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Disclaimer 
 
This report has been reviewed by the California Dept. of Fish and Game’s (CDFG) OSPR 
staff for technical adequacy according to contractual specifications.  The opinions, 
conclusions, and recommendations contained in the report are those of the author and do 
not necessarily reflect the views and policies of CDFG.  The mention of a trade name or 
any commercial product in the report does not constitute an endorsement or 
recommendation for use by CDFG.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
On the Cover:  Edge of an active oil and gas seep in the Santa Barbara Channel, 
California photographed from a field sampling vessel



 3

 
EXECUTIVE SUMMARY 
 
This project aimed to develop and test multispectral oil spill impact detection methods for 
ocean and terrestrial use, and evaluate the efficiency and potential usefulness to OSPR of 
a 4-channel, portable UV-Vis-nearIR sensor for oil spill mapping, support of recovery 
operations and monitoring environmental damage and remediation success.  The research 
was done during 2004 through 2006. 
 
For work targeting the detection and mapping of at-sea oil spills, Santa Barbara Channel 
oil seeps were used to obtain imagery over oil slicks and other possible false targets e.g. 
kelp, suspended sediment, wind/wave effects and sunglint.  Two flights were done to test 
different 4-channel wavelength combinations for best discrimination ability between oil 
and false targets.  Several multispectral classification algorithms were tested.  Results 
indicated that good oil identification success is possible but some false targets (mostly 
from sunglint areas) could not be eliminated.  The final approach was to develop an 
application specific neural network-based algorithm that incorporates both spectral and 
spatial pattern variables.  This method results in minimal false targets and can even 
provide some information on oil thickness distribution patterns.  This approach was 
tested over the Santa Barbara seeps using simultaneous aerial and ship-based data 
sampling. 
 
For terrestrial oil spill work, the original proposal intended to utilize long-term 
contaminated Bolsa Chica wetlands as the testing grounds.  Aerial data were collected 
but, despite repeated requests, ground truth data compiled by US Fish & Wildlife Service 
could not be obtained.  A real spill incident that occurred during the project was instead 
incorporated into the work.  On 4/27/2004 a diesel pipeline fractured in Suisun Marsh 
east of San Francisco Bay and contaminated a vast area of the marsh.  2 imaging 
overflights were performed (funded separately from this project) with a time separation 
of 2 months, and change detection methodology was developed to accurately map 
changes in ground cover type (e.g. vegetated turned bare) and to measure changes in 
growth vigor.  The developed techniques were successfully used to provide OSPR and 
other agency and corporate entities involved in the case with high resolution maps of 
environmental change over the spill-affected area. 
 
The project proved that the development and operational utilization of a portable 
multispectral imaging system for oil spill mapping is very feasible and could provide 
major improvements in oil spill response.  The developed system, presently based around 
Ocean Imaging’s DMSC-MKII aerial imager, is available for operational use, and has 
been utilized by CDFG/OSPR in other spill cases since the project’s termination (e.g. 
Romic chemical spill in 2006). 
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1.  PROJECT BACKGROUND 
 
Satellite and aerial imaging can, in principle, provide a convenient means to detect and 
precisely map marine and terrestrial oil spills and seeps, and to monitor the 
environmental effects of oil impacted soils and vegetation.  Significant advances have 
been made (primarily in Europe and Canada) in oil spill detection capabilities by 
UV/Vis/IR sensors and Synthetic Aperture Radars (SARs).  Although utilized to aid oil 
spill recognizance in Europe, satellite sensors have a number of disadvantages for their 
routine use in spill monitoring.  These include low revisit frequency (2-6x/month), 
relatively low spatial resolution, high cost, and high false target occurrence.  Aerial 
sensors offer the advantages of on-call availability, very high resolution, and various 
enhancements to minimize false targets.  Very few aircraft SARs exist, however, and 
their use is extremely expensive.  Likewise, most UV/Vis/IR sensors that have been 
shown to effectively detect oil-impacted land surfaces are hyperspectral instruments 
which are expensive to operate and often difficult to mobilize and use.  Our premise in 
this project was that full hyperspectral capabilities are not required for efficient oil impact 
detection.  A cost-effective, easy-to-mobilize aerial sensor offering 4 wavelength 
channels spanning the UV/Vis/NIR range can be configured to provide adequate data for 
oil detection to support a variety of OSPR’s activities.   
 
2.  PROJECT OBJECTIVES 
 
This project aimed to develop and test multispectral oil spill impact detection methods for 
ocean and terrestrial use, and evaluate the efficiency and potential usefulness to OSPR of 
a 4-channel, portable UV-Vis-nearIR sensor for oil spill mapping, support of recovery 
operations and monitoring environmental damage and remediation success.   
 
The work utilized Ocean Imaging’s (OI’s) existing instrument as the imaging platform.  
OI owns and operates the DMSC-MKII aerial imager, manufactured by SpecTerra Ltd. in 
Australia.  The DMSC is a portable, 4-channel sensor with 12-bit radiometric resolution.  
It’s channels can be customized for any wavelength between approximately 400nm (UV) 
and 950nm (near-IR). 
 
Simplicity, portability and ease-of-use under real-world, operational conditions were 
paramount in guiding the development phases of this project.   
 
 
3.  RESULTS 
 
3.1 At-sea Oil Spill Mapping Algorithm  
This project’s premise for developing an oil-on-water mapping algorithm using 
multispectral imagery was that it be as universal as possible to allow operational use in 
different geographic regions and under different oceanic and atmospheric conditions.  
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Natural oil seeps in the Santa Barbara Channel, California were chosen as the target for 
algorithm development and testing because the area contains not only oil slicks with 
varied thickness and weathering characteristics but also abundant potential false targets 
such as floating kelp and turbidity patterns.  During the initial overflight mission, 
imagery was collected with several different filter combinations on the DMSC’s four 
channels, spanning the UV – visible – nearIR range.  The purpose of that work was to 
determine the most effective 4 wavelength combination for reliably distinguishing 
floating oil and separating its reflectance characteristics from other false targets.  Our 
results indicated that unweathered and weathered oil can be effectively distinguished 
from background water of varying turbidity by applying maximum likelihood classifiers 
to multispectral imagery that contains at least one band in the 400-450nm range, one 
band in the 500-550nm range and one band within 625-675nm.  A near-IR band, 750-
850nm, was highly effective in distinguishing any floating algae, e.g. kelp, from the 
actual oil slicks, as is shown in Figure 1. 
 

 
 
Figure 1.  Multispectral imagery off Coal Point, California showing oil slicks and various 
potential artifacts. 
 
Further analysis of the data revealed, however, that wind and wave effects coupled with 
sunglint often create patterns that cannot be reliably separated from oil signatures using 
multispectral classification algorithms that rely solely on spectral reflectance 
relationships.  Additional imagery collected during a subsequent overflight mission also 
revealed that background reflectance variability due to variability in overall water color 
and sun angle preclude the utilization of a general or master classification parameter set 
that could be universally applied to any future image data. 
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Realizing the above limitations, our final oil mapping algorithm approach utilized a 
neural network-based classifier which considers not only multispectral relationships but 
also textural information within the image.  The neural network (NN) approach greatly 
improved the elimination of false targets due to sunglint and wave patterns.  A 
comparative example is shown in Figure 2 and details of running the procedure are in 
Appendix A. 
 
It is important to note that applying the NN oil classifier to an image data set first 
involves operator-assisted training of the network.  Although this is generally a relatively 
rapid process (5-15 minutes), it prevents the mapping system from creating a fully 
automated (i.e. without any operator intervention) oil map product.  Our research in this 
and subsequent projects focusing on mapping oil-on-water have shown that this semi-
automated procedure is preferable to a fully automated one with the imaging hardware 
and software resources presently available.  Tests with a fully automated algorithm 
version, relying on stored oil reflectance characteristics, was deemed too error-prone to 
be of satisfactory operational value under varied oceanographic and atmospheric 
conditions. 
 

 
 

 
 

  
 
 
Figure 2.  Multispectral image from Santa 
Barbara Channel containing oil slicks.  
Original image (above left) and as 
classified for oil with Maximum 
Likelihood (ML) (left) and developed 
Neural Network classifiers (above right).  
Note the mis-classified areas in the ML 
result.

 
The accuracy of the developed oil mapping algorithm was tested during subsequent 
overflights and simultaneous boat sampling done in the Santa Barbara Channel for this 
project, as well as for a subsequent project funded by the Minerals Management Service 
(MMS) to enhance the oil mapping capabilities developed here by adding actual oil film 
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thickness estimates.  The system’s oil mapping accuracy will vary for each data set due to 
oceanic and atmospheric conditions, as well as the distribution patterns of the oil itself 
(e.g. long thin strands vs. a more coherent slick).  Our initial evaluation tests in the Santa 
Barbara Channel indicate a very high degree of accuracy for oil films thicker than 
approximately 0.02mm.  The final version of the algorithm tends to underclassify sheens 
(very thin sheens share the characteristics of sunglint areas) but we deemed this 
preferable (under operational spill response conditions) to better sheen discrimination at 
the expense of significant increase in false targets.  We are continuing to quantitatively 
assess the algorithm’s accuracy in subsequent projects. 
 
3.2  Terrestrial Oil Spill Mapping Technology Development 
 
This project’s development of oil spill sensing technologies for land use primarily 
focused on detecting and mapping the oil’s impact on soils and vegetated surfaces.  As 
was already noted, the originally proposed study area was the Bolsa Chica marsh in 
Orange County, California.  The marsh has been the site of numerous petroleum spills 
through the years and at the time of this project was slated for major restoration.  
Although imagery was collected of the entire study area, analysis of the data and 
development of impact-detection/mapping techniques required field data for the 
development and validation.  Such a field data set containing contamination 
measurements at thousands of points throughout the marsh was to be made available to us 
by  the U.S. Fish & Wildlife Service who directs the restoration effort.  Despite multiple 
requests for the data, OI was not able to obtain it and thus did not utilize the Bolsa Chica 
region for further work. 
 
On 4/27/2004 a pipeline carrying diesel fuel through the Suisun Marsh, California 
fractured and spilled the fuel into a network of sloughs where it was further spread by 
tidal flooding.  The CDFG subsequently contacted OI to inquire if a remote sensing-
based survey could be done that would aid in delineating and assessing environmental 
damage related to the spill.  Utilizing its former plans for research in Bolsa Chica as well 
as other wetlands mapping experience, OI suggested a change detection approach based 
on algorithm-detected changes in ground cover type and plant vigor between two image 
sets collected at different times after the spill.  The two flights were done on 5/18/04 and 
7/15/04 (all extra costs were funded outside of CDFG). 
 
OI concentrated on identifying three prime changes: 1) areas which were flooded in May 
but had no standing water in July (due to the draining of the marsh after the spill); 2) 
areas which were vegetated in May but turned to bare soil by July; 3) areas which 
experienced significantly decreased chlorophyll vigor (as measured by a change in the 
Normalized Difference Vegetation Index (NDVI) computed from the multispectral data) 
between May and July. 
 
The two data sets were first processed to identify standing water areas in the May 
imagery, and areas of change due to vegetated ground being denuded or, conversely, bare 
ground becoming vegetated between May and July.  This was done using a customized 
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algorithm developed by OI in previous wetland mapping projects.  The two data sets 
were then also used to compute an NDVI May-July difference. 
 
An assumption was made that any areas which showed increased or unchanged vigor or 
plant density were not significantly affected by the incident.  These areas were therefore 
masked and eliminated from further analysis. 
 
An analysis product showing all areas of significantly reduced vegetation vigor was then 
manually edited to eliminate areas where the decrease in vigor could obviously be 
ascribed to natural/seasonal causes.  This filtering was guided by considering the trends 
of various differentiated plant types in the northern control region away from the initially 
flooded features.  However, since the draining of both the affected and control regions 
caused the death of any aquatic plants and algae and possibly caused lack-of-water stress 
on plants in and immediately around the flooded regions, such changes were retained in 
the final analysis product. 
 
Because OI was not provided with any quantitative ground truth data to use for algorithm 
training or validation purposes, the analyses represent objective depictions of vegetation-
related change in the sense that OI staff made no assumptions about the locations or type 
of change caused by direct petroleum contact, and made no attempts at specifically 
isolating it.  OI was furnished with 8 field photos by OSPR, taken on 5/3/04, 5/6/04 and 
5/12.  Each photo contained the date, direction of view and location code corresponding 
to the Cleanup Segment Map.  These photos were helpful in identifying come types of 
vegetation and several appeared to show good correspondence with the vegetation change 
analyses results.   
 
Because the spill case has not yet been closed, we cannot provide any detailed 
information related to the environmental damage assessments derived from the developed 
analysis approach.  As can be seen from examples in Figure 3, however, the remotely 
sensed change detection analysis provided highly detailed vegetation and land cover 
change mapping capabilities.  The technique was used again after a chemical spill over 
Laumeister Marsh, California in 2006, where the change detection results were 
statistically compared to a control marsh area and the conclusions were corroborated by 
detailed field sampling. 
 
In addition to providing more comprehensive synoptic information on the possible effects 
of petroleum or chemicals spilled on or into a land area, the developed techniques 
provide image and map layer data products suitable for direct input into Geographical 
Information Systems (GIS).  This feature allows, in turn, further quantitative assessments 
such as the rapid computation of the total area of vegetation affected. 
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Figure 3.  Field photo of an edge of one of 
the diesel-affected sloughs in Suisun Marsh 
(above) and same area processed for 
vegetation change from aerial multispectral 
imagery (right).  Note the correspondence of 
vegetation dieoff features (red) to the band of 
coated vegetation seen in the field photo 
immediately after the spill. 
 
 
 
4. OPERATIONAL PRACTICALITY OF THE DEVELOPED SYSTEM 
 
A pseudo-operational oil seep mapping was done in October, 2005 over the Santa 
Barbara Channel during experiments that included ship-based ground truthing for a 
related MMS-funded project targeting oil slick thickness algorithm development. Several 
oil slick targets were imaged, one of which is shown in Figure 4.  Mounting of the sensor 
in the aircraft (CDFG’s Partenavia) took 15 minutes with the mounting plate and power 
supply already available or approximately 1 hour if the plate and power connections 
would have to be newly installed.  At altitude of 7000 feet, providing 1m ground data 
resolution 3km²/minute could be imaged (at 100knts ground speed).  
 
Subsequent data processing times depend, logically, on the overall area of the spill.  
Spills up to several km² will be contained within a few image frames at typical altitudes 
and processing, including mosaicking the frames into one image and running the NN 
classifier takes 15-30 minutes.  Longer times must be expected for larger spills or spills 
where the oil has separated into multiple areas that must be imaged and processed 
separately.  Although we did not have the opportunity to test direct plane-to-land image 
transfers during the test overflight, air-to-land transfers were successfully tested during 
more recent follow-on work using a commercially available wireless data network. 
 
For land impact mapping cases the same parameters apply for data collection, although 
ground resolution should be increased to 30cm-1m, resulting in longer overflights and 
longer processing times.  We did not have an opportunity to image spilled oil on land 
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directly (in the Suisun Marsh case practically all the diesel had evaporated or was 
recovered before the first overflight).  However, we believe the NN algorithm could be 
effectively utilized in cases where crude or fuel oil directly covered vegetated or bare soil 
areas.  The change detection approach used during the project requires considerably more 
processing and analysis but is not, by its very nature, as time sensitive as initial response 
mapping. 
 
 

 
 
Figure 4.  Oil slick target utilized in final testing off Coal Oil Point, California. 
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APPENDIX A 
 
 
 
 

Neural Network Oil Mapping Algorithm Software Details 
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Neural Network Classifications in OI Imaging Tools 
 
 
A Simplified Explanation of an Artificial Neural Network: 
 

An Artificial Neural Network (ANN) is a supervised, learning classifier.  An 
ANN can be graphically represented (below) as a graph composed of nodes (the circles) 
and edges (the lines connecting two nodes).  An ANN is typically composed of an input 
node layer, one or two hidden node layers, and an output node layer.  The ANN pictured 
below could be used to classify a pixel from a 4-band image into one of three output 
classes.  First the band DNs would be put into the input layer (input 1 = band 1 DN, input 
2 = band 2 DN, etc.).  (Input values are typically scaled to the range [0,1]).  Now that the 
values of the input layer nodes are known, the values of the hidden layer nodes can be 
calculated.  In our case, each hidden node is connected to every input node by an edge 
(line).  Each of these edges has a numerical weight associated with it.  A weighted sum is 
calculated for the hidden node by multiplying each input node’s value by the appropriate 
weight and adding them all together.  This weighted sum is then entered into a special 
function (sigmoid function) to calculate the value of the hidden node.  (This value also 
varies from 0 to 1).  That process is repeated for each node in the hidden layer, then each 
node in the output layer. The output of the neural network below is 3 numerical values 
(one from each output node) ranging from 0 to 1.  In an image classification, each of 
these output nodes represents a specific information class (i.e. water, grass, road).  For a 
properly trained neural network, an input pixel of class “road” should produce ~0 for the 
water and grass outputs and ~1 for the road output.   

 

 

Output 1 

Output 3 

2 
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Neural Network Training 
 
 As with all supervised classification methods, before a neural network can 
correctly classify an image, it must be trained with a set of pixels with known correct 
classes.  Initially, all the weights of the neural network are initialized as random numbers.  
Next, a small subset (about 10%) of the samples from the training set will be set aside as 
a testing set.   

The samples from the training set will then be run through the network one at a 
time.  The output class generated for the training sample will likely be wrong at this 
point, so it is compared to the known correct class for the sample.  The neural network 
then adjusts its weights slightly, so that the next time this training sample is presented to 
the network, it will be closer to the correct classification.  (This is how the “learning” 
takes place).  This adjustment procedure is repeated for every sample in the training set.  
Next, the accuracy of the network will be tested with the testing set we set aside earlier.  
Since the neural network has not seen these samples before, it is a good test of accuracy.  
The neural network DOES NOT ADJUST ITS WEIGHTS IN RESPONSE TO THE 
TESTING SET, it is for accuracy assessment only.   

This process is called an epoch, and it will now be repeated several hundred or 
thousand times.  Each training element will be passed through the network, the weights 
will be adjusted for better classification accuracy, and finally the testing set will check 
the accuracy at the end of the epoch.   

There are two stopping conditions that can end the training of the network.  The 
first is a set number of epochs (i.e. the network will stop after a maximum of 1000 
epochs).  Also, a testing set accuracy threshold can stop the training once a desired level 
of accuracy is obtained. 

 
 

Performing a Neural Network Classification in OI Imaging Tools 
 
Creating a Training Set 
  
 Training Sets are created just as they are for any type of supervised classification.  
However, there are a few tips for creating a training set that will be optimal for a neural 
network. 
 
To create a training set: 
 

1. Open the image to be used for generating the training set.  
2. Select Classification -> Create Training Set from the main menu.  The Training 

Class Editor Dialog will appear.  Note: this dialog is only intended to be used with 
the image that was selected while the dialog was opened. 
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3. Click the Add Class Button  repeatedly until the desired number of classes 
has been added.  (Classes may be deleted from the class table by selecting the row 

in the table and clicking the Delete Class Button .) 
4. Click on the cells of the class table to change the class names and colors. 
5. Select the class you would like to add samples to by clicking its row in the class 

table so it is highlighted blue. 
 

  
6. Add samples (pixels) to the selected class with the assorted tools: 

a. Add Pixel Tool  adds one pixel at a time with single clicks on the 
image, or a group of pixels by holding down the mouse button and 
drawing a rectangle around the desired pixels. 

b. Add 3x3 Tool  adds a 3x3 square of pixels (9 pixels) centered on 
the pixel clicked. 

c. Add 5x5 Alt Tool  adds a 5x5 square of pixels alternating in a 
checkerboard pattern (12 or 13 pixels) centered on the pixel clicked. 

d. Delete Pixel Tool  deletes one pixel at a time with single clicks on the 
image, or a group of pixels by holding down the mouse button and 
drawing a rectangle around the pixels to be deleted. 

 
7. Once the training set is complete, it must be saved to file.  For a neural network 

training set, the “Set Type:” drop-down list MUST BE SET TO “Pixel 
Values”.  This training set can be saved as an individual training set by clicking 
the “Export New Set” button, or it may be appended to an existing Pixel Values 
training set file by clicking the “Append Existing Set” button.  When a large area 
composed of many image frames is being classified, it is advisable to create 
training sets from several sample images and combine them into one training set 
by appending them to each other.  When appending a training set a dialog will 



 15

appear to match up the class names and numbers of the new training set with the 
class names and numbers of the old training set. 

 
IMPORTANT HINTS for creating a good neural network training set: 

• Training sets do not need to be extremely large, 500 to 1000 well-chosen pixels 
should be sufficient for each class.  (If multiple images are being used to generate 
training sets, a few hundred samples per class per image should be sufficient).  
Larger training sets may increase the training time of the network without 
necessarily increasing the accuracy of the network. 

• Training sets should reflect the variation in the class.  For a given class, a group of 
50 nearly identical pixels is far less useful to the neural network than a group of 
20 diverse pixels of that class.   

• Because of the two previous factors, a good strategy for creating a training set is 
to add small clusters (10-20 pixels) of sample pixels scattered throughout the 
image.  This can correct for factors such as lighting variation across an image, and 
tends to get a more representative sample of the class. 

• To quickly add small clusters of pixels, the 3x3 and 5x5 alt tools are very useful 
since they create a small cluster of sample pixels with a single click.  

 
 
 
 
 
Training a Neural Network 
  
 A Neural Network has many parameters to adjust the training (learning) phase.  It 
is difficult to give general rules for these settings that work well in all situations.  
Experimentation will be needed to find optimum settings.  However, once optimum 
settings have been found, they will typically work well on similar projects.  For instance, 
the settings successfully used to train a network to classify a coastal wetland will likely 
work well in training a network to classify a different coastal wetland.  The default 
settings have been found to work well in image classifications and should generally be 
used as the starting point. 
 
Neural Network Inputs 

The checkboxes list the possible inputs for the neural network, in reference to a 
pixel in a training set.  These are also the values that will be considered for each pixel 
while classifying an image. 

The most basic input is “Pixel DN”, this is the digital number of the training pixel 
itself.  “3x3 DNs” and “5x5 DNs” include the DNs of the neighborhood around the pixel.  
This allows the Neural Network to consider the context of the training pixel.  Only one of 
these options should be checked, or the Neural Network will be considering redundant 
information (i.e. the pixel DN is included in the 3x3 DNs).  NOTE: There is currently a 
bug in the processing for the “5x5 DNs” so this option should not currently be used. 
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Other potential inputs are the coefficients of variance for 3 different window 
sizes.  The coefficient of variance is the standard deviation of the DNs over the window 
divided by the mean DN Value over the window.  This is intended as a textural measure.  
Relatively homogenous areas will have a low coefficient of variance, while highly 
heterogeneous areas will have a high coefficient of variance.  

  
Recommendations: In general the simplest inputs that can satisfactorily classify the 
image should be used.  First try simply the pixel DN. this requires very little calculation 
during training and classification.  Next try 3x3 DNs.  This requires more (9 times more) 
calculations than the single DN, but is often very effective.  If this is not satisfactory, 
experiment by adding a combination of the coefficients of variance.  Note that calculating 
coefficients of variance is very computationally intense and may greatly increase training 
and classification time, therefore it is not recommended unless it appears absolutely 
necessary. 
 
Training Set File: The training set file to be used in creating this neural network. 
 
DN Scale Factor: For the neural network to function properly, it is important that nearly 
all the input values fall into the range of 0 to 1.  The “DN Scale Factor” is the number 
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multiplied by the DNs to convert them to the 0 to 1 range.  For example if pixel DNs in 
an image max out at 1000, the DN Scale Factor should be 0.001, if DNs range from 0 to 
4000, the DN Scale Factor should be 0.00025. 
 
Variance Scale Factor: For the neural network to function properly, it is important that 
nearly all the input values fall into the range of 0 to 1.  The “Variance Scale Factor” is the 
number multiplied by the Coefficients of Variance to convert them to the 0 to 1 range.  
(The coefficient of variance is defined as the standard deviation of a group divided by the 
groups mean value). 
 
Neural Network Structure 
 
The structure of a neural network is very important in determining the networks abilities.  
Again the general rule is to use the simplest network that can do the job.  A more 
complex network can more easily learn a training set, but it is prone to overfitting or 
overtraining.  Overfitting is when the network has the ability to simply memorize the 
training set examples without actually learning the general rules that separate the classes.  
This prevents the network for being able to generalize and correctly classify samples that 
aren’t exactly the same as samples it has seen before.  An overfitted network will have 
very high accuracy on the training set but will fail to accurately classify an entire image 
with pixels slightly dissimilar to those in the training set. 
 The power of the neural network is its ability to generalize.  That is, it can learn 
the general rules of classification without just memorizing training samples.  Simpler 
networks do not have the capacity to memorize a large training set and are therefore 
forced to generalize and less likely to overfit. 
 It is difficult to give a specific configuration for the network that will work in all 
situations.  The user will initially need to experiment to find the best configuration for a 
given situation (i.e. wetland classification). Once a successful configuration is found, it 
will typically work well on other future classifications of that land type. 
  
Recommendations: 
 
Number of Hidden Layers: For nearly all image classifications, 1 hidden layer is 
sufficient.  Two hidden layers should be used only if a 1 hidden layer network is 
unsuccessful in many attempts with different settings (i.e. number of hidden nodes, 
learning rate, number of epochs, a different training set).  Adding a second hidden layer 
will increase classification time, and could lead to overfitting. 
 
Number of Hidden Nodes: The number of hidden nodes should typically vary between 2 
and 10.  Again the minimum effective number of hidden nodes should be used.  A higher 
number of nodes increases classification time and can lead to overfitting. 
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Training Parameters 
 

As a network is trained, its testing error should decrease constantly until it 
plateaus at a specific error level.  This is known as the network converging.  Ideally the 
network will converge at a very low error level, however sometimes the network will 
become “stuck” at a high error level.  If this happens, the network can be retrained, or the 
learning parameters may be adjusted.  Each time the network is trained, the network 
weights are initialized with random numbers, so even with the same training parameters, 
the results of the network may vary.  Learning parameters are best determined through 
experimentation with a sample of the data to be classified. 

 
 

Learning Rate:  When a training sample is passed through the network, the actual output 
is compared to the desired output (correct classification).  The weights of the network are 
then changed so that the next time this sample is presented the networks result will be 
closer to correct.  The learning rate determines how much the network should be changed 
for each sample.  This value can range from 0.01 and 0.75.  Higher values allow more 
dramatic changes to the network, but may cause the learning to be “jumpy” or “unstable”.  
It is best to use a small learning rate (around 0.2) so that the network can smoothly 
converge on a good solution. 
 
Use Momentum Term:  If the momentum term is included, when the network adjusts for 
a training sample, it adds a little bit of the adjustment direction from the previous training 
sample.  This can be useful if the network in stopping the network from getting “stuck”.  
My experiments have shown that the momentum term is usually unnecessary and should 
generally NOT be used. 
 
Training Mode:  The default training mode is “Online”.  In this case the weights of the 
network are adjusted after each training sample.  If a training set has 1000 samples, this 
means the network weights will be adjusted 1000 times during each epoch. 
 
In “Batch Mode” the needed weight adjustments are postponed to the end of the epoch, 
where they are averaged and applied all at once.  In this instance weights are only 
adjusted once per epoch. 
 
My experiments have shown that “Online” training tends to be faster and more reliable 
for image classification. 
 
Desired MSE (Mean Squared Error):  After each testing sample is put through the 
network, the output value of each node is compared to the desired output value.  The sum 
of the square of these differences is the mean squared error.  This setting allows the user 
to set an early stopping point for the training if the MSE drops below a threshold.  The 
lower limit of the MSE varies greatly between training sets and typically needs to be 
determined experimentally. 
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Maximum Epochs:  Training can be set to end after a specific number of epochs.  
Typically a network will need from a few hundred to a few thousand epochs to converge 
on a solution. 
 
 
Training Status 
 
Displays information about the training process of the neural network. 
 
Epoch Number:  The number of the current training epoch. 
 
Test Set Accuracy:  The neural networks classification accuracy of the testing set (which 
is a subset of the training set that was set aside for testing only).  Remember that for a 
sample to classify as a specific class, the output node corresponding to that class should 
be equal to 1, while the other output nodes should be close to 0.  It is rare that any 
samples come out so cleanly, so a pixel must only cross a certain threshold to be declared 
a member of a specific class.  For example, a pixel representing oil with a water output 
value of 0.2 and an oil output value of 0.85 would be correctly classified as oil. 
 
Test Set MSE (Mean Squared Error):  After each testing sample is put through the 
network, the output value of each node is compared to the desired output value.  The sum 
of the square of these differences is the mean squared error.  Note: in the example given 
in the “Test Set Accuracy” section above, the pixel would be correctly classified as oil 
however since the output values are not 0 and 1, this example would have a MSE of 
0.03125.  Because of this, a test set can display 100% classification accuracy even as the 
MSE continues to fluctuate. 
 
 
 
Dialog Buttons: 
 
Train Network: Create and train a neural network with the specified training set and 
training parameters.  Note: this button will enable when a training set and inputs are 
selected: 
 
Classify Image: Classifies an image or group of images with the current neural network.  
Note: this button will only be enabled when a neural network has been trained or when an 
existing network has been loaded from file. 
 
Save Network:  Saves the currently trained neural network for future use.  Note: this 
button will only be enabled when a neural network has been trained or when an existing 
network has been loaded from file. 
 
Load Network: Loads a previously trained neural network from file. 

 
 


