#### 21. WILDLIFE RESOURCES COMMITTEE

Today's Item Information oximes Action oximes

Receive summary from May 11, 2021 committee meeting. Discuss referred topics and consider revisions to topics and timing.

# **Summary of Previous/Future Actions**

Previous meeting
 May 11, 2021; WRC, Webinar/Teleconference

Today discuss topics and timing
 Jun 16-17, 2021; Webinar/Teleconference

Next meeting
 Sep 16, 2021; WRC, Sacramento

# **Background**

WRC works under FGC direction to set and accomplish its work plan.

# **Previous Committee Meeting Report**

WRC met on May 11 via webinar and teleconference and covered two main topics:

- discussed proposals for five periodic rulemakings (mammal hunting, waterfowl hunting, Central Valley sport fishing, Klamath river basin sport fishing, and inland sport fishing), and
- received an update on the bullfrog and non-native turtle stakeholder engagement process.

A written summary of the meeting is provided as Exhibit 1.

During the meeting, DFW suggested that commissioners be furnished with DFW's 2014 report, Implications of Importing American Bullfrog (Lithobates catesbeianus = Rana catesbeiana) into California, which is provided as Exhibit 3. Additionally, the WRC chair suggested that certain legislative items be considered for support by FGC; those items will be considered during this meeting under Agenda Item 14 – Executive Director's Report.

#### WRC Recommendations

As all agenda items were discussion topics, there are no WRC recommendations.

#### Committee Work Plan

Topics that have been referred from FGC to WRC are displayed within a work plan for scheduling and tracking (Exhibit 2). No additional topics or modifications are proposed.

#### Significant Public Comments (N/A)

#### Recommendation (N/A)

#### **Exhibits**

Summary of May 11, 2021 WRC meeting

Author. Ari Cornman 1

# STAFF SUMMARY FOR JUNE 16-17, 2021

- 2. WRC work plan, dated Apr 27, 2021
- 3. <u>DFW report, Implications of Importing American Bullfrog (Lithobates catesbeianus = Rana catesbeiana) into California, 2014</u>

# Motion (N/A)

Author. Ari Cornman 2

Commissioners
Peter S. Silva, President
Jamul
Samantha Murray, Vice President
Del Mar
Jacque Hostler-Carmesin, Member
McKinleyville
Eric Sklar, Member
Saint Helena
Erika Zavaleta, Member
Santa Cruz

STATE OF CALIFORNIA Gavin Newsom, Governor

# **Fish and Game Commission**



Wildlife Heritage and Conservation Since 1870 Melissa Miller-Henson Executive Director P.O. Box 944209 Sacramento, CA 94244-2090 (916) 653-4899 fgc@fgc.ca.gov

www.fgc.ca.gov

#### WILDLIFE RESOURCES COMMITTEE

Committee Chair: Commissioner Sklar

# May 11, 2021 Meeting Summary

Following is a summary of the California Fish and Game Commission (Commission) Wildlife Resources Committee (WRC) meeting as prepared by staff. An audio recording of the meeting is available upon request.

#### Call to order

The meeting was called to order at 11:40 a.m. by Chair Eric Sklar, who gave welcoming remarks.

Wildlife Advisor Ari Cornman outlined instructions for participating in Committee discussions and gave introductory remarks. The following commissioners, Commission staff, and California Department of Fish and Wildlife (Department) staff, participated:

#### Committee Chair

Eric Sklar Present

Commission Members

Erika Zavaleta Present

Commission Staff

Melissa Miller-Henson Executive Director
Ari Cornman Wildlife Advisor

Cynthia McKeith Staff Services Analyst

Department Staff

David Bess Deputy Director and Chief, Law Enforcement Division

Stafford Lehr Deputy Director, Wildlife and Fisheries Division

Jay Rowan Acting Branch Chief, Fisheries Branch

Scott Gardner Branch Chief, Wildlife Branch

Chris Stoots Captain, Law Enforcement Division

Jonathan Nelson Environmental Program Manager, Fisheries Branch Environmental Program Manager, Wildlife Branch

Melanie Weaver Waterfowl Program Biologist

# 1. Approve agenda and order of items

The Committee approved the agenda and order of items.

# 2. Public comment for items not on the agenda

Samantha Arthur, of Audubon California, raised concerns that implementation of the Sustainable Groundwater Management Act (SGMA), will reduce groundwater supplies to managed wetlands in the Central Valley, thereby reducing critical bird habitat within the Pacific flyway. She asked the Department and Commission to take a more active role in oversight of SGMA implementation and its impact to wildlife. Chair Sklar suggested that the Commission schedule a discussion of the impact of water supplies on wildlife for a future Commission meeting, and consider writing a letter to the Department and legislature. Commissioner Zavaleta pointed out that the current drought conditions are "the new normal" and asked whether the discussion could be part of a larger discussion on water issues. Chair Sklar echoed her sentiments about the future and urged re-adjustment of expectations for water in the future. Stafford Lehr offered a presentation at a future meeting on the Department's activities with respect to water.

#### 3. Department updates

Stafford Lehr spoke about wildfire resiliency and drought preparation. The Department will begin to address fire hazards on Department lands, particularly in the wildland-urban interface, and will also be looking at post-wildfire restoration opportunities. Increasing resiliency to wildfire through addressing invasive species issues will also be a priority. With respect to drought preparation, the Department is setting up response teams, moving fish or bringing them into captivity, taking steps to reduce impacts to in-stream environments, exploring options for wetlands, and ensuring water gets to where it is needed. The Department may have conversations about voluntary fishing "pauses" in certain critically stressed fisheries.

#### (A) Wildlife Branch

Scott Gardner added that the coming budget may have resources to implement wildfire resiliency and drought preparation. The four key areas of wildfire resiliency are prevention, post-fire assessment, remediation, and restoration. Scott mentioned that certain Wildlife Branch programs will be renamed in the near future. Additionally, with the 2021-22 budget, the Department Lands Program will receive much-needed support. Chair Sklar encouraged growth and support of Department lands, particularly in light of the new 30-by-30 initiative.

#### (B) Fisheries Branch

Jay Rowen mentioned that the Department is increasing its communications with agencies important for fisheries, such as the U.S. Fish and Wildlife Service and the State Water Resources Control Board, in preparation for the coming drought. The Department is already seeing some low flows and smaller waterways cut off from the ocean, stranding fish. Hatcheries have been upgraded to take on extra fish as needed. Warm water is expected to affect hatchery intakes and environmental conditions, but the Department will continue to try to facilitate angling opportunities as conditions permit. Trucking of fish has commenced in the Central Valley and likely will be necessary in the Klamath River Basin as well. Stafford added that disease loading is an important confounding factor in drought conditions, and Jay added that the Department is preparing for such disease cycles.

#### Discussion

A commenter stated that fish need to imprint on the rivers in order to return. Trucking fish may be necessary, but also makes it difficult for the fish to "do what they normally do." Commissioner Zavaleta commented that resiliency is the paradigm for guiding response to the short-term crisis and the longer term "new normal," and that resilience means the system can "bounce back" from perturbation; there are always bounds on that, and she encouraged focusing on avoiding crossing below critical thresholds. She asked if there were opportunities for the Commission to help the Department respond nimbly to the various challenges that had been discussed. Stafford stated that while regulatory tools were developed in the last drought, there may be circumstances that were not contemplated, and the Department needs to be prepared to respond quickly to move into new regulatory spaces if conditions require it. The Commission has demonstrated nimbleness with recent emergency regulations, and placing trust in the Director to respond to certain situations with delegated authority, such as COVID and drought closures. The Department and Commission still need to consider how to respond nimbly to wildlife and hunting concerns. Chair Sklar stated that emergency regulations should be a last resort and suggested the Commission consider both regulatory and legislative changes to allow rapid adaptation.

# (C) Law Enforcement Division

Chris Stoots gave updates on the new cadets in training and the 2021 hiring cycle. The 2020 nominee for the Wildlife Officer of the Year is Warden Jonathan Garcia. Chris provided an update on cases related to illegal take of western Joshua tree, which could result in severe fines and penalties. He also conveyed a story about a seizure of a great horned owl from captivity, which was eventually re-released into the wild. Stafford added that the Law Enforcement Division is receiving resources for drought response, particularly related to illegal cannabis grows and water misappropriation. He also noted that in a drought, human-wildlife conflict increases, and law enforcement personnel are often the front-line responders in such cases.

# 4. Periodic Rulemakings

#### (A) Mammal Hunting

Scott Gardner noted that the department has started trepaneme-associated hoof disease (TAHD) surveillance by receiving hooves from hunters, and has commenced removal of animals along the north coast that were visibly diseased; the meat was donated. The Department will continue these efforts, in coordination with stakeholders, including the Environmental Protection Information Center and other organizations that have expressed concerns in the past.

#### Discussion

A commenter referred to his written comments and a petition, requesting the allowance of "big-bore BB rifles" to hunt wild pig. He also suggested ammunition flexibility and a tag waiver. Two representatives of the California Bowmen Hunters/State Archery Association noted that archery can be a tool to control TAHD, and requested an increase in the number of SHARE tags in that area to help deal with depredation issues. A representative of the California Rifle and Pistol Association supported the previous commenters with respect to SHARE tags and urged support of AB 645, a bill to increase penalties for certain wildlife

crimes. A representative of the California Waterfowl Association (CWA) also supported expansion of the SHARE program. Commissioner Zavaleta inquired about why feral pigs are classified as big game. Chair Sklar explained that unlike native species where the goal is to preserve populations, the goal of non-native feral pig hunting is to reduce populations. Stafford Lehr clarified that wild pigs are designated as big game in the California Fish and Game Code. He recounted previous, unsuccessful legislative efforts to reclassify and manage the species. Ari Cornman reminded the Committee that there is an active petition on airguns that was referred to the Department for review and recommendation.

Brad Burkholder stated that the Department is considering some larger changes to mammal hunting regulations, but they may not be ripe for this rulemaking cycle and would likely be proposed at a future time.

Commissioner Zavaleta asked about AB 645, and Captain Stoots gave some background on the bill. Chair Sklar and Commissioner Zavaleta agreed that a discussion of support for AB 645 should be added to the June Commission meeting agenda.

# (B) Waterfowl Hunting

Melanie Weaver gave a presentation on the flyway process, breeding population surveys, and mallard management. She noted that waterfowl is managed with the best available scientific data, and that mallard populations are driven more by hunt days (i.e., season length) than by bag limits.

#### Discussion

A representative of CWA requested (1) that two days from the end of the early Canada goose season in the Balance of the State Zone be transferred to the opening weekend of the late goose season, and (2) to start both the late goose season and the veterans' hunt in the Balance of the State Zone on the second weekend in February. CWA would like to convene a meeting with the Department to examine factors affecting the potential mallard decline. A representative of the Tulare Basin Wetlands Association, the Suisun Resource Conservation District and the Cal-Ore Wetlands & Waterfowl Council expressed support for the two CWA proposals, and urged the Commission to consider support for AB 614, regarding the Nesting Bird Habitat Incentive Program.

Commissioner Zavaleta asked if there were any other species to which the Commission should pay attention, and Melanie explained that the Department uses mallards as a surrogate for most other waterfowl. Scaup and pintail have been in decline, but harvest strategies are developed at the nationwide level, rather than the individual flyways. With the exception of a couple of populations, most goose populations are doing well. Stafford added that the Department is working with the U.S. Fish and Wildlife Service on pintail issues and eelgrass habitat (which is important to black brant).

# (C) Central Valley Sport Fishing

Jay Rowen recapped the decisions made at the Commission meeting earlier that day, and anticipated that drought would have major impacts to Central Valley angling going forward.

#### Discussion

There was no public discussion.

# (D) Klamath River Basin Sport Fishing

Jay recapped the decisions made at the Commission meeting earlier that day, and recalled the potential for trucking fish may be necessary.

#### Discussion

There was no public discussion.

# (E) Inland Sport Fishing

Chair Sklar recounted the development and recent adoption of the sportfish simplification rulemaking. Chair Sklar and Stafford Lehr explained that, while there may be some changes necessary in the wake of its adoption, the lack of widespread outcry speaks to the overwhelming support from the public. Jay mentioned that the Department has gathered data on striped bass and met with the NorCal Guide and Sportsman's Association (NCGASA) to discuss slot limits. Additionally, talks on inland boat limits are continuing.

A representative from NCGASA expressed a desire to keep inland boat limits moving forward. He said that guides fill out logbooks, but it remains unclear if and how they are used. He urged the use of app-based solutions to facilitate data collection, particularly for striped bass. A representative of the California Bowmen Hunters/State Archery Association recommended exempting carp from the restrictions on wanton waste and allowing bowfishing of gizzard shad. Jay Rowen indicated that guide logbooks are not particularly useful for creel surveys but are used by law enforcement.

Commissioner Zavaleta echoed the sentiment that carp and gizzard shad are harmful, invasive species, and that encouraging their harvest and disposal by anglers should be supported. A commenter stated that one angler was cited for fileting a bass downstream of the launch because there was no dock to tie onto, and recommended the construction of fish cleaning stations or appropriate garbage receptacles at boating facilities.

#### 5. Bullfrogs and non-native turtles

Ari provided an update on the progress of the bullfrog and non-native turtle stakeholder engagement process. The three teams are at the final stages of solution development, the theory of change (i.e., "results chains"). Staff is working on a strategy to facilitate cross-dialogue among the three groups. Finally, staff is consulting on how to initiate legislative outreach, to inform legislative members of the progress and receive input.

#### Discussion

Stafford suggested the Commissioners look at the Department's 2014 report on bullfrogs. He explicated the difficulties of the issue, which mingles biological, social, and cultural matters, and offered his hope that some meaningful progress can be made.

#### 6. Future agenda items

Staff agreed to work on adding the requested legislative items to the June FGC meeting agenda as part of the regular legislative update. Topics for the next WRC meeting will include: discussion and potential recommendations for mammal hunting, waterfowl hunting, Central Valley sport fishing, Klamath river basin sport fishing, and inland sport fishing, as well as another update on the bullfrog stakeholder process.

# Adjourn

WRC adjourned at 1:06 p.m.

# Wildlife Resources Committee (WRC) 2021-2 Work Plan Scheduled Topics and Timeline for Items Referred to WRC by the California Fish and Game Commission

Updated April 27, 2021

|                                                                        |                        | Jan 2021<br>Webinar/<br>Teleconference | May 2021<br>Webinar/<br>Teleconference | Sep 2021<br>Sacramento |
|------------------------------------------------------------------------|------------------------|----------------------------------------|----------------------------------------|------------------------|
| Periodic Regulations                                                   |                        |                                        |                                        |                        |
| Upland (Resident) Game Birds                                           | Annual                 |                                        | Х                                      | X/R                    |
| Mammal Hunting                                                         | Annual                 |                                        | Х                                      | X/R                    |
| Waterfowl Hunting                                                      | Annual                 |                                        | Х                                      | X/R                    |
| Central Valley Sport Fishing                                           | Annual                 |                                        | Х                                      | X/R                    |
| Klamath River Basin Sport Fishing                                      | Annual                 |                                        | Х                                      | X/R                    |
| Inland Sport Fishing                                                   | Annual                 | Х                                      | Х                                      | X/R                    |
| Regulations & Legislative Mandates                                     |                        |                                        |                                        |                        |
| Falconry                                                               | Referral for<br>Review |                                        |                                        |                        |
| Restricted Species                                                     | Regulatory             | Х                                      |                                        |                        |
| Special Projects                                                       |                        |                                        |                                        |                        |
| American Bullfrog and Non-native Turtle Stakeholder Engagement Project | Referral for<br>Review | Х                                      | Х                                      | Х                      |
| Human-Wildlife Conflict                                                | Information            | Х                                      |                                        |                        |

KEY: X Discussion scheduled X/R Recommendation developed and moved to FGC

# Implications of Importing American Bullfrog (*Lithobates catesbeianus* = Rana catesbeiana) into California



Prepared by Fisheries Branch California Department of Fish and Wildlife October 27, 2014



# **Acknowledgements**

We would like to thank the CDFW Science Institute and the team of people who were instrumental in shaping and editing this report. Specifically, Susan Ellis, Dr. Garry Kelley, Dr. Kevin Kwak and Laura Patterson provided invaluable comments and guidance on early drafts. Dr. Robert Titus, Dr. Kevin Kwak and David Lentz leant expert advice while editing the late drafts. Finally, Dr. Robert Titus and Sarah Stinson provided crucial research assistance.

#### **Executive Summary**

The American bullfrog (*Lithobates catesbeianus*) is native to the eastern United States; however, the species has been spread beyond its native range and introduced throughout North America, Europe, South America, Asia, the Caribbean Islands, and Hawaii (Lever 2003). It was introduced to California in the 1910s for aquaculture production (Storer 1925) and has since become established throughout the state, where it is known to negatively impact several native California species (Fisher & Shaffer 1996; Kupferberg 1997; Kiesecker and Blaustein 1998; Kraus 2009; Fuller et al. 2011).

Approximately 2 million live bullfrogs are imported annually into California (California Department of Fish and Wildlife [Department], unpubl. data) and often sold in live food markets. Escapees from the trade of live bullfrogs have likely contributed to the spread of bullfrogs within California and may have contributed to the introduction of at least one strain of a devastating amphibian disease, *Batrachochytrium dendrobatidis* (Bd), to California (Schloegel et al. 2010; Schloegel et al. 2012).

Notably, the live amphibian trade may be the most significant introduction pathway for novel and emerging amphibian diseases, such as new strains of Bd and/or ranaviruses, the two infectious diseases with the largest contribution to global amphibian declines (Latney and Klaphake 2013). Bullfrogs have tested positive for the presence of Bd and ranaviruses at aquaculture facilities in countries of origin and in endpoint retail markets in the United States, including California (Mazzoni et al. 2003; Fisher and Garner 2007; Mazzoni et al. 2009; Schloegel et al. 2009).

In 2010 the Department amended its policies regarding the issuance of amphibian importation permits, requiring, amongst other things, that all animals sold be euthanized before leaving the retail premises. However, Department law enforcement officers have accumulated evidence of violations of this and other requirements of amphibian importation permittees. These violations suggest the current policy may not be effective without active enforcement.

Using concepts of invasive species biology, this paper argues that limiting or eliminating the issuance of amphibian importation permits is a reasonable alternative to the current policy. Reducing or eliminating live bullfrog importation will reduce the risk of introducing novel emerging amphibian diseases to California and reduce the risk of additional American bullfrog populations becoming established across the State, if not completely mitigate the risk. Broader policy which addresses additional imported species and introduction pathways will be more effective and should be considered.

# **Definition of Terms**

- Alien species: a species that is not native to a given ecosystem or landscape.
- **Emerging disease**: a disease that has appeared in a population for the first time or is rapidly increasing in incident or geographic range.
- Introduced species: a species that has entered an ecosystem or landscape to which it is not native.
- **Introduction pathway**: the mode or vector by which a nonnative species is introduced into a new ecosystem or landscape.
- **Invasion pathway**: the mode or vector by which an invasive species enters a new ecosystem or landscape.
- **Invasiveness**: the ability of an introduced species to establish itself, reproduce, and spread in an ecosystem or landscape to which it is not native.
- **Invasive species**: a nonnative or alien species that invades an ecosystem and causes or is likely to cause economic, environmental, or public health damages.
- **Naturalized population**: a viable population of an introduced species in an ecosystem or landscape to which it is not native.
- Nonnative species: a species that is not native to a given ecosystem or landscape.
- **Propagule pressure**: the number, frequency, and volume of introduction events of a species into a landscape or ecosystem to which it is not native.

# Implications of Importing American Bullfrog (*Lithobates catesbeianus* = *Rana catesbeiana*) into California

# The American Bullfrog as an Invasive Species

The American bullfrog is native to the eastern United States; however, the species has been spread beyond its native range and introduced throughout North America, Europe, South America, Asia, the Caribbean Islands, and Hawaii (Lever 2003). The Global Invasive Species Database (2009) has given special attention to the American bullfrog's success by including the species on their list, "One Hundred of the World's Worst Invasive Alien Species." Part of the bullfrog's invasion success is attributable to its adaptable and hardy biological character as well as the global demand for frog legs driving international trade (Lever 2003).

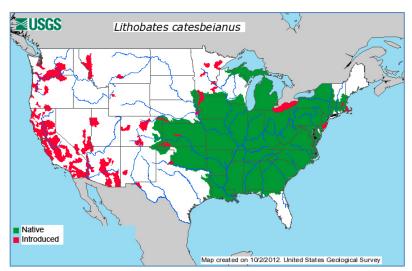



Figure 1. U.S. Geological Survey map of American bullfrog range in the United States. Native range is displayed in green while introduced range is shown in red (USGS, Accessed 7/18/2014).

Biology and Ecology

The American bullfrog is one of the largest frogs in the United States, reaching upwards of 8 inches in length. The frog is native to eastern North America. from Nova Scotia to central Florida and the Gulf of Mexico, westward to approximately the 100<sup>th</sup> meridian east of the Rocky Mountains (Figure 1) (Lever 2003; Stebbins 2003). It is highly aquatic and is commonly found in still water with thick aquatic vegetation but is known to occur in a variety of habitats with permanent water, including

rivers and canals. Altered, degraded, or artificial habitats seem to be particularly suitable, including mill ponds, cattle ponds, and reservoirs (Stebbins 2003).

American bullfrogs have a broad temperature tolerance, preferring 15 – 32 degrees Celsius (Govindarajulu et al. 2006). They are capable of burrowing and hibernation when necessary, and will emerge in April or May and begin to form breeding choruses when air temperatures exceed 20 degrees Celsius (Govindarajulu et al. 2006).

The American bullfrog breeds in permanent aquatic habitats by external fertilization. A single female can lay up to 20,000 eggs in a clutch, and older females can lay multiple clutches per year (Schwalbe and Rosen 1999). Tadpoles typically metamorphose within two years (Govindarajulu et al. 2006). After breeding, bullfrogs tend to disperse locally from the host habitat and occupy new locations. Dispersals up to 3.2 kilometers have been observed, and longer distance dispersals are suspected (Schwalbe and Rosen 1999; Stebbins 2003).



Figure 2. An American bullfrog tests its own gape limit as it attempts to eat a Koi carp from a private pond.

As a gape-limited predator, the American bullfrog will eat anything it can swallow (Figure 2). Their diet primarily consists of invertebrates and small vertebrates. The frog will sit quietly, wait in ambush, and then lunge after a prey item (Schwalbe and Rosen 1988). Tadpoles are primarily herbivorous, consuming a variety of algae, aquatic plants, and occasionally invertebrates and egg masses of fish and amphibians. They intake large amounts of food and can grow to over six inches in length,

especially in regions where bullfrog tadpoles require multiple seasons to metamorphose (Stebbins 2003).

American bullfrogs exhibit strong biological and behavioral defenses against predation. Adults and tadpoles produce a skin secretion that seems to be unpalatable to many predators, including many fish species (Walters 1975; Kruse and Francis 1977; Kats et al. 1988). Secondly, the ambush predation strategy of adult bullfrogs reduces the amount of unnecessary movement that might otherwise gain the attention of terrestrial or avian predators.

#### Global Spread

American bullfrogs have been introduced across the world largely due to the demand for frog legs (Lever 2003). In other cases, American bullfrogs have been deliberately introduced as a biological control for pest species; for use in jumping competitions; as pets; and through releases or unintended escapes of animals via the pet and aquarium trade (Lever 2003).

Due to the bullfrog's climatic tolerance, generalist diet, defense against predators, and large numbers of offspring, they have successfully established naturalized populations in Europe, Asia, Africa, the Middle East, North and South America, the Hawaiian Islands and the West Indies. All told, naturalized populations occur in 40 countries across four continents (Lever 2003). See Appendix 1 for a comprehensive list of documented American bullfrog introductions.

#### California Introductions and Spread

In the case of California, multiple bullfrog introductions to the San Joaquin Valley occurred between 1914 and 1920 (Storer 1922), probably by aquaculturists for food production (Storer 1925). Bullfrogs were deliberately moved from the Kings River into the San Joaquin River in 1929 and into Madera County in 1934 (Moyle 1973). Subsequently, bullfrogs spread into low elevation aquatic habitat throughout California (Storer 1925; Moyle 1973) and eventually became established in mid-elevation habitats in the Sierra Nevada foothills, Yosemite Valley, Shaver Lake, and Hume Lake (Moyle 1973). Currently, American Bullfrogs occur throughout California except in high mountain and desert regions (Figure 3).

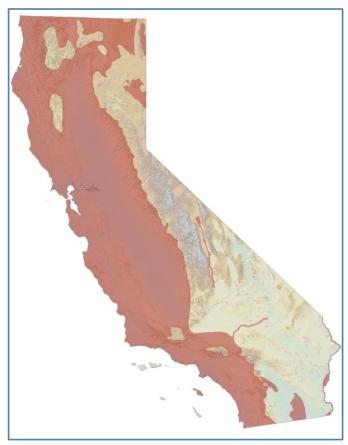



Figure 3. Current distribution of the American bullfrog in California displayed in red (California Wildlife Habitat Relationships Database, Accessed 6/15/2014).

Impacts of American Bullfrog Invasions in California

In California, the bullfrog has been implicated as a significant negative impact to many native aquatic species (Fisher and Shaffer 1996; Kupferberg 1997; Kiesecker and Blaustein 1998; Kraus 2009; Fuller et al. 2011) and identified as one of the principal threats to the continued survival of several specialstatus species. These include, but are not limited to, state and/or federally listed threatened or endangered species like the California red-legged frog (Rana draytonii) (Moyle 1973; U.S. Fish and Wildlife Service 2002), California tiger salamander (Ambystoma californiense) (U.S. Fish and Wildlife Service 2009), arroyo toad (Anaxyrus californicus) (U.S. Fish and Wildlife Service 1999a), giant garter snake (Thamnophis gigas) (U.S. Fish and Wildlife Service 1999b), and Species of Special Concern such as the foothill yellow-legged frog (Rana boylii) (Kupferberg 1997).

The predation habits of the American bullfrog are well documented. Any animal is potential prey that does not exceed the bullfrog's gape limit and wanders close enough for the frog to ensnare it with its muscular tongue (Schwalbe and Rosen 1988; Stebbins 2003). In addition to the species listed above, anecdotal reports claim the American bullfrog has been observed preying upon juvenile waterfowl, juvenile salmon (*Oncorhynchus* spp.), reptiles, Pacific chorus frogs (*Pseudacris regilla*), and small mammals.

California native amphibians are particularly susceptible to bullfrog predation since they often occupy the same habitat, thereby increasing interactions and encounters between species. For instance, the California red-legged frog prefers similar habitat to the bullfrog but does not grow as large. As a result, where bullfrogs and California red-legged frogs co-exist, all life stages of California red-legged frogs are preyed upon by bullfrogs (Moyle 1973; Fisher and Shaffer 1996). Although bullfrogs are not the only stressors contributing to the decline of the California red-legged frog, it is noteworthy that the red-legged frog has been excluded from nearly all habitats currently occupied by bullfrogs (Fisher and Shaffer 1996).

In addition to direct predation, bullfrogs negatively impact native species by out-competing for food and space (Kiesecker et al. 2001). The same reasons bullfrogs are effective predators of native frog species also applies to the prey shared by native frog species and bullfrogs. Native

amphibians suffer the largest impact compared to other taxa since bullfrogs are able to prey upon the same available diet. Furthermore, American bullfrogs grow larger than any native California amphibian and can consume high volumes of food relative to other native amphibians. Similarly, bullfrog tadpoles out-compete native amphibian larvae for the same available diet. Although tadpoles are not territorial, they still compete with native amphibian larvae for the best foraging and basking habitat (Kupferberg 1997).

Furthermore, American bullfrogs exhibit fierce territoriality as a display of sexual selection. They will attempt to, and often successfully, exclude other animals of their chosen territory. If another frog enters the territory of an American bullfrog, the bullfrog will attempt to shove, wrestle, and bite the trespasser until it leaves. This behavior results in the largest bullfrogs excluding other smaller frogs from the best foraging and breeding habitat (Howard 1978).

Lastly, California red-legged frogs have been observed attempting to breed with American bullfrogs. This may represent breeding interference by preventing frogs of the same species from successfully breeding where populations of native frogs co-exist or overlap with bullfrogs (Pearl et al. 2005; D'Amore et al. 2009).

# What is an Invasive Species?

To understand the threat to California wildlife posed by the importation of American bullfrogs, we must identify what an invasive species is and how they become established. This, in turn, will improve strategic measures to minimize risks associated with the importation of American bullfrogs to native California wildlife.

The National Invasive Species Council (2001) defines an invasive species as a nonnative or alien species that invades an ecosystem and causes, or is likely to cause, economic, environmental, or public health damages. This definition implies the species is able to 1) enter an ecosystem, 2) establish a population, and 3) spread. These three points also serve to outline the process by which species invade (Kraus 2009).

Many species have been, and continue to be, introduced to California, most of which do not establish a population or spread (Davis 2011). These species are not considered invasive because they have accomplished only the first of the three-step invasion process. While most species introductions in California fall into this category (Kraus 2009), they largely cause no harm and therefore go unnoticed and undocumented, making it difficult to provide examples or estimates.

Of those many species that are introduced to California, a small portion is able to gain a foothold and establish naturalized populations. However, most do not effectively spread from the point of introduction without human assistance (Davis 2011) and, therefore, are not invasive. California agricultural crops, domesticated dogs, ornamental flowers, livestock, and the wild parrots of San Francisco's Telegraph Hill, are just a few examples of introduced species that are not invasive in California. Incidentally, once a population is established it becomes much easier

to notice the introduction and as a result this category accounts for most documented introductions worldwide (Kraus 2009).

A minority of species that establish naturalized populations spread from the introduction site and invade neighboring habitats and ecosystems. The ability to spread, occupy new habitats, and establish additional naturalized populations is what separates an invasive species from other introduced species (Kraus 2009). The New Zealand mudsnail (*Potamopyrgus antipodarum*), ice plant (*Carpobrotus edulis*), sudden oak death (*Phytophthora ramorum*), Argentine ants (*Linepithema humile*), salt cedar (*Tamarix spp.*), and the American bullfrog are just a few examples of invasive species in California.

With a basic understanding of invasive species, it is worth looking at the invasion process in more detail, connect the theoretical underpinnings of the invasion process to the American bullfrog invasion of California, and identify the role that importation of live bullfrogs has played.

# 1) "...Enter an ecosystem..."

The first step in an invasion process requires a species to enter an ecosystem to which it is not native. This is also called *introduction*. The vector or pathway by which the species was introduced is dubbed the *introduction pathway* or *invasion pathway*. There are at least 10 invasion pathways that account for the majority of all documented herpetofauna invasions globally: <u>aquaculture</u>; <u>bait use</u>; biocontrol; <u>cargo</u>; <u>food</u>; "intentional"; <u>nursery trade</u>; <u>pet trade</u>; research; and <u>zoo trade</u> (Kraus 2009). What is most noteworthy is that the majority of pathways are associated with trade (underlined items).

In fact, trade related pathways are the most significant for the majority of all documented invasions worldwide (Levine and D'Antonio 2003; Kraus 2009) regardless of taxa. As international markets have increased in number and volume, so have the frequency and number of species invasions (Levine and D'Antonio 2003; Davis 2011; Perrings 2011). Every shipment of goods or human travel from one locale to another may serve as a carrier of a nonnative or alien species. A prime example is the well documented association of international trade and human travel to the spread of human disease such as HIV-AIDS, SARS, avian flu, swine flu, and West Nile Virus (Perrings 2011).

In the case of American bullfrogs, the production and trade of frog legs were largely responsible for introductions across the world (Lever 2003). The bullfrog's large, meaty hind legs, high reproductive capacity, and broad environmental tolerances make it an ideal candidate for aquaculture production (Moyle 1973). California is no exception; multiple introductions to the San Joaquin Valley occurred between 1914 and 1920 (Storer 1922), probably by aquaculturists for food production (Storer 1925).

#### 2) "...Establish a population..."

For a species to be invasive it must establish a naturalized population in an ecosystem to which it is not native. This means that the species must not only occupy and utilize a naïve

ecosystem but it must be able to successfully reproduce and sustain a population across generations. This step is pivotal in determining whether a species introduction goes unnoticed as harmless, as most do, or results in an invasion with economic and ecological consequences (Kraus 2009). For this reason, the topic is worth exploring in more detail.

The likelihood that a species introduction will result in an established naturalized population is a function of two variables (Davis 2011):

- a) the degree to which a species is able to reproduce and spread from its introduction site, which is described as the *invasiveness* of the species (Rejmánek 2011); and
- b) the number, frequency and volume of introduction events to a foreign ecosystem, the measure of which is called *propagule pressure* (Duncan 2011).

#### Invasiveness of the American Bullfrog

The American bullfrog exhibits many biological characteristics which contribute to its *invasiveness*. American bullfrogs have a broad temperature tolerance, preferring 15-32 degrees Celsius (Govindarajulu et al. 2006). If conditions are unsuitable, they are capable of burrowing and hibernation (Govindarajulu et al. 2006). These traits account for the bullfrog's broad environmental tolerance and have facilitated bullfrogs becoming established at northerly and southerly latitudes, as well as elevations up to 1,600 meters (5,250 feet).

The bullfrog's diet primarily consists of invertebrates and small vertebrates, but as a gape-limited predator it can eat anything it can swallow (Stebbins 2003). This generalist feeding behavior allows the frog to utilize prey items available in foreign habitats, rather than relying on specific food from its native environs. Moreover, bullfrogs have an effective predator defense; adults and tadpoles produce a skin secretion that seems to be unpalatable to many predators, including many fish species (Walters 1975; Kruse and Francis 1977; Kats et al. 1988).

The bullfrog, like many amphibians, is particularly fecund. A single female can lay up to 20,000 eggs in a clutch, and older females can lay multiple clutches per year (Schwalbe and Rosen 1999). After breeding, bullfrogs tend to disperse locally from the host habitat and occupy new locations. Dispersals up to 3.2 kilometers have been observed, and longer distance dispersals are suspected (Schwalbe and Rosen 1999; Stebbins 2003).

#### Propagule Pressure of the American Bullfrog Introduction to California

As mentioned earlier, bullfrogs were introduced to California by aquaculturists to meet the state's demand for frog legs (Storer 1925). Multiple introductions to the San Joaquin Valley occurred between 1914 and 1920 (Storer 1922), presumably into artificial habitats. We know that bullfrogs often disperse locally and occupy new habitats; therefore it is likely that bullfrogs "escaped" from aquaculture facilities into neighboring natural aquatic habitats. The propagule pressure was the number of escapees moving from an aquaculture facility into neighboring natural habitat. Of course, we cannot measure the propagule pressure of an introduction event that took place nearly 100 years ago, but the results are clear: bullfrogs established naturalized populations throughout the San Joaquin Valley (Figure 3).

The concept of propagule pressure can be similarly applied to the importation of live bullfrogs. The number of live imported bullfrogs that escape into California habitats represents the propagule pressure contributed by bullfrog importation. This pressure is expressed upon aquatic habitats neighboring ports of entry and/or aquatic habitats neighboring communities with high demand for live bullfrogs. Figure 3 illustrates the current distribution of bullfrogs in California and shows they are established in all areas adjacent to California's three largest ports: San Diego, Los Angeles, and San Francisco.

# 3) "...Spread..."

The ability to spread and occupy new habitats and establish additional naturalized populations is what separates an invasive species from other introduced species (Kraus 2009). The spread of an invasive species from its introduction site into a new habitat can be considered as a separate introduction event (Duncan 2011). These events follow the same general three-step invasion process and are driven by the same variables described above: the available invasion pathways, the propagule pressure expressed upon a new habitat, and the invasiveness of the species. However, spread events can have their own unique set of pathways and sources of progagule pressure, which may not be the same as the original introduction.

Kraus (2009) observed that over the course of years or decades, introduction pathways and sources of propagule pressure change. Specifically, trade related pathways account for the majority of introduction events and propagule pressure in the early stages of a herpetofauna species invasion. However, once an invasive herpetofauna species is well-established, trade related events diminish compared to aesthetically motivated releases, intentional releases for personal, ethical or religious purposes not otherwise related to pet or food trade. This pattern is evident with American bullfrogs in California; by the mid- to late-20<sup>th</sup> century, spread events from trade related pathways, such as aquaculture, decreased relative to spread events related to the pet trade, schools, and religious practices (Lever 2003).

Perhaps the most significant difference between the processes of invasive species introduction versus spread is the influence of existing naturalized populations. Not surprisingly, once an invasive species establishes a naturalized population, it is much easier for the species to spread into and occupy new habitat neighboring the population. This is due, in part, to the propagule pressure expressed by the naturalized population upon neighboring habitats. As the number of naturalized populations increases and/or a population(s) increases in size, so too does the propagule pressure upon neighboring unoccupied habitat (Duncan 2011).

In California, natural spread of bullfrogs from established populations is likely responsible for a significant portion of the observed distribution. Bullfrogs are particularly adept at spreading due to their fecundity and dispersal behavior. Only a small portion of the current distribution of bullfrogs (Figure 3) can be accounted for by the documented introduction and spread events (Appendix I). The majority of the spread of bullfrogs around California must

have been from undocumented events and/or the natural spread of bullfrogs from established naturalized populations.

# **Future Threats from the Importation of Live Bullfrogs**

Continued Spread of American Bullfrogs within California

With an understanding of species invasion dynamics and American bullfrog biology, it is clear that American bullfrogs will continue to spread within California, establish additional populations, and broaden their current distribution. This will likely occur via three primary pathways:

- 1) dispersal and spread of existing naturalized bullfrog populations;
- 2) new introduction events from ethically motivated releases of captive frogs; and
- 3) new introduction events associated with live bullfrog importation and trade.

Each pathway's influence on the future spread of bullfrogs is a function of the pathway's propagule pressure expressed onto California aquatic habitats. Unfortunately, there have been few attempts to quantify these variables, making it difficult to predict areas most at-risk of being invaded by bullfrogs. However, by applying the theories of invasive species dynamics, it is possible to describe the areas at-risk, even if we cannot pinpoint the locations.

By its definition, spread can only occur into habitat not currently occupied by a naturalized bullfrog population; therefore, unoccupied habitat is at greater risk of invasion than occupied habitat. Propagule pressure can vary by distance from the introduction pathway (biological invasion) such that aquatic habitats neighboring one or more introduction pathways experience higher propagule pressure than habitats farther away. Similarly, habitats near multiple introduction pathways and/or near large, high volume introduction pathways experience more propagule pressure compared to habitats near small, isolated introduction pathways (Duncan 2011).

Therefore, one can anticipate that propagule pressure expressed by dispersal of bullfrogs from established populations will be highest in unoccupied habitat near the largest existing populations or near the largest clusters of populations. Similarly, the propagule pressure of aesthetically motivated releases of bullfrogs will be higher in and around cities, towns, and schools, etc. Pressure will be highest near communities that actively use live bullfrogs, such as near schools that use bullfrogs in science instruction; around communities served by a pet shop that stocks bullfrogs; or near places of worship for practitioners that use bullfrogs in ceremony. Lastly, propagule pressure from live bullfrog importation will be highest near ports of entry, live animal markets, and communities that have high demand for live bullfrogs.

These points imply that the habitats at highest risk of bullfrog invasion are unoccupied aquatic habitats located near existing bullfrog populations, near large cities or other population centers, and near a port of entry and/or live animal market. Therefore, we cannot only expect that bullfrogs will continue to spread within California, but they are likely to spread most rapidly in unoccupied habitat neighboring coastal California cities.

#### Introduction of Wildlife Diseases

While the proposition that bullfrogs will continue to spread throughout California and establish new populations is cause for concern, perhaps an equal threat to California wildlife posed by the importation of live bullfrogs is the introduction and spread of emerging and novel wildlife diseases. The ongoing movement of animals and wildlife by humans into California serves as potential pathways for the unintentional movement of wildlife diseases. In the case of American bullfrogs in California, not only is the continuous importation of bullfrogs a potential pathway for the introduction of emerging and novel diseases, it has been recently implicated as a vector (Schloegel et al. 2010; Schloegel et al. 2012) and/or a carrier for an amphibian disease, Batrachochytrium dendrobatidis (Bd), that has already been introduced to California and decimated at least two California native amphibians.

Bd is an aquatic fungus that is the causative agent for the amphibian disease chytridiomycosis. Multiple strains of Bd have been isolated, including endemic Bd strains and emerging virulent



Figure 4. Current distribution of Bd in California. Bd-positive localities are colored red while Bd-negative localities are displayed in white and blue (<a href="https://www.bd-maps.nets">www.bd-maps.nets</a>, Accessed 8/5/2014).

strains (Schloegel et al. 2012). Bd has spread around the world and is implicated in the extinction of over 90 frog species globally (Skerratt et al. 2007). In California, it is thought to have been introduced in the 1960s by release of live imported nonnative amphibian species (Padgett-Flohr and Hopkins 2009) such as the American bullfrog (Schloegel et al. 2010; Schloegel et al. 2012) and the African clawed frog (Xenopus spp.) (Vredenburg et al. 2013). Bd has since spread across California and into the water bodies of the Sierra Nevada and the Transverse and Peninsular ranges of southern California (Figure 4), where it has contributed to the precipitous decline of two species of mountain yellow-legged frog endemic to California (Figure

5): the Sierra Nevada yellow-legged frog (*Rana sierrae*) and the southern mountain yellow-legged frog (*Rana muscosa*) (Rachowicz et al. 2006; Vredenburg et al. 2010; Briggs et al. 2010;



Figure 5. Southern mountain yellow-legged frog (R. muscosa) Bd mortality event at Sixty Lakes Basin, California (photo: Vance Vredenburg, 2008).

Bonham 2011). Over 90% of the remaining mountain yellow-legged frog populations have tested positive for the presence of Bd, and many of those populations remain at risk of extirpation (Bonham 2011).

American bullfrogs can carry Bd and spread zoospores but rarely develop chytridiomycosis themselves, thereby serving as an ideal disease reservoir (Hanselmann et al. 2004; Pearl et al. 2007; Latney and Klaphake 2013). Due to the bullfrog's dispersal behavior, they may serve as a vector for the spread of Bd from one water body to another. In California, naturalized bullfrog populations have tested positive for Bd

and, in at least one case, have developed chytridiomycosis (Clifford et al. 2012).

The case of Bd in California illustrates a key point that emerging diseases are invasive species. By documenting the spread of Bd, it is clear that Bd has met the definition of an invasive species and followed the pattern of invasion as described by Kraus (2009). Therefore, the invasion of Bd, or any wildlife disease newly introduced to California, is driven by the same variables described above: the available invasion pathways, the propagule pressure expressed upon a new habitat, and the invasiveness of the species. This has important implications for policy makers or managers attempting to reduce or mitigate risks associated with live bullfrog importation.

# Live Bullfrog Importation as an Introduction Pathway for Emerging Diseases

Ranavirus and Bd are considered the most significant infectious diseases contributing to global population declines in amphibians (Latney and Klaphake 2013). Although Bd has already been introduced to California, different virulent strains have been identified globally (Schloegel et al. 2012), which may still pose a threat to native amphibians if introduced to California. Currently, California imports approximately two million American bullfrogs annually, most of which originate from farms in Asia and South America (Schloegel et al. 2009). Notably, there is mounting evidence that the food trade is the most significant introduction pathway for Bd and ranaviruses into California.

Bd has been detected in South America at bullfrog farms (Mazzoni et al. 2003) and in other frog species traded for food (Fisher and Garner 2007). Ranaviruses were detected at bullfrog aquaculture facilities in China (Schloegel et al. 2009) and in Brazil (Mazzoni et al. 2009). Schloegel et al. (2009) found evidence of both pathogens from live food markets in Los Angeles, San Francisco, and New York and found 64% of 1,148 samples tested positive for Bd and 7.9% tested positive for ranavirus infection. The results for American bullfrogs, specifically, show 29.7% of American bullfrog samples tested positive for Bd. These findings suggest Bd

and ranaviruses are present at aquaculture facilities in countries of origin and in endpoint retail markets in the United States.

Ranaviruses are a group of emerging amphibian diseases that have been identified as the responsible agent for amphibian mass death events worldwide (Daszak et al. 1999), and result in up to 90% mortality rates within frog populations (Gray et al. 2009). Members of the group have been detected in amphibian populations in the United States and California. For example, Green et al. (2002) studied 44 amphibian mortality events across the United States and found ranavirus infections were the sole cause of 48% (21) of those mortality events. Members of the *Ranavirus* genus are common pathogens for other taxa including reptiles and fish (Daszak et al. 1999) and several ranaviruses infect multiple taxa and are known to host-switch (Duffus et al. 2008; Picco et al. 2010; Abrams et al. 2013; Brenes et al. 2014). Lastly, and perhaps most concerning, emerging and pathogenic ranaviruses continue to be discovered, such as *Rana catesbeiana* virus Z (Majji et al. 2006).

The ability of some ranaviruses to host-switch and the evidence of recent selective pressure resulting in host-switching adaptions (Abrams et al. 2013) demonstrate that ranaviruses threaten California wildlife in multiple ways. Ranaviruses can not only infect a single amphibian species but potentially jump to another host that it did not initially affect. In describing the potential threat, it is worth noting that the Centers for Disease Control and Prevention estimate that zoonotic diseases, those that jump from animals to humans, such as HIV, account for 75% of all emerging infectious threats to humans.

# **Policy Recommendations**

California imports approximately 2 million American bullfrogs annually (California Department of Fish and Wildlife [Department], unpubl. data), which pose threats to native wildlife by contributing to the establishment of additional bullfrog populations throughout the state and by providing an introduction pathway for novel and emerging amphibian diseases. The importation of live bullfrogs may have contributed to the introduction of at least one strain of Bd into California and may be the most significant introduction pathway for new strains of Bd and ranaviruses. Researchers have observed Bd and ranaviruses at aquaculture facilities in countries of origin and in endpoint retail markets in the United States. Incidentally, these two diseases are considered the most significant infectious diseases contributing to global amphibian declines. Lastly, naturalized American bullfrog populations are well established throughout the State and are known to negatively impact populations of native wildlife. This paper has argued, using the concept of propagule pressure, that the severity of these risks is positively correlated to the amount of live American bullfrogs imported into California.

In 2010, the Department amended its policies regarding the issuance of amphibian importation permits, requiring, amongst other things, that all animals sold be euthanized before leaving the retail premises. This provision was included to avoid the spread of diseases and invasive species. However, the Department has received anecdotal reports of violations and

Department law enforcement officers have accumulated evidence of violations of this and other requirements of amphibian importation permittees.

Restricting the issuance of importation permits may be more effective and require less enforcement effort. Reducing or eliminating importation of live bullfrogs will proportionally reduce propagule pressure of American bullfrogs and novel emerging amphibian pathogens into California, thereby reducing threats to California wildlife. It is reasonable to expect the larger and more comprehensive the ban or reduction, the greater the benefits realized to California wildlife.

It is important to note that importation of live American bullfrogs is just one of many pathways for the introduction of amphibian diseases into California. For example, ranaviruses have been detected in non-native tiger salamanders sold as fishing bait in California (Picco et al. 2007). Similarly, importation of live bullfrogs is one of several sources of propagule pressure contributing to the continued spread of bullfrogs across California. Reducing or eliminating live importation of bullfrogs will not remove these threats; it will, however, reduce the risk that these threats will result in catastrophic, negative impacts to California wildlife.

Unfortunately, it is not possible to estimate or quantify the reduction in risk that may be gained by reducing or banning importation. There are few efforts to measure the scale of introduction pathways and, therefore, it is difficult to compare, for instance, the degree to which live bullfrog importation contributes to the risk of introducing a novel disease to California against other amphibian disease introduction pathways. In any case, adopting a live animal importation policy that addresses not just bullfrogs, but multiple species and introduction pathways, would be a more comprehensive approach to minimizing threats posed to California wildlife.

In summary, there is growing evidence that the live amphibian trade is the primary invasion pathway for the introduction of novel amphibian diseases into California. Moreover, the live amphibian trade has been implicated in the introduction of Bd into California. Due to the serious threat emergent diseases pose to California's wildlife, the Department holds that importation of live American bullfrogs poses a significant threat to the wildlife of California. Current importation policy may not effectively limit or avoid the spread of diseases and invasive species, as evidenced by significant incidents of violations. As a result, the Department believes that a significant reduction or elimination of importation permits for live American bullfrogs would reduce the risks to California wildlife.

#### **Literature Cited**

- Abrams, J.A., D.C. Cannatella, D.M. Hillis, and S.L. Sawyer. 2013. Recent host-shifts in ranaviruses: signatures of positive selection in the viral genome. Journal of General Virology. 94:2082-2093.
- Bonham, C. 2011. Report to the Fish and Game Commission: A status review of the mountain yellow-legged frog (*Rana sierra* and *Rana muscosa*). State of California Department of Fish and Wildlife.
- Brenes, R., M.J. Gray, T.B. Waltzek, R.P. Wilkes, and D.L. Miller. 2014. Transmission of ranavirus between ectothermic vertebrate hosts. PLosONE 9(3):e92476.
- Briggs, C.J., R.A. Knapp, and V.T. Vredenburg. 2010. Enzootic and epizootic dynamics of the chytridfungal pathogen of amphibians. Proceedings of the National Academy of Sciences, USA 107:9695-9700.
- Clifford, D.L., A. Pessier, M. Jones, S. Krycia, J. Vorpagel, T. Welch, and J. Foley. 2012. Clinically significant *Batrachochytrium dendrobatidis* (Bd) infection associated with bullfrog mortalities in northern California. Abstracts of the Western Section Wildlife Society Annual Meeting, Sacramento, CA, Feb 1-3.
- D'Amore, A., E. Kirby, and V. Hemingway. 2009. Reproductive Interference by an invasive species: an evolutionary trap? Herpetological Conservation and Biology 4(3):325-330.
- Daszak, P., L. Berger, A.A. Cunningham, A.D. Hyatt, E.D. Green, and R. Speare. 1999. Emerging infectious diseases and amphibian population declines. Emerging Infectious Diseases 5(6).
- Davis, M.A. 2011. Invasion biology. Pages 364-368 *in* D. Simberloff and M. Rejmánek, editors. *Encyclopedia of Biological Invasions*. University of California Press, Berkeley, California.
- Duffus, A.L.J., B.D. Pauli, K. Wozney, C.R. Brunetti, and M. Berrill. 2008. Frog virus 3-like infections in aquatic amphibian communities. Journal of Wildlife Diseases. 44(1):109-120.
- Duncan. R.P. 2011. Propagule pressure. Pages 561-563 in D. Simberloff and M. Rejmánek, editors. *Encyclopedia of Biological Invasions*. University of California Press, Berkeley, California.
- Fisher, M.C. and T.W. Garner. 2007. The relationship between the emergence of *Batrachochytrium dendrobatidis*, the international trade in amphibians and introduced amphibian species. Fungal Biology Reviews 21(1):2-9.

- Fisher, R.N. and H.B. Shaffer. 1996. The decline of amphibians in California's Great Central Valley. Conservation Biology 10:1387–1397.
- Fuller, T. E., K.L. Pope, D.T. Ashton, and H.H. Welsh. 2011. Linking the distribution of an invasive amphibian (*Rana catesbeiana*) to habitat conditions in a managed river system in northern California. Restoration Ecology 19:204213.
- Global Invasive Species Database. 2009. http://www.issg.org/database
- Govindarajulu, P., W.S. Price, and B.R. Anholt. 2006. Introduced bullfrogs (*Rana catesbeiana*) in western Canada: has their ecology diverged?. Journal of Herptetology 40:249-260.
- Gray, M.J., D.L. Miller, and J.T. Hoverman. 2009. Ecology and pathology of amphibian ranaviruses. Diseases of Aquatic Organisms 87:243-266.
- Green, E.D., K.A. Converse, and A.K. Schrader. 2002. Epizootiology of sixty-four amphiibian moribidity and mortality events in the USA, 1996-2001. Annals of the New York Academy of Sciences 969:323-339.
- Hanselmann, R., A. Rodriguez, M. Lampo, L. Fajardo-Ramos, A.A. Aguirre, A.M. Kilpatrick, and P. Daszak. 2004. Presence of an emerging pathogen of amphibians in introduced bullfrogs *Rana catesbeiana* in Venezuela. Biological Conservation 120(1):115-119.
- Howard, R.D. 1978. The evolution of mating strategies in bullfrogs, *Rana catesbeiana*. Evolution 32:850–871.
- Kats, L.B., J.W. Petranka, and A. Sih. 1988. Antipredator defenses and persistence of amphibian larvae with fishes. Ecology 69:1865–1870.
- Kiesecker, J.M., A.R. Blaustein, and C.L. Miller. 2001. Potential mechanisms underlying the displacement of native red-legged frogs by introduced bullfrogs. Ecology 82 (7):1964-1970.
- Kiesecker, J.M. and A.R. Blaustein. 1998. Effects of introduced bull-frogs and smallmouth bass on microhabitat use, growth and survival of native red-legged frogs (*Rana aurora*). Conservation Biology 12:776–787.
- Kraus, F. 2009. *Alien Reptiles and Amphibians: A Scientific Compendium and Analysis*. Springer, New York.
- Kruse, K.C. and M.G. Francis. 1977. A predation deterrent in larvae of the bullfrog, *Rana catesbeiana*. Transactions of the American Fisheries Society 106:248–252.
- Kupferberg, S.J. 1997. Bullfrog (*Rana catesbeiana*) invasion of a California river: the role of larval competition. Ecology 78:1736–1751.

- Latney, L.V. and E. Klaphake. 2013. Selected emerging diseases of amphibia. Veterinary Clinics of North America: Exotic Animal Practice 16:283-301.
- Lever, C. 2003. *Naturalized Reptiles and Amphibians of the World*. Oxford: Oxford University Press.
- Levine, J.M. and C.M. D'Antonio. 2003. Forecasting biological invasions with increasing international trade. Conservation Biology 17:322-326.
- Majji, S., S. LaPatra, S.M. Long, R. Sample, L. Bryan, A. Sinning, and G.V. Chinchar. 2006. Rana catesbeiana virus Z (RCV-Z): a novel pathogenic ranavirus. Diseases of Aquatic Organisms 73:1-11.
- Mazzoni, R., A. Jose de Mesquita, and M.H.B. Catroxo. 2009. Mass mortality associated with a frog virus 3-like ranavirus infection in farmed tadpoles *Rana catesbeiana* from Brazil. Diseases of Aquatic Organisms 88(3):181-191.
- Mazzoni, R., A.A. Cunningham, P. Daszak, A. Apolo, E. Perdomo, and G. Speranza. 2003. Emerging pathogen in wild amphibians and frogs (*Rana catesbeiana*) farmed for international trade. Emerging Infectious Diseases 9(8):995–998.
- Moyle, P.B. 1973. Effects of introduced bullfrogs, *Rana catesbeiana*, on the native frogs of the San Joaquin Valley, California. Copeia. 1973(1):18-22.
- National Invasive Species Council. 2001. "National Invasive Species Management Plan: Meeting the Invasive Species Challenge". http://www.invasivespeciesinfo.gov/council/nmp.shtml.
- Padgett-Flohr, G.E. and R.L. Hopkins. 2009. *Batrachochytrium dendrobatidis*, a novel pathogen approaching endemism in central California. Diseases of Aquatic Organisms 83:1-9.
- Pearl, C.A., E.L. Bull, D.E. Green, J. Bowerman, M.J. Adams, A. Hyatt, and W.H. Wente. 2007. Occurrence of the amphibian pathogen *Batrachochytrium dendrobatidis* in the Pacific Northwest. Journal of Herpetology 41(1):145-149.
- Pearl, C.A., M.P. Hayes, R. Haycock, J.D. Engler, and J. Bowerman. 2005. Observations of interspecific amplexus between western North American ranid frogs and the introduced American bullfrog (*Rana catesbeiana*) and an hypothesis concerning breeding interference. American Midland Naturalist 154(1):126-134.
- Perrings, C. 2011. Invasion economics. Pages 375-378 in D. Simberloff and M. Rejmánek, editors. *Encyclopedia of Biological Invasions*. University of California Press, Berkeley, California.

- Picco, A.M., A.P. Karam, and J.P. Collins. 2010. Pathogen host switching in commercial trade with management recommendations. EcoHealth 7:252-256.
- Picco, A.M., J.L. Brunner, and J.P. Collins. 2007. Susceptibility of the endangered California tiger salamander, *Ambystoma californiense*, to ranavirus infection. Journal of Wildlife Diseases, 43(2):286-290
- Rachowicz, L.J., R.A. Knapp, J.A.T. Morgan, M.J. Stice, V.T. Vredenburg, et al. 2006. Emerging infectious disease as a proximate cause of amphibian mass mortality. Ecology 87: 1671–1683.
- Rejmánek, M. 2011. Invasiveness. Pages 379-385 *in* D. Simberloff and M. Rejmánek, editors. *Encyclopedia of Biological Invasions*. University of California Press, Berkeley, California.
- Schloegel, L.M., L.F. Toledo, J.E. Longcore, et al. 2012. Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Molecular Ecology 21(21):5162-77.
- Schloegel, L.M., C.M. Ferreira, T.Y. James, M. Hipolito, J.E. Longcore, A.D. Hyatt, M. Yabsley, A. Martins, R. Mazzoni, A.J. Davies, and P. Daszak. 2010. The North American bullfrog as a reservoir for the spread of *Batrachochytrium dendrobatidis* in Brazil. Animal Conservation 13(1):53-61.
- Schloegel, L.M., A.M. Picco, A.M. Kilpatrick, A.J. Davies, A.D. Hyatt, and P. Daszak. 2009. Magnitude of the US trade in amphibians and presence of *Batrachochytrium dendrobatidis* and ranavirus infection in imported North American bullfrogs (*Rana catesbeiana*). Biological Conservation 142(7):1420-1426.
- Schwalbe, C.R. and P.C. Rosen. 1999. Bullfrogs—the dinner guests we're sorry we invited. Sonorensis 19:8–10.
- Schwalbe, C.R. and P.C. Rosen. 1988. Preliminary report on effect of bullfrogs on wetland herpetofauna in southeastern Arizona. Pp. 166–173. *In* Szaro, R.C., Severson, K.E., Patton, D.R. (Eds.), Proceedings of the Symposium on Management of Amphibians, Reptiles and Small Mammals in North America. U.S.D.A. Forest Service, General Technical Report, RM-166, Fort Collins, Colorado.
- Skerratt, L.F., L. Berger, R. Speare, S. Cashins, K.R. McDonald, et al. 2007. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125-134.
- Stebbins, R.C. 2003. *A Field Guide to Western Reptiles and Amphibians*. 3rd Edition. Houghton Mifflin Company.

- Storer, T.L. 1922. The eastern bullfrog in California. Calif. Fish and Game 8:219-224.
- Storer, T.L. 1925. *A Synopsis of the Amphibia of California*. University of California Press, Berkeley, CA.
- U.S. Fish and Wildlife Service. 2009. California tiger salamander (*Ambystoma californiense*) Santa Barbara County Distinct Population Segment 5-Year Review: Summary and Evaluation. U.S. Fish and Wildlife Service, Ventura, California. 59 pp.
- U.S. Fish and Wildlife Service. 2002. Recovery plan for the California red-legged frog (*Rana aurora draytonii*). U.S. Fish and Wildlife Service, Portland, Oregon. viii + 173 pp.
- U.S. Fish and Wildlife Service. 1999a. Arroyo southwestern toad (*Bufo microscaphus californicus*) recovery plan. U.S. Fish and Wildlife Service, Portland, Oregon. vi+ 119 pp.
- U.S. Fish and Wildlife Service. 1999b. Draft recovery plan for the giant garter snake (*Thamnophis gigas*). U.S. Fish and Wildlife Service, Portland, Oregon. ix+ 192 pp.
- Vredenburg, V.T., S.A. Felt, E.C. Morgan, S.V.G. McNally, S. Wilson, et al. 2013. Prevalence of *Batrachochytrium dendrobatidis* in *Xenopus* Collected in Africa. (1871–2000) and in California (2001–2010). PLoS ONE 8(5): e63791.
- Vredenburg, V.T., R.A. Knapp, T.S. Tunstall, and C.J. Briggs. 2010. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the National Academy of Sciences, USA 107: 9689-9694.
- Walters, B. 1975. Studies of interspecific predation within an amphibian community. Journal of Herpetology 9:267–279.

Appendix I - Comprehensive List of Documented American Bullfrog Introductions (Kraus 2009)

| Locality<br>Introduced   | Success? | Number of Events | Pathway                                        | Dates                                                                                                    |
|--------------------------|----------|------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Argentina                | Υ        | 4                | Food (1)                                       | Unknown                                                                                                  |
| Austria                  | N        | 1                | Unknown                                        | 1927                                                                                                     |
| Belgium                  | Υ        | 12               | Pet trade (6)                                  | 1980s (2), 1990s (2)                                                                                     |
| Brazil                   | Υ        | 2                | Food (2)                                       | 1935, mid-1980s                                                                                          |
| Canada: British Columbia | Υ        | 2                | Food (2)                                       | 1930s (2)                                                                                                |
| Canary Islands           | Unknown  | 1                | Unknown                                        | Unknown                                                                                                  |
| Chile                    | Υ        | 1                | Food                                           | Unknown                                                                                                  |
| China                    | Υ        | 2                | Food (2)                                       | 1960s                                                                                                    |
| Columbia                 | Υ        | 1                | Food                                           | 1986                                                                                                     |
| Cuba                     | Υ        | 1                | Food                                           | 1915                                                                                                     |
| Denmark                  | N        | 2                | Pet Trade (2)                                  | 1990s (2)                                                                                                |
| Dominican Republic       | Υ        | 1                | Food                                           | 1955                                                                                                     |
| Ecuador                  | Υ        | 1                | Food                                           | Late 1990s                                                                                               |
| France                   | Y        | 6                | Food (2),<br>pet trade (3)                     | Late 1800s (2), 1968,<br>1981, 1990, 2002                                                                |
| Germany                  | Υ        | 17               | Biocontrol (1),<br>food (3),<br>pet trade (13) | 1911, 1927, 1934, 1978 (2), 1980<br>(3),<br>1985-1990 (2), 1987, 1988, 1990<br>(3),<br>1992, early 1990s |
| Great Britain            | N        | 3                | Intentional, pet trade (2)                     | 1905, 1996                                                                                               |

Appendix I - Comprehensive List of Documented American Bullfrog Introductions (Kraus 2009) (cont.)

| Locality<br>Introduced   | Success? | Number of Events | Pathway                            | Dates                                           |
|--------------------------|----------|------------------|------------------------------------|-------------------------------------------------|
| Greece: Crete            | Υ        | 1                | Food                               | 1997                                            |
| Guyana                   | Υ        | 1                | Unknown                            | Unknown                                         |
| Haiti                    | Υ        | 1                | Food                               | Unknown                                         |
| Indonesia                | Υ        | 1                | Food                               | 1970                                            |
| Israel                   | Υ        | 1                | Unknown                            | Unknown                                         |
| Italy                    | Υ        | 5                | Food (2)                           | 1935, mid-1930s, 1966,<br>late 1960s, 1970s (2) |
| Jamaica                  | Υ        | 3                | Food (2)                           | 1967                                            |
| Japan: Izu Islands       | Υ        | 1                | Food                               | 1952                                            |
| Japan: mainland          | Υ        | 2                | Food (2)                           | 1920s (2)                                       |
| Japan: Ogasawara Islands | Υ        | 1                | Unknown                            | Unknown                                         |
| Japan: Ryukyu Islands    | Υ        | 8                | Food (8)                           | 1953 (5), 1954 (2), late 1950s                  |
| Malaysia                 | Unknown  | 1                | Unknown                            | Unknown                                         |
| Mexico                   | Υ        | 2                | Food (2)                           | 1945, 1970                                      |
| Namibia                  | Υ        | 1                | Unknown                            | Unknown                                         |
| Netherlands              | N        | 47               | Aquaculture contaminant, pet trade | 1986                                            |
| Peru                     | Υ        | 1                | Unknown                            | Unknown                                         |
| Puerto Rico              | Υ        | 1                | Food                               | 1935                                            |

Appendix I - Comprehensive List of Documented American Bullfrog Introductions (Kraus 2009) (cont.)

| Locality<br>Introduced | Success? | Number of Events | Pathway               | Dates                             |
|------------------------|----------|------------------|-----------------------|-----------------------------------|
| Russia                 | Y        | 1                | Unknown               | Unknown                           |
| Singapore              | Unknown  | 1                | Food                  | 1980s                             |
| South Korea            | Υ        | 1                | Unknown               | Unknown                           |
| Spain                  | N        | 3                | Food (2)              | 1980s, 2000                       |
| Sri Lanka              | Υ        | 1                | Unknown               | Unknown                           |
| Tadjikistan            | Υ        | 1                | Unknown               | Unknown                           |
| Taiwan                 | Υ        | 2                | Food (2)              | 1924, 1951                        |
| US: Arizona            | Υ        | 1                | Unknown               | Unknown                           |
| US: California         | Υ        | 6                | Food (5), lab release | 1896, 1910s, 1912 (2), 1914, 1915 |
| US: Colorado           | Υ        | 3                | Food (2)              | 1913, 1914                        |
| US: Hawaii             | Υ        | 2                | Biocontrol, food      | 1897-1899, 1902                   |
| US: Idaho              | Υ        | 1                | Unknown               | 1890                              |
| US: Iowa               | Υ        | 1                | Food (2)              | 1930s, 1960s                      |
| US: Kansas             | Υ        | 1                | Unknown               | Unknown                           |
| US: Massachusetts      | N        | 2                | Unknown               | Unknown                           |
| US: Minnesota          | Υ        | 1                | Unknown               | Unknown                           |
| US: Montana            | Υ        | 1                | Unknown               | 1920                              |
| US: Nebraska           | Υ        | 1                | Food                  | Unknown                           |
| US: Nevada             | Υ        | 5                | Unknown               | 1920, 1934, 1935, 1936, 1938      |
| US: New Mexico         | Υ        | 1                | Unknown               | 1885                              |
| US: North Dakota       | N        | 1                | Unknown               | Unknown                           |

Appendix I - Comprehensive List of Documented American Bullfrog Introductions (Kraus 2009) (cont.)

| Locality<br>Introduced | Success? | Number of Events | Pathway | Dates   |
|------------------------|----------|------------------|---------|---------|
| US: Oklahoma           | Υ        | 1                | Unknown | Unknown |
| US: Oregon             | Υ        | 1                | Unknown | 1931    |
| US: South Dakota       | Υ        | 1                | Unknown | Unknown |
| US: Texas              | Υ        | 3                | Food    | 1927    |
| US: Utah               | Υ        | 1                | Unknown | Unknown |
| US: Washington         | Υ        | 3                | Food    | 1910    |
| US: Wyoming            | Υ        | 2                | Unknown | Unknown |
| Venezuela              | Υ        | 1                | Unknown | 1990s   |