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Recent advances in acoustic recorder technology and automated 
species identification hold great promise for avian monitoring efforts. 
Assessing how these innovations compare to existing recorder models and 
traditional species identification techniques is vital to understanding their 
utility to researchers and managers. We carried out field trials in Mon-
terey County, California, to compare bird detection among four acoustic 
recorder models (AudioMoth, Swift Recorder, and Wildlife Acoustics 
SM3BAT and SM Mini) and concurrent point counts, and to assess the 
ability of the artificial neural network BirdNET to correctly identify bird 
species from AudioMoth recordings. We found that the lowest-cost unit 
(AudioMoth) performed comparably to higher-cost units and that on aver-
age, species detections were higher for three of the five recorder models 
(range 9.8 to 14.0) than for point counts (12.8). In our assessment of 
BirdNET, we developed a subsetting process that enabled us to achieve 
a high rate of correctly identified species (96%). Using longer recordings 
from a single recorder model, BirdNET identified a mean of 8.5 verified 
species per recording and a mean of 16.4 verified species per location over 
a 5-day period (more than point counts conducted in similar habitats). We 
demonstrate that a combination of long recordings from low-cost recorders 
and a conservative method for subsetting automated identifications from 
BirdNET presents a process for sampling avian community composition 
with low misidentification rates and limited need for human vetting. These 
low-cost and automated tools may greatly improve efforts to survey bird 
communities and their ecosystems, and consequently, efforts to conserve 
threatened indigenous biodiversity.

Los recientes avances en la tecnología de grabación acústica y en 
la identificación automatizada de especies son muy prometedores para 
los esfuerzos de monitoreo aviar. Evaluar cómo estas innovaciones se 
comparan con los modelos de grabadora existentes y las técnicas tradicio-
nales de identificación de especies es vital para entender su utilidad para 
investigadores y gerentes. Realizamos ensayos de campo en el condado 
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de Monterey, California, para comparar la detección de aves entre cuatro 
modelos de grabadora acústica (AudioMoth, Swift Recorder y Wildlife 
Acoustics SM3BAT y SM Mini) y conteos por puntos simultáneos, y 
para evaluar la capacidad de la red neuronal artificial BirdNET en iden-
tificar correctamente las especies de aves de las grabaciones AudioMoth. 
Encontramos que la unidad de menor costo (AudioMoth) funcionaba de 
manera equiparable a unidades de mayor costo y que, en promedio, las 
detecciones de especies eran más altas para la mayoría de los grabadoras 
(rango 9.8 a 14.0) que para los conteos por puntos (12.8). En nuestra 
evaluación de BirdNET, desarrollamos un proceso de subconjuntos que 
nos permitió alcanzar una alta tasa de especies correctamente identifica-
das (96%). BirdNET identificó una media de 8.5 especies verificadas por 
registro y una media de 16.4 especies verificadas por ubicación (más que 
conteos por puntos realizados en hábitats similares). Demostramos que 
una combinación de grabaciones de larga duración con grabadoras de bajo 
costo y un método conservador para el subconjunto de identificaciones 
automatizadas de BirdNET presentan un proceso para tomar muestras de 
la composición de la comunidad aviar con bajas tasas de identificación 
errónea y necesidad limitada de verificación humana. Estas herramientas 
automatizadas y de bajo costo pueden facilitar en gran medida esfuerzos 
en examinar las comunidades de aves y sus ecosistemas y, en consecuen-
cia, los esfuerzos para conservar la biodiversidad indígena amenazada.

Key words: acoustic monitoring, ARU, AudioMoth, autoclassification, BirdNET, birds, 
point count, species identification
__________________________________________________________________________

Acoustic monitoring is a non-invasive approach for surveying wildlife that uses remote 
acoustic technologies to record sounds emitted by vocalizing species (Blumstein et al. 2011). 
These autonomously triggered tools, also known as autonomous recording units (ARUs), 
hold many advantages over more traditional approaches like direct observations (e.g., point 
counts), given they allow scientists to collect information 24 hours per day and on multiple 
species from multiple taxa, all while minimizing the impacts of observer disturbance and 
bias during data collection (Brandes 2008; Heinicke et al. 2015; Sebastián-González et al. 
2018; Shonfield and Bayne 2017). Further, all acoustic recordings can be permanently stored, 
allowing them to function as digital archives that can be revisited when new questions or 
technologies emerge (Chambert et al. 2018). Arrays of fixed acoustic sensors have been 
used to sample ecosystems (e.g., soundscapes in temperate forests and rainforests [Sethi et 
al. 2020]), taxonomic groups (Brandes 2008; Ribeiro et al. 2018; Walters et al. 2012; Wood 
et al. 2019), and individual species (Campos-Cerqueira and Aide 2016; Heinicke et al. 
2015). They have also been used to help address questions regarding, for example, species 
distributions (Campos-Cerqueira and Aide 2016), spatial and temporal dynamics (Bader et 
al. 2015), phenology (Furnas and McGrann 2018), and spatial variation in habitat quality 
(Sethi et al. 2020). 

Despite the many advantages of acoustic monitoring, there are also several potential 
limitations. First, differences between acoustic recorders and traditional survey methods 
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may complicate comparisons of data from acoustic recorders to results from established 
long-term population monitoring programs employing point counts. For example, while 
acoustic recorders tend to perform equally to humans conducting point counts in estimat-
ing bird species richness (Darras et al. 2018), they tend to underperform in estimating bird 
density or require a secondary source of information (Stevenson et al. 2015). Research 
focused on estimating avian density from acoustic recordings is a rapidly growing field, 
however, which has had success and will likely have even greater success as automated and 
open-source sound localization software is developed (Blumstein et al. 2011; Sebastián-
González et al. 2018; Perez-Granados et al. 2019; Rhinehart et al. 2020; Stevenson et al. 
2021). Additionally, researchers have successfully integrated avian survey data from point 
counts and acoustic recorders and have given specific recommendations on sampling birds 
with acoustic recorders to achieve results comparable to those from point counts (Darras et 
al. 2018). For example, Stewart et al. (2020) used statistical offsets, or correction factors, 
to integrate data from point counts and ARUs. 

A second potential limitation is the high cost of acoustic recorders, which can restrict 
their usage in many contexts (Hill et al. 2019; Rhinehart et al. 2020). Wildlife Acoustics 
Recorders (Wildlife Acoustics, Maynard, MA, USA) can cost upwards of $1,000, for ex-
ample, meaning a project with 100 survey locations would need a minimum budget of over 
$100,000. Recently, however, low-cost alternatives like the AudioMoth (Open Acoustic 
Devices 2020) have been developed. The AudioMoth is a full-spectrum recorder that fits 
in the palm of a hand and has a cost of approximately 60 USD per unit (Hill et al. 2019). 
AudioMoths have proven successful for a variety of wildlife monitoring and conservation 
projects (Prince et al. 2019) but for a full understanding of their utility, need to be directly 
compared to other acoustic recorder models.

A final challenge associated with acoustic monitoring is the terabytes of sound files 
that can be produced, within which the sound of interest must be located and correctly 
identified to species (Chambert et al. 2018; Wrege et al. 2017). Accomplishing the latter 
by manually reviewing the spectrograms of all recordings requires an immense amount of 
effort (Campos-Cerqueira and Aide 2016). Thus, many researchers now rely on custom 
designed algorithms or commercially available sound analysis software to automate species 
identification (Brandes 2008; Gibb et al. 2019; Heinicke et al. 2015; Kalan et al. 2015). 
One recently developed tool is BirdNET, an artificial neural network that can automatically 
identify over 900 bird species (Kahl 2020). In an initial assessment of 225 recordings, 
BirdNET was found to have an overall accuracy (i.e., correctly identified vocalizing bird 
species) of 91.5% (Arif et al. 2020).  Additional assessments of the accuracy of BirdNET 
are needed, however, given it is an extremely new and evolving tool.

The goal of our study is to help address these research gaps by assessing the ef-
ficacy of several acoustic recorder models in detecting birds and one sound analysis tool 
in identifying birds. Specifically, we 1) compared species-level detection rates among the 
acoustic recorder models and concurrent point counts; and 2) evaluated BirdNET’s ability 
to correctly identify bird species from acoustic recordings. Understanding the optimal way 
to collect and process acoustic recordings of birds will help inform the design and feasibil-
ity of future large-scale bird monitoring efforts and enable managers to combat challenges 
associated with acoustic monitoring head-on.
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METHODS

Study Area

We conducted fieldwork within the Hastings Natural History Reservation in Monterey 
County, California, USA (36.380, -121.564). This reserve covers 950 ha, and vegetation 
at the study area is primarily oak (Quercus sp.) woodland and chaparral (Griffon 1990). 
Mean annual temperature is 13.4 °C, and mean annual precipitation is 522 mm (McMahon 
et al. 2015). 

Field Methods

Comparison among acoustic recorder models and point counts.—At each of three 
survey locations, we installed five acoustic recorders between 24 June and 26 June 2020: 
one Song Meter SM3BAT (Wildlife Acoustics), one Song Meter Mini Acoustic Recorder 
(Wildlife Acoustics), one Swift Recorder (Cornell Lab of Ornithology Bioacoustics Re-
search Program), and two AudioMoths (Open Acoustic Devices) that were programmed 
with different acoustic settings (Table 1). We attached recorders to securely placed T-posts 
approximately 2 m above the ground. While recorders did not all face the same direction, 
recorder directionality should not have led to any bias in the mean number of species detected 
by any one recorder type compared to the others. We programmed all acoustic recorders 
to record from 0500 to 0800 Pacific Daylight Time (PDT), capturing peak hours of avian 
vocal activity. 

Table 1. Means and standard deviations for numbers of bird species identified using six methods employed during 
the same four survey events: field-based surveys (point counts) and five acoustic recorder types. Also included are 
the recorder settings used and the cost per unit of each recorder. We collected all data at Hastings Natural History 
Reservation in Monterey County, CA, USA, 2020.

Survey method Mean (SD) species 
identified

Gain (dB) Sample rate 
(kHz)

Cost per unit 
(USD)

Swift Recorder 9.8 (1.5) 38 48 250.00
AudioMoth 1 11.8 (1.5) 27.2 48 59.99
Point count 12.8 (1.5) NA NA NA
AudioMoth 2 13.3 (1.7) 32 32 59.99
Song Meter Mini 13.5 (1.7) 24 48 499.00
Song Meter SM3BAT 14.0 (2.2) 24 48 1,265.00

An observer trained in the aural and visual identification of California birds conducted 
a concurrent 6-minute point count survey at each of the recorder locations between 0600 
and 0800 PDT. We followed methods outlined in McLaren et al. (2019), where we collected 
information on every individual bird detected, including the species identification, minute 
of first detection, and estimated distance from observer. We repeated surveys (recordings 
and point counts) at one of the locations on a second date, for a total of four survey events 
at the three survey locations.
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Assessment of BirdNET performance.—We deployed ten additional AudioMoths to 
evaluate BirdNET’s ability to correctly identify bird species. Specifically, we installed a 
single AudioMoth approximately 2 m above the ground at each of ten locations spaced by 
a minimum of 500 m. We placed AudioMoths inside small, resealable plastic bags along 
with desiccant bags to protect them from moisture. We programmed AudioMoths (hardware 
version 1.1.0) using firmware version 1.4.0 and set them to record with a gain of Medium 
(30.6 dB), a sample rate of 48 kHz, and a recording period from 2000 to 0630 PDT (10.5 
hr) for five consecutive days between 16 June and 26 June. Thus, we used fifty recordings 
for this analysis (five recordings from each of ten locations). 

Data Processing and Analyses

Comparison among acoustic recorder models and point counts.—From each record-
ing, we selected the 6-minute time span corresponding to the 6-minute point count for that 
date and location. We listened to each recording once, identifying the species audible in 
the recording. We calculated means and standard deviations for the numbers of bird spe-
cies detected by the human observer (both from point counts and from recordings). We 
performed all data summaries and analyses in RStudio (RStudio 1.3.1073, www.rstudio.
com, accessed 17 Aug 2020).

Assessment of BirdNET performance.—To evaluate BirdNET’s ability to correctly 
identify bird species from acoustic recordings, we processed the 10.5-hour AudioMoth 
recordings using BirdNET (version available at https://github.com/kahst/BirdNET) run 
through Python version 3.8.2 in Ubuntu 20.04.1. We supplied BirdNET with the week of 
the year, latitude, and longitude corresponding to the recording location. We left all other 
BirdNET settings as defaults.  To limit the number of false positive species records (i.e., 
instances when BirdNET identified species in a recording that were not actually audible), 
we used several parameters to subset species detections from BirdNET. First, we removed 
species that only had a single detection across all five recordings for the location since these 
were more likely to represent misidentifications or species flying over but not occupying 
the location. Second, we subsetted BirdNET output based on two parameters that it assigns 
for every identification: 1) confidence, indicating the degree of confidence BirdNET has in 
each species identification (on a scale where 0 represents lowest confidence and 1 represents 
highest confidence); and 2) rank, which indicates the species with the highest confidence 
value when BirdNET identifies multiple possible species. We chose to only include detec-
tions if BirdNET assigned them a Rank of 1 and a Confidence value of 0.95 or higher so 
that we would retain only the highest confidence detections. Finally, we excluded purported 
detections of diurnal species if they were detected during the nighttime (2100 to 0430 PDT). 
We did this to correct for BirdNET’s tendency to produce high-confidence false positive 
detections at higher rates during this period (often due to apparent misidentifications of 
rustling vegetation or vocalizations from nocturnal animals). We believe that excluding 
these purported detections reduced false positive identifications without compromising our 
ability to detect these species because any diurnal species acoustically active at a location 
should be more active outside nighttime hours. 

Following the subsetting process, we listened to select portions of the sound files to 
confirm whether the species BirdNET identified were audible in each recording. We did not 
listen to all 10.5 hours of each recording, but rather skipped to the times of the recording for 
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which BirdNET had produced detections. We calculated the mean and standard deviation for 
the number of species identified per recording, including the number of species identified 
but not confirmed to be audible by the human observer (false positives) and the number of 
species identified and confirmed to be audible (true positives). We also calculated the mean 
and standard deviation for the number of species identified (including true and false posi-
tives) at the survey location level, by determining the cumulative total number of species 
identified across the five recordings from each location.

RESULTS

Comparison of Acoustic Recorder Models

We identified 26 bird species across the concurrent point counts and recordings (Table 
2). Steller’s Jay (Cyanocitta stelleri, n = 24) and warbling vireo (Vireo gilvus, n = 24) 
were detected by all methods during all survey events. We identified two species on point 
counts but not on recordings: white-breasted nuthatch (Sitta carolinensis) and house wren 
(Troglodytes aedon), although we detected calls from an unidentified wren species on all 
recordings. We identified three species on recordings but not on point counts: Black-headed 
grosbeak (Pheucticus melanocephalus), bushtit (Psaltriparus minimus), and house finch 
(Haemorhous mexicanus). The highest mean number of species was identified via the Song 
Meter SM3BAT and the lowest via the Swift Recorder (Table 1). While the mean number 
of species identified during point counts was higher than that of two recorders, we found 
that on average, AudioMoths (with higher gain and lower sampling rate programming) and 
both Wildlife Acoustics recorders resulted in higher mean numbers of species identifications 
than point counts (Table 1).

Assessment of BirdNET Performance

Across the ten locations, BirdNET identified 42 species that we confirmed to be audible 
in the 10.5-hr AudioMoth recordings (Appendix I). The species identified from the most 
recordings were Pacific-slope flycatcher (Empidonax difficilis, n = 25), California scrub-
jay (Aphelocoma californica, n = 24), and California towhee (Melozone crissalis, n = 24). 
The mean number of species detected by BirdNET and subsequently confirmed was 8.5 per 
recording (range 3–15, SD = 3.5). The mean number of false positive species records was 
0.3 per recording (range 0–2, SD = 0.6), which equated to a false positive (misidentifica-
tion) rate of 3.8% of species records. Cumulative species totals from the five recordings at 
each location showed that BirdNET correctly identified a mean of 16.4 species per location 
(range 8–23, SD = 5.3; Table 3) and misidentified 1.6 species per location (range 0–3, SD 
= 1.0; Table 3).

For two species identified by BirdNET, we removed detections from our results because 
we could not distinguish sounds to the species level. These species were chestnut-backed 
chickadee (Poecile rufescens), detected in 5 recordings, where call notes were indistin-
guishable from those of oak titmouse (Baeolophus inornatus), and white-crowned sparrow 
(Zonotrichia leucophrys), with a single unidentifiable call note from one recording. BirdNET 
identified six species that were not detected by the human observer in any recording, with 
five of these misidentified in a single recording each (Appendix II).
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Table 2. Bird species identified using six methods employed at the same locations and times: field-based surveys 
(point counts) and five acoustic recorder types. For each method, we list the number of surveys (n = 4) during 
which the species was identified. We collected all data at Hastings Natural History Reservation in Monterey 
County, CA, USA, 2020.

Species Swift 
Recorder

Audio-
Moth 1

Audio-
Moth 2

Song Meter 
Mini

Song Meter 
SM3BAT

Point 
count

acorn woodpecker 2 3 4 4 4 4
American robin 1 1 2 3 4 2
band-tailed pigeon 0 0 2 2 3 2
black-headed grosbeak 1 1 1 1 1 0
Bullock’s oriole 1 1 1 1 1 1
bushtit 0 0 1 1 0 0
California towhee 2 2 2 2 2 2
hairy woodpecker 0 1 1 1 1 1
house finch 0 0 1 0 0 0
house wren 0 0 0 0 0 1
Hutton’s vireo 2 4 4 4 3 2
lesser goldfinch 1 1 1 1 1 2
mourning dove 2 3 2 3 3 2
northern flicker 2 2 2 2 2 2
Nuttall’s woodpecker 1 0 0 0 1 1
oak titmouse 3 4 4 4 4 4
Pacific-slope flycatcher 3 3 3 2 3 3
purple finch 0 2 3 4 3 3
red-shouldered hawk 0 0 0 0 1 1
song sparrow 3 2 3 3 3 2
spotted towhee 2 3 2 2 2 3
Steller’s jay 4 4 4 4 4 4
warbling vireo 4 4 4 4 4 4
western bluebird 1 1 1 1 1 1
white-breasted nuthatch 0 0 0 0 0 1
wrentit 2 3 3 3 3 3
Total 39 47 53 54 56 51

DISCUSSION

The use of passive acoustic monitoring methods in terrestrial systems has been in-
creasing exponentially since the 1990s (Sugai et al. 2019). Balancing the trade-off between 
high-quality recordings and costs is vital for researchers and managers considering these 
methods. In our comparison of four acoustic recorder models and concurrent point counts, 
we found that the lowest-cost units, AudioMoths, performed comparably to higher-cost 



63Spring 2021 63NOVEL RECORDERS AND AUTOMATED BIRD IDENTIFICATION

Table 3. Cumulative numbers of bird species identified by BirdNET, an artificial neural network, from 
AudioMoth acoustic recordings from ten locations in Hastings Natural History Reservation, Monterey 
County, CA, USA, 2020. Numbers represent cumulative totals across five 10.5-hr recordings (52.5 
total hours) taken at each location. True positive species are those that a human observer confirmed 
to be audible in recordings, while false positive species are those that the observer could not confirm. 

Site ID True positive species False positive species
1 17 2
2 20 3
3 13 2
4 8 2
5 15 0
6 23 1
7 21 1
8 23 1
9 10 1

10 14 3
Mean 16.4 1.6

units as measured by the number of species identified by a human listener. Specifically, we 
found that Wildlife Acoustics SM3BAT and SM Mini, the highest cost recorders we tested, 
had the highest quality recordings with means of 14 and 13.8 species detected, respectively, 
compared to 13.3 for the AudioMoth. In some cases, however, the mean number of species 
identified using AudioMoths exceeded that of the higher cost units, as well as point counts. 
Researchers and managers with diverse project needs must decide if these small differences 
in the mean numbers of species detected are worth an eight- to 21-fold increase in equipment 
costs. For large-scale acoustic monitoring or assessment projects requiring many record-
ers, our results suggest that the low-cost AudioMoth can provide acoustic data of sufficient 
quality to justify trade-offs demanded by factors such as budget constraints and the risk of 
recorder loss or damage. 

We recognize that the results of our comparison among acoustic recorders and point 
counts are based upon a small sample size. It was also not possible to program all record-
ers with the exact same gain and sample rate settings, which would have provided a more 
standardized comparison among recorder models. We encourage larger scale studies that 
further examine the relative performance of acoustic recorder models, especially as new 
models rapidly become available.

Like costs, the time required to process sound files (i.e., identifying vocalizing animals 
to species) has been identified as a challenge associated with acoustic monitoring (Campos-
Cerqueira and Aide 2016; Chambert et al. 2018; Wrege et al. 2017). We found that by sub-
setting results from BirdNET, a freely available tool that automates species identifications, 
we achieved a high rate of true positive species identifications and a misidentification rate 
of less than 4%, which is lower than that reported for humans in other studies. For example, 
Campbell and Francis (2011) found that across experienced observers listening to recordings, 
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bird species reported by observers but not present on recordings accounted for a mean of 
14% of reported species records. Farmer et al. (2012) also examined performance of humans 
listening to recordings for bird species designated as common or rare and observers with 
skills ranked from moderate to expert. Across those categories, they reported false positive 
rates ranging from 6% to 22%. These results demonstrate BirdNET’s promise for providing 
efficient, automated, and accurate bird identification, reducing reliance on human observers 
with variable identification abilities.

The few sounds that BirdNET misidentified were generally sounds that a human 
observer would also have difficulty identifying, such as confusing non-avian sounds and 
brief call notes that are very similar among species. Examining BirdNET results can reveal 
certain species that are more likely to be false positives. For example, BirdNET appeared to 
misidentify rustling vegetation as calls of hooded oriole (Icterus cucullatus) on more than 
one occasion. We recommend that researchers initially vet identifications from subsetted 
data to establish study area-specific lists of problematic species that should be vetted (i.e., 
reviewed by a human observer to confirm or correct species identification), further limiting 
the need to vet across all recordings and species.

It is important to note that we were unable to assess how our subsetting process af-
fected the proportion of false negatives (i.e., instances where our process failed to detect 
species audible in the recordings). Our conservative approach, which produced a low rate of 
misidentifications (false positives), likely also produced an elevated rate of missed species 
(false negatives). However, based on the mean number of true positive species detected 
per location (16.4), we are confident that our methods enabled BirdNET to produce both 
low misidentification rates and rigorous samples of avian community composition match-
ing or exceeding those typically produced by more traditional methods. For example, the 
mean number of confirmed species per location recorded by AudioMoths and identified 
by BirdNET was higher than our mean number of species from point counts (12.8), which 
were done in very similar habitats using the protocol of one of North America’s largest-scale 
bird monitoring programs. In addition, the longer species lists from AudioMoths/BirdNET 
often included species that traditional point count protocols have difficulty sampling, such 
as nocturnal species (e.g., barn owl [Tyto alba] and great horned owl [Bubo virginianus]). 
A growing body of research demonstrates that sound recording systems can match and 
even outperform point counts in their ability to sample birds (Darras et al. 2018; Darras 
et al. 2019; Wimmer et al. 2013), but to our knowledge this is the first published work to 
document this comparison for the AudioMoth.

Our study also elucidated several approaches that will likely enhance the number 
of true positive species detections produced by acoustic recorders and BirdNET. First, 
we recorded for less than one hour after local sunrise, but recorders could be set to record 
for more time, especially during the morning hours when avian acoustic activity peaks. 
Second, logistical constraints prevented us from collecting recordings during the seasonal 
peak of avian acoustic activity at our study area. Recording during the seasonal peaks of 
acoustic activity for as many species as possible should increase the number of species that 
are recorded and subsequently detected by BirdNET. Recording after this peak, as we did, 
may also increase error in BirdNET by increasing detection of individuals likely to present 
sound-based identification challenges, such as fledglings. On the other hand, researchers 
should be cautious about recording early in the breeding season when migrating or un-
paired (nonbreeding) individuals are more likely to be present. Finally, we used a single 
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conservative confidence threshold to subset detections across all species, eliminating the 
majority of BirdNET’s detections, including all detections for several species in some of our 
recordings. Approaches that use species-specific confidence thresholds may optimize the 
balance between high true positive and low false negative identification rates. Kahl (2020) 
provided optimal species-specific confidence thresholds in BirdNET, but we found that they 
resulted in high numbers of false positive identifications from our recordings. BirdNET’s 
utility for avian acoustic monitoring may benefit greatly from further exploration of optimal 
species-specific confidence thresholds, especially if these thresholds are established for 
specific geographic regions. Researchers may also consider establishing lower confidence 
thresholds for species of special interest, which are often rare species that may be missed 
by a single, conservative threshold. 

The results of this study provide critical information to researchers and managers 
considering the use of acoustic methods for surveying bird communities. By using a combi-
nation of long recordings from low-cost recorders and conservative subsetting of BirdNET’s 
automated identifications, we have honed a process that shows great promise for sampling 
avian community composition with low misidentification rates and limited need for human 
vetting. Together, these tools may greatly improve efforts to survey bird communities and 
their ecosystems, and consequently, efforts to conserve threatened indigenous biodiversity.
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APPENDIX I: BIRD SPECIES CORRECTLY IDENTIFIED BY BIRDNET

Common and scientific names of species correctly identified (verified by a human 
observer) by the artificial neural network BirdNET following the authors’ subsetting process. 
Also included is the number of recordings in which each species was detected and confirmed 
by the observer (out of a total of 50 recordings).

Common name Scientific name Number of recordings
acorn woodpecker Melanerpes formicivorus 12
American crow Corvus brachyrhynchos 5
American kestrel Falco sparverius 1
American robin Turdus migratorius 2
ash-throated flycatcher Myiarchus cinerascens 15
band-tailed pigeon Patagioenas fasciata 5
barn owl Tyto alba 10
Bewick’s wren Thryomanes bewickii 10
black-headed grosbeak Pheucticus melanocephalus 10
black phoebe Sayornis nigricans 10
blue-gray gnatcatcher Polioptila caerulea 16
brown creeper Certhia americana 5
Bullock’s oriole Icterus bullockii 1
bushtit Psaltriparus minimus 20
California scrub-jay Aphelocoma californica 24
California thrasher Toxostoma redivivum 4
California towhee Melozone crissalis 24
Cooper’s hawk Accipiter cooperii 1
dark-eyed junco Junco hyemalis 15
great horned owl Bubo virginianus 10
hairy woodpecker Dryobates villosus 6
house finch Haemorhous mexicanus 3
Hutton’s vireo Vireo huttoni 6
lark sparrow Chondestes grammacus 1
Lawrence’s goldfinch Spinus lawrencei 3
lesser goldfinch Spinus psaltria 11
mourning dove Zenaida macroura 9
northern flicker Colaptes auratus 4
Nuttall’s woodpecker Dryobates nuttallii 7
oak titmouse Baeolophus inornatus 21
orange-crowned warbler Leiothlypis celata 1
Pacific-slope flycatcher Empidonax difficilis 25
purple finch Haemorhous purpureus 9
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Common name Scientific name Number of recordings
red-shouldered hawk Buteo lineatus 3
red-tailed hawk Buteo jamaicensis 6
spotted towhee Pipilo maculatus 23
Steller’s jay Cyanocitta stelleri 23
violet-green swallow Tachycineta thalassina 18
warbling vireo Vireo gilvus 4
western bluebird Sialia Mexicana 5
white-breasted nuthatch Sitta carolinensis 13
wrentit Chamaea fasciata 24

APPENDIX II: BIRD SPECIES MISIDENTIFIED BY BIRDNET

Common and scientific names of species apparently misidentified by the artificial 
neural network BirdNET following the authors’ subsetting process. Also included are the 
number of recordings in which BirdNET was known to have misidentified the species, as 
well as the apparent true source of the misidentified sound. Six of these species (in bold) 
were not confirmed to be present in any of the recordings at the study area.

Common name Scientific name Apparent true sound 
source

Number  o f 
recordings

acorn woodpecker Melanerpes formicivorus Unknown 1
American avocet Recurvirostra americana Female wrentit 1
American coot Fulica americana Unknown 1
band-tailed pigeon Patagioenas fasciata great horned owl 1
band-tailed pigeon Patagioenas fasciata Unknown 1
belted kingfisher Megaceryle alcyon Unknown 1
Bewick’s wren Thryomanes bewickii blue-gray gnatcatcher 1
black phoebe Sayornis nigricans Unknown 1
Bullock’s oriole Icterus bullockii California thrasher call 1
downy woodpecker Dryobates pubescens Unknown 1
hooded oriole Icterus cucullatus Rustling vegetation 2
Lawrence’s goldfinch Spinus lawrencei California towhee call 1
lesser goldfinch Spinus psaltria Unknown 1
Savannah sparrow Passerculus sandwichensis Unknown bird call 1
white-breasted nuthatch Sitta carolinensis acorn woodpecker 1

APPENDIX I continued




