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ABSTRACT 

This fish passage document summarizes the 
state-of-the-science and provides guidelines 
for implementation of nature-based and 
technical fish passage solutions. Passage 
needs for Bull Trout (Salvelinus confluentus), 
Pacific Lamprey (Entosphenus tridentatus), 
White Sturgeon (Acipenser transmontanus), 
freshwater sculpin (Family Cottidae), and 
small-bodied (<150 mm) fishes in the Pacific 
Northwest region of the United States are 
specifically addressed. These Guidelines 
include links to useful resources, which 
should be consulted for more in-depth and 

detailed information. 

To complete their life cycles, most fishes must 
migrate between habitat types, flow conditions, 
and thermal regimes, which has become more 
critical in the face of climate change. The 
longest migrations are typically for 
anadromous species, such as Pacific Lamprey 
(Entosphenus tridentatus), that must journey 
between the ocean and freshwater spawning 
grounds to complete their life cycles. 
Additionally, other native aquatic species, 
such as Western Pearlshell (Margaritifera 
falcata), Western Ridged (Gonidea angulata) 
and Floater (Anodonta spp.) mussels, are 
dependent upon migratory fishes to complete 
their life cycles by dispersing offspring. On a 
broader population-level scale, connectivity 
facilitates the recolonization, range expansion, 
and migration of native fish species. Preserving 
and restoring aquatic connectivity will help 
ensure the long-term viability of fish 
populations (Olden et al. 2014). 

While improving passage at artificial barriers 
(e.g., dams or weirs) has been a multi-decadal 
focus for anadromous salmon and steelhead 
(Oncorhynchus spp.) in the Pacific Northwest, 
comparatively little attention has been given to 
passage needs for other culturally and 
ecologically significant fishes. The goal of this 
document is to fill that gap, which is timely 
given the growing interest in Nature-based 
Solutions and increasing connectivity in 
freshwater aquatic systems. 

Primary objectives of these Guidelines are to: 

1. raise awareness of the different passage 

needs for species other than Pacific salmon 
and steelhead; 

2. discuss basic passage constraints, such as 
jump heights, minimum flow depths, and 
maximum velocities; 

3. provide general recommendations to 
improve passage for a variety of fish life 
histories; and 

4. provide links to additional information and 
resources. 
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INTRODUCTION 

The US Fish and Wildlife Service (Service), is 
charged by Congress to preserve and protect 
our Federal trust species which include: 

“migratory birds, threatened species, 
endangered species, interjurisdictional fish, 

marine mammals, and other species of concern” 
(Partners for Fish and Wildlife Act of 2006). 

Among these trust resources are a variety of 
fish species which have cultural, ecological, 
economic, recreational, and symbolic 
importance to the Pacific Northwest (PNW) 
region of the United States. Additionally, the 
Service implements programs that support fish 
passage improvement, particularly the 
National Fish Passage Program and the 
National Fish Habitat Partnership. 

Fish passage is the ability of fish to move 
upstream, downstream and laterally into 

lakes, ponds, and tributary habitat (Figure 1). 
This is referred to more broadly as “aquatic 
connectivity,” with the loss of connectivity 
termed “habitat fragmentation.” While 
provision of fish passage is generally a positive 
attribute in aquatic systems, it can also result 
in inadvertent movement of fish into ditches, 
canals, and irrigation intakes. Additionally, 
restoring passage can open new pathways for 
aquatic invasive species. Hence, restoration of 
fish passage is context dependent and should 
be thoroughly evaluated prior to project 
implementation. 

The Service defines “fish passage” as the 
ability of fish and other aquatic species to 
move volitionally through an aquatic system 
among all habitats necessary to complete their 
life cycles; however, the focus of these 
Guidelines are on fish. In addition, the Service 
defines “barriers” to passage as anything that 
either prevents or reduces the ability of 
aquatic species to freely move to complete 
their life cycles. 

There are three broad categories of barriers: 

1) human-caused direct barriers, such as 
dams, culverts, and levees; 

2) human-caused indirect barriers, such as 
excess sediment, poor water quality, 
temperature, or flow limiting conditions, 
and artificial light at night that can be a 
diel fish barrier; and 

3) natural barriers, such as waterfalls, flows 
that go subsurface, or water chemistry. 

Figure 1 Idealized landscape with multiple habitat types that may be required by aquatic species to complete their 

life cycles. From Hayes et al. (2018), which is adapted from Hauer et al. (2016). 
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Only human-caused barriers are addressed in 
this document. Human-caused barriers (e.g., 
dams, weirs, irrigation diversions) and lateral 
constraints (e.g., levees, channelization) that 
reduce aquatic connectivity can cause habitat 
fragmentation for migratory fish species. 
Fragmentation often interrupts the completion 
of fish life cycles and therefore is identified as 
a primary threat. Passage restoration is a high 
priority for native fish conservation and 
recovery. However, no consolidated 
approaches exist to help project proponents 
improve passage and connectivity for the wide 
spectrum of Service trust species in the PNW. 
Furthermore, resident small-bodied native 

fishes, even those that are federally listed 
under the Endangered Species Act, are often 
left out of fish passage and screening 
considerations. 

Currently, the National Marine Fisheries 
Service has the only West Coast-wide fish 
passage design manual and it is narrowly 
focused on anadromous salmon and steelhead, 
which have relatively strong swimming and 
jumping abilities (NMFS 2022a; Table 1). 

Providing passage for anadromous salmonids 
is clearly important; however, this limited 
focus on large-bodied, strong swimming fish 
results in missed opportunities to improve 
passage and increase survival for a wider 
variety of weaker swimming and non-jumping 
native fish. Furthermore, traditionally 
engineered salmonid-specific fish ladders (for 
salmon and steelhead) focused on upstream 
adult passage can inadvertently create partial 
or complete barriers to other fishes and 
migration patterns. 

At the state level, both the Washington 
Department of Fish and Wildlife (WDFW) and 
the Oregon Department of Fish and Wildlife 

(ODFW) provide design guidance that extends 
beyond anadromous salmonids, and includes 
native migratory fish such as trout, lamprey, 
sturgeon, and suckers: 

• WDFW design criteria 

• ODFW administrative rules 

To ensure compliance with both state and 
federal criteria and rules, the most 
conservative design approach should be 

employed to ensure passage for the widest 
spectrum of fish and aquatic species. 

Terminology and jargon within the fish 
passage community of practice is extensive. 
Unfortunately, some common terms have 
developed multiple meanings and 
interpretations, particularly between 
disciplines. 

For the purposes of this document: 

• “fishway” includes fish ladders, fish passes, 
and other similar structures used on or 
around barriers (such as dams or weirs) to 
provide fish passage. 

• “fish screen” includes engineered structures 
that are intended to either guide or exclude 
fish into or away from fishways, turbines, 
canals, ditches, pipelines, and related 
structures. 

Similarly, within the fish passage literature 
there is considerable variation in both the 
terminology and metrics used to define a fish 
swimming performance. As such we use 
swimming speed definitions from Beamish 
(1978) as noted in Table 1. The intent of these 
definitions by Beamish (1978) was to 
standardize between various studies to allow 
for more direct comparison, but significant 
variability remains. 

According to Beamish (1978), ‘sustained’ 
swimming extends for more than 200 minutes, 
‘prolonged’ occurs for 20 seconds up to 200 
minutes, and ‘burst’ is up to 20 seconds. 
Further, Beamish (1978) defines ‘cruising’ as a 
subcategory of ‘sustained’ swimming, and 
‘critical’ as a special category of ‘prolonged’ 
swimming. ‘Critical’ is the maximum velocity 
fish can maintain for a specified time (Beamish 
1978). 

Designing passage projects, including barrier 
removal, habitat reconnection, natural 
fishways, and engineered structures for a wide 
range of fish is challenging. Research suggests 
designing a traditional engineered fishway to 
effectively accommodate salmonids, lamprey, 
sturgeon, and other native species may not be 
feasible (Daigle et al. 2005). Hence the 
preference for natural fishways and stream 
simulation (USDA 2008). Stream simulation: 
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https://media.fisheries.noaa.gov/2022-06/anadromous-salmonid-passage-design-manual-2022.pdf
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an ecological approach to providing passage 
for aquatic organisms at road-stream 
crossings. 

Engineered fishways with specific hydraulic 
design parameters, such as jump heights, flow 
depths, and maximum velocities, should be 
considered after natural fish passage 
approaches have been thoroughly evaluated 
and rejected. When using a hydraulic 
approach to fish passage, designs usually 
focus on swimming abilities of a specific fish 
(Table 1). These design parameters for the 
target species often result in a lack of 
adequate passage for other fish species and life 
stages. For instance, dams on the mainstem 
Columbia River were constructed with 
fishways designed to pass only adult 
anadromous salmonids and thus were not 
suitable for sturgeon or Pacific lamprey 
passage without significant retrofits. 

Numerous fish recovery plans and status 
assessments have identified passage barriers 
as threats. For example, in the Service's Bull 
Trout Recovery Plan (USFWS 2015), passage is 
regarded as one of the primary threats to 
persistence and recovery; however, there is 
limited information on how to improve passage 
and reduce habitat fragmentation. The Pacific 
Lamprey Assessment (USFWS 2019) also 
identifies passage barriers as the largest threat 
throughout the range of Pacific Lamprey 

but provides limited research-based direction 
on how to counteract this threat. White 
Sturgeon once moved freely throughout the 
Columbia River Basin but migrations are now 
largely restricted between hydropower dams or 
limited to downstream movements (CBWSPF 
2013). Fish passage and screening 
considerations often fail to include small-
bodied (<150 mm) native fishes, even those 
that are federally listed under the Endangered 
Species Act, such as Warner Sucker 
(Catostomus warnerensis), Shortnose Sucker 
(Chasmistes brevirostris), Lost River Sucker 
(Deltistes luxatus), Hutton Tui Chub (Gila 
bicolor ssp.) and Lahontan Cutthroat Trout 

(Oncorhynchus clarkii henshawi). Small-bodied 
fish are also a critical prey resource and some 
species are hosts for native mussels. To 
address these limitations, these fish passage 
guidelines will help project planners, 
designers, engineers, biologists, and managers 
include project-specific elements, such as the 
use of roughness elements, to improve passage 
and aquatic connectivity. 

This document focuses on four Service species 
of concern -- Bull Trout (Salvelinus 
confluentus), Pacific Lamprey (Entosphenus 
tridentatus), White Sturgeon (Acipenser 
transmontanus), and freshwater sculpin 
(Family Cottidae) -- while also providing more 
general consideration for small-bodied fishes. 

Species Jumping Ability Flow Depth Swimming Speed  (m/s)
Cited  

Jumping  
Measured/Obs  

Jump Height (m)  
Minimum  (m)  Sustained  

>200 mins  
Prolonged   

< 200 mins  but > 20 secs  
Burst  

<20 secs  

Chinook Salmon1  Y  2.13  0.37  1.04  3.12  6.83 

White Sturgeon1 N n/a  1.0 No data 1.23 / 2.26* No data  

Bull Trout2,5 Y <0.5  No data No data 0.48 / 0.74* 1.3 / 2.3*  

Speckled Dace4 No data No data  No data No data 0.63 1.30  

Mottled Sculpin4 No data No data  No data No data 0.51 1.18  

Longnose Dace4 No data No data  No data No data 0.67 1.15  

Redside Shiner4 No data No  data  No data No data 0.55 1.12  

Mountain Whitefish6 No data No data  No data No data 0.43 1.07  

Pacific Lamprey2,7 Y <0.5  0.3 No data 0.86 0.86  

Riffle Sculpin1 N No data  0.3 No data 0.77 0.77  

Warner Sucker3 No data No data  No data No data 0.37 0.46  

Table 1 Published swimming speeds of select PNW fish. From: Matica (2020) and Katopodis and Gervais (2016). 

Matica 20201, Mesa et al. 20082, Scheerer and Clements 20133, Aedo et al. 20094, Mesa and Weiland 20045, 

Katapodis and Gervais 20166, LTW 20237. 

*When two speeds are listed, it indicates "Juvenile / Adult". Swimming speed definitions from Beamish (1978) 
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This focus does not negate the needs for 
otherfishes; hence, the document is structured 
such that other species can be added in the 
future. The intent is not to provide an 
exhaustive list of information for all species 
but rather to provide a broad range of life 
history strategies and passage considerations. 
The range of considerations when combined 
with guidance documents from anadromous 
salmonids collectively addresses the diversity 
of species and passage needs that occur within 
the PNW. The intended audience includes fish 
passage and habitat engineers, biologists, 
project managers, and other restoration 
practitioners who are designing, implementing, 

and assessing floodplain and channel designs, 
and structures such as road crossings, fish 
screens, fishways (e.g., fish ladders), levees, 
tide gates, and irrigation diversions. Land 
managers and conservationists may also find 
these Guidelines useful when considering 
aquatic management actions. 

The geographic focus of this document is the 
Pacific Northwest (PNW) region of the United 
States -- Oregon, Washington, and Idaho, and 
portions of western Montana. While the intent 
is to include information and examples from 
throughout the PNW, much of the available 
data are derived from within the Columbia 
River Basin. 

This document pulls directly from, and relies 
heavily upon, a number of essential sources, 
including, but not limited to: 

• Considerations for Multi-Species Fish 
Passage in California: A Literature Review 
by Zoltan Matica (2020); 

• Assessment, Evaluation, and Development 
of Fish Passage Guidelines by Travis 
Denham (2021); 

• Use of the Mainstem Columbia and Lower 
Snake Rivers by Migratory Bull Trout. Data 
Synthesis and Analyses by Barrows et al. 
(2016); 

• Recovery Plan for the Coterminous United 
States Population of Bull Trout by the US 
Fish and Wildlife Service (2015); 

• Practical guidelines for incorporating adult 
Pacific Lamprey passage at fishways, 
Version 2.0 by the Lamprey Technical 

Workgroup (2022a); and 

• Columbia Basin White Sturgeon Planning 
Framework by CRITFC, WDFW and ODFW 
(2013). 

Please refer to these source documents for 
additional and more detailed information. 

The science, engineering, technology, and 
practice of fish passage are constantly 
evolving. When new or updated information 
addresses passage issues or provides 
strategies for improved passage, simplified 
operations, or decreased maintenance, an 
updated version of this document will be 
developed and released. If you are aware of 
new fish passage techniques, approaches, or 
practices, please email: Vancouver@fws.gov. 

GENERAL RECOMMENDATIONS 

It is challenging, and at times either not 
desirable or possible, to design a structure to 
pass all fish species past a barrier (Daigle et al. 
2005). Hence, a stepwise approach that 
includes an evaluation of Nature-based 
Solutions to restoring passage is warranted. 

According to Woolsey et al. (2007): 

“Restoring riverine connectivity as a nature-based 

solution (NBS) involves removing these physical 

barriers, eliminating hypoxic zones, redesigning road 

stream crossings, and reintroducing natural 

meanders back into river morphology”. 

More specifically, a project is considered a 
Nature-based Solution if it: 

• Is an action to protect, sustainably manage, 
or restore a natural or modified ecosystem; 

• Addresses a socioeconomic challenge (e.g., 
drought, flooding, wildfire); 

• Is expected to benefit nature; 

• Is expected to benefit people or 
communities. 

From: DOI Nature-based Solutions Roadmap 

Following a Nature-based Solution framework, 
the following stepwise approach is 
recommended: 

1. Remove human-caused barriers to upstream, 
downstream, and lateral habitats, including 
dams, weirs, culverts, levees, riprap, and 

4 

https://doi.org/10.15447/sfews.2020v18iss3art6
https://doi.org/10.15447/sfews.2020v18iss3art6
https://scholarworks.montana.edu/xmlui/handle/1/17358
https://scholarworks.montana.edu/xmlui/handle/1/17358
https://www.fws.gov/media/use-mainstem-columbia-and-lower-snake-rivers-migratory-bull-trout-data-synthesis-and-analyses
https://www.fws.gov/media/use-mainstem-columbia-and-lower-snake-rivers-migratory-bull-trout-data-synthesis-and-analyses
https://www.fws.gov/media/use-mainstem-columbia-and-lower-snake-rivers-migratory-bull-trout-data-synthesis-and-analyses
https://www.fws.gov/node/68763
https://www.fws.gov/node/68763
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roads. 

2. Reconnect channels to their floodplains, 
wetlands, side channels, and tributaries. This 
may include raising channel beds, filling 
incised channels, placing large and/or small 
wood, and/or encouraging beaver 
recolonization. 

3. Increase stream crossing structure widths to 
fully span channels, floodplains, and wetlands. 

4. Mimic natural channels through stream 
crossing structures by using a stream 
simulation approach (USDA 2008). This 
should include an unobstructed opening that 
is wide enough to accommodate water, 
sediment, wood, and species, and should also 

account for the predicted effects of climate 
change. Consider adding additional width to 
allow for increased channel migration, large 
wood transport, and less impeded sediment 
transport processes. 

5. Consider nature-based fishways for sites where 
barriers cannot be fully removed or modified. 
These include rock ramps and roughened 
channels, which are typically constructed of 
natural materials to mimic a variety of 
hydraulic conditions to provide multi-species 
passage. However, other engineering solutions 
may be better based on site conditions, 
constraints, and species needs. 

6.  Evaluate the need for an engineered fish 
passage structure. Review the “Additional 
Considerations” section at the end of the 
document. 

7. Address human-caused indirect barriers, 
including excess sediment deposition, poor 
water quality, temperature or flow limiting 
conditions, and artificial lighting at night – 
shield, reduce or eliminate lights that 
illuminate stream channels and fishways. 

8. Monitor project effectiveness over a range of 

flow and temperature conditions. Direct 

observation of multiple fish species with 

varying swimming capabilities moving both 

up- and downstream through a passage 

structure, or direct observation of fish 

exclusion by a screening structure, provides 

evidence of project effectiveness. 

9. Identify areas where seasonal barriers due to 

insufficient flows or complete stream 

dewatering (i.e., irrigation diversions) can be 

remedied through improved infrastructure 

(i.e., less leaking canals), water rights 

acquisitions, changing to a non-instream 

water source, or other methods. 

BULL TROUT 

Image credit: Joseph R. Tomelleri 

Bull Trout (Salvelinus confluentus) have some 

of the most specific habitat requirements of 
native salmonids in the PNW (Rieman and 
McIntryre 1993). These requirements are often 
referred to as “the four Cs” -- Cold, Clean, 
Complex, and Connected habitat: 

• “Cold” refers to low water temperature 
requirements for spawning and rearing that 
are often less than 12°C (54°F). 

• “Clean” refers to high water quality because 
Bull Trout are comparatively less tolerant to 
pollutants than other native and non-native 
salmonids. 

• “Complex” refers to heterogeneous stream 
habitat needs that include attributes such 
as deep pools, undercut banks, and large 
wood. 

• “Connected” refers to migratory needs that 
link spawning and rearing areas to foraging 
areas and overwintering habitats. 

Within the contiguous United States, Bull 
Trout are currently found within the Columbia 
River and Snake River basins in Washington, 
Oregon, Montana, Idaho, and Nevada; the 
Puget Sound and Olympic Peninsula 
watersheds in Washington; the Saint Mary 

basin in Montana; and the Klamath River 
basin of south-central Oregon. At the time of 
their coterminous US listing under the ESA in 
1999, Bull Trout, although still widely 
distributed, were in widespread decline 
(Quigley and Arbelbide 1997). 

Behaviors & Life Histories 

Bull Trout exhibit both migratory and resident 
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life history strategies (Figure 2). These 
strategies were likely an evolutionary outcome 
of the origin of Bull Trout in the Columbia 
River Basin, followed by dispersal to other 
drainage systems through marine migration. 

Figure 2 Bull Trout life history diversity. Illustration of 
typical habitat use by (1) the resident life history form 

and the three migratory life history forms of Bull 

Trout: (2) lacustrine or adfluvial, (3) riverine or fluvial, 

and (4) marine or amphidromous/ anadromous. From: 

USFWS 2024. 

Migratory Bull Trout are typically larger than 
resident Bull Trout (USFWS 2015), and move 
throughout large river systems, lakes, and 
even the ocean in coastal populations. While 
resident adults range from 150 to 300 mm (6 
to 12 in) total length, migratory adults 
commonly exceed 600 mm (24 in) (Goetz 1989; 
Pratt 1985). 

Migratory Bull Trout exhibit three different 
migration patterns: 

• Lacustrine or Adfluvial -- between 
tributaries and lakes or deep reservoirs; 

• Riverine or Fluvial -- between tributaries 
and larger rivers; and 

• Marine or Amphidromous/Anadromous --
between tributaries and the ocean. 

Bull Trout migrations can be relatively short (a 
few miles) as occurs with resident populations 
or quite long (hundreds of miles) for migratory 
populations. As the name implies, resident 

fishes remain in the same stream their entire 
lives (Rieman and McIntyre 1993; Brenkman 
and Corbett 2005, p. 1077). However, even 
resident Bull Trout exhibit migratory 
characteristics on a smaller scale within the 
same stream or reach (Jokober 1995). 

Passage Needs & Observations 

Bull Trout, both resident and migratory forms, 
require upstream and downstream passage, 
and access to lateral habitats, such as side 
channels and backwater habitats, for repeat 
spawning, foraging, overwintering, and 
temperature refugia. 

Natural stream channels and flow paths 
provide the best passage opportunities, so 
passage projects that use a stream simulation 
approach (USDA 2008), and match native 
streambed materials and morphologies that 
are found within the reach, are generally the 
best option. This is particularly true for culvert 
and bridge projects in smaller stream systems. 

Fishways, also known as fish ladders, are 
designed for migrating fish to provide detour 
routes past obstructions in a river. Most 
engineered fishways, especially those on larger 
rivers within the PNW, were and are designed 
specifically for anadromous semelparous 
salmonids (adult fishes that spawn once and 
then die and require only upstream passage). 
Subsequently, current engineering design 
guides tend to focus on upstream passage 
requirements rather than both upstream and 
downstream needs. Since Bull Trout require 
both up and downstream passage year-round, 
this can result in unintentional, or seasonal, 
isolation of Bull Trout populations even when 
fish passage is provided (Schaller et al 2014; 
Mendel et al 2014). 

Downstream passage is vital for Bull Trout 
given their propensity to migrate both up and 
downstream in larger river systems 
throughout their lifespans. Within the large 
rivers of the Columbia River Basin, 
downstream passage designs have typically 
focused on juvenile anadromous salmon and 
steelhead, which tend to be found near the 
water’s surface. Given that adult Bull Trout 
generally use deeper habitats than juveniles 
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(Al-Chokhachy and Budy, 2007), current 
downstream passage facilities at dams likely 
provide reduced benefit for Bull Trout, causing 
them to use less safe passage routes, such as 
turbines, regulating outlets, or spillways. 
Hence, safe downstream passage for adult fish 
should be included in fishway designs when 
Bull Trout are found in the surrounding 
watershed. 

Fish screens are engineered structures used 
either to guide or exclude fish depending on 
the need. In the case of large dams, fish 
screens are typically used to guide salmon and 
steelhead into bypass systems. In the case of 
water diversion into canals, ditches, and 
pipelines, screens are used to exclude fish 
from entering. Screens designed and operated 
to standard criteria (NMFS 2022a) to protect 
downstream outmigrant juvenile salmonids are 
generally protective of Bull Trout as well. 

It is worth noting that when a “trap and haul” 
mitigation approach is used in lieu of 
providing volitional passage, there is a risk of 
adult Bull Trout preying upon juveniles and 
other species of concern. Predation will likely 
be more significant when adults and juveniles 
occupy the same trap box or holding pool for 
extended periods of time. This behavior can be 
exhibited by Bull Trout any time there is a 
structure that provides a resting area with 
available prey. Limit the amount of time that 
fish of disparate sizes are held together to 
reduce predation risk and include refuge areas 
that allow smaller fish to escape larger fish. 
Also consider the potential need to limit 
resting areas within passageways where 
predatory fish (including Bull Trout) stage for 
feeding. 

Swimming Performance & Endurance 

Bull Trout exhibit burst and sustained 
swimming modes [(Table 1) (Mesa et al. 2003a; 
Katopodis 1992)]. In a lab setting inside a 
swim tube, Mesa et al. (2008) determined that 
Bull Trout burst swim speed (usually less than 
20 s) was independent of fish size, between 1.3 
and 2.3 m/s. This does not represent Bull 
Trout volitional swim speeds in the field. 
However, in earlier studies, Mesa et al. (2003a, 
2004) found that critical swim speed, the 

maximum velocity that a fish can maintain for 
a specific time period (usually 20 s), did vary 
with body size and stream temperature such 
that fish, on average: 

• 320 to 420 mm in length = mean critical 

velocity of 0.74 m/s at 11°C 

• 110 to 190 mm in length = mean critical 

velocity of 0.48 m/s at 11°C 

• 140 to 230 mm in length = mean critical 
velocity of 0.54 m/s at 15°C (note the 
difference in temperature which may 
explain critical velocity variances) 

Studies conducted by Mesa et al. (2003a, 
2004, 2008) continue to provide Bull Trout 
swim speed standards; however, each study 
yielded swim speeds that were based on small 
sample sizes from laboratory settings, possibly 
underestimating wild population performance. 
In addition, studies were conducted at single 
temperatures and swimming capabilities likely 
change under different temperature scenarios. 
Due to the small sample sizes, confidence in 
swim speeds would be increased through 
additional research. While Bull Trout vertical 
jump heights have not been specifically 
studied, there is anecdotal evidence that adult 
migratory Bull Trout may be able to jump 0.6 
to 0.9 m (2 to 3 feet) (L. Knotek, Montana Fish, 
Wildlife and Parks, personal communication). 
This is based on an observation at the 
Thompson Falls Fish Ladder where an adult 
Bull Trout jumped out of a holding pool. A 1.2 
m (4-foot) high fence was subsequently 
installed around the holding pool and no 
further “escapes” have been observed (K. 
Aceituno, US Fish and Wildlife Service, 
personal communication). Additional 
anecdotal observations of Bull Trout jumping 
heights up to 2.4 m have occurred at Mill 
Creek Dam, Tucannon Hatchery Weir, in the 
Lostine River, and at Rainy Dam with unclear 
levels of success. A few studies in Canada and 
Montana observed Bull Trout above beaver 
dams of up to 1.5 m in height (Bustard 2017; 
Wolf et al In Press). Nelson and Nelle (2008) 
documented Bull Trout jumping Fish Tail Falls 
in the Entiat River, which is approximately 3 
m high. 

Lacking Bull Trout-specific metrics, Barrows et 
al. (2016) found that steelhead may be a 
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reasonable  surrogate  for  similarly-sized  Bull  Data Gaps 
Trout for the estimation of passage survival 
through turbines, spillways or other 
downstream passage routes. Additionally, 
juvenile and fry Chinook salmon can 
reasonably be used as a surrogate for juvenile 
and fry Bull Trout because they: (1) use the 
same habitat types, (2) are of similar size, and 
(3) have comparable swimming abilities 
(Barrows et al. 2016). 

*NOTE: this does not apply to upstream 
passage. 

Upstream migrating Bull Trout (ranging in size 
between 250 mm to 600 mm) may be able to 
successfully pass nearly all lower Columbia 
River upstream fishways, as well as all of the 
lower Snake River upstream fishways, which 
were designed for anadromous salmon and 
steelhead (Barrows et al. 2016). There have 
also been observations of Bull Trout migrating 
upstream in a high gradient system with high 
velocity, turbulent water following dam 
removal in the Elwha River, Washington (Duda 
et al. 2021). This provides empirical evidence 
that Bull Trout, at least migratory forms, 
exhibit stronger swimming in natural systems 
than was observed in the Mesa et al. (2003a, 
2004, 2008) swim tube and flume studies. 

Bull Trout migration through large reservoir 
systems can pose a unique threat, especially 
for upstream migrations. As reservoir pools 
shrink throughout the summer, access to 
spawning tributaries can become more difficult 
due to thermal barriers, sediment 
accumulation at confluences, lack of cover, 
and low flows. This can be further 
compounded by human recreational activities, 
such as small dams for swimming and vehicle 
access. 

While Bull Trout of various sizes (200 mm in 
length [8 in] and larger) have been documented 
passing upstream passage facilities via PIT tag 
detections (PTAGIS database for Snake River 
Dams), there are very little data on the rates of 
successful passage. In a rare example at 
Thompson Falls Dam, only 16 of 24 tagged 
Bull Trout (67%) fully ascended the fish 
passage ladder between 2011 and 2018 
(NorthWestern 2019). 

• Effectiveness of existing passage facilities 
and designs for Bull Trout of various sizes, 
life history strategies, and passage routes 
(e.g., spill vs. turbine). 

• Effect of passage delays at fishways. 

• Swimming performance and jump height 
measured volitionally. 

• Effective attraction flows for fishways, 
which have been established for other 
salmonids. 

• Downstream passage requirements and 

timing for both adults and juveniles. 

• Instream low flow barrier passage. 

• Cumulative effects of multiple barriers 
(e.g., 1 impediment vs. 50 sequential 
impediments). 

• Downstream migration effects from 
instream picket weirs. 

PACIFIC LAMPREY 

Image Credit: Joseph R. Tomelleri 

Pacific Lamprey (Entosphenus tridentatus) are 
an anadromous semelparous species of 
significant cultural value to Tribes and First 
Nations (Close et al. 2002). They are a large 
fish found in many rivers with unimpeded 
anadromy and are of ecological importance to 
freshwater ecosystems along the Pacific Rim, 
from California in the south, north to Alaska, 
and across Russia and Japan (Scott and 
Crossman 1973; Clemens and Wang 2021; 
Clemens et al. 2010). Pacific Lamprey are 
parasitic, but only while in the ocean and tidal 
waters (Clemens and Wang 2021). 

Pacific Lamprey populations have steeply 
declined (Moser and Close 2003; Moser and 
Mesa 2009; USFWS 2018). In response to this 
decline, the Pacific Lamprey Conservation 
Initiative (PLCI) was formed with dozens of 
signatories and letters of support. PLCI is a 
collaboration with Tribes and other federal, 
state, and local agencies to recover Pacific 
Lamprey. Many documents related to the 
recovery effort, including Best Management 
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Guidelines, have been developed by the PLCI 
Lamprey Technical Workgroup (LTW). 

Behaviors & Life Histories 

In the larval phase, when Pacific Lamprey are 
initially the size of human eyelashes, they 
burrow, feed, and grow as blind, toothless 
filter feeders in fine sediments in streams and 
rivers.  They can remain as larvae for up to 10 
years (Hess et al. 2022) before undergoing a 
metamorphosis into parasitic juveniles which 
develop eyes and teeth and emigrate to the 
ocean (Clemens et al. 2010). Larvae and 
juveniles tend to move downstream as they age 
especially during high flow events (Goodman et 

al. 2015; Moser et al. 2015). Metamorphosis 
from larva to juvenile occurs gradually over 
several months, typically starting in summer 
to fall, with timing with timing varying by 
elevation, temperature, and latitude (Clemens 
et al. 2019). Transformation typically 
completes between winter and spring. 
Juveniles then move downstream and emigrate 
to the marine environment (Moser et al. 2015; 
Clemens et al. 2019). 

Marine-phase Pacific Lamprey are estimated to 
spend up to eight years in the ocean (Hess et 
al. 2022), feeding as parasites on fishes and 
occasionally whales (Clemens et al. 2019). 
After returning to freshwater, Pacific Lamprey 
cease feeding and migrate to tributaries to 
spawn (Figure 3). During the following spring, 
typically one year after entering fresh water, 
sexually mature Pacific Lamprey spawn and 
then die in a manner similar to salmon. Some 
adult lamprey may spawn the same year they 
enter fresh water, particularly in the southern 
portion of their range (Clemens et al. 2013). 
Migration and spawning dates and timing vary 
with latitude, elevation, and temperature, but 
are generally earlier in the year in the range's 

coastal and southern portion (Clemens et al. 
2010). 

Migrating adult Pacific Lamprey are generally 
nocturnal (Kirk et al. 2015) and bottom-
dwelling (Moursund et al. 2000). Because they 
are not easily seen, it may be incorrectly 
assumed that they are not present and thus 
are potentially at greater risk for negative 
impacts due to instream management actions, 

including restoration. 

Figure 3 Pacific Lamprey life history. From LTW 

(2023). 

Pacific Lamprey can also navigate through 
small spaces and, in some cases, ascend 
wetted, vertical or near-vertical structures, 
such as waterfalls. This climbing behavior, 
often referred to as “burst-and-attach 
locomotion”, allows lamprey to move upstream 
in flow velocities that exceed their free-
swimming and jumping abilities (Reinhardt et 
al. 2008), and has provided unique 
opportunities for passage solutions (described 
below). However, sharp corners, edges, and 
gaps found in many engineered fishways 
inhibit this specialized climbing behavior. The 
sharp corners, edges, and gaps force lampreys 
off the surface and can impede reattachment, 
especially in higher velocity areas, thereby 
inhibiting upstream movement. 

Passage Needs & Observations 

Lamprey, both resident and anadromous, 
require upstream and downstream passage in 
mainstem rivers and smaller tributaries, and 
unimpeded access to lateral habitats, such as 
floodplains, wetlands, side channels and 
backwater habitats, to access appropriate 
habitats for their life history needs. Unimpeded 
passage is particularly critical for Pacific 
Lamprey because of their ocean phase and 
relatively long migrations, often requiring 
passage through many dams, spanning 
hundreds of miles. 
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Lamprey can navigate a wide range of passage 
conditions and display exploratory behavior 
when faced with passage barriers (LTW 2022a). 
Natural stream bottoms and flow paths provide 
the best passage opportunities, so passage 
projects that use a stream simulation approach 
(USDA 2008) and match native streambed 
materials and morphologies that are found 
within the reach are generally preferred. This is 
particularly true for culvert and bridge projects 
in smaller stream systems, and low-head 
dam/weir breaching or removal. 

In larger river systems with channel spanning 
structures, such as dams and weirs, engineered 
fish passage structures (i.e., fishways) are often 
employed. These fishways are usually designed 
using the swimming abilities of a targeted fish 
species. In the Columbia River Basin, fishways 
are usually designed for adult Pacific Salmon 
and are often barriers to adult Pacific Lamprey 
(LTW 2022a). Hence, there is a need to improve 
the understanding of Pacific Lamprey passage 
needs. 

Pacific Lamprey use their entire body to swim, 
similar to an eel. This type of swimming is not 
adapted for passing some of the higher-velocity, 
highly turbulent features common to 
engineered salmon fishways (e.g., Moser and 
Mesa 2009). Since adult lamprey commonly 
migrate at night, observations of numerous 
adult lamprey during the day, or lamprey 
attempting to pass at the surface of a fishway, 
may be indications of complete or partial 
barriers to adult passage (Goodman and Reid 
2017), which should be further investigated. 

Low fishway passage efficiency for Pacific 
Lamprey has been clearly demonstrated. 
Passage efficiency at Bonneville Dam on the 
Columbia River is often less than 50% for 
lampreys migrating through the fishway (Moser 
et al. 2002; Keefer et al. 2013) compared with 
>90% for salmon (Caudill et al. 2007). For the 
eight dams on the Columbia and lower Snake 
rivers, Keefer et al. (2021) found that average 
adult salmon and steelhead passage efficiency 
was almost 97%. However, increased passage 
efficiency for Pacific Lamprey is possible and 
has been achieved at River Mill Dam on the 
Clackamas River in Oregon. Lamprey passage 
was accommodated within a newly constructed 
fishway that resulted in >90% passage 

efficiency for Pacific Lamprey (Ackerman et al. 
2019; LTW 2022a). This passage structure has 
specific design elements that allow continuous 
attachment by lamprey through the fishway, 
including rounded corners at the entrance and 
other high velocity areas, and reduced 
turbulence via fishway turns. Existing salmon 
fishways can be modified to improve passage 
for Pacific Lamprey by providing smooth, wet, 
and continuous attachment surfaces in areas 
of high velocities, and rounded corners (LTW 
2022a). 

Pacific Lamprey passage structures have been 
installed within or adjacent to salmonid 
fishways at a variety of sites, which provide an 
alternative route for lamprey passage and 
capitalizes on climbing behaviors (Moser et al. 
2011, Zobott et al. 2015; Figure 4). A lamprey 
passage structure may be warranted in 
situations when an existing fishway cannot be 
feasibly modified to provide rounded corners 
and/or lower velocities. However, these passage 
structures should only be installed after careful 
consideration of where passage bottlenecks 
occur and where lamprey are naturally 
attracted. 

Figure 4 Lamprey Passage Structure. From: Zobott et 

al. (2015). 

For example, a lamprey passage structure was 
installed at the fishway at Bonneville Dam to 
allow lamprey to bypass the serpentine sections 
of the fishway that were shown to be difficult to 
pass (often less than 50% per Moser et al. 
2002; Keefer et al. 2013). Another lamprey-
specific passage system was developed at Van 
Arsdale Dam (Eel River, California) using a 4-
inch flexible tube, which is similar in function 
to an aluminum ramp, that significantly 
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increased lamprey passage success and 
efficiency compared to the existing fishway 
passage (Goodman and Reid 2017). As an 
experimental technology, these tubes are not 
durable infrastructure and require regular 
oversight and maintenance. 

Other detailed recommendations and examples 
of implemented upstream passage projects can 
be found at the Lamprey Technical Workgroup 
website for adult passage (LTW 2022a) and for 
culverts (LTW 2020). 

As described earlier, fish screens are installed at 
points of diversion to prevent fish entrainment. 
Screens that are designed and operated to 

standard criteria (NMFS 2022a) to protect 
outmigrant juvenile salmonids are also generally 
protective of larger lamprey (>65 mm total length) 
but are not protective of larval and smaller 
juvenile lamprey (Rose and Mesa 2012). Because 
current screening criteria (NMFS 2022a) are 
generally ineffective at preventing larval lamprey 
entrainment (<65 mm), it should be assumed 
that if suitable lamprey habitat exists in an 
irrigation ditch or canal, regardless of the 
presence of a fish screen, that lamprey may be 
present. Suitable habitat of fine sediments that 
are regularly saturated or inundated are known 
to contain high densities and multiple age classes 
of larval and juvenile lamprey. 

A variety of fish screening materials are used for 
irrigation diversions (e.g., woven or cloth wire, 
perforated plate, profile bar, and Intralox 
materials). With entrainment rates nearly twice 
that of perforated plate, larger mesh woven wire 
is the least effective in protecting larval lamprey 
and should be avoided (Rose and Mesa 2012). 

Additional guidance on screening can be found in 
the Lamprey Technical Workgroup’s document 
“Review of Factors Affecting Larval and Juvenile 

Lamprey Entrainment and Impingement at Fish 
Screen Facilities” (LTW 2022b), which includes 
screening types, sizes, and recommendations. 

Swimming Performance & Endurance 

Adult Pacific Lamprey are typically found near 
the streambed where water velocities are the 
lowest. When a smooth surface is available for 
attachment, lamprey can use burst and attach 
swimming to move through high velocity zones 

especially  if there  is lower  turbulence. Excessive  
turbulence  within  structures  can  cause lampreys  
to be swept downstream  if burst-and-attach  
swimming is  attempted. Additionally,  burst-and-
attach swimming is strenuous and  hence is  only  
feasible over relatively short distances.  The roles  
of  velocity and  turbulence in lamprey swimming 
behaviors needs  to be understood  when  
evaluating fish passage  (Kirk et al. 2016).  

The swimming speeds of adult  Pacific Lamprey  
are considerably lower (<50%) than the  swimming  
speeds of adult salmon  (Table  2). According to 
Moser and Mesa (2009),  the  mean critical  
swimming speed  for  Pacific Lamprey  is  0.9 m/s  
(2.8 fps; Mesa et al. 2003b).  For comparison, the  
mean critical swimming speed of Chinook Salmon 
is ~5  m/s  (Bell 1991; Table 1).  

Swim Type: Swim Speed: 

Critical ~0.9 m/s 

Free-swimming <1.2 m/s 

Preferred free-swimming ≤0.6 m/s 
Burst-and-attach <2.5-3.0 m/s 

Table 2 Adult Pacific Lamprey swimming types and 

speeds (LTW 2022a). 

Some swimming speeds  have  been published for 
both larval  and juvenile  Pacific Lamprey.  Sutphin  
and Hueth  (2010) evaluated the swimming  
performance of Pacific  Lamprey larvae in swim  
tubes. Burst  swimming speeds  increased with 
length  from 107  to 150  mm  TL and  ranged from  
0.33  to 0.75  m/s. It should be noted that these  
are large larvae. For juvenile  Pacific  Lamprey  
both Moursund  at al.  (2000)  and Mueller  et  al.  
(2006)  found similar results. For juveniles  
averaging  142  mm, burst swimming speeds  were  
0.76  m/s.  

To illustrate  challenges  adult Pacific Lamprey  
face  within fishways, typical water velocities  
through  a fishway entrance are 2.1  - 3.0  m/s  and  
1.8 - 2.4 m/s  at submerged orifices. These  
velocities are well  above  critical swim speeds  for 
lamprey,  and these conditions can be  
encountered multiple times in a single fishway,  
thus representing significant and repeated  
challenges for adult Pacific Lamprey  attempting  
to pass upstream.  Furthermore, these velocities  
and lack of flow refuges can limit the  ability  of 
Pacific Lamprey  to use burst-and-attach 
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locomotion  and  can increase their exposure to 
predation. These challenges may exclude  weaker 
individuals  and  could  result in  longer-term  
energy costs  to other individuals, which  may  
reduce the spawning population  (i.e.,  total  
numbers  and  overall productivity). For example,  
individual  Pacific Lamprey  may enter a fishway 
and pass several obstacles but ultimately tire  and  
fallback  (Clabough et  al.  2010), thus  reducing  the  
number of  upstream spawners  in  areas  above  the  
fishway.  

Detailed lamprey swimming performance and 
passage recommendations can be found at the 
Lamprey Technical Workgroup website: “Practical 
guidelines for incorporating adult Pacific Lamprey 
passage at fishways, Version 2.0.” 

Data Gaps 

• Swimming performance for larvae 20 – 110 

mm in length. 

• Swimming performance of the smaller-
bodied Pacific Lampreys (e.g., coastal 
populations) and smaller species of 
lampreys (e.g. Western Brook Lampreys). 

• Evaluation of swimming tubes/chambers 
used to develop swim performance criteria, 
which have been shown to significantly 
underestimate swimming performance 
outside of the laboratory. 

• Lamprey impingement and survival rates for 
fish screens with openings that are smaller 
than current National Marine Fisheries 
Service criteria. 

• Better understanding of downstream 
migration timing and habitat needs of 
juveniles. 

• Downstream dispersal/timing of larvae. 

WHITE STURGEON 

Image credit: Joseph R. Tomelleri 

White Sturgeon (Acipenser transmontanus) are 
ecologically, culturally, and economically 
important to the Pacific Northwest Region, but 

their range extends well beyond the PNW. 
White Sturgeon are found in coastal waters 
from Ensenada, Mexico, to Alaska (CDFW 
2023), but they primarily reside in large 
freshwater rivers, streams, and estuaries along 
the Pacific coast from California to British 
Columbia (ODFW 2011, CDFW 2023). 
Spawning populations occur in the 
Sacramento-San Joaquin, Columbia-Snake, 
and Fraser rivers (Schreier et al. 2013, p. 
1273). 

Adult White Sturgeon can reach lengths over 6 
meters (Scott and Crossman 1973), typically 
maturing around 15 to 25 years of age, but 
with significant variation because sturgeon 
maturation is more a function of size and sex 
than age (Conte 1988). For such a large-bodied 
fish, early life stages are much smaller -- eggs 
are 3.5 to 5.6 mm in diameter, and larval fish 
emerge from the egg at ~11 mm. This wide 
range of body sizes, and corresponding 
swimming abilities, complicates fish passage 
structure design. 

Behaviors & Life Histories 

White Sturgeon evolved as a highly mobile 
species that moved in response to changing 
river conditions to meet biological 
requirements to complete its life history 
(Figure 5). They are freshwater amphidromous 
(ODFW 2011 page 13), meaning that they 
migrate between freshwater and the ocean (in 
both directions), but not for the purpose of 
breeding. They spawn in freshwater but 
regularly move between fresh and saltwater to 
feed. 

However, this is not an obligate part of White 
Sturgeon life cycle as evidenced by landlocked 
populations segregated by artificial or natural 
barriers within a river system. These life 

history traits, combined with blocked access to 
spawning grounds and habitat degradation, 
make White Sturgeon populations vulnerable, 
and very slow to recover from low population 
sizes. For example, White Sturgeon 
populations in the Columbia River upstream of 
Bonneville Dam are functionally isolated from 
others by the mainstem dams. Thus, each 
population must depend on conditions within 
a specific reach to maintain recruitment. 
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However, individual reaches often do not 
contain optimal, or sometimes even marginal, 
conditions for all life stages (Parsley and 
Beckman 1994). 

Figure 5 White Sturgeon life history including embryo, 

free swimming embryo, larva, age-0, juvenile, sub-

adult, and adult life stages. From: ODFW 2011 

Population Structure 

Construction of mainstem dams in the PNW 
restricted sturgeon movement and reduced 
recruitment. Populations of sturgeon isolated 
between major dams, such as those found 
above Bonneville Dam in the Columbia River, 
must rely upon the habitat and food resources 
available within a single river reach. 
Unfortunately, these highly modified 
reservoir/river systems generally do not 
support all life stages. As a result, the once 
larger single population of Columbia River 
White Sturgeon is now several fragmented 
subpopulations, each restricted to a limited 
reservoir/river reach. 

Sturgeon in the lower Columbia River, 
downstream of Bonneville Dam, have 
unimpeded access to the ocean and 
subsequently, that population remains 
relatively large (CBWSPF 2013). However, 
recent declines in legal-sized White Sturgeon 
caught in this reach have been observed (CBB 
2023). Legal-sized White Sturgeon fall within a 
size range of 1.0 to 1.4 m and can be kept by 

anglers. Even more concerning and 
problematic are the changes in size structure 
and declines in productivity; the proportion of 
juvenile fish in the population (56% in 2021) 
remains below the conservation status 
threshold of 60% juveniles (ODFW/WDFW 
2024). 

Populations in impounded reservoir/river 
sections upstream from Bonneville Dam have 
generally declined faster than the population 
below Bonneville Dam. 

Within-drainage population structure is 
believed to be due to isolation by distance and 
access along the length of the Columbia-Snake 
River system and possibly net downstream 
gene flow (Schreier et al. 2013, p. 1281). It 
follows that White Sturgeon genetic diversity 
levels vary regionally, with the highest levels 
observed in regions with access to estuarine 
and marine habitat. The lowest levels of 
genetic diversity are observed in the isolated 
Kootenai population in Idaho, which is 
federally ESA-listed as endangered (U.S. Office 
of the Federal Register 2008). 

The within-drainage analysis of population 
structure for the Columbia-Snake River 
drainage suggests three populations (Schreier 
et al. 2013, pp. 1273, 1280–1282): 

1) Kootenai River; 

2) Lower Columbia River cluster; and 

3) Middle Snake cluster at the upstream 
extent of the Snake River. 

Passage Needs & Observations 

Traditional engineered fishways have been 
largely unsuccessful for passing sturgeon 
(Thiem et al. 2011, Warren and Beckman 
1993). Major dam construction that began in 
the 1930s in the Columbia River has 
increasingly fragmented the White Sturgeon 
population. This has also limited their 
migration to largely downstream movements 
via entrainment through turbines (Coutant 
and Whitney 2000; Parsley et al. 2008), over 
spillways, and through fishways and 
navigation locks (Parsley et al. 2008). 
Upstream sturgeon migration is uncommon 
throughout the Columbia River system that is 
controlled by hydropower operations (North et 
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al. 1993; Parsley et al. 2008), which results in 
reduced genetic diversity of impounded 
populations, particularly in isolated areas with 
low abundance. 

Initial sturgeon passage efforts occurred 
between 1938 and 1956 with fish elevators at 
Bonneville Dam. These elevators were 
somewhat effective, and ~4,500 subadult 
sturgeon were passed upstream (Warren and 
Beckman 1993). However, elevators were not 
as efficient for adult salmon passage, and 
hence the use of fish elevators was eventually 
abandoned. 

Unfortunately, fish passage systems that 
optimize salmon passage at the dams are not 
fully functional for sturgeon passage. 

CBWSPF (2013, pg. 68) states: 

“A  significant  impediment  to the  consideration of  
potential passage measures  for sturgeon  has  

been  their potentially  confounding  impacts  on 
salmon.  Adult  passage systems  are  constructed,  

calibrated  and  maintained  at  each  dam  to 

optimize salmonid  passage and  changes in these 

systems  to attract  and  pass  sturgeon  are  likely  to 

reduce  salmon  passage success.”  

Most fishways in the PNW are designed to 
attract and accommodate salmon and 
salmonid-sized and shaped fishes, not the 
larger sizes of adult sturgeon. Warren and 
Beckman (1993) state that the typical length of 
sturgeon that could use existing fish ladders is 
only in the range of 0.5 to 1.2 m, and that 
larger sturgeon would have difficulty 
negotiating the orifices of fishways. Larger 
fishways to accommodate the size and body 
structure of these large-bodied fish, along with 
suitable attractant flows, would improve 
sturgeon passage (Cooke et al. 2020). 

As discussed in previous sections, most fish 
screening facilities are designed to 
accommodate out-migrating juvenile salmon. 
While such screens are likely appropriate for 
larger juvenile sturgeon, smaller larval and 
juvenile sturgeon (<93 mm) may suffer 
entrainment or impingement (Boysen and 
Hoover 2009). 

Kootenai River White Sturgeon 

The distinct population segment of White 
Sturgeon that inhabits the Kootenai River 
basin has experienced its own unique set of 
migration and passage issues. Prior to the 
construction and operation of Libby Dam in 
the early 1970s, the natural hydrograph of the 
Kootenai River consisted of a spring freshet 
(i.e., elevated river flows from rain or 
meltwater) with high peak flows, followed by a 
rapid drop in flows into August. Pre-dam 
fisheries investigations and inventories stated 
that prior to the construction of Libby Dam, 
Kootenai sturgeon spawned in the roughly 1.6 
km (1 mile) stretch of the Kootenai River 
downstream of Kootenai Falls (USACE 1971; 
MFWP 1974). However, after Libby Dam 
became operational in 1974, peak spring flows 
were reduced and river conditions were 
altered. Flow changes that occurred during the 
Kootenai sturgeon spawning period likely 
caused sturgeon to reduce the upstream 
extent of their pre-spawn migrations. This in 
turn resulted in spawning over less suitable 
habitat -- sand and silt substrates 
downstream of Bonners Ferry -- rather than 
over the rocky substrates upstream of Bonners 
Ferry to Kootenai Falls. 

Changes to Kootenai White Sturgeon migration 
and spawning in response to altered river flow 
is an environmental flow barrier -- an example 
of an indirect human-caused barrier. 

Swimming Performance & Endurance 

Sturgeon, being large-bodied fish, do not have 
the same jumping capabilities as adult salmon 
and have decreased maneuverability (Cooke et 
al. 2020). Due to their large size, sturgeon 
require minimum water depths of at least 0.6 
m (Matica 2020, from 2012 in-person from A. 

Seesholtz), while >1.0 m is preferred (CDWR 
2007; Webber et al. 2007). For short distances, 
White Sturgeon can navigate through flow 
velocities up to 1.8 m/s, but for distances 
greater than 18 m, maximum flow velocity is 
approximately 1.2 m/s (USBR and CDWR 
2018). Because White Sturgeon are demersal 
(live and feed near the bed of streams and 
lakes) and are not known to jump over 
barriers, passage improvement projects require 
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different design considerations. 

Warren and Beckman (1993) reported that 
some White Sturgeon were able to ascend 
Columbia River fishways designed for salmon 
with velocities reported at 2.4 m/s. However, 
this is not evidence that sturgeon effectively 
migrated through the system, simply that they 
entered the fishway. Additionally, sturgeon 
have difficulty ascending structures with 
strong velocity gradients and turbulent flows 
(USFWS 1995). Cooke et al. (2020) concluded: 

“…  that  fishways intended  to be successful  for 

white sturgeon  should  incorporate rapid-velocity  

(e.g.,  0.84–2.52-m/s) sections,  between  

somewhat  slower (e.g.,  0.51–0.68-m/s)  sections 
for rest  and  recovery.  This observation (and  

conclusion) is important  in that  it  aligns with 

field  observations  (e.g.,  Thiem  et  al.  2011,  2016) 

and  provides evidence that  successful fishways  

require  combinations  of  high flow areas  and  low  
flow  areas  [similar  criteria  incorporated  into the  

prototype side-baffle fishway  designed  by  

Kynard  et  al.  (2011,  2012)].”  

Data Gaps 

• Improved swimming performance metrics by 

lifestage. 

• Improved swimming performance metrics by 

lifestage. 

• Movement and response to water-operations 
management actions. 

• Screen opening requirements and needs for 
larval and small juvenile sturgeon. 

• Use of tributary habitat (lower portions of 
tributary rivers to mainstem rivers) 

• Spawning and rearing habitat needs. 

FRESHWATER SCULPIN 

Image credit:  Prickly Sculpin  by  SportfishingReport.com  Inc  

Freshwater sculpins (Family Cottidae) are 
generally small-bodied benthic fishes commonly 
found in cool- and cold-water habitats across 
North America and Eurasia (Berra 2002). They 
can serve as key indicators of stream health 

(Matzen and Berge 2008) and play important 
roles as predators, prey, and competitors within 
aquatic food webs. Additionally, they inhabit a 
wide range of habitat types, from fast-flowing 
lotic systems to lacustrine waters. As benthic 
dwelling adults, they are plump, lack swim 
bladders, and have rigid pectoral fins, making 
them better adapted for anchoring to substrate 
than for strong swimming (LeMoine and 
Bodensteiner 2014). Consequently, barriers and 
habitat fragmentation can significantly impact 
their movement, with effects varying by species, 
life history strategy, and location. 

Behaviors & Life Histories 

Freshwater sculpins can be categorized into two 
groups based on their larval phase: planktonic or 
benthic. In western North America, sculpins with 
benthic larvae include at least 19 species (Goto et 
al. 2015), though recent genetic analyses by 
Young et al. (2022) suggest this number may 
exceed 40. Compared to sculpins with planktonic 
larvae, those with benthic larvae typically 
produce fewer, larger eggs, and their larvae 
disperse more slowly. As adults, these sculpins 
are also generally less migratory than those with 
planktonic larvae, and their entire life cycle can 
be completed within a relatively small area. 
Although most individuals typically move short 
distances (i.e., < 100 m) throughout the year, 
occasional movements of over 500 m have been 
documented in these species (Breen et al. 2009; 
Hudy and Shiflet 2009; Deboer et al. 2015). 
While they are typically less impacted by barriers 
than species with planktonic larvae, habitat 
fragmentation remains an important concern 
(Deboer et. al. 2015). 

Sculpin species in western North America with 
planktonic larvae include coastrange sculpin 
(Cottus  aleuticus) and prickly sculpin (C. asper).  
Prickly sculpin is the largest freshwater sculpin 
in North America  and can grow up  to 23 cm, 
while coastrange sculpin can reach lengths up to 
14.5 cm (Mason and Machidori 1976; Tabor et al. 
2007). These saltwater-tolerant fish  are often  
abundant in coastal lowland streams  and rivers  
across  the  Pacific  Northwest and, in many coastal  
areas (e.g., Vancouver Island  and northeast  
Olympic Peninsula  rivers), they are  the  only  
sculpin species present.  Unlike other Pacific  
Northwest freshwater sculpins, both species can  
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have a marine planktonic larval phase that likely 
contributes to their widespread distribution along 
the west coast from California to Alaska (Tabor et 
al. 2022; Young et al. 2022). 

In lotic systems, coastrange sculpin and prickly 
sculpin larvae drift downstream to nursery areas 
such as estuaries, lakes, large low-gradient 
rivers, or other slow-moving waters. After a few 
weeks, they transition to a benthic form and 
often move upstream to occupy the lower reaches 
of streams and rivers. Because of this upstream 
migration pattern, both species are particularly 
vulnerable to barriers (LeMoine and Bodensteiner 
2014; Tabor et al. 2017). However, they 
demonstrate strong migration abilities and can 
quickly recolonize upstream habitats following 
barrier removal (Tabor et al. 2020). For example, 
prickly sculpin can migrate up to 16 km 
upstream, with individuals observed moving as 
far as 6 km to recolonize dried habitats, while 
coastrange sculpin have been observed migrating 
up to 0.7 km in two weeks. Because they often 
move long distances over their life span, they are 
termed “migratory sculpins” (Figure 6; LeMoine 
and Bodensteiner 2014; Tabor et al. 2017). 

Figure  6  Common  Life Cycle of  Migratory  Sculpins  
(Cottus  aleuticus  and  C.  asper) living  in rivers and  

streams.  Created  by  Mae  Esquibel  with  

BioRender.com.  Adult  and  juvenile C.  aleuticus  
graphic from  Committee on  the Status  of  Endangered  

Wildlife in Canada  (COSEWIC) (2010)  

Coastrange sculpin and prickly sculpin display a 
variety of life history strategies, including 
amphidromy (migration between freshwater and 
marine environments) and potadromy (migration 

entirely within freshwater). With these two 
strategies, adults in lotic habitats typically 
migrate downstream in winter or spring to 
spawn. Upon hatching, their planktonic larvae 
drift further downstream to lentic nursery areas 
and grow for about 30 days before migrating 
upstream to lotic habitats and assuming a 
benthic form. After rearing for about a year, 
adults move upstream to continue the cycle. In 
lowland coastal streams, both species are 
commonly amphidromous, with larvae that drift 
into estuarine and marine environments (Figure 
1; Mason and Machidori 1976; Tabor et al. 2022). 
However, further research is needed to better 
understand how these life history strategies may 

vary among different populations and regions, as 
well as migration patterns and timing across all 
life stages. 

Although ecologically similar, coastrange sculpin 
and prickly sculpin tend to partition habitat 
where they co-occur: coastrange sculpin are more 
commonly associated with faster-moving riffle 
habitats, while prickly sculpin are more 
frequently found in slower-moving pool habitats 
(Mason and Machidori 1976; Tabor et al. 2022). 
For both species, larger individuals are typically 
found further upstream, likely because they have 
had more time to migrate and possess stronger 
swimming abilities (Tabor et al. 2022). 

Passage Needs & Observations 

Barriers constrain the distribution of freshwater 

sculpin, especially for migratory coastrange 

sculpin and prickly sculpin. Freshwater sculpins 

are particularly sensitive to human-caused direct 

barriers. Due to their small size and poor 

swimming ability, even small obstructions – like 

drop structures to create step pools that are 

intended for habitat improvements – can block 

movement and restrict access to upstream 

habitat (Tabor et al. 2017). Furthermore, because 

sculpin often rely on substrate contact for 

movement, barriers that create high water 

velocities, have significant vertical drops, or 

feature smooth surfaces are particularly 

problematic. In a study by Lemoine and 

Bodensteiner (2014), fish ladders with heights 

greater than 15 cm completely blocked sculpin 

movement. The authors also noted that while 

water velocity influences sculpin movement, it 
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may not be the best predictor of passage success 

(Lemoine and Bodensteiner 2014). Another study 

found that while coastrange sculpin and prickly 

sculpin were able to move through some weir 

baffled culverts, 1) sculpin densities did not differ 

significantly between streams with baffled and 

non-baffled culverts and 2) densities were 

significantly lower in streams with both culvert 

types compared to reference streams (Favaro et 

al. 2014). However, because only weir baffled 

culverts were examined, the effectiveness of other 

passage aids for coastrange sculpin and prickly 

sculpin should be further investigated. 

Rock ramp fishways offer one potential solution 

for improving sculpin passage. For example, 

observations of sculpin using interstitial spaces 

between rocks and gravel (Phillips and Claire 

1966; Thomas 1973) to navigate obstacles led 

Natsumeda (2007) to recommend installing 

cobble ramps downstream of barriers to aid their 

upstream movement. Similarly, Paik et al. (2024) 

found that mottled sculpin had high passage 

success using experimental rock ramp fishways 

with slopes between 2% and 6%. The sculpin in 

their study used localized areas of reduced water 

flow created by the heterogeneous arrangement 

substrate and roughness elements for resting, 

sheltering, and maintaining their position along 

the fishway, highlighting the importance of 

complex substrate in supporting sculpin 

movement. 

Swimming Performance & Endurance 

Specific information on swimming performance 
and endurance of freshwater sculpins is limited. 
However, sculpins typically have a lower 
percentage of red muscle mass compared to more 
endurance-oriented fish (e.g., salmonids), making 
them better suited for burst swimming rather 
than endurance swimming (Veillard et al. 2017). 
Moreover, their use of substrate interstitial 
spaces for movement (Phillips and Claire 1966; 
Thomas 1973) suggests that swimming speed 
criteria may be less important for sculpin than 
for other fish taxa, provided that appropriately 
sized and positioned substrate is available. 

Data Gaps 

• Swimming performance for all life stages. 

• Jumping abilities for relevant life 

stages/species. 

• Better understanding of migration patterns 

and timing for juveniles and adults. 

• Downstream dispersal and timing of larvae. 

• Design and efficacy of nature-based fishways 

like rock ramps. 

SMALL-BODIED NATIVE FRESHWATER FISHES 

Image credit: Umatilla Dace by Joseph R. Tomelleri 

We use the term “small-bodied” in reference to 
native freshwater fishes in their larval, juvenile, 
or adult life stages that, when compared to their 
anadromous salmonid counterparts, are 
significantly smaller in body length (<150 mm). 
This generally results in reduced swimming 
speeds, decreased jumping performance, and 
potentially increased entrainment and 
impingement rates on fish screens. 

This diverse group of fishes includes sculpins, 
minnows, suckers, stickleback, sand rollers, the 
smaller non-anadromous lampreys, eulachon, 
and others. In the State of Oregon alone, there 
are 79 native freshwater fish species that are not 
anadromous. Notably, many of these species are 
important prey resources in the diets of other 
fishes (Hemingway et al. 2019; Gray et al. 1984; 
Nigro et al. 1983) and birds (Fitzner and Hanson 
1979; Henny et al. 2003) and are a key 
component of food web nutrient cycling 
(Schmetterling and McFee 2006). For example, 
Hemingway et al. (2019) found that Sand Rollers 
may serve as a buffer against Smallmouth Bass 
predation for fall Chinook Salmon in Lower 
Granite Reservoir. 

While non-anadromous fishes do not typically 
have long migrations to and from the ocean, they 
still need to freely move upstream, downstream, 
and laterally into floodplains, wetlands, and side 
channel habitats to complete their life cycles 
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(ODFW Fish Passage Statutes; WDFW draft fish 
passage rules; Matica 2020). These lateral and 
edge habitats are particularly important for 
smaller-bodied fishes because they provide 
protected areas to spawn, feed, and rear that are 
inaccessible to larger predatory fishes. Both 
lateral and longitudinal aquatic connectivity are 
crucial for the conservation and perpetuation of 
fish populations, particularly in the face of 
habitat fragmentation, degradation, and climate 
change (Olden et al. 2014). 

The broader ecological loss of inadvertently 
excluding small-bodied fishes when restoring 
passage and connectivity, as well as screening 
protection, has not been assessed. For example, 
Sculpin (Cottidae species), Peamouth (Mylocheilus 
caurinus), Dace (Cyprinidae), and other native 
small-bodied fishes, are known to be hosts for 
many native mussel species (CTUIR 2022). If 
these host fishes are excluded from suitable 
habitat due to fragmentation, or their numbers 
decrease, there is a direct limiting factor to native 
mussel populations. 

Behaviors & Life Histories 

The complete range of behaviors and life histories 
exhibited by this diverse group of fishes is beyond 
the scope of this document. However, it is worth 
noting that these fishes still need to migrate to 
find appropriate habitat and flow types during 
various life history stages, which is becoming 
increasingly crucial in the face of climate change 
(Matica 2020). Additionally, small-bodied native 
fishes are included in fish passage statutes for 
both Oregon and Washington. These rules 
address fish access to spawning, rearing, 
foraging, and overwintering habitats. Oregon's 
fish passage policy and rules require that native 
migratory fish passage is addressed at certain 
trigger events, such as construction, major 
maintenance, or abandonment of existing 
artificial infrastructure. 

Passage Needs & Observations 

There is very little information on passage 
requirements of these smaller-bodied fishes (e.g., 
velocities, jump heights, water depths); however, 
upstream and downstream passage, along with 
access to complex lateral habitats, is crucial for 
many species to complete their life cycle. Natural 

stream channels and flow paths, along with 
inundated overbank areas connecting wetlands 
and floodplains, provide the best passage 
opportunities. Passage projects that seek to 
reconnect habitats, at even the lowest flows, and 
at a high density of access points to lateral 
habitats are preferred. Effectiveness monitoring 
that directly observes fish movement in and 
around passage structures would advance our 
understanding of passage capabilities and would 
allow for more comprehensive guidelines in the 
future (Silva et al. 2018). 

If a stream/road crossing is being improved, 
then a stream simulation approach (USDA 
2008) that matches native streambed 
materials is a good option. The addition of 
edge complexity and streambanks through the 
crossing structure will improve passage for 
many smaller-bodied fishes. The use of 
structures with diverse flow and velocity 
pathways is also a reasonable option for 
improving passage for native, small-bodied 
fishes, especially when specific swimming 
abilities are unknown. There is increasing 
evidence that there is no one-size fits all 
solution to fish passage (Hershey 2021); 
hence, diverse flow and velocity conditions 
may address passage issues for a wider variety 
of fish species. 

Although a few species may have some limited 

jumping abilities, many, such as sculpins and 

suckers, have none. A fully inclusive fish passage 

project should assume that at least some species 

have no jumping ability and poor swimming 

ability. Using a stream simulation approach as 

defined by the US Forest Service “… an approach 

to designing crossing structures (usually 

culverts), that creates a structure that is as 

similar as possible to the natural channel”, will 

provide passage for a spectrum of species in a 

wide variety of stream types (USDA 2008). 

Swimming Performance & Endurance 

There  are very few publications detailing  
swimming performance  of native, resident small-
bodied fish. Within  the literature,  three  
publications  report  swimming performance  
metrics for seven  additional  PNW species  
including: Matica  (2022; Riffle Sculpin), Aedo 
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(2009; Mottled Sculpin, Longnose Dace, Speckled  
Dace, Redside Shiner), and  Scheerer and  
Clements  (2013; Warner  Sucker). For these  
fishes, bursts speed  range 0.46  –  1.3 m/s.  
However, from just these few publications, it is  
not appropriate to infer passage constraints to  
the  group of small-bodies fishes  at large, across  
their life cycles.  

Data Gaps 

• Swimming and jumping performance metrics, 

life stage species wide; 

• Migration and movement distances; 

• Timing of movements; 

• Use of existing fishways and success rates; 

• Screening requirements, opening sizes. 

ADDITIONAL CONSIDERATIONS 

Climate Change 

Improved aquatic connectivity will more 
effectively allow fish to move between different 
habitat types, expand into new areas, express 
full life histories, or contract into colder water 
refugia in response to a changing climate. In 
addition, providing connectivity between 
habitats maximizes the ability of species to 
access areas during disturbance events such 
as drought, fires, and altered flood regimes 
expected to be more common into the future 
and allow recolonization after these events 
(Franklin et al. 2024; Falke et al. 2015; 
Gresswell 1999). 

Fish passage projects often involve durable 
infrastructure, such as dams, levees, bridges, 
culverts, and fishways. Proper design and/or 
modification of such structures involves 
understanding and quantifying both current 
and future hydrological conditions. With 
climate change, relying on past flow records is 
no longer adequate for determining the 
appropriate size or type of structures. 

Simplified scaling factors, such as increasing 
structure widths to 1.5 times the active 
channel width, are often used as design 
surrogates when data are lacking; however, 
these generalized surrogate methods could 
result in an inappropriately sized structure. To 

address this concern, all passage projects that 
include durable infrastructure should also 
have a robust climate change analysis, 
including predictions of future flow conditions. 
In addition to flow conditions, the analysis 
should also include potential changes in land 
cover and land use that could lead to changes 
in sediment loads and the hydrograph, both of 
which impact structure sizing. Under most 
climate change scenarios for the PNW, the 
magnitude and frequency of extreme 
precipitation events is projected to increase, 
which could result in higher flow intensity and 
variability across watersheds (USGCRP 2018). 

To address some of these issues, NOAA 
Fisheries has been working since 2016 to 
include methods to incorporate future climate 
change into engineering designs of fish 
passage facilities and stream crossings. See 
their document “NOAA Fisheries West Coast 
Region Guidance to Improve the Resilience of 
Fish Passage Facilities to Climate Change” 
(NOAA 2022b). Washington Department of 
Fish and Wildlife has provided similar 
guidance in “Incorporating Climate Change 
into the Design of Water Crossing Structures” 
(WDFW 2017). 

Aquatic Invasive Species 

This document emphasizes the need to 
increase native fish passage; however, there 
are situations where passage may be 
undesirable due to a strong potential for the 
introduction of invasive species. This is of 
particular concern in areas where a barrier 
has isolated native species from non-native 
invasive species. 

Because of the site- and species-specific 
nature of addressing the risk of non-native 
species introductions, it is recommended that 

project proponents contact both their state 
fish and wildlife agency and the US Fish and 
Wildlife Service for further guidance. 

Lateral Connectivity 

The Service defines passage as the ability of 
fish or other aquatic species to move through 
an aquatic system among all habitats 
necessary to complete their life cycle. Because 
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large, lateral connectivity projects, often called 
“floodplain reconnection” and “Stage 0,” are a 
relatively recent aquatic restoration approach, 
it is worth highlighting some important 
aspects of these project types (Powers et al. 
2019). 

Improvements in lateral  connectivity  restore  
complexity within  the river system while  
promoting  shorter-term  stability  and creating 
a  more  resilient river-wetland corridor  (Powers  
et al. 2018, Wohl et  al. 2021). A  well-connected  
floodplain within the  river-wetland corridor  
provides substantial benefits, including 
feeding, rearing, and  flow and  temperature  
refuge,  to the species which are the  focus of 
this document. The benefits of floodplain 
access to  fish  are  well-documented  for  
anadromous species (Katz et  al. 2017, Jeffres  
et al. 2020)  and  are  assumed, by extension,  to 
benefit other native  fishes  as  well. Recent 
recommendations from  the Lamprey Technical  
Workgroup  of the  Pacific  Lamprey 
Conservation Initiative suggest  “enhancing  
riparian condition through [riparian]  plantings,  
livestock enclosures, and increased lateral  
connectivity can benefit lamprey populations”  
(LTW 2023). It has been  hypothesized that 
White Sturgeon  recruitment failure,  or severe  
interannual variability in recruitment,  is due  
to lack of  access to floodplain habitat and  
diverse  channel velocities and complexities  
Coutant 2004).  

Fish Passage Performance 

For all engineered fishway types, especially 
those that have durable infrastructure, the 
authors recommend that passage performance 
should attempt to meet or exceed 95% for 
adult Bull Trout, Pacific Lamprey and White 
Sturgeon. Passage performance for adult 
small-bodied resident fish should be evaluated 

based on the biological need of the species 
involved and all of the habitats needed to 
robustly complete their life cycles both up-
and downstream of the infrastructure. 
Performance is defined herein as the number 
of fish that successfully pass a fishway, 
relative to the number that approached the 
fishway, expressed as a percentage. Other 
measures of performance, including 
hydraulics, attraction flows and entrance 

efficiency should also be evaluated. 

Dewatering 

In the PNW, water diversions for irrigation and 
other consumptive uses are common. Fish 
screens are engineered structures that 
preclude adult and juvenile fishes from 
entering diversion structures, pump intakes, 
diversion channels, pipes, or penstocks. 
Screens generally protect the juveniles of 
larger-bodied fishes from entrainment into 
irrigation delivery canals and those fish are 
directed back to the river, often via a bypass 
channel. 

To provide all species of fish in bypass 
channels safe return to the river when the 
diversion flows are reduced or stopped, 
ramping rates published by Washington state 
(WDFW 2022) are recommended (Table 3). 
Ramping rates (rate of changes in stage) are a 
concern because a rapid decrease in flow can 
strand fish in pools within bypass structures 
or other areas potentially exposing them to 
predation, poor water quality, and/or 
desiccation. Ramping rates apply to 
hydropower operations as well as diversions. 
Rapid decreases in flow can result in fish 
stranding in shallow water or disconnected 
habitats, and can dewater spawning, rearing, 
and other habitats. 

Season Day Rates* Night Rates 

Feb 16 to June 15 No Ramping 5 cm/hr 

June 16 to Oct 31 2.5 cm/hr 2.5 cm/hr 

Nov 1 to Feb 15 5 cm /hr 5 cm/hr 

* Day is defined as one hour before sunrise to one hour after sunset 

Table 3 Recommended ramping rates in changes 

in stage. From: WDFW and WDOE (2022). 

Larval Fish Screening 

For the PNW, National Marine Fisheries Service 
develops, updates, and publishes fish screening 
guidelines (NMFS 2022a) to protect and limit the 
entrainment and impingent of fry and juvenile 
anadromous salmon and steelhead on fish 
screens. Currently, there are no formalized 
recommendations available to protect native 
larval fishes in the PNW for which many species 
are smaller than salmonids. Hence, 
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recommendations provided herein are based on 
the best available information. 

While swimming performance data are broadly 
lacking, many larval fishes are quite small, and 
poor swimming performance can be inferred. For 
example, Largescale Sucker occur in most 
freshwater bodies west of the Rocky Mountains 
and from British Columbia (Canada) to Oregon 
(US) (Scott and Crossman, 1973), and their larvae 
can be as small as 8 mm in length (Dauble 1986). 
Larval Mountain Whitefish, a resident salmonid, 
are notably smaller than other resident and 
anadromous members of this family. For larvae 
and early juvenile Mountain Whitefish, Brown 
(1952) reported a mean tail length of 11.7 mm, 
and Rajogopal (1975, 1979) a range of 13 to 14 
mm upon hatching. Given the inferred swimming 
performance and size of larval fishes, juvenile 
salmonid screening criteria (NMFS 2022a) are 
unlikely to be adequate for larval fishes. 

With ten species of native lampreys in the PNW 
(ODFW lamprey brochure), they are an important 
group to both protect and to use as a surrogate 
for other fishes due to their small size. After 
hatching, larval lampreys are ~10 mm in length 
(Lampman et al. 2021) and would require a 
screen opening of ≤0.35 mm (LTW 2022b). The 
size of the screen opening is not designed to limit 
passage of larval lamprey through the opening, 
but rather to limit impingement against the 
screen by maximizing the resultant “sweeping 
velocity.” While screen manufacturers fabricate 
screen down to 0.5 mm, (ISI Intake Screens, 
Hendrick Screen Company, and others), this 
small gap size may be impractical for many 
situations, largely due to maintenance and 
cleaning issues. Testing of small gap screen 
feasibility is currently planned at a few Service 
facilities. Until more data are available, we 
recommend a screen open area (the sum of the 
area of all the holes, slots, mesh, or perforations 

on the screen that allow water to flow freely) of at 
least 27%, and maximum screen size openings as 
follows: 

• Slotted or rectangular 0.75 – 1.00 mm 

• Circular or square 1.00 – 1.60 mm 

These values are based on: 

a) opening sizes to protect larval lamprey 
(LTW 2022b), 

b) current screening used in other parts of 
the country to protect larval fish and eggs, 
and 

c) commercial availability from screen 
manufacturers. 

Tide Gates 

Tide gates  are engineered structures that 
control  water inflow/outflow, typically through  
an  embankment or levee  system, in coastal  
and estuarine areas. They are commonly used  
to reduce  the frequent inundation  and  
saturation of infrastructure and  arable land  
due to tidal cycles  and storm surges. Similar 

structures  that protect land from larger floods  
are  more  appropriately called “floodgates.”  

Fish passage in and  around tide  gates  are of  
particular concern due to  physical barriers  
(the gates and  berms), velocity barriers  (as  the  
gates open and close), and potential  
temperature  and chemical  barriers due  to 
strong gradients that tide gates can create. To  
address some  of these concerns,  Guidance &  
Protocols  for Estuary Practitioners  (2024) was  
funded by the Oregon Watershed  
Enhancement  Board in collaboration with the  
Coquille  Watershed Association, The  Nature  
Conservancy, and  the  Tillamook Estuaries  
Partnership.  

The State of Oregon provides design criteria for 
tide gates in their Oregon Administrative Rules 
(635-412-0035 parts 4 & 5). These rules 
identify minimum requirements for tide gate 
designs and should be consulted when 
working in Oregon. Similarly, the Washington 
Department of Fish and Wildlife provides 
guidance on tide gates in Chapter 10 of their 
Water Crossings Design Guidelines document. 

Information regarding the use of tide gates by 

fish other than salmonids is generally lacking 
in the literature. This includes native lamprey 
species, for which PLCI (2021) reviewed the 
available literature and found little to no data 
for lampreys or their use of habitats in 
estuarine environments. 

Engineered Fishway Design 

When all other fish passage options have 
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been fully evaluated and an engineered 
fishway is still necessary, consider the 
following during structure design: 

1. Maintain flow and passage routes for 
upstream and downstream passage 
throughout the year. 

2. Provide alternate passage routes, such as 
orifices at various depths, to accommodate 
different species, behaviors (pelagic vs. 
benthic swimming), and swimming 
abilities. 

3. Build or modify passage slots and baffles 
to accommodate the largest fish. 

4. Minimize turbulence throughout the 

fishway. 

5. When swimming performance data are 
available (currently a data gap for many 
species), maintain velocities at or below 
threshold for the weakest swimming 
species to be passed. 

6. Create slow-velocity zones to allow smaller 
and weaker fishes to rest and recover. 

7. Keep  attraction water velocities between 
0.3 m/s  and 0.9 m/s. A  minimum of 5%  
of total streamflow should be used  as  
attraction flow (NMFS 2022a, pg.  48).  

8. Minimize gaps and recesses (cavities) to aid 
lamprey passage. 

9. Round corners, smooth side surfaces, and 
provide open pathways to improve lamprey 
passage efficiency (CRBLTW 2004; 
Ackerman et al. 2019). 

10. Provide alternate passage routes, such as 
lamprey passage structures (Goodman and 
Reid 2017; Moser et al. 2019). 

11. Check for smooth bottom surfaces to not 
obstruct lamprey and sturgeon passage. 

12. Provide  a minimum of 0.75 m wide  and  

>1.0 m high bottom passage to  

accommodate large sturgeon.  

13. Keep water depth >1.0 m for sturgeon 
passage. 

While this document attempts  to summarize  
the literature  and provide useful links, 
significant uncertainties regarding fish 
passage  remain.  Projects attempting new and  
novel approaches to passage should be treated  
as experiments  and closely monitored. On-
going, long-term, post-project monitoring  is 

essential to reduce uncertainties and to 
improve fish passage. The sharing of new 
information and data derived through these 
experiments and other studies is strongly 
encouraged to improve the science, 
engineering, technology, and practice of fish 
passage. If you are aware of new fish passage 
techniques, approaches, or practices, please 
email: Vancouver@fws.gov. 
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ecological  approach to providing passage  
for aquatic organisms  at road-stream  
crossings.  

•  “NOAA Fisheries  West Coast Region 
Guidance  to Improve the  Resilience of Fish 
Passage  Facilities to Climate  Change”  

•  Washington Department  of Fish and  
Wildlife  2017  “Incorporating Climate  
Change into the Design of Water  Crossing 
Structures”  

•  “Fish Swimming Performance Database  
and Analyses”  by  Katopodis  and  Gervais  
(2016).  

•  “SPOT: Swim Performance Online Tools”  by 
Di Rocco and Gervais (2024)  
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