Modeling optimal and marginal habitat in a non-equilibrium system for a threatened California endemic

Erica L. Orcutt & Philip Leitner

A Year in the Life of an MGS

MaxEnt Models

Occurrence Points

2016

2017

Dry

2016

2018

Wet

Background

Environmental Predictors

Predictor	Category	Source
Precipitation (30 year annual average, 1981-2010)	Climate	PRISM Climate Group
pH (depth 0-5cm)	Surface	POLARIS
Sand percentage (depth 0-5cm)	Surface	POLARIS
Albedo (mean, June 1, 2018 – August 31, 2018)	Surface	MCD43A3 (MODIS product)
Spectral Texture (difference day and night temperatures, June 1 – August 31, 2008-2018)	Surface	MODIS 11A2
Enhanced Vegetation Index	Vegetation	MODIS 13A1
Flow Accumulation	Vegetation/Hydrology	National Hydrography Dataset + USGS National Elevation Dataset
Grazing (past/present)	Disturbance	US Bureau of Land Management grazing polygons

Results

Final models:

- <u>Occurrences:</u> Dry vs. Wet (dry performed better)
- Background: Desert (similar results as All but perhaps more useful)
- Environmental Predictors: Spectral Texture, Albedo, EVI

Dry - Wet

Orcutt & Leitner 2019

Inman et al. 2013

Conclusions

- It seems like teasing apart Dry and Wet can give you some idea of optimal vs. marginal
- Surface type (spectral texture and albedo) are the most important variables for MGS habitat suitability
- Ideally, we can find ways to model vegetation community structure to understand biological interactions better

"PO [presence only] data, and consequently MaxEnt, may be best used for helping to ask better questions instead of answering them"

Merow, C., Smith, M. J., and Silander, J. A. Jr. (2013) A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. *Ecography* 36, 1058-1069.

