Appendix I
 Drainage Report for Mission Creek Habitat Restoration Project

DRAINAGE REPORT

 forMISSION CREEK HABITAT RESTORATION PROJECT SOUTHERN CALIFORNIA EDISON

County of Santa Barbara
APN：153－270－009

Prepared For：
Southern California Edison
c／o Sargent \＆Lundy
55 E．Monroe Street
Chicago，IL 60603

Prepared By：

> WILSロN•M／KAMI・ロロRPロRAT／ロN 9 LロRPロRATE PARK•SUITE 1ロロ・IRVINE•CA•926ロ6 PHロNE：（949）679－ロロ9ロ FAX：（949）679－ロロ91

Job No． 10349.00
October 21， 2021
Revised：March 4， 2022

TABLE OF CONTENTS

I. Introduction 1
II. Hydrology
A. Offsite Run-On 1
B. Pre-Developed Condition 2
C. Post-Developed Condition 3
D. Methodology 3
III. Hydraulic Analysis
A. Hydraulic Model Assumptions 6
B. Pre-Developed Model 7
C. Post-developed Model 7
IV. Results
A. Hydrology Analysis 8
B. Pre-Developed Hydraulic Analysis 8
C. Post-Developed Hydraulic Analysis 9
V. References 11
VI. Figures
Location Map
Fig. 1
Vicinity Map
Site Photographs
Creek Profile - Pre-Developed
Fig. 2 Fig. 3 to 8
Creek Profile - Post-Developed
Fig. 9
Fig. 10
VII. Tables
Pre- Developed Condition Hydraulic Summary
Table 1
Post-Developed Condition Hydraulic Summary
Table 2
Hydraulic Comparison
VIII. Appendices
A. Hydrology Calculations - WinTR-55 Inputs \& Outputs, Hydrologic Soil Group Map, Runoff Curve Number Determination, Time of Concentration and Lag Calculations.
B. Hydraulic Calculations - Pre-Developed Conditions (100 Year Storm)
C. Hydraulic Calculations - Post-Developed Conditions (100 Year Storm)
D. Hydrology Map - Pre \& Post-Developed Hydrology Map
E. Hydraulic Exhibits - Pre-Developed \& Post-Developed Conditions (100 Year Storm)
F. Cross Sections - Proposed Sidecast Removals
G. Sidecast Removal Recommendations from Helix Environmental Planning

I. INTRODUCTION

The Mission Creek Stream Habitat Restoration Project (Project), as described in the Mission Creek Habitat Restoration Plan (Creek HRP, HELIX, 2021), is being implemented to remediate streambed and surrounding riparian and upland areas impacted as a result of Southern California Edison (SCE) road grading and vegetation management activities in the Mission Canyon area of Santa Barbara County, California that occurred in December 2019 (See Figure 1 for project location). During the December 2019 road work, sidecast material consisting of rock, woody debris, and sediment were disposed downgradient of Spyglass Ridge Road, including areas within Mission Creek. The Project goal is to restore stream flows, stabilize soils of the creek bank, repair habitat features such as pools within the stream bed, remediate and mitigate impacts to trees, and restore impacted woodland/forest and chaparral habitats (Creek HRP, HELIX, 2021).

Wilson Mikami Corporation has prepared this Hydrology/Hydraulic Report in conformance with Jurisdictional Agency standards to the implementation of sidecast removal and the potential restoration and repair of stream features within impacted areas of Mission Creek as outlined in the Creek HRP. This Hydrology/Hydraulic report compared the flow impacts between the existing condition (with sidecast) to the proposed condition (with sidecast removal) within Mission Creek.

This Hydrology Study is prepared to analyze run-off from off-site tributary drainage areas to the proposed Mission Creek Habitat Restoration Project site. USGS topography will be utilized to determine the hydrologic boundary. Hydrology calculations will be prepared utilizing Santa Barbara County's methodology.

Hydraulic Studies are prepared to compare the impact of proposed sidecast removal within Mission Creek. HEC-RAS was utilized to analyze the channel upstream and downstream of the existing and proposed stream restoration areas. The HEC-RAS analysis is based upon USGS topographic information and supplemented with field topography adjacent to the existing and proposed stream restoration areas.

II. HYDROLOGY

A. OFFSITE RUN-ON

Mission Creek consists of an existing unlined stream system that conveys storm runoff from Mission Canyon located as part of the Los Padres National Forest on the north, Mission Canyon confluence with

Rattlesnake Canyon just upstream of City of Santa Barbara. After the confluence, Mission Creek continues to travel south and adjacent to Highway 101, and finally outlets into Pacific Ocean. Mission Creek is part of the County's South Coast Watershed system. The proposed stream restoration areas are located at approximately 12,500 feet south of the Angostura Pass, which composed the upper part of the Mission Creek watershed (See Figure 2 for vicinity map). The tributary area to the proposed stream restoration areas is approximately 1,260 acres.

The Project area is located within the Mission Creek-Frontal Santa Barbara Channel watershed (Hydrologic Unit Code 180600130203), defined by Mission Creek and its tributaries. Mission Creek flows south along Tunnel Trail, parallel to Spyglass Ridge Road, and eventually flows to the Ocean at Stearns Wharf.

B. PRE-DEVELOPED CONDITION

Several post-impact field surveys occurred in 2020 and early 2021 to evaluate pre-restoration conditions of the Project area. A post-impact LiDAR survey along with a topographic survey of creek impact sites were performed in early 2020 to produce a topographic map of the canyon and determine two--dimensional sidecast surface areas and estimate the volumes of sidecast material. A field visit by the Project environmental contractor was performed in November 2020 to estimate depths, refine the volume estimates, and evaluate sidecast composition using a combination of engineering and surveying techniques. A follow-up survey was performed in March 2021 to determine if slide areas had changed since the 2020 survey and to field delineate the limits of the sidecast areas. Additionally, a fluvial morphology team consisting of stream restoration ecologists, a fluvial morphologist, and a stream hydrologist, conducted several site visits in October 2021 to further characterize the deposits within the impacted sites (Creek HRP, HELIX, 2021).

Mission Creek within the Project area is an ephemeral waterway and generally consists of a riffle-pool habitat sequence. Riffle-pool sequences are commonly found in mountain streams and provide particularly valuable habitat for fish and other wildlife (CWA 404(b)(1) Guidelines (40 CFR 230.45)). The rapid movement of water over a coarse substrate in riffles results in a rough flow, a turbulent surface, and high dissolved oxygen levels in the water. The rocky creek bed in riffles provides protection from predators, sources of food deposition, and shelter. Riffles also provide bank (lateral) and/or bed (vertical) stability. The stability of bed and banks provided by riffle habitat is
important to reduce the potential for channel degradation following material removal. Impacted portions of the creek bed lacking cobbles and boulders can become vulnerable to erosional forces during creek flows (Creek HRP, HELIX, 2021).

The slopes of the Mission Canyon in the upper mountainous part of the drainage are steep, and the width of the creek bed is relatively narrow. Vegetation occurs where terrain allows and is composed of a shrub/herbaceous understory and an upper canopy dominated by California bay and sycamore. Much of the canyon along the Project area has a high angle of repose and is composed of exposed rock face escarpments. Where soil has deposited along steep slopes, it is loosely compacted and contains fractured rock material. The exposed rock face of the canyon is highly weathered, fractured, and unstable due to natural erosive processes that provide the creek with its boulder, cobble, and gravel structure. The steepness of the drainage, the unstable condition of slope material, along with the continual erosional and hydrological forces, creates an environment of steep, unstable mountainous terrain. Slides of sidecast material from the December 2019 road work may have caused further destabilization along impacted areas of the canyon slopes (Creek HRP, HELIX, 2021).

C. POST-DEVELOPED

One of the objectives of this creek restoration project is to remove all sidecast material deposited as a result of the December 2019 road work.

SCE will implement the least invasive methodology described in Creek HRP to remove all rocks, coarse woody debris, and fine sediment sidecast into Mission Creek. The total estimated volume of sidecast material within RWQCB and CDFW jurisdictional areas is approximately 1,040 cubic yards, contained within the model study area, Creek Sites 1 through 4. SCE anticipates that 100 percent of this material will be removed. Sidecast deposits in these areas are believed to be fully removable through the implementation of the methodologies described in the Creek HRP.

D. METHODOLOGY

The Hydrology Study for Mission Creek is based on Santa Barbara County Flood Control and Water Conservation District design guidelines. WinTR-55 program created by United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Conservation Engineering Division is used for the hydrology
analysis.
WinTR-55 is a single-event rainfall-runoff, small watershed hydrologic model. The model generates hydrographs from both urban and agricultural areas and at selected points along the stream system. Hydrographs are routed downstream through channels and/ or reservoirs. Multiple sub-areas can be modeled within the watershed. The following is the program's capabilities and limitations:

Minimum Area: $\quad 1$ acre
Maximum Area: 25 square miles
Number of Sub-watersheds: 1 to 10
Number of Reaches:
0 to 10
Reach Routing:
Structure Routing:
Rainfall Depth:
Muskingum-Cunge
Storage-Indication
User-defined, for this project South Coast area rainfall data is used

2-year 3.20
5-year 4.61
10-year 5.55
25-year 6.71
50-year 7.56
100-year 8.38
Rainfall Distributions: NRCS Type I, IA, II, III, for this project Type I is used
Rainfall Duration: 24-hour
Dimensionless Unit Hydrograph: Standard peak factor 484
Antecedent Runoff Condition: AMC2

Hydrologic Soil Group:Used http://websoilsurvey.nrcs,usda.gov/app/ to obtain hydrologic soils group for the project. Most of the soils group indicated hydrologic soil group D, see Appendix A.

Runoff Curve Number: Used Tables 2-2A through 2-2D of "TR-55, Urban Hydrology for Small Watershed," Published by USDA NRCS. For the project, the Runoff Curve Number for Herbaceous cover in Fair Condition and Hydrologic Soil Group D is 89 , see Appendix A.

Time of Concentration: Lag for a watershed can be defined as the elapsed time (in hours) from the beginning of unit effective rainfall to
the instant that the summation hydrograph for the point of concentration reaches 50 percent of ultimate discharge. By comparing lag values (obtained from the analysis of rainfall-runoff data) to catchment time of concentration Tc values, a relationship is readily determined, lag $=0.8 \mathrm{Tc}$.

For large scale natural condition catchment studies, the following empirical formula is used:

Lag (hour) $=\mathrm{Ct}\left(\left(\mathrm{L}^{*} \mathrm{Lca}\right) / \mathrm{S}^{0.5}\right)^{\mathrm{m}}$
Where
$\mathrm{Ct}=\mathrm{a}$ constant (24 n), for n value, 0.040 is used
$\mathrm{L}=$ length of longest watercourse (miles)
Lca = length along longest watercourse, measured upstream to a point opposite center of area (miles)
$\mathrm{S}=$ overall slope of drainage area between the headwaters and the collection point (feet per mile)
$\mathrm{m}=\mathrm{a}$ constant determined (0.38)

For time concentration and lag calculations, See Appendix A.

III. HYDRAULIC ANALYSIS

Mission Creek is located in the unincorporated areas of Santa Barbara County, California. The hydraulic study was performed for approximately 500 feet of the stream. The extent of the stream is from 100 feet upstream of Spyglass Road Bridge crossing to 400 feet downstream. The overbank area of Mission Creek for entire study reach area is natural open space (Los Padres National Forest). The Spyglass Road Bridge is a metal I-beam bridge with stone abutments and steel plate top surface (See Figures 7 \& 8).

A. HYDRAULIC MODEL ASSUMPTIONS

The U.S. Army Corps of Engineers (USACE) HEC-RAS, River Analysis System (USACE, 2016), was used to analyze the impact of the proposed sidecast removal within Mission Creek. The HEC- RAS 5.0.7 version was utilized for developing the channel geometric model.

The HEC-RAS model is a comprehensive program that is intended for calculating water surface profile hydraulics for steady/unsteady and gradually varied flow in natural and manmade channels. It is the primary tool used in the industry to evaluate the hydraulics of floodplain and floodplain mapping studies. The steady flow component is the process used for the current study and is capable of modeling subcritical, supercritical, and mixed flowrate surface profile regimes. The basic computational procedure is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction/expansion. The momentum equation is utilized in situations where the water surface profile is rapidly varied. The effects of various obstructions such as bridges and structures within the floodplain may be considered in the computation.

The following several assumptions and guidelines were utilized in the development of the floodplain hydraulic model for the Mission Creek Stream Restoration project:

Cross-Section Data

A post-impact LiDAR survey along with a topographic survey of creek impact sites were performed in early 2020 to produce a topographic map of the canyon. LIDAR data was in the form of mass points (each point was attributed with latitude, longitude and elevation). Projected mass points were used to create a Triangulated Irregular Network (TIN) for the areas surrounding the stream. 1-foot and 5-foot contours were generated from the TIN.

1-foot and 5-foot contours were used to cut a total of 28 cross-sections for
the study area. Each cross-section was oriented such that it is normal to the contours. The structure information for Spyglass Road Bridge is obtained from measurements in the field.

Channel Roughness

Proper selection of the Manning's roughness coefficient, n value, is one of the more critical and subjective elements describing the hydraulics. The selection of the appropriate Manning's roughness coefficient was performed based on: (1) field observation and inspection of the existing floodplain conditions, (2) color aerial photographs, (3) field ground photographs of representative locations along the natural creek corridor, and (4) comparison to published guidelines for roughness selection based on similar ground photographs corresponding to representative cross sections.

Manning's coefficient values were determined using photographs taken during field reconnaissance in conjunction with the aerial images to estimate Manning's coefficients of the cross sections. For channel areas, a Manning's n value of 0.04 is selected. For overbank areas, a Manning's n value of 0.05 is selected.

Interval Spacing

The cross-section spacing was generally between 5 feet to 20 feet in separation. Cross-section spacing was also determined based upon ensuring that the average channel characteristics were correctly modeled, including all changes in the average geometry or roughness.

Boundary Conditions

Boundary conditions within the flow data menu are necessary to initiate calculations. Starting water surface elevation for upstream was based upon normal depth using a slope of 0.037 due to the flat bottom reach of the creek, for downstream critical depth is used due to the steep bottom reach of the creek.

Discharge

Hydraulic modeling was performed using the 100 year storm discharge of $1,673 \mathrm{cfs}$ at the upstream end of the Mission Creek study.

B. PRE-DEVELOPED HYDRAULIC MODEL

A Pre-Developed hydraulic model was developed based on post-impact LiDAR survey along with a topographic survey of creek impact sites. A total of 28 cross sections and a bridge crossing were used for the model. For Pre-Developed condition hydraulic calculations, see Appendix B.

C. POST-DEVELOPED HYDRAULIC MODEL

A Post-Developed hydraulic model was developed which reflects the four (4) proposed sidecast removal areas within the Mission Creek. The sidecast removal areas and limits are based on the coordination with the fluvial morphology and stream hydrologist team's recommendations. Recommendations for the removals are based on a memorandum letter from Helix Environmental Planning (as Appendix G). Removal depths and widths are outlined in a table as part of the memorandum letter. The tabular data represents field data collected and compiled by Ecokai Environmental, Inc. for the purpose use in the regulatory permitting process and development of the HRP. The data was collected for the purpose of creek characterization and restoration design and adjustments may be require during the actual sidecast removal process.

Cross Sections with removal limits are prepared and included in Appendix F. For Post-Developed condition hydraulic calculations, see Appendix C.

IV. RESULTS

A. HYDROLOGY ANALYSIS

The Hydrology Analysis for Mission Creek consists of 1 subarea total of 1,260.2 acres which generate a Q2 of 488 cfs , Q5 of 810 cfs , Q10 of $1,027 \mathrm{cfs}$, Q25 of 1,294 cfs, Q50 of 1,487 cfs, and Q100 of 1,673 cfs at the outlet point. This drainage area ultimately flows along Mission Creek, then drains into Pacific Ocean. The WinTr-55 calculations are included in Appendix A, and Hydrology Map located in Appendix D.

B. PRE-DEVELOPED HYDRAULIC ANALYSIS

In the Pre-Developed Hydraulic Analysis, HEC-RAS was utilized to analyze the hydraulic components of the existing stream which reflects the existing streambed geometry and cross sections.

A summary of calculated water surface elevations for the 100 -year hydraulic analysis performed with HEC-RAS, which reflects predeveloped condition for Mission Creek is indicated in Table No. 1 -Pre-Developed Condition Hydraulic Summary. A Hydraulic Exhibit -Pre-Developed Condition is located in Appendix E.

The pre-developed model indicated a few small pools at the bottom of the creek (River Stations 1928, 1976 and 2068) and many channel bottom areas with sidecast deposits (River Stations 1700, 1733, 1750, 1777, 1793, 1913, 1951, 1965, 2041 and 2051).

The results shown on Table No. 1 indicated the channel velocities slow down significantly within Creek Site 1 area (River Stations 2035 to 2068). This is due to the runoff entering an exiting pool at River Station 2068. Flow depths within Creek Site 1 area (River Stations 2035 to 2068) increased due to the energy loss entering the pool and the bridge crossing at River Station 2009.5. The bridge opening created an obstruction and caused a backwater effect upstream of the bridge, in this case Creek Site 1 area.

A creek profile is included in Figure 9 to depict the channel bottom and flow depths. The water surface profile showed a non-laminar flow pattern due to the irregular channel geometry, small ponds and sidecast deposits.

C. POST-DEVELOPED HYDRAULIC ANALYSIS

In the Post-Developed Hydraulic Analysis, HEC-RAS was utilized to analyze the hydraulic components of the existing stream which reflects the four (4) proposed sidecast removal areas, bridge crossing, existing streambed geometry and cross sections.
A summary of calculated water surface elevations for the 100-year hydraulic analysis performed with HEC-RAS, which reflects postdeveloped condition for the Mission Creek is indicated in Table No. 2 - Post-Developed Condition Hydraulic Summary. A Hydraulic Exhibit - Post-Developed Condition is located in Appendix E. Cross Sections for the sidecast removals are included in Appendix F.

Table 3 is prepared to compare changes between the pre- and postdeveloped conditions, for the water surface elevations and channel velocities. The difference in water surface elevations range from -5.2, to $+0.9^{\prime}$. The difference in channel velocities range from $-5.7 \mathrm{ft} / \mathrm{s}$ to $+15.6 \mathrm{ft} / \mathrm{s}$. These changes are caused by the proposed sidecast removals at or/and near the bottom of the stream bed - it is proposed to remove 1 ' to 4 ' of side cast material in the channel bottom and side slopes. These changes in channel geometry create small ponding pools and small drops in the channel bottom throughout the sidecast removal areas.

A few of the sections upstream of the bridge (Sections 2051 and 2068) have the most significant changes in flow depths and velocities. Due to the removal of the sidecast material at the bottom of the creek which created a steeper channel gradient and the bridge crossing still act as obstruction, a backwater condition is created upstream of the bridge. Most sections upstream of the bridge (Sections 2018 to 2068) experienced an increase in velocities (range from $3.7 \mathrm{ft} / \mathrm{s}$ to $15.6 \mathrm{ft} / \mathrm{s}$)
and decrease in flow depths (range from 1.8^{\prime} to 4.9^{\prime}).

A creek profile is included in Figure 10 to depict the channel bottom and flow depths. The water surface profile showed a non-laminar flow pattern due to the irregular channel geometry, small ponds and sidecast deposits.

Overall, the post-developed condition (with sidecast removals) will create a restored stream condition similar to that which existed prior to side cast deposition.

V. REFERENCES

HELIX Environmental Planning, 2021. Mission Creek Habitat Restoration Plan. Prepared for Southern California Edison.

HELIX Environmental Planning, 2021. Technical Implementation Plan Restoration of Creek Sites 1-4, Mission Creek Habitat Restoration Project, Santa Barbara County, California. Prepared for Southern California Edison.

USACE, 2016. River Analysis System User's Manual for Version 5.0, Hydrologic Engineering Center, Davis, CA.

USDA, 2009, Small Watershed Hydrology Win TR-55 User Guide, NRCS Conservation Engineering Division.

VI. FIGURES

Figure I

Figure 3: Looking down on Creek Site 1 where sidecast material under netting from top of right bank just upstream of Spyglass Road Bridge.

Figure 4: Looking upstream at Creek Site 1 from under the bridge. Sidecast can be seen under netting on both sides of the creek and within the creek bed mixed in with existing rock.

Figure 5: Looking downstream at Creek Site 2 showing sidecast material intermixed with pre-existing creek boulders and cobbles on the downstream side of the bridge.

Source: HELIX, 2021.

Figure 6: Looking Upstream at Creek Site 4 with majority of sidecast is along the right bank with large sidecast boulders and cobbles within the creek bed.

Source: HELIX, 2021.

Figure 7: Upstream of Spyglass Road Bridge, Looking downstream.

Figure 8: Downstream End of Spyglass Road Bridge.

FIGURE 9

Flgunt 10

VII. TABLES

TABLE 1: HYDRAULIC SUMMARY - PRE DEVELOPED CONDITION

RIVER STA	Q (cfs)	CHANNEL ELEV. (ft)	W.S. ELEV. (ft)	FLOW DEPTH (ft)	CHANNEL VEL. (fps)
2154	1673	1215.00	1221.88	6.88	14.57
2129	1673	1210.00	1215.20	5.20	22.34
2100	1673	1206.30	1210.98	4.68	23.10
2068	1673	1203.80	1213.33	9.53	6.45
2051	1673	1204.00	1213.26	9.26	6.50
2041	1673	1203.80	1212.57	8.77	8.62
2035	1673	1202.80	1212.11	9.31	9.73
2018	1673	1202.20	1210.60	8.40	12.62
2011	1673	1200.70	1206.14	5.44	19.25
2009.5	1673	1199.40	1203.97	4.57	21.74
2000	Bridge				
1988.5	1673	1198.30	1205.77	7.47	12.89
1987	1673	1197.00	1201.51	4.51	19.36
1976	1673	1186.00	1192.66	6.66	27.64
1965	1673	1187.00	1191.63	4.63	26.67
1951	1673	1187.80	1192.25	4.45	22.51
1938	1673	1186.30	1191.20	4.90	22.32
1928	1673	1182.00	1188.10	6.10	24.93
1913	1673	1184.00	1187.53	3.53	22.70
1900	1673	1182.00	1185.32	3.32	23.63
1850	1673	1180.00	1184.17	4.17	17.62
1826	1673	1179.20	1183.70	4.50	15.72
1802	1673	1178.20	1182.52	4.32	15.92
1793	1673	1177.60	1182.51	4.91	14.88
1777	1673	1177.00	1183.25	6.25	12.14
1750	1673	1174.50	1180.36	5.86	16.65
1733	1673	1174.30	1178.02	3.72	19.05
1700	1673	1174.00	1180.03	6.03	11.28
1680	1673	1171.60	1176.73	5.13	17.00
1657	1673	1165.00	1170.20	5.20	23.82
1635	1673	1163.30	1166.67	3.37	24.41
1600	1673	1160.30	1165.49	5.19	19.51
1580	1673	1158.00	1162.85	4.85	20.81

See Appendix B for support information

TABLE 2: HYDRAULIC SUMMARY - POST DEVELOPED CONDITION

RIVER STA	Q (cfs)	CHANNEL ELEV. (ft)	W.S. ELEV. (ft)	FLOW DEPTH (ft)	CHANNEL VEL. (fps)
2154	1673	1215.00	1221.88	6.88	14.57
2129	1673	1210.00	1215.20	5.20	22.34
2100	1673	1206.30	1210.98	4.68	23.10
2068	1673	1203.80	1208.16	4.36	22.07
2051	1673	1202.80	1208.40	5.60	18.51
2041	1673	1202.10	1209.97	7.87	12.29
2035	1673	1201.70	1208.33	6.63	15.03
2018	1673	1200.20	1208.81	8.61	12.63
2011	1673	1199.80	1207.00	7.20	15.54
2009.5	1673	1199.40	1204.41	5.01	19.14
2000	Bridge				
1988.5	1673	1198.30	1205.77	7.47	12.89
1987	1673	1197.00	1201.51	4.51	19.36
1976	1673	1184.00	1190.76	6.76	29.25
1965	1673	1185.00	1189.89	4.89	27.81
1951	1673	1185.80	1190.38	4.58	23.77
1938	1673	1185.00	1189.62	4.62	22.66
1928	1673	1180.00	1186.14	6.14	25.50
1913	1673	1182.00	1186.00	4.00	22.48
1900	1673	1182.00	1185.77	3.77	20.58
1850	1673	1180.00	1184.32	4.32	16.83
1826	1673	1179.20	1183.77	4.57	15.40
1802	1673	1176.00	1180.92	4.92	18.08
1793	1673	1176.00	1180.97	4.97	16.44
1777	1673	1176.00	1182.78	6.78	10.39
1750	1673	1174.50	1181.67	7.17	12.24
1733	1673	1173.60	1177.42	3.82	19.18
1700	1673	1174.00	1178.42	4.42	12.58
1680	1673	1167.60	1172.89	5.29	20.80
1657	1673	1162.00	1165.92	3.92	26.15
1635	1673	1163.30	1167.40	4.10	18.76
1600	1673	1160.30	1165.81	5.51	17.45
1580	1673	1158.00	1162.98	4.98	19.72

See Appendix B for support information

TABLE 3: HYDRAULIC COMPARISON

$\begin{gathered} \hline \text { RIVER } \\ \text { STA. } \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \text { (cfs) } \end{gathered}$	PRE-DEV. W.S. ELEV. (ft)	POST-DEV. W.S. ELEV. (ft)	DIFFERENCE IN W.S. ELEV. (ft)	PRE-DEV. VELOCITY (fps)	POST-DEV. VELOCITY (fps)	DIFFERENCE IN VELOCITY (fps)
2154	1673	1221.88	1221.88	0.0	14.57	14.57	0.0
2129	1673	1215.20	1215.20	0.0	22.34	22.34	0.0
2100	1673	1210.98	1210.98	0.0	23.10	23.10	0.0
2068	1673	1213.33	1208.16	-5.2	6.45	22.07	15.6
2051	1673	1213.26	1208.40	-4.9	6.50	18.51	12.0
2041	1673	1212.57	1209.97	-2.6	8.62	12.29	3.7
2035	1673	1212.11	1208.33	-3.8	9.73	15.03	5.3
2018	1673	1210.60	1208.81	-1.8	12.62	12.63	0.0
2011	1673	1206.14	1207.00	0.9	19.25	15.54	-3.7
2009.5	1673	1203.97	1204.41	0.4	21.74	19.14	-2.6
2000	Bridge						
1988.5	1673	1205.77	1205.77	0.0	12.89	12.89	0.0
1987	1673	1201.51	1201.51	0.0	19.36	19.36	0.0
1976	1673	1192.66	1190.76	-1.9	27.64	29.25	1.6
1965	1673	1191.63	1189.89	-1.7	26.67	27.81	1.1
1951	1673	1192.25	1190.38	-1.9	22.51	23.77	1.3
1938	1673	1191.20	1189.62	-1.6	22.32	22.66	0.3
1928	1673	1188.10	1186.14	-2.0	24.93	25.50	0.6
1913	1673	1187.53	1186.00	-1.5	22.70	22.48	-0.2
1900	1673	1185.32	1185.77	0.5	23.63	20.58	-3.1
1850	1673	1184.17	1184.32	0.1	17.62	16.83	-0.8
1826	1673	1183.70	1183.77	0.1	15.72	15.40	-0.3
1802	1673	1182.52	1180.92	-1.6	15.92	18.08	2.2
1793	1673	1182.51	1180.97	-1.5	14.88	16.44	1.6
1777	1673	1183.25	1182.78	-0.5	12.14	10.39	-1.8
1750	1673	1180.36	1181.67	1.3	16.65	12.24	-4.4
1733	1673	1178.02	1177.42	-0.6	19.05	19.18	0.1
1700	1673	1180.03	1178.42	-1.6	11.28	12.58	1.3
1680	1673	1176.73	1172.89	-3.8	17.00	20.80	3.8
1657	1673	1170.20	1165.92	-4.3	23.82	26.15	2.3
1635	1673	1166.67	1167.40	0.7	24.41	18.76	-5.7
1600	1673	1165.49	1165.81	0.3	19.51	17.45	-2.1
1580	1673	1162.85	1162.98	0.1	20.81	19.72	-1.1

See Appendix B for support information

VIII. APPENDICES

APPENDIX A

Win TR-55 Inputs

User:	MN	Date:	$9 / 20 / 2021$
Project:	Mission Creek	Units: Units: Acres	
SubTitle:	Stream Restoration	Areal Units:	
State:	California		
County:	Santa Barbara		
Filename:	C: \Users \backslash Mng.WILSONMIKAMI \backslash AppData		

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Tc
Area A	Existing Land Use	Outlet	1260.2	89	2.420
Total area:	1260.20	$(a c)$			

--- Storm Data --
Rainfall Depth by Rainfall Return Period

$\begin{aligned} & 2-Y r \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 5-\mathrm{Yr} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & 10-Y r \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 25-Y r \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 50-Y r \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 100-Y r \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 1-Y r \\ & \text { (in) } \end{aligned}$
3.2	4.61	5.55	6.71	7.56	8.38	3.0

Storm Data Source: User-provided custom storm data
Rainfall Distribution Type: Type I
Dimensionless Unit Hydrograph: <standard>

Mission Creek
Stream Restoration
Santa Barbara County, California
Storm Data
Rainfall Depth by Rainfall Return Period

$\begin{aligned} & 2-Y r \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { 5-Yr } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 10-Y r \\ & (i n) \end{aligned}$	$\begin{aligned} & 25-Y r \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { 50-Yr } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 100-Y r \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & 1-\mathrm{Yr} \\ & \text { (in) } \end{aligned}$
3.2	4.61	5.55	6.71	7.56	8.38	3.0

Storm Data Source: User-provided custom storm data
Rainfall Distribution Type: Type I
Dimensionless Unit Hydrograph: <standard>

Mission Creek Stream Restoration
Santa Barbara County, California
Watershed Peak Table

HYDROLOGIC SOIL GROUP MAP
SOURCE : USDA / ARCS / WEB SOICSURVEY

Santa Barbara County, California, South Coastal Part

MbH—Maymen-Rock outcrop complex , 50 to 75 percent slopes

Map Unit Setting

National map unit symbol: hc73
Elevation: 390 to 3,710 feet
Mean annual precipitation: 23 to 33 inches
Mean annual air temperature: 59 to 64 degrees F
Frost-free period: 290 to 365 days
Farmland classification: Not prime farmland

Map Unit Composition

Maymen and similar soils: 50 percent
Rock outcrop: 30 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Maymen

Setting

Landform: Mountains
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Mountainflank
Down-slope shape: Concave
Across-slope shape: Convex
Parent material: Residuum weathered from shale, conglomerate and/or sandstone

Typical profile

H1-0 to 4 inches: stony fine sandy loam
H2-4 to 14 inches: loam
H3-14 to 18 inches: unweathered bedrock

Properties and qualities

Slope: 50 to 75 percent
Depth to restrictive feature: 10 to 18 inches to lithic bedrock
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water
(Ksat): Moderately high to high (0.20 to $1.98 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 1.8 inches)
Interpretive groups
Land capability classification (irrigated): 7e
Land capability classification (nonirrigated): 7e
Hydrologic Soil Group:

Hydric soil rating: No

Description of Rock Outcrop

Setting

Landform: Mountains
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Mountainflank
Down-slope shape: Concave
Across-slope shape: Convex
Parent material: Sedimentary rock

Typical profile

H1-0 to 60 inches: unweathered bedrock

Properties and qualities

Slope: 50 to 99 percent
Depth to restrictive feature: 0 inches to lithic bedrock Runoff class: Very high

Interpretive groups

Land capability classification (irrigated): 8
Land capability classification (nonirrigated): 8
Hydric soil rating: No

Minor Components

Gaviota

Percent of map unit: 8 percent
Landform: Hills
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

Lodo

Percent of map unit: 8 percent
Landform: Low hills
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Concave
Across-slope shape: Convex
Hydric soil rating: No

Unnamed

Percent of map unit: 4 percent

Hydric soil rating: No

Data Source Information

Soil Survey Area: Los Padres National Forest Area, California
Survey Area Data: Version 12, May 29, 2020
Soil Survey Area: Santa Barbara County, California, South Coastal Part
Survey Area Data: Version 13, May 29, 2020

Santa Barbara County, California, South Coastal Part

Rb—Rock outcrop-Maymen complex, 75 to 100 percent slopes

Map Unit Setting

National map unit symbol: hc6f
Elevation: 490 to 4,030 feet
Mean annual precipitation: 24 to 34 inches
Mean annual air temperature: 57 to 63 degrees F
Frost-free period: 265 to 365 days
Farmland classification: Not prime farmland

Map Unit Composition

Rock outcrop: 70 percent
Maymen and similar soils: 25 percent
Minor components: 5 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rock Outcrop

Setting

Landform: Mountains
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Mountainflank
Down-slope shape: Concave
Across-slope shape: Convex
Parent material: Sedimentary rock

Typical profile

H1-0 to 60 inches: unweathered bedrock

Properties and qualities

Slope: 75 to 99 percent
Depth to restrictive feature: 0 inches to lithic bedrock
Runoff class: Very high
Interpretive groups
Land capability classification (irrigated): 8
Land capability classification (nonirrigated): 8
Hydric soil rating: No

Description of Maymen

Setting
Landform: Mountains
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Mountainflank
Down-slope shape: Concave
Across-slope shape: Convex
Parent material: Residuum weathered from shale, conglomerate and/or sandstone

Typical profile

H1-0 to 4 inches: stony fine sandy loam
H2-4 to 14 inches: loam
H3-14 to 18 inches: unweathered bedrock

Properties and qualities

Slope: 75 to 99 percent
Depth to restrictive feature: 0 to 15 inches to lithic bedrock
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water
(Ksat): Moderately high to high (0.20 to $1.98 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 1.8 inches)

Interpretive groups

Land capability classification (irrigated): 8 e
Land capability classification (nonirrigated): 8 e
Hydrologic Soil Group: D
Hydric soil rating: No

Minor Components

Gaviota

Percent of map unit: 3 percent
Landform: Hills
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No
Lodo
Percent of map unit: 2 percent
Landform: Low hills
Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

Data Source Information

Soil Survey Area: Los Padres National Forest Area, California Survey Area Data: Version 12, May 29, 2020
Soil Survey Area: Santa Barbara County, California, South Coastal Part Survey Area Data: Version 13, May 29, 2020

Table 2-2a Runoff curve numbers for urban areas $1 /$

[^0]| $\overline{\text { Chapter 2 }}$ | $\overline{\text { Estimating Runoff }}$ | |
| :--- | :--- | :--- |
| | | Technical Release 55
 Urban Hydrology for Small Watersheds |

Table 2-2b Runoff curve numbers for cultivated agricultural lands $1 /$

	Cover description			rve olog	for roup	
Cover type	Treatment ${ }_{2} /$	Hydrologic condition $3 /$	A	B	C	D
Fallow	Bare soil	-	77	86	91	94
	Crop residue cover (CR)	Poor	76	85	90	93
		Good	74	83	88	90
Row crops	Straight row (SR)	Poor	72	81	88	91
		Good	67	78	85	89
	SR + CR	Poor	71	80	87	90
		Good	64	75	82	85
	Contoured (C)	Poor	70	79	84	88
		Good	65	75	82	86
	$\mathrm{C}+\mathrm{CR}$	Poor	69	78	83	87
		Good	64	74	81	85
	Contoured \& terraced (C\&T)	Poor	66	74	80	82
		Good	62	71	78	81
	C\&T+ CR	Poor	65	73	79	81
		Good	61	70	77	80
Small grain	SR	Poor	65	76	84	88
		Good	63	75	83	87
	SR + CR	Poor	64	75	83	86
		Good	60	72	80	84
	C	Poor	63	74	82	85
		Good	61	73	81	84
	$\mathrm{C}+\mathrm{CR}$	Poor	62	73	81	84
		Good	60	72	80	83
	C\&T	Poor	61	72	79	82
		Good	59	70	78	81
	C\&T+ CR	Poor	60	71	78	81
		Good	58	69	77	80
Close-seeded	SR	Poor	66	77	85	89
or broadcast		Good	58	72	81	85
legumes or	C	Poor	64	75	83	85
rotation		Good	55	69	78	83
meadow	C\&T	Poor	63	73	80	83
		Good	51	67	76	80

1 Average runoff condition, and $\mathrm{I}_{\mathrm{a}}=0.2 \mathrm{~S}$
2 Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.
${ }^{3}$ Hydraulic condition is based on combination factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes, (d) percent of residue cover on the land surface (good $\geq 20 \%$), and (e) degree of surface roughness.

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

Technical Release 55
Urban Hydrology for Small Watersheds

Table 2-2c Runoff curve numbers for other agricultural lands $\frac{1 /}{}$

| | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |

Table 2-2d Runoff curve numbers for arid and semiarid rangelands $\underline{1 /}$

TIME OF CONCENTRATION AND LAG CALCULATIONS

For large scale natural condition catchment studies, the following empirical formula is used:

$$
\operatorname{lag}(\text { hours })=\mathrm{Ct}\left((\mathrm{~L} \cdot \mathrm{Lca}) / \mathrm{S}^{0.5}\right)^{\mathrm{m}}
$$

where
$\mathrm{Ct}=$ a constant (24 n), for n value, 0.040 is used
$\mathrm{L}=$ length of longest watercourse (miles)
Lca $=$ length along longest watercourse, measured upstream to a point opposite center of area (miles)
$S=$ overall slope of drainage area between the headwaters and the collection point (feet per mile)
$\mathrm{m}=\mathrm{a}$ constant determined (0.38)
$\mathrm{Ct}=24(0.04)$
$\mathrm{L}=2.37$ miles
$\mathrm{Lca}=1.42$ miles
$S=0.208$
$\mathrm{m}=0.38$

$$
\begin{aligned}
\operatorname{lag}= & 24(0.04)\left(2.37 * 1.42 /(0.208)^{0.5}\right)^{0.38} \\
& =1.94 \text { hours }
\end{aligned}
$$

$$
\begin{aligned}
\text { Lag } & =0.8 \mathrm{Tc} \\
& =0.8 / 1.94 \\
& =2.42 \text { hours }
\end{aligned}
$$

SAN BERNARDINO COUNTY

HYDROLOGY MANUAL

APPENDIX B

HEC-RAS Plan: Plan 12 River: Mission Creek Reach: 1 Profile: PF 1

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	2154	PF 1	1673.00	1215.00	1221.88	1222.79	1225.14	0.040059	14.57	118.11	42.27	1.47
1	2129	PF 1	1673.00	1210.00	1215.20	1217.26	1222.96	0.147340	22.34	74.90	34.64	2.68
1	2100	PF 1	1673.00	1206.30	1210.98	1213.37	1219.27	0.107595	23.10	72.43	24.74	2.38
1	2068	PF 1	1673.00	1203.80	1213.33	1210.54	1213.98	0.003275	6.45	259.43	44.32	0.47
1	2051	PF 1	1673.00	1204.00	1213.26		1213.92	0.003275	6.50	257.44	43.48	0.47
1	2041	PF 1	1673.00	1203.80	1212.57		1213.72	0.006413	8.62	194.11	33.90	0.64
1	2035	PF 1	1673.00	1202.80	1212.11	1210.72	1213.58	0.008613	9.73	171.98	30.06	0.72
1	2018	PF 1	1673.00	1202.20	1210.60	1210.60	1213.08	0.017128	12.62	132.55	27.67	1.00
1	2011	PF 1	1673.00	1200.70	1206.14	1207.87	1211.90	0.053977	19.25	86.91	21.77	1.70
1	2009.5	PF 1	1673.00	1199.40	1203.97	1206.11	1211.32	0.084775	21.74	76.96	23.65	2.12
1	2000		Bridge									
1	1988.5	PF 1	1673.00	1198.30	1205.77	1205.77	1208.35	0.016341	12.89	129.79	27.29	1.00
1	1987	PF 1	1673.00	1197.00	1201.51	1203.28	1207.34	0.061567	19.36	86.41	24.86	1.83
1	1976	PF 1	1673.00	1186.00	1192.66	1195.82	1204.53	0.144565	27.64	60.53	17.64	2.63
1	1965	PF 1	1673.00	1187.00	1191.63	1194.54	1202.68	0.145156	26.67	62.74	20.93	2.72
1	1951	PF 1	1673.00	1187.80	1192.25	1194.60	1200.13	0.092210	22.51	74.32	22.83	2.20
1	1938	PF 1	1673.00	1186.30	1191.20	1193.58	1198.94	0.084098	22.32	74.97	21.41	2.10
1	1928	PF 1	1673.00	1182.00	1188.10	1190.80	1197.76	0.118710	24.93	67.11	21.20	2.47
1	1913	PF 1	1673.00	1184.00	1187.53	1189.77	1195.53	0.111208	22.70	73.71	28.08	2.47
1	1900	PF 1	1673.00	1182.00	1185.32	1187.77	1194.01	0.112068	23.63	70.79	23.45	2.40
1	1850	PF 1	1673.00	1180.00	1184.17	1185.63	1189.00	0.056277	17.62	94.94	30.75	1.77
1	1826	PF 1	1673.00	1179.20	1183.70	1184.81	1187.54	0.041840	15.72	106.45	31.98	1.52
1	1802	PF 1	1673.00	1178.20	1182.52	1183.69	1186.45	0.044520	15.92	105.12	34.04	1.60
1	1793	PF 1	1673.00	1177.60	1182.51	1183.47	1185.95	0.034845	14.88	112.45	33.03	1.42
1	1777	PF 1	1673.00	1177.00	1183.25	1183.27	1185.54	0.017111	12.14	137.79	30.47	1.01
1	1750	PF 1	1673.00	1174.50	1180.36	1181.66	1184.67	0.039215	16.65	100.47	25.56	1.48
1	1733	PF 1	1673.00	1174.30	1178.02	1179.75	1183.66	0.071563	19.05	87.81	31.06	2.00
1	1700	PF 1	1673.00	1174.00	1180.03	1180.03	1182.01	0.016508	11.28	148.36	38.07	1.01
1	1680	PF 1	1673.00	1171.60	1176.73	1178.14	1181.22	0.049414	17.00	98.39	30.87	1.68
1	1657	PF 1	1673.00	1165.00	1170.20	1172.54	1179.02	0.135645	23.82	70.23	28.57	2.68
1	1635	PF 1	1673.00	1163.30	1166.67	1169.09	1175.93	0.141355	24.41	68.54	27.68	2.73
1	1600	PF 1	1673.00	1160.30	1165.49	1167.34	1171.40	0.075490	19.51	85.75	30.13	2.04
1	1580	PF 1	1673.00	1158.00	1162.85	1164.56	1169.58	0.101762	20.81	80.40	32.91	2.35

APPENDIX C

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
1	2154	PF 1	1673.00	1215.00	1221.88	1222.79	1225.14	0.040059	14.57	118.11	42.27	1.47
1	2129	PF 1	1673.00	1210.00	1215.20	1217.26	1222.96	0.147340	22.34	74.90	34.64	2.68
1	2100	PF 1	1673.00	1206.30	1210.98	1213.37	1219.27	0.107595	23.10	72.43	24.74	2.38
1	2068	PF 1	1673.00	1203.80	1208.16	1210.36	1215.73	0.101080	22.07	75.81	27.73	2.35
1	2051	PF 1	1673.00	1202.80	1208.40	1210.07	1213.72	0.062502	18.51	90.40	29.90	1.88
1	2041	PF 1	1673.00	1202.10	1209.97	1209.97	1212.32	0.017106	12.29	136.10	29.23	1.00
1	2035	PF 1	1673.00	1201.70	1208.33	1209.17	1211.84	0.028393	15.03	111.31	25.75	1.27
1	2018	PF 1	1673.00	1200.20	1208.81	1208.81	1211.29	0.017528	12.63	132.42	26.58	1.00
1	2011	PF 1	1673.00	1199.80	1207.00	1207.81	1210.75	0.029752	15.53	107.70	22.35	1.25
1	2009.5	PF 1	1673.00	1199.40	1204.41	1206.11	1210.10	0.058036	19.14	87.43	24.01	1.77
1	2000		Bridge									
1	1988.5	PF 1	1673.00	1198.30	1205.77	1205.77	1208.35	0.016341	12.89	129.79	27.29	1.00
1	1987	PF 1	1673.00	1197.00	1201.51	1203.28	1207.34	0.061567	19.36	86.41	24.86	1.83
1	1976	PF 1	1673.00	1184.00	1190.76	1194.28	1204.06	0.161310	29.25	57.19	15.72	2.70
1	1965	PF 1	1673.00	1185.00	1189.89	1192.96	1201.91	0.160010	27.81	60.16	20.16	2.84
1	1951	PF 1	1673.00	1185.80	1190.38	1192.91	1199.16	0.102881	23.77	70.39	21.65	2.32
1	1938	PF 1	1673.00	1185.00	1189.62	1191.92	1197.60	0.102243	22.66	73.82	25.33	2.34
1	1928	PF 1	1673.00	1180.00	1186.14	1188.89	1196.25	0.128168	25.50	65.60	20.98	2.54
1	1913	PF 1	1673.00	1182.00	1186.00	1188.27	1193.86	0.101974	22.48	74.41	26.81	2.38
1	1900	PF 1	1673.00	1182.00	1185.77	1187.77	1192.35	0.074427	20.58	81.30	24.07	1.97
1	1850	PF 1	1673.00	1180.00	1184.32	1185.63	1188.71	0.048949	16.83	99.43	30.97	1.66
1	1826	PF 1	1673.00	1179.20	1183.77	1184.81	1187.46	0.039360	15.40	108.61	32.06	1.48
1	1802	PF 1	1673.00	1176.00	1180.92	1182.43	1186.00	0.075213	18.08	92.56	37.01	2.01
1	1793	PF 1	1673.00	1176.00	1180.97	1182.25	1185.17	0.053945	16.44	101.77	36.53	1.74
1	1777	PF 1	1673.00	1176.00	1182.78	1182.21	1184.45	0.011849	10.39	161.05	34.48	0.85
1	1750	PF 1	1673.00	1174.50	1181.67	1181.67	1184.00	0.017234	12.24	136.64	29.44	1.00
1	1733	PF 1	1673.00	1173.60	1177.42	1179.18	1183.13	0.073320	19.18	87.25	31.26	2.02
1	1700	PF 1	1673.00	1174.00	1178.42	1178.87	1180.88	0.024065	12.58	133.01	38.92	1.20
1	1680	PF 1	1673.00	1167.60	1172.89	1174.93	1179.61	0.088470	20.80	80.42	28.27	2.17
1	1657	PF 1	1673.00	1162.00	1165.92	1168.53	1176.54	0.160977	26.15	63.99	26.06	2.94
1	1635	PF 1	1673.00	1163.30	1167.40	1169.08	1172.86	0.064566	18.76	89.19	29.27	1.89
1	1600	PF 1	1673.00	1160.30	1165.81	1167.34	1170.54	0.056174	17.45	95.89	31.86	1.77
1	1580	PF 1	1673.00	1158.00	1162.98	1164.56	1169.02	0.088323	19.72	84.85	33.86	2.20

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

Memorandum

HELIX Environmental Planning, Inc.
7578 El Cajon Boulevard
La Mesa, CA 91942

Date: November 19, 2021
To: Mark Mikami: WILSON MIKAMI CORPORATION
cc: Jim Burton: EcoKai
Todd Bear: EcoKai
Peter Tomsovic: HELIX
From: Justin Fischbeck
Subject: Sidecast data for Mission Creek; Creek areas 1-4
HELIX Project:

Message:

This memorandum accompanies the data requested related to sidecast removal within Creek Sites 1 through 4 of the Mission Creek Restoration Project as it pertains to your hydrologic modeling effort. The attached table provides dimensions of sidecast material that lies within the top water surface width of the modeled stream flow ($\mathrm{Q}=1673 \mathrm{cfs}$) and along specified cross-sections provided by Wilson Mikami. Dimensions provided include flow top width distance from creek centerline, main sidecast deposit distance from creek centerline (based on toe of slope of sidecast material), and average width and depth of sidecast material within the modeled stream flow, including the main sidecast deposits and areas of sidecast overflow into the creek bed.

The transmitted tabular data represents field data collected and compiled by EcoKai for the purpose of use in the regulatory permitting process and development of the HRP. The data was collected for the purposes of creek characterization and restoration design and should not be considered as having design survey-level accuracy. As such, the precision of this data has limitations. It is up to the end user to decide how best to incorporate the information and its applicability for their own objectives.

The following are assumptions used to compile and present these data for your consideration in your model output:

- Flow top widths are assumed to be equidistance on both left and right banks from the creek centerline. Top widths of stream flow data are found in the Pre-Developed Condition table in the Drainage Report for the Mission Creek Habitat Restoration Project (October 21, 2021).

11/19/2021

- It is assumed that the placement of the creek centerline presented in the Drainage Report and the creek centerline used in EcoKai's field survey are comparable.
- The average sidecast depths within flow top widths along each HEC-RAS cross-section are estimated based on EcoKai's field observations and are not based on survey data or direct measurement of sidecast depth above the natural ground surface along each cross-section.
- All sidecast material located within Creek Sites 1 through 4 will be removed.

Creek Site	Right Bank (RB) / Left Bank (LB)	EK Station (ft)	HEC-RAS Station Sections	Flow Top Width Distance from Centerline (ft) *	Main SC Deposit Distance (toe of slope) from Centerline (ft) ${ }^{* *}$	Ave Width of SC within $\mathrm{Q}(\mathrm{ft}){ }^{* * *}$	Ave Depth of SC within $\mathrm{Q}(\mathrm{ft})$ ****	Estimated Depth of SC Overflow within Creek Bed (ft)
1	RB	67.5	2068	22.0	9.0	13.0	0.5	0
	RB	84.5	2051	21.5	9.5	12.0	1.0	0
	RB	94.5	2041	17.0	7.5	9.5	1.5	1
	RB	100.5	2035	15.0	5.0	10.0	2.0	1
	RB	117.5	2018	14.0	5.0	9.0	2.0	1
	LB	100.5	2035	15.0	5.0	10.0	2.5	1
2	RB	159.5	1976	9.0	5.0	4.0	1.5	2
	RB	170.5	1965	10.5	5.5	5.0	2.0	2
	RB	184.5	1951	11.5	8.0	3.5	2.0	2
	RB	197.5	1938	10.5	4.0	6.5	5.0	2
	RB	207.5	1928	10.5	4.5	6.0	5.0	2
	RB	222.5	1913	14.0	5.5	8.5	2.0	2
3	RB	333.5	1802	17.0	6.5	10.5	3.0	0
	RB	342.5	1793	19.0	6.0	13.0	3.0	0
	RB	358.5	1777	15.0	6.0	9.0	3.0	0
4	RB	402.5	1733	17.0	16.0	1.0	1.0	0
	RB	435.5	1700	17.0	9.0	8.0	4.0	0
	RB	455.5	1680	15.0	0.0	15.0	5.0	4
	RB	478.5	1657	14.0	1.0	13.0	5.0	3

* From Pre-Developed Data Table in Drainage Report - Assumes Top Width is equidistance on Land R banks from creek centerline (e.g., Top Width $=44 \mathrm{ft},=22$ feet both sides of creek centerline)
** Field Measured by EcoKai along creek centerline as determined by EcoKai
*** Assumes HEC-RAS and EcoKai creek centerlines are the same and assumes stations along centerline are equivalent
**** Based on field estimates and photo reference
Q=1673 cfs

[^0]: ${ }^{1}$ Average runoff condition, and $\mathrm{I}_{2}=0.2 \mathrm{~S}$.
 2 The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98 , and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4.
 ${ }^{3}$ CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type.
 ${ }^{4}$ Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage ($\mathrm{CN}=98$) and the pervious area CN . The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition.
 5 Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

