

ENHANCING THE MECHANICAL RECOVERY OF OIL FROM MARINE AND FRESHWATER ENVIRONMENTS

Energy lives here

Tim Nedwed ExxonMobil Upstream Research Company

Michel Boufadel New Jersey Institute of Technology

ENHANCING THE MECHANICAL RECOVERY OF OIL FROM MARINE AND FRESHWATER ENVIRONMENTS

- Two concepts under investigation
 - Water-permeable / oil-impermeable boom skirt
 - Semi-finalist NRCan Oil Spill Response Challenge
 - Shear-thinning skimmer
 - Received grant from Canadian Multi-partner Research Initiative 2.0

Water permeable / oil impermeable boom skirt

Standard impermeable boom places large forces on tow boats – two "big boats" needed to handle load

Water permeable / oil impermeable boom skirt

Water permeable boom reduces load allowing "small boat" for second tow line

Water permeable / oil impermeable boom skirt

To avoid entrainment of oil under boom requires slow towing speeds

Permeable skirt will minimize entrainment allowing greater towing speeds

Small-scale test flume

Impermeable skirt – dyed caster oil

30 x 30 coated mesh - dyed caster oil

SUMMARY

- Water permeable / oil impermeable boom under development
 - Reduces tow forces needed to pull boom
 - Allows towing at higher speeds while collecting oil

PLANS

- Scale testing at New Jersey Institute of Technology
 - Evaluate various screen / boom geometries
 - Test different oleophobic / hydrophilic coatings
- Build large-scale prototype and test at Ohmsett and at sea

