acknowledgement that the environmental impacts were simply not considered 
at the time. Littlefield does try and describe the extent of impact, loss of species and spe-
cies diversity, and overall transformation of the San Joaquin Valley from that of the largest 
wetlands in the western United States to the arid agricultural fields dominating the landscape 
today. The vivid descriptions and maps provided of the historical Central Valley landscape 
are thought provoking. They led me to evaluate the objectives and goals of present-day 
environmental efforts. Currently, environmental permits and plans are often designed to 
mitigate for further loss of species and habitat, and/or restore landscapes to function at a 
level depictive of Littlefield’s post nineteenth century development. I wonder, should we be 
doing more to address the environmental impacts caused by water supply development in 
the past or have we resigned ourselves to simply maintaining the fundamentally decreased 
functionality of habitats present?

In discussing how various portions of the San Joaquin Valley went from wetlands with 
too much water to arid agricultural lands with too little or unreliable water supplies, Littlefield 
observes the development of levees, drainage ditches, reservoirs, and conveyance canals. 
However, the book does not focus on the construction or engineering feats associated with 
altering the landscape. Rather, it examines the evolution of land use through first the policy 
guiding water infrastructure development resulting in increased water supply reliability, 
then increased settlement and dependence on water supply. Subsequently, Littlefield uses 
this narrative to provide context to the ensuing conflict over water sources and ownership, 
ultimately leading to litigation and law.
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As I read through the book, I realized that not only was the reclamation of the San 
Joaquin Valley a testament to water development but that many of the strategies used to 
settle water disputes historically are still used today. For example, Littlefield writes that the 
1888 Miller-Hagger Agreement demonstrated the desire for westerners to compromise, to 
keep water issues decentralized and with local and regional control. Current endeavors such 
as the State Water Resources Control Board efforts to update the San Joaquin Water Qual-
ity Control Plan have subsequently led to the development of the Voluntary Agreements. 
Although still under negotiation, the political pressure for the pursuit of Voluntary Agree-
ments demonstrates the same desire by water users to compromise in order to dissuade the 
state from interfering with local water management.

In summary, Littlefield does a great job of making water case law interesting and 
comprehensible to those of us with limited legal understanding. Ruling the Waters provides 
an insightful account of the people, politics, and court proceedings largely responsible for 
the legislation and subsequent management of water resources in California today. Overall, 
this book successfully makes the case that understanding the evolution of the Kern River 
watershed is important to the historical understanding of American water law. 

PAIGE UTTLEY, Senior Environmental Scientist (Supervisor), Water Branch, California 
Department of Fish and Wildlife, 1010 Riverside Parkway, West Sacramento, CA 95605, USA



BOOK REVIEW

The Cougar Conundrum: Sharing the World with a Success-
ful Predator

Mark Elbroch. 2020. Island Press, Washington, DC, USA. 250 pages (soft cover). $30.00. 
ISBN:9781-61091-998-2

cougar: a large, powerful tawny brown cat (Felis concolor) (Gove 1971)

conundrum: (1) a question or problem having only a conjectural answer; (2) an 
intricate and difficult problem (Gove 1971)

Dr. Mark Elbroch is well-known as the author of several 
natural history books, the majority of which are useful field guides. 
He also is an accomplished scientist, and has become a prolific 
contributor to the scientific literature on mountain lions, a species 
to which he refers as cougar—or mountain lion—throughout this 
book. I very much appreciate that because those names are in com-
mon use throughout the United States and Canada, and I find the 
increasingly frequent use of puma to be couched more in ‘political 
correctness’ or novelty than are cougar or mountain lion.

With publication of The Cougar Conundrum, Mark Elbroch 
has written about an intriguing topic that will be of some interest. 
The author clearly holds cougars in high regard and is knowledge-
able about their ecology. He has been on the cutting edge of the application of new tech-
nologies that have provided insights into the ‘private lives’ of these cryptic felids, but he 
also has emphasized the value of traditional field work (Elbroch et al. 2018), an important 
point evidenced further by his statement (p. 21) that, “Most North American researchers 
spend their entire careers trying to learn something about mountain lions from the blips 
and bleeps of handheld receivers [or locations displayed on a computer screen], rather than 
from any opportunity to actually observe the animals…”. It also is clear that he considers 
mountain lions to be incredibly special animals, and a theme I detected throughout the book 
is that they warrant incredibly special consideration. For example, in the preface Elbroch 
describes the potential demise of a small population of mountain lions occupying the Santa 
Monica Mountains, an insular bit of habitat about 710 km2 (275 mi2) in area, and writes (p. 
xvii) that, “[R]esearchers and wildlife advocates work to save a mountain lion population 
that, just 60 years previously, was likely extirpated [emphasis added] following state-paid 
bounties for dead mountain lions [in California].” No evidence is provided to substantiate 
that statement and, given the low effective sizes of mountain lion populations proximate to 
the Santa Monica Mountains (Gustafson et al. 2019), it is unclear from whence the founders 
of the current ‘population’ would have originated. Although not stated explicitly, Elbroch 
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appears to believe that the policies, regulations, and legislation currently in play in California 
represent an ideal model for mountain lion management and conservation throughout North 
America. I would argue strongly that such is not the case.

The Cougar Conundrum consists of 10 chapters, each dedicated to a separate, albeit 
general, theme. In Chapter 1, the author summarizes, and then debunks, a number of mis-
conceptions about mountain lions, and Chapter 2 is dedicated to staying safe in mountain 
lion habitat. In Chapter 2, Elbroch parrots many recommendations previously put forth by 
others, but also emphasizes that mountain lions are timid, and more likely to flee than to 
attack. He notes (p. 32), “It’s a dangerous world out there, but mountain lions pose little risk 
when compared to all the other dangers.” In Chapter 3 (Of Lions, Pets, and Livestock) the 
author posits that, “Mountain lions are intelligent carnivores, quick to seize opportunities 
for an easy meal” (p. 58), a statement in which I found a bit of irony given the aforemen-
tioned reference to little risk, and the emphasis on behavioral differences among individual 
cougars that occurs throughout the book. The remainder of the chapter goes on to present 
examples of, examine problems associated with, and suggest potential solutions to preda-
tion on livestock and pets.

While reading Chapter 4 (Sharing Prey with Mountain Lions), I became much more 
interested in the book. Therein, he explores cougar predation, prey availability, hunter har-
vest, and competition for native ungulates between mountain lions and humans. Elbroch 
emphasizes (p. 90) that the restoration of desert bighorn sheep to historical ranges in New 
Mexico occurred because the chief advocate for doing so was, “[s]tubbornly set on increas-
ing bighorn sheep numbers to where they could be harvested by sportsmen again [emphasis 
added] …”, rather than acknowledging that desert bighorn sheep were at risk of extinction 
in New Mexico, and that recovery and de-listing was consistent with the State’s public trust 
stewardship of its wildlife resources (Rominger et al. 2006). Further, Elbroch makes no 
mention of the non-native ungulates, whether livestock, feral equids, or large exotic artio-
dactyls that likely have played a role in subsidizing resources for mountain lions, and thereby 
yielding a greater density or wider distribution of cougars than otherwise would have been 
the case. Shortly thereafter (p. 92), he notes that where deer formerly were absent, but now 
are sympatric with bighorn sheep, presence of those cervids has contributed to increased 
predation on bighorn sheep. Mention of feral or exotic ungulates, or free-range domestic 
livestock, in a similar context would have been appropriate, meaningful, and helpful.

In Chapter 5 (The Great Hunting Debate), Elbroch delves into the topic of cougar hunt-
ing, beginning the chapter (p. 99) by describing a recent review that emphasized”’rampant 
trophy hunting” as—by far—the greatest threat to mountain lions in the United States and 
Canada (HSUS 2017). He then describes a subsequent critique (Cain and Mitchell 2018) 
prepared by researchers with the USGS Cooperative Research Unit Program (CRUP). An 
important role of the CRUP is to provide support in the form of objective and independent 
scientific reviews of ‘gray’ literature—of which the HSUS report is a classic example—but 
that role is not mentioned. Instead, Elbroch describes the critique as the result of concerns, 
voiced by “state wildlife agency personnel,” that the HSUS document could undermine 
current mountain lion management. That statement denigrates the reputations of state and 
federal agency biologists, and does nothing to enhance conservation of mountain lions. Much 
of the remainder of the chapter addresses the status of cougars in the context of harvest and 
its potential impacts to lion populations, but offers neither a defense of the HSUS document 
nor a rebuttal of Cain and Mitchell (2018).
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In Chapter 6 (Lions on the Eastern Seaboard), the author examines evidence in support 
of and contrary to the persistence of the ‘eastern cougar.’ Declaration of that extinction in 
2018, when combined with the synonymy of virtually all cougars in North America, could 
simplify a future introduction effort. Chapter 7 (How to Love a Keystone Predator) revived 
my interest, and it will evoke negative responses from some readers, and accolades from oth-
ers. As an example, his statement (p. 152) that, “[D]ominionistic hunters driven by money and 
power wielded by the likes of Safari International [sic] are increasingly damaging hunters’ 
reputations and our natural resources as a whole” followed by, “Dominionistic hunters are 
unlikely to be interested in the conservation of mountain lions or any wildlife…”. Perhaps 
inclusion of such statements are an effort to stir debate, but I do not see them being helpful 
in ‘big-picture’ wildlife conservation.

Throughout the text the author criticizes state wildlife conservation agencies and, in 
my opinion, greatly disserves those that have dedicated their lives to the conservation of 
wildlife, whether hunted or not. On page 168, he states emphatically that those agencies 
“[f]ocused on wildlife management and emphasized the sustainable, wise use of natural 
resources, whereas the other [i.e., universities and external organizations] focused on un-
derstanding, preserving, and restoring biodiversity as a means of ensuring ecosystem health 
and resilience.” That is an overstatement and entirely inappropriate, and further demeans the 
historical efforts of many, as will be emphasized in the penultimate paragraph of this review.

In Chapter 8, “The Money Behind Mountain Lion Management,” Elbroch again 
expresses a lack of confidence in, and further disdain for, the state agencies charged with 
wildlife conservation and the dedicated biologists tasked with that public trust responsibil-
ity, whom he identifies repeatedly as beholden to special interest groups. No topics seem 
immune from criticism; among these are several national or international organizations 
including—by inference (p. 194)—The Wildlife Society (a professional society “[t]hat rep-
resents management-minded biologists and their interests…”). Also criticized is landmark 
legislation that has been very meaningful for conservation, as well as the North American 
Model of Wildlife Conservation and its primary authors. Elbroch is adamant (p. 194) that the 
North American Model “[is] our past, but it should not be our future,” and emphasizes (p. 
195) that, “There are many wonderful, progressive-minded people working for state agencies 
[emphasis added], and we must be careful not to confuse people with the institutions for 
which they work, or with the political governing bodies that sometimes dictate their priorities 
and approve their funding.” That statement caused me to question what ‘progressive-minded 
people’ represent, and just what their presence portends for those agencies.

In the final chapter, “Toward Coexistence with Mountain Lions,” Dr. Elbroch lays out 
his vision for the future of cougars and argues (p. 218), “They are evidence of true wilder-
ness, graceful, majestic, and strong.” I emphasize, however, that those cryptic felids also 
are highly adaptable, and are capable of existing as viable populations under a multitude 
of disparate conditions and stressors where habitat is adequate to maintain a prey base and 
large enough in size to support more than a few cougars at any given time. Mountain lion 
populations occurring under such conditions do not require anthropogenic intervention to 
ensure persistence. Nevertheless, cougars have elevated emotions among the general public 
to the point of driving conservation and management. Many individuals insist the presence 
of those large carnivores is essential in isolated areas that are tiny in size and surrounded 
by urbanization and associated infrastructure, or where they present a risk to human safety. 
I suggest it is neither desirable nor essential for mountain lions to occupy every square ki-
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lometer of ‘suitable habitat’ within their historical range, especially given the ongoing and 
highly successful efforts to ensure their persistence across the landscape, and a constantly 
expanding geographic distribution. Unfortunately for mountain lions—and for the large native 
herbivores on which they depend—it is not until late in the book (p. 202), that destruction 
of habitat in the United States and Canada is emphasized adequately in terms of its impacts. 
I suspect mountain lions would have been better served had the importance of habitat been 
emphasized from the very beginning and had been a recurring theme throughout the book.

It is not my purpose to demean an attempt to call attention to some serious issues with 
which society and wildlife are faced, particularly with respect to a controversial topic. In 
my opinion, however, that effort could have been accomplished more effectively had the 
author relied on fewer personal opinions and more heavily on the peer-reviewed literature, 
and had incorporated a greatly expanded list of references. Additionally, I found organiza-
tion of the book to be confusing and a bit burdensome. It is my impression that the author 
intended a ‘point-counterpoint’ approach, but that was not entirely clear. Further, literature 
used to substantiate statements varied in terms of its source or level of ‘quality control’, 
with some originating as online, unrefereed opinions or popular articles, some from highly 
regarded academic journals, and additional sources that the author refers to as counterfeits 
and describes (p. 166) as “[p]redatory journals that will publish anything anyone has written 
and claims to be science.” It would have been immensely helpful had citations been included 
at the end of each chapter, rather than grouped by chapter at the end of the book, because 
efforts to consult in-text citations were extremely time-consuming.

I was at a disadvantage when preparing this review because I received what was 
described as “advance reader’s edition” and was cautioned against quoting material until it 
was checked against the final, printed edition. I noted several minor errors in the advance 
edition that were corrected in the published version; other errors remained, however, and at 
least one mistake not in the advance edition appeared in the final publication. Among the 
most egregious errors remaining in the final version centered on the Federal Aid in Wildlife 
Restoration Act (i.e, the Pittman-Robertson Act), which is referred to at least 6 times as the 
“Pittman-Roberts Act.”

Dr. Elbroch has been described (p. 239) as a “soulless bastard” for enslaving mountain 
lions for research purposes, and as a “Σ#!†-for-brains” liberal for his views on mountain 
lion hunting; despite publication of The Cougar Conundrum, I suspect those descriptors 
will remain. Combinations of facts, opinion, emotion, speculation, and criticism—some 
of which will foment strong reactions—occur throughout the book. Yes, there is a ‘cougar 
conundrum’ and it warrants discussion; I found the book itself, however, to be a conundrum 
that is unlikely to decrease the divisiveness that pervades issues related to the conservation 
of mountain lions.

Bruce Wilcox and, the late, Michael Soulé are revered as founding fathers of the dis-
cipline commonly referred to as Conservation Biology. Some 40 years ago, when penning 
their ground-breaking work bearing that title, Soulé and Wilcox (1980) emphasized that, 
“[T]he emergence of conservation biology as a respectable academic discipline has been 
slowed by prejudice. Until recently, few academically oriented biologists would touch the 
subject. While wildlife management, forestry, and resource biologists [s]truggled to buffer 
the most grievous or economically harmful of human impacts (deforestation, soil erosion, 
overhunting), the large majority of their academic colleagues thought the subject was below 
their dignity. But academic snobbery is no longer a viable strategy, if it ever was. [T]he 
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luxury of prejudice against applied science is unaffordable.” Although not acknowledged 
in The Cougar Conundrum, the discipline of Wildlife Management was ahead of the times.

VERNON C. BLEICH, Department of Natural Resources and Environmental Science, 
University of Nevada Reno, and Eastern Sierra Center for Applied Population Ecology, 
Bismarck, ND, USA 
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Front.  Northwestern pond turtle (Actinemys marmorata). Photo by Dagmar Collins (CC 
BY-NC-ND 2.0)

Back. Barred sand bass (Paralabrax nebulifer). Photo by Josh More (CC BY-ND 2.0).
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