Analytical tools for renewable fuel spill response

MARTICE VASQUEZ, PHD OSPR LABORATORY PROGRAM

Outline

 Highlight chemical differences between renewable diesel and biodiesel

 Traditional tools and approaches for fingerprinting petroleum and renewables

 Work being done at OSPR Petroleum Chemistry Laboratory on renewable diesel

Glycerol

Tools for Analysis and Fingerprinting – GC/MS, GC/FID

Ethanol /

OH

*Infrared Spectroscopy

No documented approach for fingerprinting renewable diesel

Main Project Objectives

- 1. Evaluate the applicability of current petroleum spill analytical methodologies for characterization and fingerprinting of renewable diesel spills.
 - a. Can we differentiate renewable diesel from petroleum diesel? Renewable diesel from Biodiesel?
 - b. What about mixtures?
 - c. Can we fingerprint renewable diesel?

Can we tell the difference between renewable diesel and petroleum diesel using our traditional full scan GCMS screening?

Traditional GC can be used to confirm and characterize renewable diesel

100% Renewable Diesel

- Carbon range C9 C18, majority of signal C15–C18
- Extreme abundance C17 C18, easily overloading detector

- 100% Petroleum Diesel
- Carbon range: ~C9 C28
- UCM is present for the majority of carbon range

Can we tell the difference between renewable diesel and biodiesel using our traditional full scan GCMS screening?

Traditional gas chromatography can be used to confirm and characterize RD samples

What about mixtures of renewable diesel and petroleum diesel?

We can tell if there is a mixture between the two qualitatively but can not say what percentage the mixture is petroleum diesel vs renewable diesel

90% Renewable Diesel; 10 % Diesel

75% Renewable Diesel; 25 % Diesel

50% Renewable Diesel; 50 % Diesel

We can not distinguish between "old" and "new" carbon using GCMS

 ¹⁴C Isotopic analysis is required to quantitate percentages in a mixture of renewable and petroleum diesel.

• When organisms stops growing, the 14C begins to decline (t1/2 = 5730 years)

 Fossil diesel no longer contains 14C isotope and the portion of new organic material can be detected.

• Accelerator Mass Spectrometry (AMS) or Liquid Scintillation Counting (LCS)

Can we fingerprint renewable diesel?

Fingerprinting Renewable Diesel?

• RD lacks biomarkers and PAHs used for petroleum fingerprinting

Linear and branched hydrocarbons dominate the signal

• Some work we are doing at the Petroleum Chemistry Lab to fingerprint RD

Improve chromatographic resolution

Traditional GC Program for Petroleum Fingerprinting

Optimized GC Program for Renewable Diesel Fingerprinting

Identify compounds

Do we need 2-dimensional GC?

- Increases resolution separates peaks within peak
- Sample components separated in 1st column based on polarity
- Sample components separated in 2nd column based on boiling point
- Working with Dr. Petr Vozka of CSU LA to evaluate the ability of 2D GC to pull apart signal

Secondary Axis Retention Time (s) 1.0

2.0

0.0

14.5569

Next Steps - Fingerprinting Renewable Diesel

 Continue to explore quantitative 2D GC application to characterize different renewable diesel samples

- Use quantitative differentiation for comparison of two different renewable diesel samples
- So far, using GCMS (one dimensional GC), no differences in various samples of RD but need to look at more samples, different manufacturers and 2D GC approach

• Continue weathering and mixing studies

Thank you!

Questions?