DISCOUNTING AND UNCERTAINTY
 IN NATURAL RESOURCE DAMAGE ASSESSMENTS

Steve Hampton and Matthew Zafonte
Resource Economists, California Department of Fish and Game, Office of Spill Prevention and Response

DISCOUNTING

Restoration-based scaling methods, such as Habitat or Resource Equivalency Analysis (HEA or REA), quantify lost resource services from an injury and gained injury and/or the restoration project are projected to last several decades or even into perpetuity. Following economic theory and federal guidelines, resources provided (or lost) in the future are discounted at some specified rate

WHY DISCOUNT AT ALL?
Discounting is done for two basic reasons

1) Time preference: people prefer things in the present rather than in the future 2) Uncertainty in Outcomes
a. Variance in project benefits: the project may do better or worse than expected, risk-averse people generally prefer a lower mean return with less variance to a higher mean return with greater variance b. Ris.g. poor design or implementation) or external events (e.g. natura or political).

WHAT DIFFERENCE DOES IT MAKE?
The discounting regime or rate chosen can have a large impact on the scaling results. This is demonstrated in Figure 1. Imagine our units are restoration credits in terms of acre-years of ecological benefits. Over a 200 -year period, a 1% discoun rate would imply over four times more credit than a 5% discount rate (87.3 versus 21.0 acre-years of credit

WHAT DISCOUNT RATES DO PEOPLE USUALLY USE?

Both Trustees and RPs have almost universally employed a fixed rate of 3% in
NRDA cases.

- The 3% rate is recommended in the OPA 90 NRDA guidance document

The 3% rate is also endorsed in a DOI issue paper dealing with NRDA and is - employed in the CERCLA Type A Model for NRDA, adopted by DOI

However, these rates explicitly do not incorporate uncertainty; the 3% is meant to reflect only the social rate of time preference.

PRESENT VALUE TOTALS	
DISCOUNTING METHOD	PRESENTVALUE (PV)
Constant 5\%	21.0
Constant 3\%	34.2
Constant 2\%	50.0
Constant 1\%	87.3
Hyperbolic	42.5

A VALUABLE BUT FRAGILE CURRENCY In NRDA settlements, the public is compensated, directly or ndirectly, with restoration projects. Unike cash, this currency is
subject to considerable natural and political uncertainty over time The following references describe shortcomings of many Allen et al. 1994

Brown \& Smith 1998 | Cammen 1976 |
| :--- |
| Craft et al. 1988 |

 Craft et al. 19999
Delphey \& Dinsmore 1993 Langis et al. 1991
Melvin 4 Webb 1998
Milve Melvin \& Web 1998
Miller \& Simenstad 1 1
Peck et al. 1994 Peck et al. 1994
Saco et al 1994
Sctal
 Snell-Rood \& Cris
Strange tal. 200
Zedler 1993

IF EVERYONE USES 3\%, WHY DO WE CARE ABOUT IT?

Some economists have argued that the problem with constant discounting is that the present generation values the welfare of future generations more than constan discounting implies. In order to take such concerns into account, some have suggested the use of hyperbolic discounting, or discount rates that decline over time For example, one could employ a 3-4\% discount rate for the first few years, and then that this argument addresses time preference only; it does not address uncertainty.

The blue line in Figure 1 shows how the hyperbolic discounting method gives greater credit to benefits far into the future.

WHAT ABOUT UNCERTAINTY?

The literature on restoration projects present an overwhelming picture of underachievement, with some authors speculating that restored sites will "never reach functional equivalence" with natural comparison sites. In the OPA regulations (CFR 990.53(d)(4)), Trustees are specifically required to "evaluate the uncertainties" and to "use risk-adjusted measures... in conjunction with a riskless

HOW CAN WE INCORPORATE UNCERTAINTY?

There are three basic ways to incorporate uncertainty in restoration project success: RP -implemented projects, where the RP bears the risk of project failure (at least
in the short run).
2) Lower the expected benefit level to an "Expected Value" that incorporates the "insurance" regarding the variance and the odds of catastrophic failure
3) Incorporate risk and/or the odds of failure directly into the discount rate

WHEN UNCERTAINTY IS INCORPORATED INTO THE DISCOUNT RATE, WHAT DIFFERENCE DOES IT MAKE?
When either the injury or restoration is long-lasting, the specification of the discount rate can have a significant effect on restoration scaling calculations. In these We conclude that uncertainty associated with restoration project benefits, if incorporated into the discount rate, can overwhelm the effect of time preference on the discount rate. For example, incorporating an annual 1-in- 100 chance of project failure into a 3\% discount rate owers the Present Value (and amount of restoration credit) by 18% (from 34.2 to 27.9 in Figure 3). The Present Value (or restoration a constant 3% discount rate if one incorporates an annual risk of project failure as low as 1-in-200.

PRESENT VALUE TOTALS DISCOUNTING METHOD PRESENT VAL Constant 3%
hyperbolic w/ 1-in- 200 annual failure hyperbolic w/ 1-in-200 annual failure 35.1 hyperbolic w/ 1-in-100 annual failure hyperbolic w/ 1-in-50 annual failure

