
Instructions for the EML assembly line
Original Author: Colin Smith (EDI)

IEP test-case comments Brittany Davis
Expect to take about a day to become familiar with the EML assembly line R package.

Edits by Rosemary Hartman, CDFW 7 Dec 2018

Edits by Ryan Mckenzie, USFWS 21 April 2020

Edits by Rosemary Hartman DWR 23 June 2021

Overview
The EML assembly line will help you create high quality metadata for your dataset.

Below is a set of step-by-step instructions for making EML metadata for tabular data

and other data, including spatial vector, spatial raster, and images.

Installation (periodic reinstallation is recommended)
The assembly line is under constant revision and improvement. Please reinstall the

assembly line periodically to ensure a successful experience. Installation from GitHub

requires the devtools package.

Install devtools
install.packages("devtools")

Load devtools
library(devtools)

Install and load EMLassemblyline
install_github("EDIorg/EMLassemblyline")
library(EMLassemblyline)

Step 1: Create a directory for your dataset
Create a new directory for your dataset. This is where the metadata parts created in

the assembly line process will be stored and available for editing should you need to

change the content of your EML.

Name this directory after your dataset. Replace spaces with underscores (e.g. name

of your directory should be name_of_your_directory).

https://github.com/EDIorg/EMLassemblyline

*R does not communicate well with the OneDrive, consider working more easily on

the Desktop.

Step 2: Move your dataset to the directory
Move copies of the final versions of your data tables into this directory. These should

be the final versions of the data you are ready to publish. Make sure you have done

all your QAQC checks, formatted your tables so that each row contains one

observation and each cell contains one value. Convert your files to non-proprietary

formats (.csv instead of .xlsx) if possible.

Step 3: Select an intellectual rights license
There are 2 options for intellectual rights licenses:

1. CC0 the most accomodating of data reuse ... This data package is released to

the “public domain” under Creative Commons CC0 1.0 “No Rights Reserved”. It

is considered professional etiquette to provide attribution of the original work

if this data package is shared in whole or by individual components. A generic

citation is provided for this data package on the website (herein “website”) in

the summary metadata page. Communication (and collaboration) with the

creators of this data package is recommended to prevent duplicate research or

publication. This data package (and its components) is made available “as is”

and with no warranty of accuracy or fitness for use. The creators of this data

package and the website shall not be liable for any damages resulting from

misinterpretation or misuse of the data package or its components. Periodic

updates of this data package may be available from the website. Thank you.

2. CCBY requires attribution ... This information is released under the Creative

Commons license - Attribution - CC BY. The consumer of these data ("Data

User" herein) is required to cite it appropriately in any publication that results

from its use. The Data User should realize that these data may be actively used

by others for ongoing research and that coordination may be necessary to

prevent duplicate publication. The Data User is urged to contact the authors of

these data if any questions about methodology or results occur. Where

appropriate, the Data User is encouraged to consider collaboration or co-

authorship with the authors. The Data User should realize that

misinterpretation of data may occur if used out of context of the original study.

While substantial efforts are made to ensure the accuracy of data and

https://creativecommons.org/publicdomain/zero/1.0/
https://portal.edirepository.org/
https://creativecommons.org/licenses/by/4.0/

associated documentation, complete accuracy of data sets cannot be

guaranteed. All data are made available "as is." The Data User should be aware,

however, that data are updated periodically and it is the responsibility of the

Data User to check for new versions of the data. The data authors and the

repository where these data were obtained shall not be liable for damages

resulting from any use or misinterpretation of the data. Thank you.

IEP can create a customized CC statement and alter in the uploaded text box

Step 4: Identify the types of data in your dataset
Currently, the assembly line only works for tabular data and .zip directories. If you

have other types of data you can include them as “other data entities”.

table

A flat file composed of columns containing variables and rows containing

observations. Column names must follow these rules:

• replace symbols with words

• replace parentheses with underscores

• replace periods with underscores

• replace blank spaces with underscores

e.g. land.cover.use (%) should be percent_land_cover_use

.zip directory

A .zip directory containing anything you want to put into it. .zip directory name

should follow the same naming rules as for a table.

Step 5: Import the core metadata templates
Run the function template_core_metadata in the RStudio Console to populate the

directory with the core metadata templates for you to complete. You will need to

supply a few arguments to this function:

1. path A path to your dataset working directory.

2. license The license for your dataset ("CC0" or "CCBY").

3. file.type File type for abstract, methods, and additional info metadata

templates. Can be: '.txt' (plain text), '.docx' (MS Word), or '.md' (markdown).

First load the EMLassemblyline package
library(EMLassemblyline)

View documentation for this function
?template_core_metadata

Import .txt file core templates for an example dataset licensed under CC0.
template_core_metadata(
 path = 'name_of_your_directory ',
 license = 'CC0',
 file.type= ‘.txt’)

Step 6: Script your workflow
Open my_workflow.R in RStudio. This is a blank script for you to build an assembly

line workflow, which can be revisited or modified for future assembly line runs.

**You will have already started an R workflow, hence at this point save yours in the

appropriate working directory.

Step 7: Abstract
Open the file abstract.txt and write an abstract for your dataset. The abstract

should cover what, why, when, where, and how for your dataset. Write your abstract

in plain text.

Do not use special characters, symbols, formatting, or hyperlinks (URLs are

acceptable). The reason for this is that the EML schema only allows characters that

are apart of the unicode character set.

NOTE: You can create your abstract in Microsoft Word and then copy over

to abstract.txt but first you will need to remove any non-unicode characters. To

do this go to this web service and paste your abstract into the window. Click the

button "Remove Diacritics" to remove these non-compliant characters, then copy the

resultant text into abstract.txt. You will want to give your abstract one last look

over after performing this operation to ensure no information has been lost.

Step 8: Methods
Open the file methods.txt and describe the methods for your dataset. Be specific,

include instrument descriptions, or point to a protocol online. If this dataset is a

synthesis of other datasets please specify dataset origins, preferably their DOI or URL

plus general citation information.

https://pteo.paranoiaworks.mobi/diacriticsremover/

Do not use special characters, symbols, formatting, or hyperlinks (URLs are

acceptable). The reason for this is that the EML schema only allows characters that

are apart of the unicode character set.

NOTE: You can create your methods in Microsoft Word and then copy over

to methods.txt but first you will need to remove any non-unicode characters. To do

this go to this web service and paste your methods into the window. Click the button

"Remove Diacritics" to remove these non-compliant characters, then copy the

resultant text into methods.txt. You will want to give your methods one last look

over after performing this operation to ensure no information has been lost.

Alternatively, you can include your methods a separate PDF as part of your data

package, or include tables in the ‘methods’ section (such as gear specifications) as

data entities.

Format methods following the IEP metadata standards. These are the sections

recommended by IEP

1. Data collection methods: Metadata must include enough information on

methods to make the data usable. Minimum methods information should

be similar to the "methods" section of a scientific paper. This may include

diagrams and pictures of sampling equipment.

2. Link to blank datasheet (if available)

3. Instrument and equipment specifications, including QAQC methods and

frequency. This may include references to external SOPs instead of included

in metadata

4. Analysis methods & SOPs: Any analyses done to produce the data set (such

as CPUE calculations). This is not analyses done to produce later

publications.

5. Link to SOPS: Specific SOPs used to generate the data. It is understood that

not all programs will have this information available right away, but should

be prepared to provide them within three years.

6. Project history: List of any changes in methods and sampling locations, with

dates changes were implemented

7. QA/QC – Methods and protocols for quality assurance during data

collection, data entry, and data analysis

https://pteo.paranoiaworks.mobi/diacriticsremover/

8. Contractor information: Chain of custody procedures and contact

information for any outside labs used to produce the data.

9. External review process: Any other review of data done by entities other

than the PI to help with quality assurance. (A description of the process, not

the reviews themselves)

10. Methods references: Citations for publications from which methods were

drawn.

Step 9: Additional information
additional_info.txt is a good place for text based information about your

dataset that doesn't fall under the scope of the abstract or methods (e.g. a list of

research articles or theses derived from this dataset). If you have this information and

would like to share it then open additional_info.txt in a text editor and add it.

You can delete this file if you won't be using it, or you can keep it around in case you

change your mind.

Do not use special characters, symbols, formatting, or hyperlinks (URLs are

acceptable). The reason for this is that the EML schema only allows characters that

are apart of the unicode character set.

NOTE: You can create your additional information in Microsoft Word and then copy

over to additional_info.txt but first you will need to remove any non-unicode

characters. To do this go to this web service and paste your additional information

into the window. Click the button "Remove Diacritics" to remove these non-

compliant characters, then copy the resultant text into additional_info.txt. You

will want to give your additional information one last look over after performing this

operation to ensure no information has been lost.

Step 10: Keywords
Open the tab delimited file keywords.txt in a spreadsheet editor and list the

keywords that best describe your dataset. DO NOT edit this file in a text

editor. Consult the LTER controlled vocabulary for keywords. In addition to keywords

describing the data, you may want to include keywords that describe your lab,

station, and project (e.g. OBFS, LTREB, etc.).

Definitions for columns of this file:

• keyword A keyword describing your dataset.

• keywordThesaurus A keywordThesaurus (i.e. a controlled vocabulary like the

resource listed above) corresponding to the keyword listed in the keyword

https://pteo.paranoiaworks.mobi/diacriticsremover/
http://vocab.lternet.edu/vocab/vocab/index.php

column. If the keyword is not from a thesaurus or controlled vocabulary, leave

corresponding entry in the keyword Thesaurus column blank.

Include IEP key term “Interagency Ecological Program for the San Francisco Bay Delta

Estuary” and “IEP”

You can check to see if the keywords are in the LTER Thesaurus by leaving the

keywordThesaurus column blank and running the “validate_keywords” function:

validate_keywords(path = getwd(), cv = 'lter')

The function will automatically fill-in the “keywordThesaurus” column for any words

in the LTER vocabulary

Step 11: Personnel
Open the tab delimited file personnel.txt in a spreadsheet editor and enter

information about the personnel associated with this dataset.

Definitions for columns of this file:

• givenName First name of person.

• middleInitial Middle initial of person.

• surName Last name of person.

• organizationName Name of organization the person is associated with.

• electronicMailAddress Email address of person.

• userId ORCID of person (not required). A valid entry for userId is the 16 digit

ORCID number separated by dashes (i.e. XXXX-XXXX-XXXX-XXXX). An ORCID is

like a social security number for scientists and links your dataset with your

ORCID. Create one here.

• role Role of person with respect to this dataset. Valid entries for role are:

o creator Dataset creator (required; at least 1 creator must be listed for

your dataset).

o PI Principal investigator associated with this dataset (not required).

o contact Dataset contact (required; at least 1 contact must be listed for

your dataset). The contact may be a person or a position at an

organization. We recommend listing the contact as a person rather than

a position. To list a position as a contact (e.g. Data Manager), Enter the

https://orcid.org/

position name in the givenName column and

leave middleInitial and surName blank.

o Any other entries into the 'role' column are acceptable and will be

defined under the associated party element of this dataset with whatever

value is entered under role.

o If a person serves more than one role, duplicate this person’s information

in another row but with the additional role.

o Similarly, if a role is shared among many people, list the individuals with

the shared role on separate lines.

• projectTitle Title of the project this dataset was created under (optional).

Project titles are only listed on lines where the personnel role is PI. If an

auxiliary project was involved in creating this dataset then add a new row

below the row containing the primary project and list the project title and

associated PI. Do this for each auxiliary project.

• fundingAgency Name of the entity funding the creation of this dataset

(optional). Only include an entry in this column for rows where role PI.

• fundingNumber Number of the grant or award that supported creation of this

dataset (optional). Only include an entry in this column for rows where role PI.

*Creators are the only ones that will actually be listed as the cited authors. See

the metadata word document for more notes on how to manipulate the table

to get other entries imported (e.g. having IEP listed in the SurName). The order

of personnel in the table will be the order listed in the citation.

Step 12: Create and fill-in Attribute templates
Run the function template_table_attributes in the RStudio Console to populate

the directory with the attribute templates for your data tables. You will need to

supply a few arguments to this function:

1. path A path to your dataset working directory.

2. data.table A character string of a table name. If more than one, then supply as

a vector of character strings (e.g. data.table = c('nitrogen.csv', 'decomp.csv')).

Import .txt file core templates for an example dataset licensed
under CC0.
template_table_attributes(

 path = '.',
 data.table = c("YBFMP_fish_and_water_quality_data_07252018_QA.csv",

 "YBFMP_Fish_Taxonomy.csv",

 "YBFMP_Trap_Effort.csv",

 "YBFMP_Site_locations_latitude_and_longitude.csv"))

After running the function, an attributes_datatablename.txt file has been

created for each of your data tables. Edit each of these tab delimited files in a

spreadsheet editor. DO NOT edit this file in a text editor or you will end up with

problems. You will see this file has been partially populated with information

detected by the template_table_attribute function. You will have to double

check values listed in all the columns except attributeName.

Instructions for completing the attribute table are as follows:

• attributeName Enter attribute names (i.e. column names) as they appear in

the data table and in the same order as listed in the data table.

• attributeDefinition Enter definitions for each attribute. Be specific, it can be

lengthy.

• class Enter the attribute class. This is the type of value stored under the

attribute. Valid options for class are:

o numeric For numeric variables.

o categorical For categorical variables.

o character For variables containing text or symbols that are not

categorical.

o Date For date time variables.

o If an attribute has class of numeric or Date, then all values of this

attribute must be either numeric or date time. If any character strings are

present in an otherwise numeric attribute, this attribute must be

classified as character. Similarly, if any values of a "Date" attribute do

not match the date time format string (details below), then this attribute

must be classified as character.

• unit If an attributes class is numeric, then you must provide units. If the

attribute is numeric but does not have units, enter dimensionless. If the

attribute class is categorical, character, or Date then leave the unit field blank. If

the attribute is numeric and has units search the standard unit dictionary for

the unit of interest and enter the unit name as it appears in the dictionary (unit

names are case sensitive). Open the dictionary by running these lines of code

in the RStudio console window:

•
View and search the standard units dictionary
view_unit_dictionary()

• If you cannot find a unit in the dictionary, create one and add it

to custom_units.txt. Open this tab delimited file in a spreadsheet editor. DO

NOT edit this file in a text editor. If you have no custom units to report you

may delete this file, but may also keep it around if you think it may be of future

use. Valid custom units must be convertible to SI Units (i.e. International

System of Units). If it cannot be converted to SI then list it in the attribute

defintion and enter "dimensionless" in the unit field. To create a custom unit

define the:

o id This is equivalent to the unit name.

o unitType The type of unit being defined. Reference the dictionary for

examples.

o parentSI The SI equivalent of the id you have entered.

o multiplierToSI This is the multiplier to convert from your custom unit to

the SI unit equivalent.

o description A description of the custom unit. Reference the dictionary

for examples.

• dateTimeFormatString Enter the date time format string for each attribute of

"Date" class. Remember, a class of "Date" specifies the attribute as a date, time,

or datetime. Enter the format string in this field. If the attribute class is not

"Date", leave this field blank. Below are rules for constructing format strings.

o year Use Y to denote a year string (e.g. 2017 is represented as YYYY).

o month Use M to denote a month string (e.g. 2017-05 is represented

as YYYY-MM).

o day Use D to denote a day string (e.g. 2017-05-09 is represented

as YYYY-MM-DD).

o hour Use h to denote a hour string (e.g. 2017-05-09 13 is represented

as YYYY-MM-DD hh).

o minute use m to denote a minute string (e.g. 2017-05-09 13:15 is

represented as YYYY-MM-DD hh:mm).

o second use s to denote a second string (e.g. 2017-05-09 13:15:00 is

represented as YYYY-MM-DD hh:mm:ss).

o Time zone format strings: use + or - along with a time string to denote

time zone offsets (e.g. 2017-05-09 13:15:00+05:00 is represented

as YYYY-MM-DD hh:mm:ss+hh:mm).

• missingValueCode If a code for 'no data' is used, specify it here (e.g. NA, -

99999, etc.). Only one missingValueCode is allowed for a single attribute.

• missingValueCodeExplanation Define the missing value code here.

*Depending on the data and time string format chosen, you may get a warning in

the final production report on EDI, but you will still be able to make the eml in R and

publish.

Step 13: Close files
Make sure all files of your dataset directory are closed. Some functions will error out

if these files are open.

*If you edit any text file or recall in templates, they will not re-write the ones already

in the working directory and you will get a message in the console that the files

already exist.

Step 14: Categorical variables
If your data tables contain any attributes with the categorical class, you will need to

supply definitions for the categorical codes. Use the

function template_categorical_variables to do

this. template_categorical_variables searches through each attribute file

looking for attributes with a categorical class. If found, the function extracts unique

categorical codes for each attribute and writes them to a file for you to define.

View documentation for this function
? template_categorical_variables

Run this function for your dataset

template_categorical_variables(path = ".")

A tab delimited catvars_datatablename.txt will be created for each of your data

tables containing categorical variables. Open these in a spreadsheet editor and add

definitions for each code.

Step 15: Geographic coverage
Often an EDI data user will search for data within a geographic area. There are two ways

you may display your data spatially on the portal. You will have to decide on one of these

options, as including the coding for both will cause errors when you try to make the EML.

Geographic points

If you want your dataset to display more than one sampling point or area (see

above), then you will want to add this information to your metadata. Run the

function template_geographic_coverage to extract the unique latitude, longitude,

and site name combinations from your data and write to

file. template_geographic_coverage requires specific inputs that may require altering

the latitude and longitude format of your data. See documentation for details.

Arguments required by this function are:

1. path A path to the dataset working directory containing the data table with

geographic information.

2. data.file Name of the input data table containing geographic coverage data.

3. lat.col Name of latitude column. Values of this column must be in decimal

degrees. Latitudes south of the equator must be prefixed with a minus sign (i.e.

dash, "-").

4. lon.col Name of longitude column. Values of this column must be in decimal

degrees. Longitudes west of the prime meridian must be prefixed with a minus

sign (i.e. dash, "-").

5. site.col Name of site column. This column lists site specific names to be

associated with the geographic coordinates.

View documentation for this function
? template_geographic_coverage

Run this function for your dataset
template_geographic_coverage (path = "working directory",
 data.file = "lake_characteristics.csv",
 lat.col = "lake_latitude",
 lon.col = "lake_longitude",
 site.col = "lake_name")

This function outputs a tab delimited file named geographic_coverage.txt to

your dataset directory. You may edit this in a spreadsheet editor if you'd like, but if

the data table this information has been extracted from is accurate, then there is no

need for editing.

Geographic area

If you want your dataset to display one general area polygon (see above), then you

will skip the template_geographic_coverage function step to create the

geographic_coverage.txt metadatafile.

 The coordinates for the bounding box are created using the make_eml in the next

step.

Step 16: Make EML
Now you are ready to synthesize your completed metadata templates into EML. This

step is relatively simple, but requires several arguments:

1. path A path to the dataset working directory.

2. dataset.title A character string specifying the title for your dataset. Be

descriptive (more than 5 words). We recommend the following

format: Project name: Broad description: Time span (e.g. "GLEON:

Long term lake chloride concentrations from North America and Europe: 1940-

2016").

3. data.table A list of character strings specifying the names of the data files of

your dataset.

4. data.table.description A list of character strings briefly describing the data

files listed in the data.files argument and in the same order as listed in the

data.files argument.

5. data.table.quote.character A list of character strings defining the quote

characters used in your data files and in the same order as listed in the

data.files argument. If the quote character is a quotation, then enter "\"". If

the quote character is an apostrophe, then enter "\'". If there is no quote

character then don't use this argument when running make_eml.

6. data.table.url A character string specifying the URL of where your data tables

are stored on a publicly accessible server (i.e. does not require user ID or

password). The EDI data repository software, PASTA+, will use this to upload

your data into the repository. If you will be manually uploading your data

tables, then don't use this argument when running make_eml.

7. other.entity (character; optional) Name of other.entity(s) in this dataset.

Useother.entity for all non-data.table files. other.entity(s) should be stored

at data.path. If more than one, then supply as a vector of character strings

(e.g. other.entity = c('ancillary_data.zip', 'quality_control.R')).

8. other.entity.description (character; optional) Description(s) of other.entity(s). If more than

one, then supply as a vector of descriptions in the same order as listed in other.entity.

9. temporal.coverage A list of character strings specifying the beginning and

ending dates of your dataset. Use the format YYYY-MM-DD.

10. geographic.coordinates (character) Coordinates of datasets geographic

extent. Coordinates are listed in this order: North, East, South, West

(e.g.geographic.coordinates = c('28.38', '-119.95', '28.38', '-119.95')). Longitudes

west of the prime meridian and latitudes south of the equator are negative.

**********Don't use this argument if geographic coverage is supplied by

geographic_coverage.txt.

11. geographic.description A character string describing the geographic

coverage of your dataset.

12. maintenance.description A character string specifying whether data

collection for this dataset is "ongoing" or "completed".

13. user.id A character string specifying your EDI data repository user ID. If

you don't have one, contact EDI (info@edirepository.org) to get one, or don't

use this argument when running make_eml.

14. package.id A character string specifying the package ID for your data

package. If you don't have a package ID, then don't use this argument when

running make_eml. A non-input package ID defaults to "edi.101.1".

View documentation for this function
?make_eml

Run this function
make_eml(path = ".",
 dataset.title = "Interagency Ecological Program: Fish catch
and water quality data from the Sacramento River floodplain and
tidal slough, collected by the Yolo Bypass Fish Monitoring Program,
1998-2018.",
 temporal.coverage = c("1998-01-01", "2018-06-30"),
 geographic.description = "Yolo Bypass tidal slough and
seasonal floodplain in Sacramento California USA",
 geographic.coordinates = c("38.79395205", "-121.5368316",
"38.23466149", "-121.8073699"),
 maintenance.description = "ongoing",
 data.table =
c("YBFMP_fish_and_water_quality_data_1998_2018.csv",
 "YBFMP_Fish_Taxonomy.csv",

mailto:info@edirepository.org

 "YBFMP_Trap_Effort.csv",

"YBFMP_Site_locations_latitude_and_longitude.csv"),
 data.table.description = c("Fish catch and water quality
data from the Yolo Bypass Fish Monitoring Program",
 "Taxon table for species
including native or invasive classification",
 "Table of hours fished for
effort estimations",
 "Site location table including
coordinates"),
 data.table.quote.character = c("\"", "\"","\"","\""),
 data.table.url = c("","","",""),
 user.domain ="EDI",
 user.id="iep",
 package.id="edi.233.1")

Your EML file will be written to your data directory with the name packageID.xml. If

your EML is valid you will receive the message: EML passed validation!. If

validation fails, open the EML file in an XML editor and look for the invalid section.

Often a minor tweak to the EML can be made manually to bring it into compliance

with the EML schema.

Step 17: Upload your data package to the EDI repository
Your data and metadata form a package that may be uploaded to the EDI data repository.

Contact EDI for login credentials.

The last thing steps before publishing include “staging” and “production” which includes 1)

reserving a package ID number, 2) previewing your metadata (this could be cyclical and re-

running the eml in R to get exactly what you want), 3) evaluating the eml and all data

(generation of a large report for each table), 4) uploading the data and eml, and GOING LIVE

with a DOI!!

1. Familiarize yourself with the portal with this Youtube Video overview

2. You need to contact EDI to obtain a login username and password.

• Corinna Gries, Mark Servilla (PASTA+), and Colin Smith

(EMLassemblyLine)

• If you would like to use the IEP login and password, contact Rosemary

Hartman

https://portal.edirepository.org/nis/home.jsp
mailto:info@edirepository.org
https://m.youtube.com/watch?v=LSPcqTqpPMw
mailto:cgries@wisc.edu
mailto:mark.servilla@gmail.com
mailto:csmith.tar@gmail.com
mailto:Rosemary.Hartman@water.ca.gov
mailto:Rosemary.Hartman@water.ca.gov

3. Work in the staging environment first. Work in the staging platform to run validation

checks and prepare for the DOI publication. Data is not public during the staging site.

• Here is the staging environment

• The website title page will be highlighted in orange and say “EDI Staging

Environment”

• Play around in the site for familiarity.

• You will see the package page will have a water mark

4. How to upload data:

• Get a package identifier. To get a data package identifier, go to “Tools” ->

“Reservations” -> “Data Package Identifier Reservations”. This will give you the

number for the “package.id” value in the last line of the “make_eml” function.

You will need to add the version number to the package ID before building the

EML. (example: EDI will tell you your package ID is “edi.999”, you will have to

update it to “edi.999.1” for version 1.)

• Create your metadata, using the package identifier you have reserved

• Preview your metadata “Data Packages” -> “Preview Metadata”. Choose the

file you made with the EML assemplyline. It should automatically have been

named with your package ID (example: edi.999.1.xml). This lets you see if you

like how the metadata looks before you start uploading stuff for real.

• Now upload your data Tools -> Evaluate/Upload Data Packages

• Choose EML file, click “I want to manually upload the data”, and click

“Evaluate”

• EML file must have the first version number on it. For example, YBFMP was

“eml.233” you must name the file as “eml.233.1” as it’s the first version. All

version after have to increase, 2, 3, etc.

• Select appropriate data table files

• Click Evaluate

• Report will be generated with the # of quality checks, # valid (green),

#information (blue), #warnings (orange), and #errors (red).

• Click “view” on report table to find out what is being flagged and if fixed are

required.

• You can publish with warnings, but you cannot with any errors, they will need

to be fixed and cycle through the steps again for “Evaluating” package. You may

need to fix in EML code in R or text and data files.

• Once you’ve cleared all the errors, hit “upload” instead of “evaluate”.

• Your data package should now be ready, but with the “staging environment”

watermark.

https://portal-s.edirepository.org/nis/home.jsp

5. Work in the production platform to run final evaluation checks and upload EML and

data for DOI publication. Data will be public after the “upload” step.

• Here is the production environment

• The website title page will be highlighted in orange and say “EDI Data Portal”

• Login

• Get a new package identifier (see above). Unfortunately, the one you got for the

staging environment won’t transfer. Re-make the metadata file with the new package

identifier.

• Follow Steps 3 and 4 (above) the same as you did for the staging environment, but

this time it’s for real!

• Once report is clean and you are happy, instead of clicking evaluate, now click

“upload”.

• The completion of this will end in the live publication and DOI assignment.

https://portal.edirepository.org/nis/home.jsp

