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Here we apply seasonal time series modeling to flow and fisheries management 
in a highly regulated river system. Time series modeling is commonly employed 
to forecast future values of streamflow and extrinsic climate-related seasonal 
data based on historical information. This method has not been employed in 
evaluating fish-flow management in highly regulated rivers that experience 
regular and long-term hydrological fluctuations. Forecasting annual outflow 
volume and predicting and evaluating its effect on variability in the thermal 
regime of major river systems, is vital for addressing potential impacts to 
anadromous and non-anadromous fisheries. Autoregressive Integrated Moving 
Average (SARIMA) time series analysis was used to predict and describe seasonal 
variation in flow volume and water temperature for the upper Trinity River 
in northern California. The objectives were: 1) use a multivariate approach to 
SARIMA modeling to describe and evaluate seasonal patterns in environmental 
variables associated with the historical annual time series record in response 
to implementation of anthropogenic flow-type hydrographs; and 2) relate 
results to fisheries resources in the upper Trinity River through management 
recommendations. Raw data representing the historical time series for volume 
of flow and water temperature variables were partitioned into three time series 
subgroups. Each subgroup represented a specific flow-type following previous 
research into the effects of highly managed hydrographs in the upper Trin-
ity River. Subgroups were evaluated based on their efficiency to model and 
provide accurate operational forecasts of monthly environmental data. Results 
showed that subcomponents of the historical post-dam time series specific to 
managed flow-type hydrographs keyed to geomorphologic restoration actions 
significantly misrepresented the: 1) time series characteristics, 2) seasonal-trend 
decomposition patterns, and 3) forecast accuracy compared to the baseline 
pre-restoration time series model. These results effectively nullify use of 
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managed hydrographs in predicting future forecasts for flow-fish planning 
and management purposes. Use of time series modeling without reference to 
continuous intrinsic periods within the historical time series data where flow is 
anthropogenically manipulated will be misleading when attempting to evaluate 
the overall characteristics and subsequent future forecasting that derive from 
such models. By placing environmentally-driven historical time series models 
into perspective relative to anthropogenically manipulated flow management 
the needs of both current and future water and fisheries resources will be better 
optimized notwithstanding the inevitable long-term effects of climate change.

Key words: fisheries resources, flow-mediated water temperature, regulated river, river 
restoration, SARIMA, time series modeling 
_________________________________________________________________________

Historically, time series analysis has been employed in building models to detect 
seasonal trends and forecast future values of water temperature, precipitation, air tempera-
ture, evapotranspiration, streamflow, and other climate-based data using regionally-specific 
historical information (Salas 1993; Adeloye and Montaseri 2002; Papalaskaris and Kampas 
2017). Application of time series modeling is expanding with growing concerns about climate 
change and global warming. This approach requires accurate explanation of the underlying 
dynamics of river flow. Yet obtaining this kind of information may not always be possible 
by methods of statistical forecasting using conventional linear regression focused primar-
ily on average values of data (first-order moment) but not variance in data (second-order 
moment; Casella and Berger 2002; Martínez-Acosta 2020; Attar et al. 2020). Use of time 
series modeling has not been employed in evaluating issues related to fish-flow management 
in riverine systems. This observation is particularly true for rivers experiencing regular and 
long-term hydrological fluctuations keyed to dam operational releases for in-river geomor-
phological restoration actions, which is the primary focus of this paper.

Variability, uncertainty, and unpredictability are hallmarks of river systems and, by 
extension, of any in-river restoration initiative (Wissmar and Bisson 2003). Restoration 
projects on large river systems in the Pacific Northwest carry substantial ecological and 
economic risk, which highlights the need for improved restoration science (Woelfle-Erskin 
et al. 2012). Adding to the uncertainty and unpredictability of riverine restoration efforts is 
the tendency to implement prescriptions at a local-level without consideration of the link-
ages at nested temporal and spatial scales (Holčík 1996). This practice minimizes insight 
into modeling longer-term effects that contribute to variability and unpredictability in 
flow-related restoration efforts and their impacts to fisheries resources (Woelfle-Erskin et al. 
2012). For example, restoration flows have traditionally focused on discharge impacts over 
short time intervals (< 1 year). This strategy is driven primarily by annual needs for in-river 
geomorphic work without reference to “baseline” or “unimpaired” flow models (Shibatani 
2020) synchronized with historical and current tributary flow events that automatically fac-
tor in annual variability in climate change. Shortfalls in the outcomes of river restoration 
have prompted calls to identify and restore processes that support and sustain biological 
communities, rather than focusing only on river geomorphology (Palmer and Ruhi (2019). 

Stochastic Moving Average (ARMA) time series models are based on probability 
theory that represent the temporal uncertainty of data without a seasonal element (Martínez-
Acosta et al. 2020). Modification of ARMA analyses for evaluating stochastic seasonal time 
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series phenomenon involves Seasonal Autoregressive Integrated Moving Average (SARIMA) 
models. This technique in combination with the Box-Jenkins (Box and Jenkins 1976) ap-
proach, which evaluates autocorrelations among variables as well as lag-lead relationships 
between variables, has direct application to modeling seasonality and correlation structure 
in hydrological data associated with forecasting reservoir inflow, outflow discharge, and 
river water characteristics affecting flow-fish thermal regimes (Stergiou 1991; Pajuelo and 
Lorenzo 1995; Bari et al. 2015; Papalaskaris et al. 2016). Anthropogenically-induced vari-
able hydrology and its impact on thermal regimes of major riverine systems is a critical 
factor affecting the physiology, ecology, and life history strategies of resident salmonids 
and other aquatic organisms (Olden and Naiman 2010; Hallock et al. 1970; McCullough 
1999; Carter et al. 2006). Long-term patterns of flow variability have historically selected 
for organismal life histories related to growth, reproduction, dispersal, and the ability to 
persist under physical and chemical stress (Palmer and Ruhi 2019). Use of time series 
modeling is particularly relevant to management of fisheries resources given that most fish 
are ectothermic, and their life history strategies are directly and functionally affected by 
variable thermal regimes within their regional and local migratory landscapes (Hildebrand 
and Goslow 2001). When managing fisheries resources, forecasting outflow volume, and 
predicting its effect on variability of water temperature is particularly relevant in planning 
flow releases and understanding the hydrographic characteristics underlying potential im-
pacts to anadromous fisheries resources.

Flow dynamism also is central to a functioning river system and its ability to provide 
ecosystem services, yet flow alteration is rarely inconsequential (Palmer and Ruhi 2019). 
Variability in riverine thermal regimes as a function of anthropogenic flow scheduling has the 
potential to adversely affect run-timing, local migratory behavior, spawning, and early de-
velopment of juvenile anadromous species, including Coho Salmon (Oncorhynchus kisutch), 
spring- and fall-run Chinook Salmon, and steelhead (Oncorhynchus mykiss), together with 
resident non-anadromous Brown Trout (Salmo trutta) and Klamath Smallscale Suckers 
(Catostomus rimiculus; Sullivan and Hileman 2018, 2019, 2020). In northern California, 
populations of spring-run and fall-run Chinook Salmon (Oncorhynchus tshawytscha) in 
the Klamath Basin have declined significantly in the last 100 years as a function of several 
linked factors, including a series of dams on the mainstem Klamath and Trinity rivers (Rom-
berger and Gwozdz 2018). All stocks of salmonids in the upper Trinity River are at their 
lowest levels since 2007. The upper Trinity River has experienced repeated fluctuations in 
the seasonal volume of flow and thermal regime as a function of water management policy, 
in-river anthropogenic actions centered around geomorphological restoration activity, and 
attempts to control disease using artificially augmented pulsed flows since 2003 (Sullivan 
and Hileman 2018). These activities directly affect migration and run-timing in both non-
anadromous and anadromous salmonids linked to the expression of regionally adapted life 
history strategies (Sullivan and Hileman 2020).

The objectives of this research were threefold. First, a multivariate approach to 
SARIMA time series modeling was used to describe seasonal patterns in environmental 
variables potentially influenced by implementation of specific anthropogenic flow-type 
hydrographs. Second, we tested the hypothesis that subcomponents of the historical time 
series data representing specific in-river restoration actions significantly misrepresent the time 
series characteristics and forecast accuracy of seasonal flow volume and water temperature 
compared to a “baseline” pre-restoration time series model. Third, we relate results of our 
research to management of fisheries resources in the upper Trinity River through recommen-



Vol. 106, No. 4CALIFORNIA FISH AND WILDLIFE224

dations focused exclusively on time series modeling and analysis. Forecasting plays a critical 
role in fisheries management because it precedes planning which, in turn, precedes decision 
making (Makridakis et al. 1983; Stergiou et al. 1997). By placing environmentally-driven 
historical time series models into perspective relative to anthropogenically manipulated flow 
management, the needs of both current and future water and fisheries resources will be better 
optimized and managed notwithstanding the inevitable long-term effects of climate change.

METHODS
Study area

The Trinity River is in northwestern California and is the largest tributary of the 
Klamath River system (Figure 1A). Construction of Trinity and Lewiston dams occurred 
in the early 1960s.Trinity Dam creates Trinity Reservoir, storing up to 3,022 m3 of water. 
Lewiston Reservoir, formed by Lewiston Dam, is located 11.8 km downstream of Trinity 
Dam, which serves as a re-regulating reservoir for flow to the Trinity River and diversion 
to the Sacramento River Basin, comprising the Trinity River Division of the Central Val-
ley Project (Sullivan and Hileman 2019). The Trinity River system is not connected geo-
logically to the Sacramento River system of the Central Valley. From Lewiston Dam, the 
Trinity River flows ~ 180 kilometers before joining the Klamath River at the township of 
Weitchpec, California. The Klamath River flows for an additional 70 km before entering 
the Pacific Ocean. Trinity River Hatchery is located immediately below Lewiston Dam. 
From a management perspective, the upper 63.1 rkm of the Trinity River or “mainstem,” 
ends at the confluence of the North Fork Trinity River and the Trinity River proper. This 
section of the river is the primary focus of in-river restoration activities by the Trinity River 
Restoration Program (TRRP 2020). The focus of our study was the upper-most section of 
the mainstem just below Lewiston Dam and the Trinity River Hatchery, which is the upper 
limit to anadromy on mainstem. 

Managed flows and release schedule

The TRRP created by the Record of Decision, henceforth called “ROD” (USBR 
2000), mandated a plan for restoration of 63.1 km of the upper Trinity River and its fish 
and wildlife populations. The Trinity River Mainstem Fishery Restoration Environmental 
Impact Statement was the basis for the ROD (TRFES 1999). This restoration strategy in-
cluded: 1) flow management through manipulation of the annual hydrograph, 2) mechanical 
channel rehabilitation, 3) sediment management, 4) watershed restoration, 5) infrastructure 
improvements, 6) adaptive environmental assessment and monitoring, and 7) environmental 
compliance and mitigation. Schedules for annual flow releases for the Trinity River are 
established based on water year type1 and restoration needs (Appendix I; TRRP 2020). As 
of water year 2020 the proportion of water scheduled to be removed from the Lewiston 
Reservoir and diverted to the Central Valley is 61% of the allotment. The remainder (39%) 

1 The term “water year” defined by the United States Geological Survey is “the 12-month period 1 
October (of any given year) through 30 September of the following year.” The water year is desig-
nated by the calendar year in which it ends, and which includes 9 of the 12 months. Thus, the year 
ending September 30, 1999 is called the “1999” water year. https://water.usgs.gov/nwc/explain_data.
html

https://water.usgs.gov/nwc/explain_data.html
https://water.usgs.gov/nwc/explain_data.html
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is scheduled to be released into the into the Trinity River. Detailed descriptions and sum-
maries of specific flow schedules and restoration actions are provided elsewhere (TRRP 
2020; Sullivan and Hileman 2019).

Data collection and sampling

To test our hypothesis, raw data representing the historical time series data for volume 
of flow and water temperature were partitioned (fixed portioning; Prasad 2019) into three 
time series subgroups. Each subgroup corresponded to specific hydrological flow-types 
following previous research into the effects of highly managed hydrographs on the upper 
Trinity River and its fisheries resources (Figure 1B2; Sullivan and Hileman 2020). These 
subgroup flow-types included: 1) “baseline” PreROD flows (1995 – 2002), 2) ROD flows 
(2005 – 2011, 2017), and 3) Pulse flows (2012 – 2016, 2018). ROD and Pulse flow-types 
represented only those continuously unbroken sequences of years in which specific managed 

Figure 1. A) Map of Trinity 
Coun ty  and  loca t ion  o f 
Trinity Dam, Lewiston, Dam, 
Trinity River Hatchery, and 
Lewis ton  Water  Qual i ty 
Gauge (LWS) within the upper 
reach of traditional spawning 
grounds 1.7 rkm downstream 
of hatchery. B) Examples of 
hydrographs representative of 
different flow-types used in 
time series analyses. Managed 
hydrographs are associated 
with ROD and Pulse flow-types 
typically implemented between 
Julian week 13 and 40. Gray 
shaded areas correspond to run-
time presence of various species 
of salmonids in the upper river.

2 Hoopa Valley Tribal Boat Dance flows are scheduled in odd years for ceremonial purposes. During 
this time, the United States Bureau of Reclamation increases the volume of flow from Lewiston Dam 
into the Trinity River in support of this ceremony in the town of Hoopa, California.
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hydrographs were implemented. Daily recordings of telemetered digital data were used to 
assess the seasonal extent of variability in the annual thermal regime that characterizes the 
upper Trinity River. These data were obtained from the United States Bureau of Reclama-
tion, Lewiston Water Quality Gauge (LWS; DWR 2020) located 1.7 rkm downriver from 
Lewiston Dam (river-km 178.2; UTM 516,634 m E and 4,507,678 m N; elevation 558 m). 
Digital data obtained included averaged daily: 1) flow volume (ADFV m3/s), 2) minimum 
air temperature (MIAIR degrees Celsius [°C]), 3) maximum air temperature (MXAIR °C), 
4) minimum water temperature (MIWAT °C), maximum water temperature (MXWAT °C); 
and 5) a measure of extreme variability in water temperature (ADWTV [average – mini-
mum] + [maximum – average] °C). The LWS gauge was chosen because there are no other 
sources of inflow from the watershed or major tributaries between the LWS gauge and 
Lewiston Dam. As a result, this section of the river is not inadvertently influenced by other 
local watershed conditions. Further, this location was the “standard” used in all National 
Environmental Protection Act (NEPA) assessments and flow augmentation analyses of 
fluctuations in river water temperature, specific to the upper Trinity River out of Lewiston 
Dam since 1997 (Magneson and Chamberlain 2014). Importantly, this gauge provides the 
best location for measuring water temperature conditions nearest to the hatchery as hatchery-
origin Chinook Salmon as well as other natural-origin salmonids traditionally spawn in this 
segment of the upper-most reach.

Statistical analyses

Standard statistics.—All statistical tests performed used the R-suite of statistical 
programs (R Core Team 2020) and statistical significance for all analyses was set at p < 
0.05. Prior to implementing statistical analyses, visual assessment of each environmental 
variable was conducted using two goodness-of-fit plots: 1) theoretical density plots of 
histograms against fitted density functions; and 2) Q-Q plots of the theoretical quantiles 
against empirical ones with emphasis on lack-of-fit at the tails of distributions, which were 
evaluated by use of the Akaike information criterion (AIC; Package “MuMIn;” Appendix 
II). A follow-on statistical evaluation using the Anderson-Darling (A) test statistic (Ste-
phens 1986) similarly showed that all environmental metrics were not normally distributed 
(minimum air temperature: A = 14.7, p < 0.001, n = 5,752]; maximum air temperature: A = 
80.7, p < 0.001, n = 5,752]; minimum water temperature: A = 10.9, p < 0.001, n = 8,055]; 
maximum water temperature: A = 14.5, p < p < 0.001, n = 8,055]; extreme variability in 
water temperature: A = 276.1, p < 0.001, n = 8,042]; flow volume: A = 148.5, p < 0.001, n 
= 8,401]). Thus, all subsequent statistical analyses used non-parametric or semi-parametric3 
statistical methods (McDonald 2014; Tsiatis et al. 2006). Spearman’s rank correlation rho (rs) 
2-tailed test was used to calculate the strength and direction of the relationship between two 
variables, expressed as a monotonic relationship, whether linear or not (Corder and Foreman 
2014). Kruskal-Wallis Chi-square (ꭓ2) rank sum tests evaluated each designated variable 
accompanied by follow-on planned pairwise comparisons between each designated group 
using the Dunn test statistic (Z). All p-values were adjusted using the Benjamini-Hochberg 
method (Benjamini and Hochberg 2000; Machiwal and Madan 2006).

Principal components analysis (PCA; Program “FactoMineR”) was used to describe 
variation, identify variable selection, discard redundant variables, and assess seasonal varia-
3 In statistics, a semiparametric model is a statistical model that has parametric and nonparametric 
components. https://en.wikipedia.org/wiki/Semiparametric_model

https://en.wikipedia.org/wiki/Semiparametric_model
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tion in each environmental variable. Component axes that accounted for > 1% of the total 
variation in “attribute space” were retained for further analysis among flow-types for each 
time series. This method is generally preferred for numerical accuracy as resulting principal 
components are orthogonal, thus minimizing multicollinearity between model predictors, 
with the goal of identifying a smaller subset of variable components that capture the majority 
of variance in predictors (Everitt and Hothorn 2011).

Generalized additive models.—Semi-parametric generalized additive modeling (GAM; 
Package “mgcv;” Wood 2017) was used in regression of each environmental variable (Hastie 
and Tibshirani 1990; Madsen and Thyregod 2011; Wood 2017). Response curves generated 
from each GAM showed the relationship between the fitted function and the response vari-
able. Smooths were “centered” to ensure model identity and summed to zero over covariate 
values. Statistics reported by each GAM included: 1) F-statistic (approximate significance 
of smooth terms), 2) p-values and 95% confidence bands for spline lines (Nychka 1988), 
2) adjusted regression coefficients for each model (R2.Adj.), 3) estimated residual degrees 
of freedom (Ref.df.), and 4) proportion of null deviance explained (Dev.Exp.). The Spear-
man’s rank correlation coefficient was used as a follow-on procedure to assess strength and 
significance of trends in each variable delineated by smooth terms. Ranked correlation was 
used because GAMs lack a statistical inference procedure and formal parameter of goodness 
of the fit, which makes interpretation of output potentially complicated (Package “fitdis-
trplus;” Diankha and Thiaw 2016). The gamma error-structure (family = “Gamma” [link 
= “log”]) was used to assess the error distributions in fluctuations of each environmental 
variable; and the AIC information criterion was used to select the most parsimonious error 
distribution for each environmental attribute (Package “MuMIn;” Akaike 1973; Burnham 
and Anderson 1998).

Seasonal-trend decomposition and adjustment.—Historical annual data were aggregat-
ed by month. Months were used instead of Julian weeks (52 weeks/year) because the historical 
time series data were not detailed enough for each environmental variable to justify using 
weekly subdivisions. Use of Julian weeks would have been preferable because they would 
have imparted greater detail to the analyses. Seasonal-Trend-Loess (STL) decomposition 
component analysis was used to remove the seasonal effect from each time series variable 
to facilitate understanding of trends in the dataset. The STL method using local polynomial 
regression was fitted by a least squares algorithm to partition the time series of each dataset 
into three components: 1) trend (Tt), 2) seasonality-cycle (St), and 3) remainder (Rt), writ-
ten as: yt = St + Tt + Rt, for t =1 to N measured data points (Hydman and Athanasopoulos 
2014). Once each component was fit by the STL model, they were subtracted from the raw 
time series data for each environmental variable to give the remainder component of each 
model. Thus, the remainder component equates to the residuals derived from the seasonal 
plus trend fit, or “random” time series (Cleveland et al. 1990; Cleveland et al. 1992). Ability 
to determine if a single measurement was unusually low or high by looking at the remainder 
terms is a typical use of seasonal decomposition. Locally weighted regression and scatterplot 
smoothing (Loess) was used to estimate nonlinear relationships, in which the entire procedure 
is iterated using a back-fitting algorithm. Inter-quartile range (IQR) calculations for x-values 
were generated by STL modeling of the trend, seasonality, and remainder components used 
to gain a relative measure of how spread-out points were in the original time series dataset 
(Zar 2010). For a normal distribution with standard deviation σ, IQR = 1.35σ.

Time series modeling and seasonality.—Goals of the time series analyses were to: 1) 
describe the pattern indicated in the time series data, 2) identify the nature of the phenom-
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enon represented by the sequence of observations and integrate with seasonally variable 
environmental effects, and 3) forecast future values in each time series model for each 
environmental attribute. To accomplish these goals, time series analysis assumes that suc-
cessive values in the data file represent consecutive measurements taken at equally spaced 
time intervals (Hill and Lewicki 2007). Thus, years 2003, 2004, and 2018 were not included 
in the Pulse flow time series model, nor was 2017 included in the ROD flow time series 
model as illustrated in Figure 1A. Importantly, the years removed were consistent with the 
consecutive annual monthly patterns exhibited by both managed flow-types. Retention 
of these years and months would have provided additional detail by contributing to the 
robustness of statistical tests as a function increasing sample size for each anthropogenic 
subcomponent of each restoration time series model.

Seasonality is a significant concern when modelling time series weather data unique 
to a particular region. Because all environmental data evaluated herein exhibited seasonal-
ity, SARIMA modeling (Program “astsa;” Shumway and Stoffer 2017) was used to evaluate 
each univariate time series and to inspect model fit diagnostics (Nau 2017; Hyndman and 
Athanasopoulos 2018). A SARIMA model was fitted to each environmental variable for 
each flow-type subcomponent of the historical time series, with the intent to discover the 
most appropriate match of each time series data point to previous values of the same time 
series, and to perform future forecasts. Seasonal components of each model were written 
using uppercase letters, whereas non-seasonal components were referenced in lowercase 
letters and written in the form: SARIMA (p, d, q) (P, D, Q)m, where p = non-seasonal order 
(autoregressive model AR[p]), d = non-seasonal differencing, q = non-seasonal order moving 
average (MA), P = seasonal (AR) order, D = seasonal differencing, Q = seasonal (MA) order, 
and m = number of periods per season indicating the time interval of repeating seasonal 
sequences. The seasonal portion of each model was comprised of components resembling 
the stochastic non-seasonal terms of an ARIMA model but included backshift operators of 
the seasonal period and multiplied with the non-seasonal elements of the model (Brownlee 
2018). SARIMA models allow the user to generate synthetic time series considering cyclical 
variations in the observed series records (Cox and Miller 1977; Chatfield and Xing 2019). 
Differencing (d, D) is the difference between a value and a value with lag that is a multiple 
of m (Hyndman and Athanasopoulos 2018).

SARIMA, autocorrelation, and forecasting.—Each SARIMA model was fitted to 
monthly values of maximum air temperature, extreme variability in water temperature, 
and flow volume for each flow-type, which takes in arguments in the following order: data, 
ARIMA inputs (p, d, q), SARIMA inputs (P, D, Q), and seasonal lag S. A primary advantage 
of SARIMA is that it automatically differences (d = 1, D = 1) each seasonal time series model 
consistent with the number of differences recommended by use of the ndiff() function, along 
with estimating the lowest AIC values and measures of variance (σ2) for each data set as 
different choices of p and q were considered. This process generally results in the best-fit 
model for use in follow-on forecasting. The auto.arima() function without drift was used to 
determine the order of each SARIMA model (Package “forecast”) in which the algorithm 
conducts numerous iterations and checks in a search for all possible models within the order 
constraints provided (Hyndman and Khandakar 2008). This stepwise algorithm returns the 
best “fit” model with the lowest AIC value and automatically differences the time series to 
make it stationary (Hyndman and Khandakar 2008; Wang et al. 2006). Residuals were used 
to investigate the relationship of each time point to each previous time point in the distribu-
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tion of consecutive annual fluctuations in each environmental variable for each time series 
model. Follow-on assessment was conducted to ascertain if model residuals were random 
using autocorrelation (ACF) and partial autocorrelation (PACF) plots.

Augmented Dickey-Fuller tests gauged the extent of stationarity in each time series 
model and Box-Pierce tests (ꭓ2) determined whether any group of autocorrelations of a 
time series were different from zero (Box and Jenkins 1970; Fuller 1976; Ljung and Box 
1978). Parsimony was used to evaluate performance and to validate each model for each 
time series using the minimum AIC statistic prior to forecasting. Once the best-fit SARIMA 
model was identified, the function sarima.for() was used to provide a forecast for the next 
“future” 36-month time intervals for each time series (Package forecast v8.10). Accuracy of 
forecasting was evaluated by use of the Mean Absolute Percentage Error (MAPE) measure, 
which assumes that MAPE < 10% or 11 – 20% is considered an excellent to good forecast-
ing estimate, respectively (Lewis 1982; Moreno et al. 2013; Hyndman and Athanasopoulos 
2018). After estimating the parameters of each ARIMA model for each environmental vari-
able by flow-type, their adequacy was evaluated graphically by visually inspecting their 
standardized residuals, ACF graphs, Q-Q plots, and p-values for the Ljung-Box test. Due 
to space limitations and the number of panels that resulted for each variable by flow-type, 
a graphic illustration was provided only for the PreROD flow-type.

RESULTS

Historical annual fluctuations in flow volume and water temperature

Principal components analysis of months using environmental variables merged with 
plot loadings showed a gradation in the seasonal distribution from cold-wet (winter-fall) to 
warm-dry (spring-summer) climatic conditions along the axis of PC I for the surrounding 
riverine corridor downriver from Lewiston Dam (Figure 2; Table 1). A total of 91.2% of 
the variation among months was explained on the first three PCs. As shown by the loading, 
relationship, and direction of each arrow, all variables vectored heavy and positive along PC I 
(59.3%) except flow volume, which vectored positive along PC II (23.2%) particularly during 
the months of May followed by June. Because of the strong correlation between individual 
measures of air temperature (rs = 0.890, n = 204) and water temperature (rs = 0.920, n = 
276) only maximum water temperature, extreme variability in water temperature, and flow 
volume were kept for further analyses to reduce collinearity (Everitt and Hothorn 2011).

From 1994 to 2018, GAM regression identified a significant trend in the smooth term 
of the annual response curve in maximum air temperature for the upper-most section of the 
mainstem Trinity River above the Lewiston Water Quality gauge (Table 2). Yet deviance 
explained was not robust relative to all other environmental variables (Dev.Exp = 0.04%) 
and the strength of the relationship was extremely weak (rs = 0.038, p = 0.004, n = 5,752). 
Significant annual trends in flow volume, maximum water temperature, and extreme variabil-
ity in water temperature also were not robust. Whereas both measures of water temperature 
showed positive annual trends, this relationship was negative for flow volume (Figure 3). 
Additionally, the relationship between annual variation in maximum air temperature was 
significantly correlated with both water temperature variables but not with flow volume 
(Table 2; Figure 4). Thus, although the relationship between annual fluctuations in water 
temperature was significant and positive, both variables were inversely correlated with 
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Figure 2. Principal components analysis (PCA) of monthly variation in environmental variables plotted along 
the first two components: MIAIR = minimum air temperature, MXAIR = maximum air temperature, MIWAT = 
minimum water temperature, MXWAT = maximum water temperature, ADWTV = extreme variability in water 
temperature, and ADFV = flow volume. All temperatures in degrees Celsius (°C) and volume of flow in m3/second.

Table 1. Principal components analysis of similarities among months merged with plot loadings. Variables were 
average daily environmental attributes: MIAIR = minimum air temperature, MXAIR = maximum air temperature, 
MIWAT = minimum water temperature, MXWAT = maximum water temperature, ADWTV = extreme variability 
in water temperature, and ADFV = flow volume. All temperatures in degrees Celsius (°C) and volume of flow 
in m3/second.

Measure PC I
Dimension

PC II PC II

Variance 3.6 1.4 0.5
Percent 59.3 23.2 8.7
Cumulative percent 59.3 82.5 91.2

Variable
Percent

PC I
variable

PC II
contribution
   PC II

ADFV 0.03 57.26 29.60
MIAIR 20.95 8.46 2.14
MXAIR 21.84 6.78 0.32
MIWAT 22.92 0.15 10.28
MXWAT 24.14 3.81 0.01
ADWTV 10.12 23.54 57.66

Dimension
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Table 2. Summary of generalized additive modeling using GAM regression and the Spearman rank correlation 
coefficient (rs) statistics for average daily: ADFV = flow volume, 2) MXWAT = maximum water temperature, and 
3) ADWTV = extreme variability in water temperature. All temperatures in degrees Celsius (°C) and volume of 
flow in m3/second.

GAM regression model Spearman rank correlation
Variable comparison F-statistic Ref.df. p-value R2.Adj. Dev.Exp. n rs p

Relationships between environmental variables versus year
MXAIR ~ year 12.5 2.0 < 0.001 0.00 0.4% 5,752 0.038 < 0.004
MXWAT ~ year 164.1 2.0 < 0.001 0.04 3.6% 8,055 0.190 < 0.001
ADWTVI ~ year 766.3 2.0 < 0.001 0.13 13.4% 8,042 0.354 < 0.001
ADFV ~ year 19.1 1.8 < 0.001 0.00 0.8% 8,401 -0.061 < 0.001

Relationships among environmental variables
MXWAT ~ MXAIR 2,265.0 2.0 < 0.001 0.47 47.1% 5,664 0.672 < 0.001
ADWTVI ~ MXAIR 690.4 2.0 < 0.001 0.14 20.2% 5,664 0.369 < 0.001
ADFV ~ MXAIR 231.4 2.0 < 0.001 0.07 16.5% 5,721 0.211 < 0.001
ADWTVI ~ MXWAT 2,052.0 2.0 < 0.001 0.45 34.7% 8,042 0.626 < 0.001
MXWAT ~ ADFV 111.5 2.0 < 0.001 0.03 2.6% 8,012 -0.143 < 0.001
ADWTVI ~ ADFV 770.2 2.0 < 0.001 0.08 12.3% 7,999 -0.273 < 0.001
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Figure 3. Generalized additive model 
(GAM) regression plots of annual variation 
in averaged daily: flow volume (ADFV), 
maximum water temperature (MXWAT), 
and extreme variability in water temperature 
(ADWTV). Shaded smooth areas indicate 
95% point-wise standard error for each 
curve surrounding each fitted GAM function 
(centered black line).
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Figure 4. Generalized additive model (GAM) regression plots of annual variation in averaged daily: flow volume 
(ADFV), maximum water temperature (MXWAT), and extreme variability in water temperature (ADWTV) versus 
maximum air temperature (MXAIR; A – C), and between environmental variables (D – F) for each flow-type. 
Shaded smooth areas indicate 95% point-wise standard error for each curve surrounding each fitted GAM function 
(centered black line).
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fluctuations in flow volume such that when flow increases water temperature decreases as 
expected. Importantly, Kruskal-Wallis Chi-square (ꭓ2) rank sum tests revealed significant 
overall differences for each flow-type hydrograph for each measure of water temperature 
and flow volume. Follow-on post-hoc pairwise comparisons also showed significant dif-
ferences between flow-types for all environmental attributes (Table 3). To recap, not only 
were there significant annual trends in the raw data for the complete historical time series 
model for each environmental variable as illustrated by GAM regression, there also were 
significant overall and post-hoc pairwise annual differences between flow-types for each 
environmental attribute.

Table 3. Comparison of historical time series data based on raw data collected using the Kruskal-Wallis rank 
sum test (ꭓ2) for environmental variables by flow-type followed by planned post-hoc Dunn test statistics (Z) of 
all pairwise comparisons. Variables were average daily: ADFV = flow volume, 2) MXWAT = maximum water 
temperature, and 3) ADWTV = extreme variability in water temperature. All temperatures in degrees Celsius (°C) 
and volume of flow in m3/second; p-values were < 0.05 = *, < 0.01 = **, < 0.001 = ***.

ADFV (ꭓ2 = 176.2, df = 2, p < 0.001***)
Group(i) Group(j) Z p.adj
PreROD (n = 2,619) Pulse 9.7 < 0.001***
PreROD ROD (n = 2,885) 12.8 < 0.001***
Pulse (n = 2,897) ROD 3.2 < 0.001***

MXWAT (ꭓ2 = 330.0, df = 2, p < 0.001***)
Group(i) Group(j) Z p.adj
PreROD (n = 2,396) Pulse 16.9 < 0.001***
PreROD ROD (n = 2,908) 3.5 < 0.001***
Pulse (n = 2,751) ROD 14.1 < 0.001***

ADWTVI (ꭓ2 = 594.9, df = 2, p < 0.001***)
Group(i) Group(j) Z p.adj
PreROD (n = 2,383) Pulse 21.9 < 0.001***
PreROD ROD (n = 2,908) 2.7 < 0.006**
Pulse (2,751) ROD 20.1 < 0.001***

Seasonal-Trend-Loess (STL) decomposition

A comparison between the historical raw data (Figure 3) and subdivided monthly 
time series models using STL decomposition of each environmental variable by flow-type 
showed loss of detail, resolution, and therefore information content when partitioning on a 
monthly basis relative to Julian week or daily time series schedules (Figure 5 – Figure 7). 
Nonetheless, there were obvious qualitative visual differences in the subdivided monthly 
data among hydrographs. For example, seasonal components produced for each environ-
mental variable revealed distinct visual differences among flow-types for each time series 
model (Figure 5A – 5C). Each flow-type time series showed a regular pattern of variation 
in each environmental variable with monthly periodicity. This periodicity indicated that 
each month had the same repeating pattern that changed every 30 days reflecting long-term 
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Figure 5. Results of the time series decomposition analyses showing plots of the Seasonal-Trend-Loess (STL) 
seasonal monthly component for each environmental variable; including average daily: flow volume (ADFV), 
maximum water temperature (MXWAT), and extreme variability in water temperature (ADWTV) by flow-type 
(PreROD, ROD, Pulse).
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Figure 6. Results of the time series decomposition analyses showing plots of the Seasonal-Trend-Loess (STL) trend 
monthly component for each environmental variable; including average daily: flow volume (ADFV), maximum 
water temperature (MXWAT), and extreme variability in water temperature (ADWTV) by flow-type (PreROD, 
ROD, Pulse).
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Figure 7. Results of the time series decomposition analyses showing plots of the Seasonal-Trend-Loess (STL) 
remainder monthly component for each environmental variable; including average daily: flow volume (ADFV), 
maximum water temperature (MXWAT), and extreme variability in water temperature (ADWTV) by flow-type 
(PreROD, ROD, Pulse).



237Fall 2020 237TIME SERIES MODELING AND FORECASTING OF A REGULATED RIVER

annual patterns in each environmental attribute. Annual variation in the seasonal monthly 
component of flow volume was much more subdued and proportionally diverse in baseline 
PreROD flow-types compared to managed hydrographs. Managed flow-types exhibited a 
pattern of dramatic single spikes for flow volume, particularly in ROD flows followed by 
Pulse flows; a pattern not characteristic of baseline PreROD hydrographs (Figure 5A). In 
contrast, annual variation in the seasonal components of both water temperature attributes 
showed monthly spikes with: 1) greater variation, 2) more proportional diversity in second-
ary spikes, and 3) spikes with greater magnitude in managed flow-types relative to baseline 
PreROD hydrographs (Figure 5B and 5C).

Analysis of STL decomposition for the trend component also discovered conspicuous 
differences among flow-types for each environmental attribute. Not only did the magnitude 
in volume of flow and water temperature fluctuate dramatically but there were increased 
annual trends in both water temperature attributes in each managed flow-type hydrograph 
not observed in modeling of baseline flows (Figure 6; Table 4). For example, the trend 
component of flow volume exhibited a much more diversified annual pattern in baseline 
PreROD flow-types compared to managed hydrographs (Figure 6A). In contrast, annual 
trend components for both water temperature variables were more subdued in baseline 
flows relative to managed flow-types, with dramatic upward trends in maximum water 
temperature for ROD flows (2005 – 2011) and both water temperature attributes for Pulse 
flows (2012 – 2016; Figure 6B and 6C).

Lastly, STL decomposition of the remainder term for baseline flows showed that all 
environmental variables consisted of erratic monthly sequences with large positive and 
negative spikes. Such patterns are likely a reflection of stochastic annual flow and thermal 
regimes typical of seasonal climatic patterns unique to the region, which were not evident 

Table 4. Results of GAM regression analyses of the Trend component produced by the Seasonal-Trend-Loess 
(STL) decomposition method for each environmental variable by flow-type; including average daily: flow volume 
(ADFV), maximum water temperature (MXWAT), and extreme variability in water temperature (ADWTV).

Variable F-statistic Ref.df. p-value R2.Adj. Dev.Exp. n
ADFV 0.141 23.3% 240
PreROD 13.1 2.0 < 0.000***
ROD 11.9 2.0 < 0.000***
Pulse 24.2 1.0 < 0.000***
MXWAT
PreROD 1.8 1.0 0.180 0.644 62.8% 240
ROD 0.8 1.6 0.360
Pulse 137.6 2.0 < 0.000***
ADWTV
PreROD 4.2 2.0 < 0.016* 0.758 71.8% 240
ROD 41.0 1.5 < 0.000***
Pulse 132.1 1.9 < 0.000***    
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in highly regulated, and systematically and abruptly implemented managed hydrographs 
(Figure 7A – 7C). And, although STL seasonal and trend decomposition patterns were sig-
nificantly correlated in most all hydrographs for each environmental variable, there were 
significance differences between hydrographs for each trend component for all variables, 
but not in seasonal or random components for any environmental attribute (Table 5). These 
results clearly indicate that the STL decomposition factor that defined the most conspicuous 
difference among flow-types for each environmental variable was the trend component.

Inter-quartile range (IQR) calculations

Line and boxplot comparisons of each flow-type illustrate the significant and consis-
tent quantitative differences along the 12-month continuum for each environmental variable 
described by STL decomposition models and the IQR analyses for each time series segment 
(Figure 8A – I). The seasonal term for the STL decomposition models showed that IQR 
values for flow volume in PreROD flows exceeded all other flow-types by a considerable 
margin. ROD flows showed the largest IQR value for maximum water temperature and 
Pulse flows had a considerably larger IQR value for extreme variability in water temperature 
(Table 6). For the trend component, STL decomposition models showed that Pulse flows 
had considerably larger IQR values for both water temperature variables than any other 
flow-type hydrograph. For the remainder term, STL decomposition models showed that 
baseline PreROD flows had the largest IQR value for flow volume consistent with a more 
random “natural” expression of the historical post-dam flow pattern prior to implementa-
tion of managed hydrographs in 2003. In contrast, the large IQR value for the remainder 
term in extreme variability in water temperature for Pulse flows was likely a biproduct of 
altered seasonal fluctuations observed in the trend data caused by manipulated hydrographs 
post-2003 (Figure 6B and 6C). 

Time series

Visual assessment of time series plots for PreROD and ROD flow-types showed that 
an additive model was most appropriate for each environmental attribute because variation 
remained relatively constant over time and did not depend on the level of the time series 
(Figure 3). However, results indicate that for Pulse flow hydrographs an additive model 
was not appropriate for describing variation in each water temperature variable because 
of the size and increasing annual trend in values amplified with the level of the time series 
(Figure 3B; Hyndman and Athanasopoulos 2018). In other words, seasonality in the thermal 
regime of Pulse flows at the beginning was small but became larger in later years. This 
pattern suggested that a multiplicative decomposition model for both water temperature 
variables was appropriate for the Pulse flow time series. Thus, in developing a follow-on 
time series model using SARIMA modeling for forecasting, both water temperature vari-
ables required a natural log transformation of the original data for Pulse flows (Hyndman 
and Athanasopoulos 2018). 

Autocorrelation and partial autocorrelation functions examined for each environmental 
variable by flow-type revealed that each time series model was significantly non-stationary 
as there were numerous autocorrelations lying outside the 95% confidence limits for all en-
vironmental attributes (Figure 9). For each environmental variable, the range in Ljung-Box 
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Table 5. Kruskal-Wallis rank sum test (ꭓ2) and Spearman ranked correlation coefficients (rs) showing overall 
significance of each decomposition component (season, trend, random), followed by planned post-hoc Dunn test 
statistics (Z) for all pairwise comparisons between flow-types (PreROD [n = 94], ROD [n = 84] , Pulse [n = 60]). 
Variables were average daily: ADFV = flow volume, 2) MXWAT = maximum water temperature, and 3) ADWTV 
= extreme variability in water temperature. All temperatures in degrees Celsius (°C) and volume of flow in m3/
second. Spearman rank correlation coefficients (rs) are below the diagonal and probabilities above the diagonal; 
p-values were < 0.05 = *, < 0.01 = **, < 0.001 = ***.

Decomposition components for season patterns

Flow-type ADFV MXWAT ADWTV

ꭓ2 = 7.3, df = 2, p = 0.030 ꭓ2 = 0.0, df = 2, p = 1.000 ꭓ2 = 0.4, df = 2, p = 0.830

Group(i) Group(j) Z p-adj Group(j) Z p-adj Group(j) Z p-adj

PreROD ROD 1.5 0.103 ROD 0.2 0.631 ROD 0.1 0.448

PreROD Pulse 1.4 0.080 Pulse 0.2 1.000 Pulse 0.5 0.448

ROD Pulse 2.7 0.010* Pulse 0.1 0.477 Pulse 0.6 0.855

Spearman rank correlations (rs) for seasonal components

Flow-type PreROD ROD Pulse PreROD ROD Pulse PreROD ROD Pulse

PreROD ------- 0.001*** 0.001*** ------- 0.001***    0.001*** ------- 0.001*** 0.001***

ROD 0.571 ------- 0.001*** 0.950 -------    0.001*** 0.750 ------- 0.001***

Pulse 0.540 0.780 ------- 0.910 0.970 ------- 0.550 0.810 -------

Decomposition components for trend patterns

Flow-type ADFV MXWAT ADWTV

ꭓ2 = 10.6, df = 2, p < 0.001*** ꭓ2 = 46.7, df = 2, p < 0.001*** ꭓ2 = 48.1, df = 2, p < 0.001***

Group(i) Group(j) Z p-adj Group(j) Z p-adj Group(j) Z p-adj

PreROD ROD 1.8 0.0587 ROD 3.2 < 0.001*** ROD 1.5 0.062

PreROD Pulse 3.2 0.002** Pulse 6.8 < 0.001*** Pulse 6.8 < 0.001***

ROD Pulse 1.6 0.056 Pulse 3.8 < 0.001*** Pulse 5.2 < 0.001***
Spearman rank correlations (rs) for trend components

Flow-type PreROD ROD Pulse PreROD ROD Pulse PreROD ROD Pulse

PreROD ------- 0.176 0.136 ------- 0.002** 0.001*** ------- 0.001*** 0.495

ROD 0.150 ------- 0.001*** -0.330 ------- 0.001*** 0.380 ------- 0.801

Pulse 0.190 0.460 ------- -0.610 0.580 ------- -0.090 0.030 -------
Decomposition components for remainder patterns

Flow-type ADFV MXWAT ADWTV

ꭓ2 = 2.8, df = 2, p = 0.250 ꭓ2 = 0.1, df = 2, p =0.950 ꭓ2 = 0.1, df = 2, p = 0.950

Group(i) Group(j) Z p-adj Group(j) Z p-adj Group(j) Z p-adj

PreROD ROD 1.5 0.199 ROD 0.3 1.000 ROD 0.1 0.609

PreROD Pulse 1.3 0.144 Pulse 0.0 0.486 Pulse 0.2 0.465

ROD Pulse 0.1 0.477 Pulse 0.2 0.615 Pulse 0.3 1.000
Spearman rank correlations (rs) for remainder components

Flow-type PreROD ROD Pulse PreROD ROD Pulse PreROD ROD Pulse

PreROD ------- 0.613 0.349 ------- 0.745 0.389 ------- 0.856 0.397

ROD 0.060 ------- 0.484 0.040 ------- 0.273 -0.020 ------- 0.419

Pulse -0.120 0.090 ------- -0.110 0.140 ------- -0.110 0.110 -------
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Figure 8. Line and box-plot comparisons of flow-types for each environmental variable based on the Seasonal-
Trend-Loess (STL) decomposition analysis, which reflects the level of statistical significance presented in Table 4.
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Table 6. Seasonal-Trend-Loess (STL) decomposition component summary of the computed interquartile range (IQR) 
of x-values, which measure how spread-out points were in the original time series data set for each environmental 
variable time series by flow-type. Variables were average daily: 1) ADFV = flow volume, 2) MXWAT = maximum 
water temperature, and 3) ADWTV = extreme variability in water temperature. All temperatures in degrees Celsius 
(°C) and volume of flow in m3/second. The higher the IQR the more spread-out the data points; the smaller the 
IQR the more aggregated the data points are around the mean. Right-hand bars on each STL plot were based on 
IQRs and allow a relative comparison of the magnitude of variation in each component.

Flow-type
Seasonal Trend Remainder (random)

1st 
Quartile

3rd 
Quartile IQR

1st 
Quartile

3rd 
Quartile IQR

1st 
Quartile

3rd 
Quartile IQR

ADFV
PreROD -15.00 12.80 27.80 22.10 30.60 8.50 -15.80 7.10 22.90
ROD -16.40 -2.60 13.70 20.50 27.40 6.90 -4.80 4.40 9.10
Pulse -12.70 0.30 13.00 18.50 26.90 8.50 -4.00 4.60 8.60

MAXWAT
PreROD -0.79 0.78 1.56 9.03 9.56 0.53 -0.32 0.30 0.62
ROD -0.86 1.03 1.89 9.11 9.79 0.69 -0.30 0.25 0.55
Pulse -0.70 1.02 1.72 9.42 10.58 1.16 -0.33 0.24 0.57

ADWTV
PreROD -0.26 0.22 0.48 0.82 0.95 0.13 -0.13 0.12 0.25
ROD -0.28 0.27 0.55 0.85 0.98 0.12 -0.08 0.08 0.16
Pulse -0.52 0.41 0.94 0.90 1.75 0.85 -0.20 0.20 0.40

statistics were: 1) flow volume: ꭓ2 = 8.0 in PreROD flows (df = 1, p = 0.005) to ꭓ2 = 10 in 
Pulse flows (df = 1, p = 0.003); 2) maximum water temperature: ꭓ2 = 50 in PreROD flows 
(df = 1, p < 0.001) to ꭓ2 = 30 in Pulse flows (df = 1, p < 0.001); and 3) extreme variability 
in water temperature: ꭓ2 = 40 in PreROD flows (df = 1, p < 0.001) to ꭓ2 = 20 in Pulse flows 
(df = 1, p < 0.001). All variables by flow-type showed a slow decay at multiple lags of 12 
suggesting coherent variance in the relationship indicative of monthly seasonal and cyclic 
variation in each environmental variable for all flow-types. These results support the earlier 
assertion of seasonality in each time series model necessitating the need for seasonal dif-
ferencing with a period of 12. Therefore, rather than manually fitting by ARIMA modeling, 
best fit models for each flow-type time series were generated using the auto.arima function 
summarized in Table 7. Following this procedure Ljung-Box statistics indicated that none 
of the autocorrelations in the time series were different from zero and visual assessments 
showed that each time series model was stationary (Figure 10). All model parameters were 
then verified with a graphic illustration described above for each environmental variable 
grouped by flow-type (Table 7). These results provided no evidence to reject the hypothesis 
that the distribution of residuals in any of the time series models were not normal. Instead, 
for each flow-type the distribution of residuals for each environmental model was Gaussian 
(white noise), which: 1) statistically justified each proposed model, 2) demonstrated how an 
analysis of time series data may be done accurately, and 3) allowed continued processing 
of data with the ultimate goal of forecasting estimates of each environmental variable by 
flow-type using SARIMA.
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Figure 9. Auto- and partial- autocorrelation functions (ACF, PACF) plots (correlograms) of raw data for averaged 
daily: flow volume (ADFV), maximum water temperature (MXWAT), and extreme variability in water temperature 
(ADWTV) by flow-type (PreROD, ROD, Pulse). Plot shows serial correlations that may change over time in each 
time series dataset where an error at one point in time travels to a subsequent point in time.
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A

B C

D

MXWAT: PreROD flow-type

Figure 10. Graphic illustration of the adequacy of parameters used to estimate SARIMA models for each 
environmental variable using the PreROD flow-type as an example: A) differenced time series data; B) auto 
correlation function (ACF) plot of standardized residuals showing that all autocorrelations were close to zero 
as no lag exceeded confidence limits of p > 0.05; C) normal Q-Q-plot of standardized residuals along with 95% 
confidence limits surrounding the diagonal of data points; and D) p-values for the Ljung-Box statistic.
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Forecasting using SARIMA

Analysis of the mean absolute percentage error showed that MAPE values for selected 
flow-type models were: 1) PreROD flow (flow volume = 81.7%, maximum water temperature 
= 4.9%, extreme variability in water temperature = 45.2%); 2) ROD flow (flow volume = 
37.8%, maximum water temperature = 5.0%; extreme variability in water temperature = 
15.0); and 3) Pulse flow (flow volume = 23.9%, maximum water temperature = 3.7%, extreme 
variability in water temperature = 20.0%). These empirical results signaled that the predic-
tion derived from PreROD flow-types was poor for flow volume and extreme variability in 
water temperature relative to error estimates produced for ROD and Pulse flow hydrographs. 
This pattern was likely a reflection of the more stochastic nature of a “natural” post-dam 
and relatively unmanaged flow regime except under extreme flood conditions, which would 
be expected in a rare “Emergency of Dams” release, which is what happened in 1974. In 
contrast, error estimates for ROD and Pulse flows were considerably “better” as a reflection 
of the systematic and regular managed releases linked with anthropogenic hydrographs. 
The same explanation can also be applied to extreme variability in water temperature for 
managed flow-types, all of which appear reasonably good as models for each managed time 
series dataset. Conversely, prediction models based on maximum water temperature were all 
highly accurate (< 5.0% error). And the empirical results indicated that each model was able 
to accurately represent the baseline as well as each managed hydrograph time series model.

The predictive power of each SARIMA model was illustrated graphically by forecast-
ing 36 months-ahead of the time series for each environmental variable by flow-type (Figure 
11; Table 7). Overlapping blue lines for each “fitted” model (black lines) were substantial 
as predictions fit well to each time series dataset. Levels of prediction were calculated at 
80% and 95% prediction confidence intervals as indicated by the light and dark shaded gray 
areas surrounding the red prediction line. Forecast values (red lines) were close to real values 
(black lines) and within the confidence intervals (grey shading). Thus, all monthly points 
plot very close to the actual prediction. In most models as time progresses beyond the first 
predicted point, uncertainty tends to increase, hence the prediction boundaries increase in 
amplitude. Importantly, follow-on forecasting of environmental variables for each flow-type 
over the next 3 years (36 months) showed: 1) that there were significantly different predic-
tions among segmented flow-type time series; 2) the time span for each model was relatively 
long, and 3) results provided reasonably accurate predictions. Generally, forecasting further 
into the future will become less reliable particularly in a highly managed river system. Ad-
ditionally, the fitted values for each forecast model were relatively close to the observed 
values. This means that the SARIMA models can be used to forecast future values because 
their forecasting accuracy is acceptable. Also, some lower predicted confidence limits, but 
not points, were negative for volume of flow, which is impossible for the flow of a river. 
In practice, confidences limit below zero are generally truncated when presenting them.

Consistent with graphic illustrations, SARIMA model predictions of future values over 
the next 36 months exhibited significant differences between flow-types in both the overall 
distribution of each environmental variable and in planned post-hoc paired comparisons of 
population mean ranks as reflected in mean values for each variable (Table 8). Noticeably 
for PreROD and ROD flow-types mean values of flow volume were greater than in Pulse 
flows, and projections of future ROD flows exceeded both other flow-types. Mean values 
of maximum water temperature for both PreROD and ROD flow-types were similar but the 
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A

B

C
Figure 11. Plots of future values based on SARIMA model forecasting of environmental variable values predicted 
for the next 36 months. Black colored lines are the original observed time series values and blue lines are the 
“fitted” values overlaid on top for comparison against the series itself. Means are given for each variable and their 
position on the graph indicated by a dashed black horizontal line. Dark gray shading represents 80% confidence 
intervals, light gray shading 95% confidence interval, and red lines and open circles represent predictions for 
future months. Temperature is found along the y-axis for each variable; A = PreROD flows, B = ROD flows, and 
C = Pulse flows for each environmental variable (ADFV = flow volume, MXWAT = maximum water temperature, 
ADWTV = extreme variability in water temperature).
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Table 8. Kruskal-Wallis rank sum test (ꭓ2) and Spearman ranked correlation coefficients (rs) showing differences 
in forecasting 36-months into the future using predictions of SARIMA modeling illustrated in Figure 11, followed 
by post-hoc Dunn tests (Z) of all planed pairwise comparisons between flow-types (PreROD, ROD, Pulse). 
Variables were average daily: ADFV = flow volume, 2) MXWAT = maximum water temperature, and 3) ADWTV 
= extreme variability in water temperature. All temperatures in degrees Celsius (°C) and volume of flow in m3/
second. Spearman rank correlation statistics are found below the diagonal and probabilities above the diagonal; n 
= 36 for all flow-type comparisons; p-values were < 0.05 = *, < 0.01 = **, < 0.001 = ***. 

Flow-type ADFV MXWAT ADWTV

ꭓ2 = 9.7, df = 2, p = 0.010 ꭓ2 = 64.7, df = 2, p < 0.001*** ꭓ2 = 42.4, df = 2, p < 0.001***

Group(i) Group(j) Z p-adj Group(j)   Z p-adj Group(j) Z p-adj

PreROD ROD 3.0 0.004** ROD 7.1 < 0.001*** ROD 3.2 0.001***

PreROD Pulse 2.1 0.026* Pulse 6.8 < 0.001*** Pulse 6.5 < 0.001***

ROD Pulse 0.9 0.178 Pulse 0.3 0.380 Pulse 3.4 0.001**

Spearman rank correlation (rs)

Flow-type PreROD ROD Pulse PreROD ROD Pulse PreROD ROD Pulse

PreROD ------- 0.001*** 0.001*** ------- 0.001*** 0.001*** ------- 0.001*** 0.001***

ROD 0.660 ------- 0.001*** 0.940 ------- 0.001*** 0.750 ------- 0.001***

Pulse 0.600 0.900 ------- 0.770 0.820 ------- 0.750 0.850 -------

range of variation in projected ROD flows (2006 – 2014) was greater than in future projec-
tions of PreROD flows (1995 – 2002). Width of confidence intervals in both flow-types 
tended to remain narrow throughout the predicted sequence of months, suggesting that the 
accuracy of the forecast for each PreROD and ROD flow-types effectively held over time 
through the prediction range.

In Pulse flows, however, not only was the mean and range of variation in maximum 
water temperature considerably greater than in other hydrographs, but an increasing trend 
was also evident based on dependent compounding effects of previous observations and 
errors. In extreme variability in water temperature the same overall pattern of flow-mediated 
variance was projected in both ROD and Pulse flow-types, which predicted trends of higher 
and increased extreme variation in water temperatures over the next 36 months, a pattern 
not seen in PreROD flow-type projections. Finally, width of confidence intervals in both 
managed flow types for each water temperature variable increased in future predictions 
as a direct function of greater variability associated with annually managed hydrographs. 
Generally, but not always, as the period between the date of a flow forecast and the actual 
forecast period narrows there also will be a corresponding reduction in model error.

DISCUSSION

In this study we focused on time series analysis and forecasting seasonal river flow 
volume and water temperature using SARIMA modeling. Results show that use of subcom-
ponents of the historical post-dam time series specific to managed flow-type hydrographs 
keyed to in-river geomorphologic restoration actions significantly misrepresented the: 1) 
time series characteristics, 2) seasonal-trend decomposition patterns, and 3) forecast accu-
racy compared to the baseline pre-restoration time series model. These results effectively 
nullify use of managed hydrographs in predicting future forecasts for flow-fish planning and 
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management purposes. Particularly revealing were significant differences in environmental 
time series data between flow-types in: 1) seasonal patterns among subcomponents of the 
historical hydrograph as illustrated in GAM regressions; 2) nonparametric methods; 3) STL 
decomposition analyses of season, trend, and random effects using both IQR values and 
nonparametric methods; and 4) future values of the thermal regime predicted by SARIMA 
forecasting 

In virtually every comparison, managed flow-type hydrographs showed significant 
increases in maximum water temperature and extreme variability in water temperature. 
These patterns were particularly characteristic of Pulse flows relative to baseline PreROD 
flows. Grabowski et al. (2014) suggested that while small shifts in flow releases may be a 
function of climate change, major shifts usually reflect human interventions, with dam hy-
dropeaking4 being a distinct indicator of artificiality in the flow regime that impact monthly 
and daily flows (Greimel 2018). Such flow-effects equate roughly to the implementation of 
ROD flow hydrographs individually and in combination with companion Pulse flows into 
the upper mainstem of the Trinity River for geomorphic restoration purposes since 2003, 
due to longer in duration and volumetric proportion relative to individual pulsed flow aug-
mentation releases.

Based on our results, we suggest that use of time series modeling and forecasting of 
seasonal trends in environmental data associated with large riverine systems without ref-
erence to continuous intrinsic periods within the historical time series model, where flow 
is anthropogenically manipulated, will be misleading when managers attempt to evaluate 
the overall characteristics and subsequent future forecasting that derive from such models. 
Results of our analysis have the potential to provide resource agencies with additional 
insight into strategic flow-mediated thermal planning that mimics a “natural” or regime 
standard for water temperature necessary to: 1) facilitate efficient use of water resources 
notwithstanding changing climate; and 2) prioritize management strategies and scheduling 
of flows for in-river restoration activity to increase efficiency in management of fisheries, 
aquatic habitat conservation, and water resources (Stanford et al. 1996; Poff et al. 1997; 
Fausch et al. 2002; Poole et al. 2004)

Time series and forecasting considerations

The efficacy of these results suggests that time series analysis using SARIMA meth-
odology is appropriate for modeling hydrological and water temperature data in the upper 
Trinity River in which the data exhibit autocorrelation with time in combination with 
semi-parametric regression (GAM). Application of linear models generally do not allow 
identification of nonlinear characteristics of hydrological data. This distinction is impor-
tant when working with changes in the variance of environmental variables that fluctuate 
overtime, as their application may not be suited for modeling stochastic nonstationary data 
(Machiwal and Jha 2006; Nazir et al. 2018). River flow and other hydrologically-related 
variables frequently exhibit nonlinear behavior. In modeling, resource managers should 
consider both deterministic (algebraic) and stochastic parts of this parameter when making 
4 Hydropeaking is a unique form of flow regulation, in that it introduces frequent, short duration, 
artificial flow events to the river. The impacts of hydropeaking on channel size and morphology are 
highly dependent on the size and frequency of hydropeaks in relation to size of geomorphological 
effective flows prior to regulation. http://wiki.reformrivers.eu/index.php/Hydropeaking

http://wiki.reformrivers.eu/index.php/Hydropeaking
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appropriate decisions for the purpose of fish-flow and water resource management. These 
conditions also apply to regionally specific assessments of climate change. Conversely, use 
of nonlinear models, such as GAM in combination with the Box-Jenkins method, allow 
options for nonlinear modeling and consideration of autocorrelations among variables as 
well as lag-lead relationships between variables. Adding variable effects of reach-specific air 
temperature, water temperature, precipitation, or other auxiliary environmental co-variates 
using a multivariate approach to forecasting also will assist in attaining a solid presump-
tion of a cause-effect relationship in historical time series analysis for flow and restoration 
managers to act upon.

Understanding variability and the limitations associated with management of river-
ine systems is essential for addressing the ever-increasing anthropogenic needs for water 
and the inescapable reality of climate change, which has advanced a theoretical construct 
known as “functional flows” (Zimmerman et al. 2020; CEFF 2020). This paradigm seeks 
to mimic natural flow regimes by incorporating regionally-specific ecological, geomorphic, 
and biogeochemical processes into a flow prescription that protects and supports relevant 
foundational physical and ecological processes, which it is hoped will sustain resident 
biological communities in some generally unknown, but viable capacity (Poff et al. 1997; 
CEFF 2020; Zimmerman et al. 2020). Increasingly, the extent of flow-mediated variance in 
water temperature also is a key component of regulations derived from valuations of water 
quality (Coutant 1999). Research focused on the implications of altered thermal variability 
can provide improved identification of conservation priorities, management of dam-derived 
hydropower, and sustainable fisheries management and restoration outcomes. Use of metrics 
that measure the extremes in thermal variance or evaluate the range of mean values rather 
than only the mean is also an important consideration in understanding variability in flow 
dynamics. This need is particularly relevant when evaluating the potential effects of short-
duration pulsed flows, which have not received the attention needed regarding flow-fish 
effects (Sullivan and Hileman 2020).

Inevitability this approach will require accurate understanding of the underlying dy-
namics of riverine flow that may not be possible by use of statistical forecasting methods 
using conventional linear regression. River restoration and conservation planning would 
benefit from consideration of the natural temperature regime of riverine systems in their full 
complexity, rather than create predictions based on total temperature units delivered in a short 
period of time or at lethal thresholds (Poole et al. 2004; Steel et al. 2012; Romberger and 
Gwozdz 2018). Future climates will invariably differ from current climates with respect to 
thermal variance. Yet there is remarkably little research exploring these effects on individual 
or population-level fitness of in-river spawning anadromous salmonids or the complexity 
and dynamics of aquatic community food webs subjected to anthropogenic management of 
riverine flows in the Trinity River and elsewhere (Hughes and Murdoc 2017).

Forecasting outflow volume and temperature variability are essential tools for planning 
and management of dam operations as these activities directly influence the availability of 
water and the variability in the resulting thermal regimes created. Efforts to return natural 
variability to regional riverscapes through formation of a diverse mosaic of habitats within 
riverine and riverscape communities is a vital precursor to being realistic in our expectations 
of the range of possible restoration outcomes (Peipoch et al. 2015; Yarnell et al. 2015). Such 
efforts are irrespective of whether the goal is to: 1) re-naturalize flows and thermal regimes 
as a basis for understanding variability, uncertainty, and unpredictability in concert with 
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restoration initiatives; or 2) implementation of a functional flow design to address realistic 
anthropogenic needs for water resources, while simultaneously attempting to maintain the 
regional biotic and physical integrity of the riverscape. Thus, it is imperative to understand 
the dynamics of riverine flows over both historical and recent time scales as a prerequisite 
to restoration and effectiveness monitoring of our fisheries resources.

Resource management considerations

Accurate forecasting of streamflow is a fundamental issue of interest to water re-
sources engineers, hydrologists, and fisheries scientists. Identification of accurate and 
reliable analyses to model future river flow is an important precondition for successful 
planning and management of water resources upon which fisheries resources depend. From 
a practical perspective, use of reliable models to forecast river flow could be instrumental 
for regional fisheries management and water resources planning keyed to the upper Trinity 
River watersheds. Detection of trends and stationarity is a major focus of past hydrological 
and climatological time series analyses with a wide application of semi-parametric regres-
sion methods such as GAM. Yet forecasting highly accurate estimates of the volume and 
variability in the thermal regime of riverine flow remains problematic given the nonlinearity 
and uncertainty hidden in the historical data, which requires an approach with high forecast-
ing precision and efficiency for effective application.

Future needs of water resource and fisheries management in the Trinity River would 
benefit significantly by placing environmentally-driven time series models into perspective 
relative anthropogenically-driven flow management hydrographs as part of flow-fish and 
river restoration management. Research designs that incorporate multivariate and dynamic 
conditional correlation methods would provide additional insights into the relationships 
between more “naturally” managed flow and thermal regimes relative to those forced upon 
the system by a highly manipulative anthropogenically-induced flow strategy (Pool 2004; 
Caissie 2006). In the Trinity River managed flows have not been mirrored historical re-
gional hydrographic patterns linked to upland watersheds of the Trinity River and Klamath 
Basin. Such considerations need to be fully vetted with the overarching management goals 
of flow-mediated hydrographs designed to mimic an “unimpeded”, “natural”, e-flow, or 
“functional” flow post-dam management strategy (Yarnell et al. 2015), while simultaneously 
accommodating riverine: 1) thermal criteria, 2) in-river restoration, 3) conservation of biotic 
communities, and 4) water conservation policies unique to the particular river system in 
northern California and elsewhere.

Palmer and Ruhi (2019) correctly state that effective river restoration requires ad-
vancing our mechanistic understanding of how flow regimes affect biota and ecosystem 
processes. Any attempt to derive insight into sustainable flow-fish management strategies for 
hatchery- and natural-area spawning salmonids based on time series modeling of post-2003 
ROD or Pulse hydrology will be less reliable than those based on long-term data collected 
simultaneously from: 1) unobstructed headwaters of the Trinity River above the Trinity 
Reservoir in combination with 2) the primary free flowing tributaries of the mainstem Trin-
ity River below Lewiston Dam. A prerequisite to management of riverine systems should 
be the incorporation of these kinds of “baseline” data into long-term restoration strategies 
coincidental with natural and historical events that shape the regions riverine hydrology to 
which life histories of resident salmonids have adapted. Distinguishing these elements in flow 
management could help managers restore ecologically important facets of the flow regime.
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We recommend that in projecting future flow conditions, restoration managers should 
consider use of environmental information that optimizes the operational time span of con-
tinuous uninterrupted and sequential collection of data to be as long-term as possible. Reli-
able predictions may be obtained over relatively shorter time spans by continuous operation, 
monitoring, and data gathering at gauging stations within the focal reach (Papalaskaris and 
Kampas 2017). Sequentially, the most accurate and complete data records come from river 
gauging stations, followed by supplemental information obtained from remotely sensed data 
and documentary sources (Grabowski et al. 2014). Numerous indicators may be extracted 
from river flow records (e.g., average, extreme flows, and their timing) and used to estimate 
hydrological alteration. Gauging station records minimally spanning several decades (e.g. 
> 30 years) are typically necessary for this type of analysis. This approach will allow the 
entire historical time series can be analyzed to investigate temporal trends, in magnitude, 
frequency, timing, duration, and rate of change in the flow-dynamic (Grabowski et al. 2014). 

Further, flows can be subdivided into time periods related to significant changes in the 
historical flow regime (e.g., baseline pre-dam construction, post-dam construction, in-river 
restoration flows, or fish-flows). Subdivided flows can also be applied to an “unimpeded”, 
“natural”, e-flow, “functional” flow post-dam management strategy, or other prescriptions 
attributable to natural flow abstractions. For the upper Trinity River, the post-dam “natural” 
riverine environment evaluated by the STL modeling using annual flow and thermal variance 
attributes was illustrated in the seasonal, trend, and remainder patterns of monthly variation 
produced by baseline PreROD flow-type models. However, we caution that use of subdi-
vided historical raw data can result in loss of detail, resolution, and therefore information 
content when partitioning monthly data compared to use of Julian weeks or a daily schedule. 
Clearly, results of out study would have been benefited had the data been detailed enough 
to accommodate smaller subdivisions. 

Once established, data can be feed into a standardized modeling procedure as additional 
raw data becomes available to develop a more accurate and reliable long-term model for 
use in monitoring seasonal variation in flow-fish thermal regimes (Grabowski et al. 2014). 
These datasets will facilitate annual: 1) monitoring, modeling, and gaming of hydrological 
conditions; 2) monitoring of riverine thermal regimes for use in flow-fish management, as-
sessment of in-river fitness metrics (fertility, productivity) for both hatchery- and natural-area 
spawning salmonids in cooperation and coordination with hatchery operations; 3) facilitate 
scheduling of specific river restoration actions; and 4) permit annual monitoring and assess-
ment of climate change effects within the mainstem of Trinity River in support of the above 
management recommendations.

In conclusion, time series modeling and forecasting with flow and thermal data devel-
oped during the period of managed hydrographs (post-2003) will greatly detract from the 
ability to accurately predict future thermal regimes in the upper Trinity River. Sustainable 
flow-fish management for hatchery- and natural-area spawning salmonids should consider 
watershed and unobstructed tributary characteristics in assessing the impacts to resident 
salmonids, which automatically incorporate the annual effects of climate change on riv-
erine systems within the greater Trinity Basin. Time series modeling using such criteria 
would facilitate development of a flow management strategy for river restoration that fit 
the historical characteristics of the regional watershed while simultaneously accommodat-
ing management of fisheries and other aquatic resources experiencing changing climatic 
conditions now and into the future. 
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