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ABSTRACT

Climate change and altered fire regimes are rapidly transforming montane forests of the
Western United States and reshaping wildlife habitat, creating challenges for wildlife
management. Reliable population monitoring is critical to inform management, yet it remains
unclear whether emerging technologies like autonomous recording units (ARUs) provide
information comparable to traditional point count survey methods by human observers when
assessing the effects of fire, climate, and land cover, across multiple scales. We sought to better
understand the effects of fire, climate, and land cover on Mountain Quail abundance and
occurrence using point count and ARU data across the majority of their range in California and
provide evidence-based recommendations for managing and monitoring this species in the
context of dynamic environmental conditions.

We found that local-scale land cover best explained abundance, while landscape-scale land
cover was more strongly linked to presence. In terms of land cover, the percentage of shrub
cover emerged as important across all spatial scales (50-5,000 m). Fire-related factors were also
broadly correlated with Mountain Quail presence and abundance with quail being positively
associated with high burn severities 6-20 years post-fire at local scales (<500m) and positively
associated with post-fire areas 1-5 years after fire if they burn heterogeneously at landscape
scales. While climate variables were not strong predictors of abundance in isolation relative to
land cover and fire, anomalously warm winter temperatures had a pronounced negative effect
on abundance and presence in some regions. Abundance varied regionally with the highest
population densities at lower latitudes. Population trends were consistently stable across
regions and monitoring protocols from 2010 to 2021 in the Sierra Nevada, Southern Cascades,
and Modoc Plateau, and in Northern California from 2017 to 2021.

Our findings suggest that while point counts and ARUs capture different aspects of Mountain
Quail ecology, both provide complementary insights. We recommend that future monitoring
continue with regional approaches, combine point counts with ARU data collection to
strengthen inference and utility for management, and integrate multiple spatial scales during
analysis.
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INTRODUCTION

Climate change is transforming the habitat of terrestrial wildlife in the mountains of the
Western United States by reshaping and shifting the ranges of vegetation communities, altering
hydrologic cycles, and amplifying thermal stressors (Halofsky and Peterson 2016, Thorne et al.
2018, Noel et al. 2025). Warmer winters, drier summers, and droughts have facilitated massive
beetle outbreaks causing widespread mortality of conifer forests, which in turn affects wildlife
(Bentz et al. 2010, Roberts et al. 20193, Fettig et al. 2019, Madakumbura et al. 2020). Montane
environments are experiencing reduced and earlier melt of snowpack, drying habitats that
wildlife rely on (Wilkins et al. 2019, Halsch et al. 2024). Climate change also exerts direct
thermal effects on wildlife, impacting survival and reproduction (Dugger et al. 2016, Riggio et al.
2023a). But perhaps nowhere are the effects of climate on wildlife habitat in Western montane
forests more pronounced than those of increasing high severity fire.

California’s forests, like much of the Western US, are experiencing rapid ecological change
caused by altered fire regimes (Halofsky et al. 2020, Gaines et al. 2022). The fire regime across
the majority of the conifer forest of interior Northern California and Sierra Nevada were
historically characterized as mixed severity, dominated by lower and moderate severity effects,
resulting in a structurally diverse and successionally heterogenous landscape (Hessburg et al.
2016). Following nearly a century of effective fire suppression, in the last few decades fires
have been increasing in size and severity with a concomitant increase in the area burning at
high severity and the size of the high severity patches, both outside the historic range of
variability (Mallek et al. 2013, Steel et al. 2015, Hagmann et al. 2021, Williams et al. 2023). The
abundance and distribution of forest successional stages has rapidly changed as a result, with
homogenization of habitat patches at large landscape scales (Steel et al. 2023). These changes
in turn affect the distribution and abundance of the wildlife communities adapted to the
structural and spatial diversity created by mixed severity fires (Zeller et al. 2023).

Managing wildlife populations in these rapidly changing environmental conditions presents
significant challenges for managers. Managers rely on the best available science to inform
decisions, yet the pace of environmental change may lead to shifts in the species-habitat
relationships that underpin decisions (Morley et al. 2018, Morelli et al. 2025). Recent
technological advancements in wildlife monitoring, such as the use of autonomous recording
units (ARUs), may help expand our capabilities to monitor wildlife populations (Dalton et al.
2022). ARUs present benefits for monitoring vocal wildlife such as birds (Darras et al. 2018).
They offer a relatively low cost monitoring design, while typically increasing detection
probabilities (Drake et al. 2021), especially for species with low detectability (Doser et al. 2021,
Lewis et al. 2025). They have been shown to be effective in modeling habitat relationships for
many bird species in the mountains of Northern California and the Sierra Nevada, including
Mountain Quail (Furnas 2020, Brunk et al. 2023a, 2025). However, little is known about
whether ARU and human observer assessments identify the same processes affecting wildlife,
such as fire, climate, and land management.
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The adoption of new monitoring methods can also present challenges for managers, especially
for long-term monitoring programs. In some cases, the population estimates derived from new
monitoring methods align with traditional monitoring methods, reinforcing their reliability
(Baldwin et al. 2023, DelLeon et al. 2023). However, discrepancies in population estimates
obtained from new and traditional monitoring tools (Hutto and Stutzman 2009, Hodgson et al.
2018, Drake et al. 2021, DeLeon et al. 2023) raise concerns for wildlife managers. Additionally,
many of these technologies rely heavily on artificial intelligence (Al) models for data processing
(Shah et al. 2020, Kahl et al. 2021, Vélez et al. 2023, Samiappan et al. 2024). It is important to
compare trends in populations obtained from new technologies with traditional monitoring
methods and identify the cause of discrepancies, if those exist (Strang et al. 2025). However,
the type of data that feeds into population trends often differs across monitoring approaches.
For example, point-count protocols are well suited for estimating abundance, whereas ARUs
typically generate occupancy or presence/absence data (DelLeon et al. 2023). Depending on
management goals, ARUs may not provide the data needed to guide management practices,
especially in cases where accurate estimates of population size are required, such as for
developing or adjusting hunting regulations. It is also important to evaluate if the covariate
effects between traditional and new methodologies are comparable. Given the extent to which
the existing literature on avian abundance and distribution is based on human observer counts,
more comparisons of data collected by human observers and ARUs are needed as ARU data
becomes more prevalent.

The Mountain Quail (Oreortyx pictus) is a small gallinaceous bird native to mountainous areas
from Oregon, through California, to northern Baja California. They are associated with early and
mid-successional stages of mixed conifer and mixed conifer-hardwood forests and shrublands
(Block et al. 1987, Gutiérrez and Delehanty 2020). As an upland game bird and an indicator
species for the US Forest Service, Mountain Quail is a species of high management interest in
California, but few studies of the species exist to inform population management (Gutiérrez and
Delehanty 2020), especially in relation to environmental change. In the Sierra Nevada,
Mountain Quail have been found to respond positively to high-severity fire disturbances (Taillie
et al. 2018, Brunk et al. 2023b) but these studies were limited in temporal or geographic scope.
No published studies have evaluated Mountain Quail response to variations in climate in
California, such as anomalous temperature and precipitation. In Idaho and Eastern Washington,
they were found to be sensitive to climatic variables (Stephenson et al. 2011).

Our study sought to better understand the effects of fire, climate, and land cover on Mountain
Quail abundance and occurrence across the majority of their range in California and provide
evidence-based recommendations for managing and monitoring this species in the context of
dynamic environmental conditions. We used data from long-term point count monitoring and
recent ARU monitoring to model abundance and presence of Mountain Quail across the Sierra
Nevada and Northern California mountains. By comparing results derived from these two
monitoring techniques, we aimed to identify areas of agreement and discrepancy in the
monitoring methods. We hypothesized that both methodologies (a traditional point count
method and a new method using ARUs) would correlate broadly.
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Mountain Quail Detection Data

We used two types of data from three different sources to assess the breeding population
trends and distribution of Mountain Quail across the majority of their range in California. The
first data type consists of standardized point count surveys (Ralph et al. 1993) conducted across
the Sierra Nevada Planning Area as part of a region-wide avian monitoring project on National
Forest lands (Roberts et al. 2011b) (Figure 1). Sample locations were selected across nine
National Forests and the Lake Tahoe Basin Management Unit using a generalized random-
tessellation stratified design (GRTS) to avoid clustering in any given area. Within each GRTS
area, surveys were located at elevations ranging from 1,000 to 2,800 meters, were limited to
areas within 1 km of accessible roads, on slopes less than 35 degrees, and within forest, shrub
wet meadow and riparian habitats. Sample locations formed a spatially balanced survey design
with a geographically even distribution of sampling sites (Roberts et al. 2011a). The sampling
design for upland habitats (forest and shrubland) included 2 transects per site, with each

transect sampling a 1-km
grid cell. Each upland
transect consisted of 5
survey stations, a central
station and four stations
250 meters away from the
central station in each
cardinal direction. The
sampling design for wet
meadow and riparian
habitats included 2-3
transects per site with 4-5
stations arranged 250
meters apart in a linear or
clustered pattern that
sampled irregularly and
linearly shaped habitat
patches. Bird surveys were
conducted from mid-May
through early July from
2010 to 2021, except 2018
and 2020. Each survey
consisted of a five-minute
count, where the observer
recorded the number and
estimated exact distance to
each individual bird species
heard or seen, from the

Figure 1. The study area covers the Sierra Nevada mountain range, the
northern California coast and northern mountain ranges. The dots
represent the locations of the surveys from each data owner.
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station center, out to a distance of 300 meters. Surveys began at local sunrise, were completed
within four hours, and did not occur in conditions that would substantially reduce detectability
(e.g. precipitation, fog, or high winds). Laser rangefinders were used to assist in distance
estimation. While approximately 25% of all sites received a second visit every year, we used
only observations from the first visit. We used a total of 15,781 point count surveys in the
analysis.

The second data type came from Autonomous Recording Units (ARUs), deployed across the
Northern California mountains and northern half of the Sierra Nevada (Figure 1;Furnas and
Callas 2015, Snyder et al. 2022). All ARU data were recorded using Audiomoth devices (Hill et al.
2018, 2019). We used three sources of ARU data, each with their own recording protocol: Point
Blue (Point Blue 2021), California Department of Fish and Wildlife (CDFW; (Furnas and Callas
2015), and Soundscape 2 Landscape (S2L; (Snyder et al. 2022). We used a sample (n =1,737) of
S2L recordings from Sonoma County, from April to June of years 2017 to 2020, only for tuning
the convoluted neural network (CNN) model (i.e., not in the occupancy analysis; Snyder et al.
2022; details below). Data from CDFW consisted of 3 daily 5-minute recordings (n = 3,449)
collected between pre-dawn (4:44 AM) and sunrise (6:33 AM) from May 2, 2017 to June 30,
2021, in the Northern California mountains (Figure 1). Recordings from Point Blue were
sampled across the northern half of the Sierra Nevada in 2021 (Figure 1). They consisted of 1-
minute recordings every 10 minutes of every hour for several days at each location. Because
both the sampling design and sampling effort (number of years) differed between the CDFW
and Point Blue, we opted to complete a separate occupancy analysis with each dataset.
However, within a yearly scale, we subsetted the Point Blue dataset to the same months and
approximate time periods of the CDFW dataset. That is, we used 15 minutes of recordings from
each day, starting at 4:30 AM to 7:00 AM (n = 6,495 recordings). A total of 9,944 minutes of
recorded data were used to predict with our tuned CNN model and resulted in 434,548
predictions of possible detections.

Cloud-based workflow to detect species using ARU recordings

We developed a cloud-based workflow that uses machine-learning techniques to accurately
identify Mountain Quail vocalizations from ARU data. This system is scalable, allowing for future
adaptations to include other species and regions. Beyond the immediate goal of identifying
Mountain Quail, this workflow could be extended to increase the utility of the CDFW dataset
for other species of management interest.

The cloud-based species detection workflow (Figure 2) included five steps: data labeling, data
preparation, CNN model tuning, CNN model predictions, and CNN model evaluation. All of
these steps were completed on a cloud computing system (the Amazon AWS cloud, or in the
case of developing labels, the ARBIMON web platform). However, they could all be completed
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on a local computer, provided that it has sufficient storage capacity. Below we describe each
step and where it was completed.

Data labeling involved identifying the 'quark' song of Mountain Quail in a sample of recordings.
This was completed using an automated detection tool in ARBIMON, a free web application
(Aide et al. 2013). In ARBIMON, we searched for Mountain Quail ‘quark’ by listening to
recordings and selected three templates of the call in a spectrogram. We then applied
ARBIMONSs image searching algorithm to find spectrograms in the same frequency range from
our morning and afternoon recordings. Then, experts validated the detected 'quarks' as either
'present’ or 'not present’ (i.e., was or was not a Mountain Quail ‘quark’), by inspecting all the
findings of the pattern matching algorithm from ARBIMON. The results of the pattern matching
searches and validations were exported out of ARBIMON as a csv file that contains: the name of
the sound file, the starting and ending second where the pattern was located, and whether it
was confirmed as a present or not present. Other software can be used to complete this task,
including desktop applications, but these may lack an image or pattern searching tool and may
require much more effort scanning large numbers of sound files to find matching patterns. We
also note that the ARBIMON tool has an important caveat: the matches found are very similar
to the pattern provided, thus there will be significant homogeneity in the results. It is always
good practice to use several patterns to obtain some variability in the matches. We used three
templates in our pattern matching analysis.

In the data preparation step, we used the downloaded csv file with the results of the pattern
matchings to locate and crop the clips in the sound files. Because the next step requires 3-
second clips and the patterns are usually shorter than 3 seconds, we centered and buffered the
clips equally on both ends. We obtained over 7,000 tuning clips (both quail and non-quail
detections combined). We ensured that these clips came from a variety of sample locations
representative of the geographic diversity of our study area to enhance the diversity of the
training patterns. We did not use any augmentation methods, which are commonly used to
increase sample size, such as adding noise to our existing training clips to generate new tuning
clips. This data preparation step can be completed on any platform with sufficient disk space to
host the often-large sound files. Our AWS system consisted of an EC2 virtual machine with an
Ubuntu 24.04 LTS operating system. On this machine we set up a Jupyter Notebook server,
allowing us to access this computing environment from anywhere via a web URL connection.
The server is password-protected. The sound files are stored in an Amazon S3 bucket, which we
mounted onto the virtual machine and were thus available to the notebook server. We installed
an R kernel for the notebook server, in addition to the default python kernel, to be able to run
both python and R notebooks. Clipping the sound files with the pattern-matching results was
doneinR.

To predict quail presence in the recordings, we used the BirdNET CNN Al model. BirdNET is a
freely available tool for identifying bird species from sound recordings across North America
and beyond (Kahl et al. 2021, McGinn et al. 2023), and is accessible through its GitHub

repository. The downloadable package includes a Python interface that allows users to both
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train the model and run predictions on sound files. Following a transfer-learning approach, the
code fine-tunes the classifier head of the CNN (i.e., the weights for the embeddings) without
altering the original embeddings. For the tuning step, we used the ‘autotune’ functionality with
200 trials to optimize model hyperparameters (note that only a subset of CNN hyperparameters
can be tuned using the provided software). We also used the ‘append’ functionality, which
directed the model to use our numerous, geographically localized recordings of Mountain
Quail. This step produced a classifier fine-tuned specifically on our data. To further improve
accuracy, we included the provided “not-quail” clips so that the model could learn to
distinguish quail vocalizations from similar sounds, thereby maximizing true detections while
reducing false positives. Although BirdNET includes a Python application for training and
prediction, we executed these steps from within R by calling Python scripts through system
commands. For example, a batch execution of the BirdNET Python script from the command
line might look like:

> python3 -m birdnet_analyzer.analyze ... (other arguments here)
Then the R-based command would be:
S system(“python3 -m birdnet_analyzer.analyze ... (other arguments here)”)

The sole advantage of this approach is that it permits the user of our system to execute all steps
within the R environment. Because we set up R to run in a Jupyter Notebook, users can fully
annotate their code. We annotated all of our notebooks and documented every step described
here.

The prediction step used the Mountain Quail classifier generated in the previous step to
determine whether Mountain Quail were present in the recordings. Predictions were made on
1-minute or 5-minute recordings, with the model evaluating overlapping 3-second clips (1-
second overlap). As with training, this was implemented as a batch script execution within the R
environment, run in a Jupyter Notebook with an R kernel. Each prediction returned a
confidence score indicating the model’s certainty that a 3-second clip contained a Mountain
Quail call. In addition to quail detections, we also applied the default BirdNET classifier to
identify 20 additional species in the recordings. These consisted of the 10 most frequently and
10 least frequently detected species from point counts conducted at locations where Mountain
Quail are known to occur (Appendix A).

10
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Figure 2. Diagram of the workflow used to process and analyses the ARU data.
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The final step, CNN model evaluation, focused on identifying the optimal level of prediction
penalization to minimize false positives while maximizing true positives. Penalization can be
applied simply by setting a minimum confidence threshold (e.g., accepting only predictions with
confidence scores >0.8). This step is critical, as even a small number of false positives can
significantly reduce accuracy (Royle and Link 2006, Miller et al. 2011, 2015, Royle et al. 2012).
Because the CNN generates a confidence score for every 3-second clip, it is essential to
determine the confidence level at which predictions can be considered reliable detections.
Despite its importance, this step is often overlooked in similar studies, or a simple 0.5 threshold
is used. To properly validate our model, we used a withheld dataset in which experts manually
reviewed recordings. Reviewers documented the exact timing of Mountain Quail ‘quark’ calls,
noted other detected species, and recorded background noise such as wind, insects, or human
activity (Clark et al. 2023). We refer to this test set as our “golden validation” dataset.

To evaluate the performance of the Al model, we compared its predictions against the golden
validation dataset. This allowed us to determine the confidence score threshold that balances
prediction precision (accuracy) and recall (detection sensitivity). In a first step, we used the Fg
index at B = 1 (highest recall) to identify a penalization threshold of 0.81, which yielded 75%
recall and 87% precision. After identifying the penalization threshold, we found that the
resulting detections still included a 13% false positive rate, so we took a second step of fitting
an ensemble of Random Forest models, weighted and averaged across bootstrap replicates,
that incorporated information from co-occurring species. This ensemble refinement provided a
more reliable distinction between true and false positives and further improved overall
precision. More details about the evaluation steps are provided in Appendix B.

Abundance and occupancy modeling analysis

Environmental covariates

We modeled Mountain Quail abundance and distribution using covariates relevant to the
ecology of Mountain Quail with the inclusion of specific covariates to assess the impact of
climate and fire. A total of 85 and 90 covariates were used in the modeling with the point count
and ARU data, respectively. Each covariate consisted of a unique combination of measurement

11
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(e.g., shrub cover, precipitation), spatial scale (e.g., 100m), and summary statistic (mean or
standard deviation). See Appendix C for a complete list and definition of the covariates, their
source, the spatial scales considered, and how they were summarized. The covariates fell in five
broad data types: (1) survey effort, such as day of year and time of day; (2) geographic, such as
latitude, aspect, relief, and an index of elevation; (3) climatic, related to annual temperature
and precipitation anomalies; (4) landcover, such as satellite-derived metrics of land cover types,
spectral wavelengths, and field-collected vegetation data; and (5) fire, such as the extent of
high-severity fire, the number of years since the last fire, and a pyrodiversity index. Many of
these covariates, particularly those related to land cover types and fire, were summarized
across multiple spatial scales, ranging from 50 to 5,000 meters, and in some cases, across
multiple ranges of years, e.g., high severity fires in the past one to five years. The 50 m
covariates were obtained through field surveys, while all other scales — 100, 250, 500, 1,000,
2,000, and 5,000 m — were obtained using remotely sensed data. The original grain size of these
remote sensing data was typically 30 m, beside the climate data which were provided at a 4,683
m resolution. These scales have been found to be relevant to avian ecology in other studies
(Graf et al. 2005, Cunningham and Johnson 2006), while accurately representing land cover
(Rigge et al. 2025).

Abundance analysis using point count data

We modeled the abundance of Mountain Quail over time in the Sierra Nevada and Modoc-
Cascades regions using point count data (Figure 1). We used the ‘distamp’ function in the R
package ‘unmarked’ (version 1.4.3; Kellner et al. 2023), a hierarchical modeling approach that
models abundance corrected for detection as a function of distance from observers. Our
models included all Mountain Quail detections up to a distance of 175 meters from each of the
four cardinal point count stations of each transect. We excluded the central point count station
at each transect to ensure no overlap in area sampled among adjacent point count stations at
the 175-m distance threshold.

We applied a model selection process to account for imperfect detectability. We first compared
three detection functions — hazard rate, half-normal, and uniform — via AIC with intercept-
only formulas for the detection and abundance components of the models. We selected the
hazard rate detection function for all subsequent analysis based on its lowest AIC value. We
next assessed the influence of survey-specific variables on detection, evaluating the effects of
Julian day, time of day, observer group, and habitat covariates on detection, while keeping the
abundance formula as intercept-only. We compared candidate models using AIC and retained
the top-performing model that included Julian day, time of day, and observer group. Lastly, for
all abundance modeling, we considered counts from a station-year combination as independent
records in the model, with year and transect as random effects to account for potential spatial
and temporal patterns in abundance caused by repeated measures at the same locations (Fuller
et al. 2016, Roberts et al. 2019b) and to account for yearly variation not represented by the
covariates e.g., diseases, changes in phenology, etc. We also standardized all covariates prior to
inclusion in the models by rescaling the data to have a mean of 0 and a standard deviation of 1.
In the R analysis tool ‘distsamp’, we selected for the output to be the density in kilometer
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square. We next used a model selection process to define the abundance formula in our
models.

The environmental covariates that influence the abundance of Mountain Quail vary across their
range (Rousseau and Betts 2022). We hypothesized that drivers of Mountain Quail abundance
could differ across the broad geographic extent of our study area. To address this, we assessed
the importance of environmental covariates in three geographic regions delineated using
CDFW’s ecoregion boundaries as a rough guide (Goudey et al. 2007): the Modoc-Cascades, the
Northern Sierra Nevada, and Southern Sierra Nevada (Figure 1). We built separate models for
each of these regions to assess varying geographical drivers and improve model fit (Syphard et
al. 2024).

For each region, we developed four process models to evaluate the relative influence of
climate, fire, local and landscape land cover on Mountain Quail abundance. These models
aimed to identify which of these four ecological drivers were the most influential in predicting
Mountain Quail abundance in each region. We used a two-step procedure to determine which
covariates to include in each process model (steps 2 and 3 in Figure 3). In the first step, we
combined all environmental covariates within each scale, to obtain one model per scale. For
example, a scale model would have included vegetation covers, fire covariates, and so on,
summarized at 100 m buffer. We also created one ‘no scale’ model for those covariates that
were scale-independent (e.g., distance to river). At this step and all subsequent models we used
the Variance Inflation Factor (VIF) to ensure no covariates within the same model had high
correlation (VIF > 3) to avoid spurious model behavior (Akinwande et al. 2015, Yu et al. 2015).
The second step involved selecting the covariates that would be included in each of the four
process models for each region using the results of the spatial scale models. All climatic
covariates were restricted to the climate model. All fire covariates were restricted to the fire
model. All land cover covariates summarized at scale < 500 m (buffer of 100 m, 250 m, and 500
m) were restricted to the local land cover model, while covariates summarized at scale > 1000
m (buffer of 1000 m, 2000 m, and 5000 m) were restricted to the landscape land cover model.
All four process models had the same detection formula as described above. Additionally, all
models included the same subset of geographic variables and survey effort variables (Julian
day) as fixed effects in the abundance formula (Appendix C). Some individual land cover and fire
covariates were correlated across multiple spatial scales (e.g. shrub cover at 100m and 250m).
To select the best scale for each covariate, we used the scale with the highest absolute z-value
(mean estimate divided by standard error) from the previous step. The final set of covariates
for each process model in each region is listed in Appendix D. Finally, we compared the four
process models within each region using AIC to determine which process best explained the
variation in Mountain Quail abundance. This process model comparison was completed for the
two Sierra regions but was not for the Modoc-Cascades region due to a lack of convergence for
some of the process models.

Next, we developed a final model per region for assessing population trends and predicting the
species’ distribution. For the two Sierra Nevada regions, we first ran a global model per region
containing all covariates present in at least one of the process models (Figure 3; Appendix D).
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We then reduced the number of covariates in the model by removing any that had a p-value >
0.1. This step sometimes included iterations of running models. We then further reduced the
covariates by removing any with a p-value > 0.05, again running model iterations until all
covariates had a p-value < 0.05. We observed that some iterations sometimes had a lower AIC
even if it contained covariates with a p-value > 0.05. If such was the case, we kept the model
with the lowest AIC (retained the covariate). For the Modoc-Cascades region, we used a
univariate approach to build the final model, where we selected all covariates significantly
correlated with abundance, starting with the one with the largest effect size, and sequentially
added covariates until the model no longer converged because of sample size limitations. We
then compared a few candidate models using AIC and selected the best-fit model. For the final
models for all regions, we assessed if we had spatial autocorrelation in the residuals using
Moran’s | (Fortin et al. 1989, Betts et al. 2006), as the presence of spatial autocorrelation can
affect model fit (Betts et al. 2006, Bahn et al. 2006). Although Moran’s | values were statistically
significant, they remained low (< 0.1) and only within very short distances (not among
transects), indicating minimal positive spatial autocorrelation (Appendix E). Finally, we assessed
model fit for each region’s final model using a goodness-of-fit test (parboot function, 100
simulations; Fiske and Chandler 2011).

We assessed trends in Mountain Quail population density in each region from 2010 to 2021.
First, we predicted the population density of each year of sampling using each region’s final
model. We then fit a linear regression model to these annual density predictions to assess the
population trend.

Figure 3. Summary of the methodology used to predict abundance from the point count data and presence
from the ARU data.
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We created a map of the predicted abundance of Mountain Quail using the final model for each
region. We predicted density at the central point of a 2.5 square mile hexagon grid used by the
CDFW Areas of Conservation Emphasis, using remotely sensed covariates values for 2021.
However, the final model of each region included a field measurement, shrub cover, not
available across the hexagon grid. We thus used the regional mean of shrub cover in our
prediction calculations. While not perfect, this allowed us to visualize the variation in
abundance as a function of all the other covariates in the model. The mapped predictions were
constrained to hexagons with values of covariates within the range of our samples for each
regional model.

Presence-absence analysis using ARU data

We used a similar approach to assess the presence and absence of Mountain Quail using ARU
data as we employed for the abundance analysis, with some noteworthy differences (Figure 3).
We used two regions for this analysis, the Northern Sierra and a Northern California region that
was a combination of the Coastal California, Klamath Mountains, and Modoc-Cascades regions
(Figure 1). The Northern Sierra Region contained Point Blue ARU data from 2021 that
overlapped with point counts at the same sample locations. The Northern California region
contained CDFW ARU data collected from 2017 to 2021. We created this larger region to
increase sample size for analysis.

All Mountain Quail detections were obtained from the CNN model predictions after the
penalization and correction process (the CNN model evaluation process). For each region, we
summarized acoustic detections by survey event, where an event was defined as 15 minutes of
surveys at a site on a given date. This yielded six consecutive survey events (six consecutive
days) per site-year. A survey event was considered to have a detection if at least one corrected
positive detection occurred within the 15-minute period. We excluded 11 site-years from the
Point Blue data that had fewer than 15 minutes of sound records.

We further noted that there was a clear dichotomy in the number of detections per survey
event among sites. Specifically, we constructed the empirical probability distribution of all
corrected detections from all 15-minute events across all site-years in the region, and sought to
classify an event as having quail if the number of corrected detections exceeded some
percentile of that distribution. For example, the 30th percentile of the distribution might be 3
detections per event, so any event with more than 3 detections would be considered as having
detected the species, and not having detected the species if the number of detections in the
event was 3 or fewer. Since each site has 6 survey events, we could construct a detection table
where each row is a site and each column represents a single survey event and use this
detection table to fit an imperfect-detection occupancy model. However, upon reviewing the
data, a clear dichotomy was seen in the empirical distribution as it applied to survey site-years
before applying any quantile filtering: most site-years with detections had 4-6 events with
detections, while the rest of site-years had only 0—2 detections across all events. Given this
pattern, we chose not to fit an imperfect detection model, and instead applied a logistic model.
Thus, we coded a site-year as 1 (quail present) if it had 4-6 events with detections, and 0 (quail
absent) otherwise. Doser et al. (Doser et al. 2021) noted in a simulation analysis that when
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fitting hierarchical imperfect-detection models that include estimation of false positives to data
from highly abundant species, the models failed to converge due to lack of parameter
identification and thus inability to distinguish true from false positives. Our data were already
corrected with an ensemble of Random Forest models to remove false positives, thus fitting a
model with a false positive probability was unwarranted. We acknowledge that quail might
have been present at sites with <2 detections, but this threshold also serves as an additional
filter against false positives and may help address the problem noted by Doser et al. (2021) in
high abundance areas. To account for seasonal variation in calling behavior, we included both
linear and quadratic terms for day of year in the logistic model.

We created four process models, representing fire, climate, local land cover and landscape land
cover as described above, one set for each region. In this case, covariates that were correlated
were kept as long as they increased model fit based on AIC (Burnham and Anderson 2004). The
selection of covariates in each process model was done using a backward stepwise algorithm.
When using logistic models, it is recommended to balance the number of zeros and ones as the
response variable (Salas-Eljatib et al. 2018). However, the Northern California region contained
6 times more ones than zeros. We thus repeated the process of creating the four process
models 100 times, each using a bootstrap sample containing the same number of zeros and
ones. We compared the process model using AIC to assess which process was most correlated
with the presence-absence of Mountain Quail in each region.

For each region, we considered all covariates present in at least one of the four process models
for inclusion in the final model and used the same backward stepwise algorithm to determine
the covariates to retain. For the Northern California region, we thus obtained one final model
per bootstrap. We assessed the goodness of fit of all 100 final models using a Hosmer-
Lemeshow test (Hosmer and Lemesbow 1980, Hosmer et al. 1997).

We investigated for any temporal variation in presence in the Northern California region, where
multiple years of CDFW’s ARU data existed. We fit the best model possible with year as a
categorical fixed effect. Because of the low number of ARU deployed and thus paucity of data in
2019 and 2020, we lumped these years with 2021, resulting in 3 year-classes with 23 data
points for 2017, 45 for 2018, and 46 for 2019-21. We then assessed how many times the year
effect was selected as a competitive covariate across the 100 bootstrapped iterations of the
final model. We also created a partial dependence plot (PDP) for the year covariate, to inform if
a trend was present.

We created a prediction map of the probability of presence across both regions using the final
models. For the Northern California region, we used the mean prediction from each of the 100
bootstrapped models, inversely weighted by their AIC values.

Comparison between abundance and presence results

We compared predictions of abundance and presence in the two regions where both point
count and ARU data were collected: the Northern Sierra and the Modoc-Cascades.
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In the Northern Sierra, point count and ARU datasets were collected along the same transects,
allowing us to compare predictions directly at survey points as well as across the entire region.
For point-level comparisons, we used predictions on the original (untransformed) scale, while
for regional comparisons we used back-transformed predictions. In the Modoc-Cascades, the
point count and ARU datasets were collected at different locations. As a result, we restricted
comparisons to regional predictions, again using back-transformed values. In both cases, we fit
linear models to assess whether the two prediction types - abundance and presence - were
correlated.

For the Northern Sierra, we further examined where and when abundance and presence
predictions aligned and where they diverged. To do this, we scaled abundance values from 0 to
1 and subtracted the predicted probability of presence from the scaled abundance. Values near
zero indicated strong agreement between models, negative values indicated higher predicted
presence relative to scaled abundance, and positive values indicated the reverse. We then
tested whether these differences were associated with particular covariates by fitting separate
linear models for each covariate selected in either model.

RESULTS

Processes influencing abundance and occupancy

We evaluated if the Mountain Quail abundance and presence were most influenced by climate,
fire, local or landscape land cover types. We found that the process influencing the abundance
and presence differed across regions and data type. Overall, abundance tended to be better
explained by local scale covariates, while presence patterns tended to be better explained by
landscape scale covariates. The fire covariates formed a competitive model using the Southern
Sierra abundance data and the Northern California presence data (Table 1; Appendix D).

Covariates correlated with abundance and presence

The covariates from the process models were used to create one final model for each region
and data type (i.e., point count and ARU), resulting in five final models: Southern Sierra,
Northern Sierra, and Modoc-Cascades for the abundance analysis, and Northern Sierra and
Northern California for the presence analysis. Each of the five models achieved satisfactory
goodness-of-fit results. For the abundance models, the parametric bootstrap of the sum of
squared errors (SSE) showed that the observed statistic (calculated from the data and fitted
models) had p-values of 0.373 for the Southern Sierra, 0.430 for the Northern Sierra, and 0.545
for the Modoc-Cascades region within the empirical distribution sampled from the posterior
values of the predictors, indicating a sufficiently good fit.

For the presence analysis, the Hosmer—Lemeshow goodness-of-fit Chi-square test statistic for
the Northern Sierra was 1.39 with 8 d.f., and a p-value of 0.99, demonstrating a good fit. For
the Northern California region, the test statistic averaged 12.2 with 9 d.f., and mean p-value of
0.47 among all 100 ensemble models, also indicating an overall good fit, though 17 of the
models did not have a good fit.
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Table 1. AIC comparison of four process models for four regions. Models in bold, for each region, had substantial
support (delta < 2).

e pocesuoiel o A pata i

Northern Local Land Cover -5299.40 10679.29 1
Sierra - Landscape Land Cover 26 -5348.27 10748.74 69.46 0
Abundance "o 28 -5353.05 10762.34 |  83.06 0

Climate 22 -5365.34 10774.83 95.54 0
Southern Fire 24 -4544.20 9136.64 0 0.63
Sierra - Local Land Cover 34 -4534.61 9137.70 1.05 0.37
Abundance 7o ape Land Cover | 31 -4541.98 9146.37 9.72 0

Climate 23 -4556.49 9159.19 22.55 0
Northern Landscape Land Cover 20 -24.07 99.34 0 0.62
Sierra - Local Land Cover 23 -19.50 100.34 1.00 0.37
Presence Fire 6 -47.92 108.78 9.44 0.01

Climate 7 -48.94 113.14 13.81 0
Northern Landscape Land Cover 74.41 0 0.40
California - Local Land Cover 74.75 0.35 0.34
Presence™® oo 75.78 1.38 0.20

Climate 78.20 3.79 0.06

* This analysis was not completed for the Modoc-Cascades abundance.
** Results are the average AlCc of 100 bootstraps.

Of the 85 covariates considered in the abundance analysis, and 90 in the presence analysis, 22
and 20 respectively were selected by at least one regional final model (Table 2). For the
abundance analysis, two of the 22 covariates were selected in all three regional final models -
day of year and field measured shrub cover within 50 m - 7 were selected by two regional final
models, and 13 were unique to one regional final model (Table 2). For the presence analysis,
only one of the 20 selected covariates were common to both regional final models - day of year
- and 19 unique to only one regional model (Table 2). Covariates for near-infrared or red band
reflectance values were present for all five regional models at scales ranging 100-1000 m (Table
2). Lastly, three covariates - the Landsat mean red band reflectance, summarized over a 100m,
the mean percent tree cover, summarized over 5,000m, and the minimum winter temperature
anomaly - were selected by at least one abundance and one presence regional model (Table 2).

While different covariates were selected in the abundance and presence regional models, those
selected often measured similar features or the same features at different scales. For example,
in the Northern Sierra region, Mountain Quail abundance was correlated with shrub cover
within 50 m and 250 m, whereas the probability of presence was also correlated with shrub
cover at broader scales of 2,000 m and 5,000 m (Table 2, Figures 4A-B).
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Table 2. List of covariates correlated with Mountain Quail in each region. The models associated with the first three regions are abundance, while the last two are from
presence models. The linear model (L) and quadratic (Q) model results include the estimate + SE and the significance level — *** for p-values <= 0.001, ** for p-values <=
0.01, * for p-values <= 0.05, and . for p-values between 0.05 and 0.1.

Point Count Abundance Analysis

ARU Presence Analysis

Process Covariate Scale Southern Sierra Northern Sierra Modoc-Cascades Northern Sierra Northern California

All Average temperature Yearly L: -0.409 +/- 0.079 *** L: 0.492 +/-0.156 **

All Day of year Daily L: 0.140 +/-0.315 L: -0.273 +/- 0.058 *** L: -0.691 +/- 0.147 *** L: -1.809 +/- 0.804 * L: -4.342 +/-1.010 ***
Q:-0.218 +/- 0.077 ** Q: 2.000 +/-1.038. Q:-2.642 +/- 0.674 ***

All Latitude At point L: -0.338 +/- 0.061 ***

Local Land Aspect east-west slopes 100m L: -0.194 +/- 0.043 ***

Cover Q:-0.105 +/- 0.041 **

Local Land Aspect north-south 100m L: 0.047 +/-0.045

Cover slopes, mean Q:-0.073 +/- 0.044

Local Land Landsat near-infrared 100m L: 0.148 +/-0.047 ** L: 0.133 +/-0.051 **

Cover band, mean

Local Land Landsat near-infrared 500m L: -2.054 +/- 0.897 .

Cover band, mean

Local Land Landsat near-infrared 100m L: 3.654 +/-1.567 *

Cover band, SD Q:-1.906 +/- 0.734 **

Local Land Landsat near-infrared 500m L: 0.160 +/- 0.101

Cover band, SD

Local Land Landsat red band, mean 100m L: 0.238 +/- 0.058 *** L: 0.262 +/-0.140 . L: 1.340 +/-1.517

Cover Q:-0.106 +/- 0.028 *** Q:-0.420 +/- 0.110 *** Q:-3.252 +/- 1.258 **

Local Land Percent shrub cover 50m L: 0.120 +/- 0.039 ** L: 0.247 +/- 0.052 *** L: 0.257 +/- 0.069 ***

Cover Q:-0.057 +/-0.027 *

Local Land Percent shrub cover, 250m L: 0.278 +/-0.074 ***

Cover mean Q:-0.087 +/- 0.030 **

Local Land Percent tree cover, SD 500m L: -0.096 +/- 0.059 L: 0.283 +/-0.117 *

Cover Q:-0.135 +/- 0.038 ***

Local Land Shrub height, mean 100m L: -1.043 +/- 0.652

Cover

Local Land Topographic relief 500m L: 0.207 +/- 0.079 **

Cover Q:-0.103 +/- 0.039 **

Local Land Topographic relief 100m L: 4.764 +/-1.702 **

Cover Q:-2.904 +/-1.413 *

Landscape Landsat near-infrared 1000m L: 0.137 +/-0.063 *

Land Cover band, mean

Landscape Landsat near-infrared 1000m L: 2.261 +/-1.262.

Land Cover band, SD

Landscape Percent shrub cover, 2000m L: 3.069 +/- 1.513 .

Land Cover

mean
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Point Count Abundance Analysis

ARU Presence Analysis

Process Covariate Scale Southern Sierra Northern Sierra Modoc-Cascades Northern Sierra Northern California
Landscape Percent shrub cover, 5000m L: 6.972+/-2.877 *
Land Cover mean Q:-5.312 +/- 1.690 **
Landscape Percent shrub cover, SD 1000m L:-11.157 +/- 4.236 **
Land Cover
Landscape Percent shrub cover, SD 2000m L: 5.313+/-3.036.
Land Cover Q: 2.300 +/-1.192.
Landscape Percent tree cover, 2000m L: -9.684 +/-4.200 *
Land Cover mean
Landscape Percent tree cover, 5000m L: -0.155 +/-0.116 L: 5.734+/-2.834 *
Land Cover mean
Landscape Percent tree cover, SD 1000m L: -2.799 +/-1.470 .
Land Cover
Landscape Percent tree cover, SD 5000m L: -0.364 +/- 0.108 ***
Land Cover
Landscape Shrub height, mean 1000m L: 6.493+/-3.171*
Land Cover
Landscape Shrub height, mean 2000m L: -1.900 +/- 1.090
Land Cover
Landscape Topographic relief 2000m L: 0.181+/-0.079 *
Land Cover
Fire Percent high burn fire Past 1to 5yrs L:-2.466 +/- 1.028 *
severity -100m
Fire Percent high burn fire Past 11 to 20 L: 0.027 +/-0.016 .
severity yrs - 250m
Fire Pyrodiversity index Past1to5yrs | L: -0.197 +/- 0.140 L: 0.365+/-0.151 *
-1000m Q: 0.112 +/- 0.041 ** Q:-0.079 +/- 0.043 .
Fire Pyrodiversity index Past 6 to 10 L: 0.314 +/-0.120 ** L: 0.317 +/-0.133 *
yrs - 100m Q: -0.057 +/- 0.020 ** Q: -0.063 +/- 0.024 **
Climate Maximum summer Current year L: 0.227 +/- 0.079 **
temperature anomaly
Climate Maximum summer Past year L: -2.773 +/-1.169 *
temperature anomaly
Climate Minimum winter Current year L: -0.319 +/- 0.122 ** L: 0.147 +/- 0.109
temperature anomaly Q: 0.147 +/- 0.056 **
Climate Minimum winter Past year L: -0.429 +/- 0.121 *** L: 0.152 +/-0.874
temperature anomaly Q: 1.984 +/-1.034 .
Climate Winter precipitation Past year L: -1.652 +/- 0.980

anomaly

20
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Metrics of vegetation structure appeared in the final model for every region. For all regions,
Mountain Quail abundance or presence was associated with moderate to high shrub cover,
with abundance peaking at 50-100% shrub cover at local scales and 10-50% shrub cover at
landscape scales (Table 2). Tree cover metrics appeared in top models for all regions except
Northern California, always at scales 2 500 m, and relationships varied across scales and regions
(Table 2).

Fire covariates were retrained in the final abundance and presence models for the Sierra
Nevada but not for the Modoc-Cascades and Northern California (Table 2). Several fire
covariates caused a lack of model convergence and had to be removed. Mountain Quail
abundance was positively associated with moderate pyrodiversity at 6-10 years post fire within
100 m of surveys in both the Northern and Southern Sierra (Table 2, Appendix F). In the
Southern Sierra, abundance was also positively correlated with increasing proportion of high
burn severity at 11-20 years post-fire at the 250 m scale (Table 2, Appendix F). Mountain Quail
abundance was associated with moderate and high pyrodiversity for fires 1-5 years old at the
1000 m scale in the Northern and Southern Sierra respectively (Table 2, Appendix F). The only
fire covariate associated with presence was a negative association with proportion of high
severity burn 1-5 years post-fire within 100 m in the Northern Sierra (Table 2, Appendix F).

Climate covariates were retained in the final models for the Sierra Nevada and the Northern
California regions. In the Southern Sierra Nevada, Mountain Quail abundance was negatively
associated with anomalously warm winters (Table 2, Appendix F). Quail were predicted to be
about three times as abundant in areas that experienced a winter 3°C cooler than average than
areas experiencing a winter 3°C warmer than average (Appendix F). This effect carried over to
the next breeding season, and was slightly stronger (Table 2, Appendix F), such that Mountain
Quail populations were suppressed for two years in areas experiencing anomalously warm
winter temperatures and vice versa for cold winters. The relationship with anomalous winter
temperatures flipped in the Northern Sierra where Mountain Quail were predicted to be about
five times more abundant in areas that experienced a 5°C warmer than average winter
compared to an average or slightly cooler than normal winter. Mountain Quail in the Southern
Sierra were also positively correlated with anomalously warm summers (Appendix F). In the
Northern California region, Mountain Quail presence was reduced in areas that experienced
anomalously hot summer temperatures the year prior (Table 2, Appendix F). Though covariates
for winter temperature and precipitation anomalies appeared in the final presence model for
Northern California (Table 2), the relationships did not appear ecologically meaningful when
plotted (Appendix F).
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Figure 4. Selected partial dependence plots showing relationships between Mountain Quail abundance (plots A, C,
and E) or presence (plots B, D, and F) and model covariates. A) Positive association between abundance and mid-
range values of shrub cover within 50 m (field measurement), in the Northern Sierra. B) Positive association
between presence and mid-range shrub cover summarized within a 2000 m buffer (remotely sensed), in the
Northern Sierra. C) Positive effect of low pyrodiversity within 100 m on abundance, especially when fires occurred
6-10 years prior, in the Northern Sierra. D) Positive association between presence and a low percentage of the 100
m buffer that experienced high-severity fire within the past 1-5 years, in the Northern Sierra. E) Positive
association between abundance and maximum summer temperature anomalies during the current summer, in the
Southern Sierra. F) Negative association between presence and maximum summer temperature anomalies during
the previous summer, in Northern California.

s 1.00
4 0.75
@
— Q
€ <
z° 2050
w 2
H ]
e E
a
2 0.25
! 0.00
0 25 50 75 100 10 20 30 40
Percentage of shrub cover - 50m Mean percentage of shrub cover - 5000m
1.00
6
0.756
®
= 2
o4 H
E
g a
%- z 0.50
2
g 3
a &
2
a.25
0.00
0

) 05 ) 25 50 75 10C
Pyrodiversity index - 6 to 10 years - 100 m Percentage high burn severity - 1 to 5 years - 100m

20
1.00
15
078
@
Q
:\E 5
£ ¢
o
210 © 0.50
2 o
: g
e g
o
5 0.25
0 0.00
-1 0 1 2 3 -1 o 1 2
Max temperature ar lies — current Max summer temperature anomalies — previous summer

22



Point Blue Conservation Science California’s Population of Mountain Quail
Report - September 2025

Predicted abundance versus presence

We compared predictions of abundance and presence of Mountain Quail across regions (Figure
5). The abundance and presence predictions for the Northern Sierra were positively correlated
for both the survey locations and across the whole region (F(1,90) = 4.11, p = 0.04; F(1,2192) =
16.17, p < 0.001, respectively). However, the r-squares were very low (0.03 and 0.01,
respectively), suggesting the correlations were not very meaningful. The predictions across the
Modoc-Cascades region were significantly negatively correlated (F(1,7794) = 69.35, p < 0.001),
with a slope of -0.031.

In the Northern Sierra, abundance and presence predictions differed most when surveys
occurred early or late in the season. Whether ARU and point count surveys were conducted at
the same time or not made no difference. In other words, abundance and presence aligned
only when both surveys were conducted mid-season. Moreover, survey dates for both data
types were highly correlated with elevation, with low-elevation sites typically surveyed earlier
in the season and high-elevation sites surveyed later, reflecting limited access due to snowpack.

Figure 5. Predicted A) presence and B) abundance across regions occupied by the Mountain Quail in the year 2021.
We only predicted at locations within the range of covariates used to create the models.
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Trends in Mountain Quail Density

Mountain Quail population density varied among regions, but temporal trends were not
apparent. Although Mountain Quail population density varied over time, especially in the
Southern Sierra, trends from 2010 to 2021 appeared stable in all three abundance regions
(Figure 6; Modoc-Cascades: slope = 0.037 + 0.045, p-value = 0.434; Northern Sierra: slope =
0.025 £ 0.051, p-value = 0.644; Southern Sierra: slope = -0.006 + 0.065, p-value = 0.935). Mean
population density decreased with increasing latitude, from 3.5 + SD 0.6 individuals/km? in the
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Southern Sierra, 2.3 + SD 0.5 individuals/km? in the Northern Sierra, to 1.0 + SD 0.5
individuals/km? in the Modoc-Cascades (Figure 6).

Figure 6. Trend and mean density of Mountain Quail per region. All trends were non-significant.
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Using the ARU data, we were only able to assess trends in Mountain Quail presence in the
Northern California region, since it was the only area with multiple years of data. We found no
supporting evidence in the data for variation in the probability of quail presence among years.
A model with fixed year effects required more parameters to be marginally competitive. Across
100 bootstrapped models for this region, year was retained as a final covariate in just 19
models, and predicted presence did not vary significantly across years (slope = 0.008 + SE 0.008,
t=1.028, p = 0.491).

DISCUSSION

We assessed the impact of fire, climate, local and landscape land cover types on the abundance
and presence of Mountain Quail with point count and ARU data in the mountainous regions of
Northern California and the Sierra Nevada, California. Our results suggest that Mountain Quail
abundance and presence was mainly correlated with land cover at local- and landscape-scales
(out to 5000 m) that, at least in some regions, were shaped by fire processes. There were also
smaller but concerning effects of temperature anomalies suggesting Mountain Quail may be
susceptible to warming winters and summers in parts of their range. We did not find evidence
of an ecologically meaningful effect of precipitation anomalies on Mountain Quail populations.
While there was large annual variation in abundance in some regions, we found no evidence for
a temporal trend in abundance or presence across the time scales in our study. Lastly, contrary
to our hypothesis, abundances derived from our analysis of point count data did not closely
correlate with the predicted likelihood of Mountain Quail presence from the ARU data. To our
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knowledge, this is the first study of Mountain Quail to: investigate habitat relationships of at
large landscape scales > 500 m, including relationships with fire; assess the effects of
temperature and precipitation anomalies in California; and compare results for point count and
ARU monitoring methods.

Spatial scales associated with Mountain Quail

The relationship between habitat and bird density is scale-dependent, with species densities
correlating with land cover covariates at both local and landscape scales (Thompson and
Mcgarigal 2002, Betts et al. 2014, Stuber and Gruber 2020). Our results illustrate how the
effects of scale vary by survey method. Local-scale covariates (50-500 m) typically best
represent conditions within a Mountain Quail’s large home range, which averaged 141 ha in the
southern Cascades of Oregon (Pope et al. 2004), including essential resources such as cover,
food, and water-for reproduction. Landscape-scale measures of habitat are more aligned with
factors that influence meta-population dynamics and the distribution of resources across
broader areas (Saab 1999), including during the non-breeding season. Adequate habitat at
these larger scales also increases the likelihood that a patch will be occupied (Hanski 1998,
Ovaskainen 2002). Our results suggest that Mountain Quail abundance and presence are driven
by environmental covariates across extensive scales, from less than 100 m up to a 5,000 m
radius from sample locations.

In our models, local-scale processes best explained variation in abundance, whereas landscape-
scale processes better explained variation in presence. This likely reflects both survey protocol
differences and the species’ ecology. Mountain Quail are highly vocal and can be heard over
long distances (Gutiérrez and Delehanty 2020). In the abundance analysis, we truncated
detections to within 175 m, which may explain why local-scale covariates (50-500 m) best
represented these data. In contrast, the detection distance for ARUs is unknown. Given the
species’ loud calls, many detections may have occurred beyond 500 m, aligning more closely
with landscape-scale covariates. Survey duration also differed between methods. Point counts
involved a single 5-minute survey per site per year. Any detection during a point count is more
likely to reflect birds within or near the core of their territories, since birds spend most of their
time there. ARUs in this study, recorded for six days per site, increasing the likelihood of
detecting individuals away from the most frequently used portion of their large territories. It
follows that the abundance results would more closely reflect habitat selection within
Mountain Quail home ranges (third order of selection), while the presence results better reflect
selection of home range placement within a landscape (second order of selection; Johnson
1980).

Processes associated with Mountain Quail

Mountain Quail have been identified as an indicator of early- to mid-seral coniferous forests for
the National Forests of the Sierra Nevada Planning Area (USDA Forest Service 2008). Our results
support this association, showing correlations with several land cover types and environmental
factors characteristic of these forests. Mountain Quails were consistently associated with
moderate to high shrub cover across all spatial scales and regions, and at larger scales were
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positively associated with low to moderate amounts of tree cover. These findings support
previous research on the species throughout their range (Brennan et al. 1987a, Brunk et al.
2023b). Their relationships with land cover and fire variables in the Sierra Nevada specifically
suggest Mountain Quail there prefer a relatively active mixed severity fire regime that
promotes and retains high shrub cover at local scales, moderate shrub cover at larger scales,
and low to moderate tree cover at larger landscape scales. The relationship with pyrodiversity
at 6-10 years post fire suggests Mountain Quail are positively associated with burns 6-10 years
old that had a relatively uniform burn severity within 100 m of sample locations (Appendix F):
abundance peaked at values of pyrodiversity corresponding to 85% of the 100-m radius circle in
one severity class and 15% in one other severity class. The relationship with high burn severity
at 11-20 years post-fire suggests they continue to use areas within older fires that burned at
high severity (Appendix F). However, Mountain Quail tended to be associated with fires 1-5
years old when those fires burned heterogeneously (moderately heterogenous in the Northern
Sierra and maximally heterogenous in the Southern Sierra), a burn pattern that would likely
retain cover immediately after fire (Appendix F). Our results largely align with those reported by
Taillie et al. (2018) and Brunk et al. (Brunk et al. 2023b) in suggesting that Mountain Quail are
associated with high severity fires 6-20 years old at local scales less than 500 m, while adding
information about the importance of fire severity heterogeneity to promote habitat suitability
in the initial years post-fire.

Further study is needed to clarify the role of wildfire on Mountain Quail throughout their range
in California, especially given the increasing frequency, severity, and extent of fires across
California (Miller and Urban 1999). While fire covariates were not significant outside of the
Sierra Nevada region, fire may still be an important driver of Mountain Quail populations in
other regions. In the Northern California region, land cover variables — that are in part driven by
fire — were better predictors of Mountain Quail distribution than more distal metrics of burn
severity and pyrodiversity. Our ARU sample size may have also precluded our ability to detect
the effects indexed by the fire covariates by limiting the number of recent fires sampled in the
Northern California region.

The climate process models were relatively weak in explaining overall patterns of abundance
and presence relative to the land cover and fire process models, yet temperature anomaly
covariates had some of the strongest effects on the populations in the final models. Spring
snowpack in the Sierra Nevada — commonly measured as April 1 snow water equivalent (SWE) —
at elevations below 2500 m is highly sensitive to temperature changes (Howat and Tulaczyk
2005). Warm temperatures enhance snowmelt and cause more precipitation to fall as rain than
snow (Kapnick & Hall, 2010, Klos et al., 2014). In a climate simulation study of the Sierra
Nevada, Sun et al. (2019) found that at elevations lower than 2,500 m, winter (December
through March) mean temperature plays a stronger role than winter accumulated precipitation
on April 1 SWE variations. At higher elevations, winter temperatures tend to remain cold
enough that precipitation variation is the primary driver of 1 April 1 SWE (Sun et al. 2019). In
this context, we interpret the relationships with winter temperature anomalies to mean that
Mountain Quail habitat suitability increased with greater snowpack in the Southern Sierra
whereas habitat suitability increased with lower snowpack in the Northern Sierra. The large
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annual variation in population densities observed in our abundance data in the Southern Sierra
suggests that, despite a long-term stable trend, the regional population does fluctuate largely,
possibly as a product of climatic variation such as snowpack. It is plausible that the strong
elevational gradients in the Southern Sierra selected for by Mountain Quail in that region
enable them to find refuge from high snowpack at lower elevations with relatively small
movements while also being able to exploit the benefits that high snowpack brings in spring
through increased primary productivity and increased availability of water. Mountain Quail in
the higher elevation portions of their range are known to move down in elevation during the
winter (Gutierrez & Delehanty 2020,). It is also plausible that in the Northern Sierra, where
elevation gradients are weaker, finding refuge from high snowpack may require prohibitively
long movement, such that when snowpack is high, quail experience increased mortality as has
been reported from introduced populations in Idaho and Washington (Stephenson et al. 2011).
If this were the case, one would expect the pattern we found of increased abundances in the
Northern Sierra following winters with below average snowpack, especially if moisture
availability (i.e., spring snowpack) was less of a limiting factor for habitat suitability in this
region that is consistently wetter than the Southern Sierra.

Anomalously high summer temperatures also influenced Mountain Quail populations. In the
Northern California region, there was a lower likelihood of Mountain Quail presence in the year
following anomalously high summer temperatures. Anomalously high temperatures can have
direct and indirect negative effects on birds, especially nests and young (Bourne et al. 2020,
Conradie et al. 2020, Riggio et al. 2023b). Stephenson et al. (2011) also found that higher spring
and summer temperatures reduced Mountain Quail survival. Given projections for increased
number and duration of heat waves with climate change, it is possible that Mountain Quail
living in areas that are already hotter and closer to their biological thermal limits may
experience population declines. In the higher elevations of the Sierra Nevada, however, it is
thought that cold spring and summer temperatures are a limiting factor for bird populations
(Saracco et al. 2019), which may explain our finding that abundance was higher in the Southern
Sierra in areas experiencing anomalously warm summer temperatures, a pattern also observed
by Roberts et al. (2019).

Comparison of abundance and presence predictions

Although all abundance and presence models exhibited good fit, there was a very weak
relationship between abundance and presence. In the Northern Sierra, for example, abundance
and presence were significantly and positively correlated (p = 0.04), yet abundance explained
less than one percent of the variance in presence. As expected, the correlation was somewhat
stronger for survey sites (R? = 0.03) compared to broader regional predictions (R = 0.01) but
still not ecologically meaningful. In the Modoc-Cascades, the correlation was weakly negative.
While surprising, the poorer correlation relative to the Northern Sierra was expected given that
results from the presence model in this analysis were derived from a model for the entire
Northern California region whereas the abundance model was specific to the Modoc-Cascades
region. Moreover, the abundance and presence results were obtained from point counts and
ARUs sampled at different locations from each other.
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This pattern is not unique to Mountain Quail. Ten Caten et al. (2022) reported similarly weak
associations between abundance and occupancy across multiple taxa, including several
breeding landbirds, and Gaston et al. (1999) found no relationship for forest birds.

In our study, weak or absent correlations often coincided with surveys conducted early or late
in the season, regardless of whether data came from point counts or ARUs. By contrast, the
strongest correlations occurred when both survey types were conducted mid-season. This may
reflect seasonal shifts in Mountain Quail behavior or the fact that mid-season surveys were
disproportionately conducted at mid-elevations, where snowmelt permitted access. More
broadly, the abundance—presence relationship is typically neither constant nor linear, and is
known to vary with species, species traits, time (within and across years, length of surveys),
habitat, and spatial grain (Gaston et al. 1999, Zuckerberg et al. 2009, Johnston et al. 2015,
Steenweg et al. 2018, Manne and Veit 2020, Ten Caten et al. 2022). Our results suggest that a
combination of species behavior, sampling design, and/or monitoring protocol may have jointly
contributed to the weak relationship observed here.

Densities and trends

Our density estimates decreased from south to north in eastern California, with the highest in
the Southern Sierra and the lowest in the Modoc—Cascade region, a pattern also reported by
Brennan et al. (1987). However, our breeding season density estimates are at least nine times
lower than those recorded three decades ago based on line transect surveys (Brennan et al.
1987b). Although differences in survey methodology may contribute to this discrepancy,
significant long-term declines have also been documented in California using Breeding Bird
Survey data since 1993 (Sauer et al. 2020). While our results indicate a stable trend from 2010
to 2021, results from the Sierra Nevada and the Modoc-Cascades region incorporating 2024
densities reveal a recent downward shift (Rousseau et al. 2025).

Assumptions and limitations of our approach

Interpreting ARU detections of Mountain Quail requires careful consideration of how call
characteristics and habitat affect detection distances. Mountain Quail are vocal with a
distinctive song that makes them well-suited for detection. However, the loudness of their song
combined with mountainous terrain likely facilitates their detection by ARUs from farther than
the distance thresholds typically used in point count surveys and analysis of point count data.
At the same time, their preference for dense shrubby habitats and irregular topography, and
the unidirectional design of ARUs may reduce detections, particularly when calls originate from
behind the unit or a hill. Though these same challenges also affect human observers, people
can slightly adjust their position to better estimate the direction and distance of calls. Overall,
the uncertainty surrounding the distance at which individual Mountain Quail were being
detected by the ARUs translates into uncertainties of the scale at which to interpret presence
data.

Another limitation of our approach is the imbalance in sample sizes between ARU and point
count survey sites. Although both analyses were based on station-year combinations, the ARU
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dataset included only a few hundred records compared to more than 15,000 station-year
surveys in the point count dataset. The lower ARU sample size likely constrained the range of
covariates represented in the presence models and reduced our ability to accurately predict
occurrences across broad spatial extents.

Recommendations for monitoring Mountain Quail

Future monitoring of Mountain Quail should consider sampling designs and protocols that align
with the species’ ecology, the geography and extent of its distribution, and the data needed to
inform management decisions. The findings from long-term ongoing monitoring can track
populations and inform management decisions during this time of unprecedented and rapid
environmental change (Williams and Brown 2014). Thus, long-term regular monitoring is
essential to refining conservation strategies and ensuring management decisions reflect the
most current ecological conditions.

Our results suggest that Mountain Quail populations, while largely associated with early- and
mid-seral forests, also respond to somewhat different environmental covariates and exhibit
variable densities across regions even within their distribution in California. This highlights the
importance of avoiding assumptions of stationarity across a species’ range and instead taking a
regional approach when assessing populations across broad distributions (Fink et al. 2010,
Rousseau and Betts 2022). If we had combined all three regions into a single analysis, processes
and dynamics associated with high-density areas would likely have overshadowed processes
and dynamics in lower-density regions. This indicates that land management or population
management strategies for Mountain Quail applied uniformly across California also may not
yield consistent outcomes. If possible, future monitoring and management should account for
regional variation in habitat associations and population density. Furthermore, geographic
areas not included in this study, such as most of the California Coast Ranges and the southern
California mountains, should be included in future monitoring efforts. These regions likely
support distinct subspecies of Mountain Quail (Gutiérrez and Delehanty 2020), which may differ
in their ecology and responses to management.

Because Mountain Quail is a managed game species, obtaining and tracking reliable estimates
of abundance across its distribution is essential for informed population management. While
technologies such as ARUs offer several benefits, and efforts are underway to derive abundance
from them (Fiss et al. 2024), the accuracy of ARU-based abundance estimates varies with
species and other factors (Pérez-Granados and Traba 2021, Hutschenreiter et al. 2024, de
Araujo et al. 2025). For this reason, point counts remain the recommended sampling protocol
for estimating abundance. Point counts are also the recommended protocol when studying a
species such as the Mountain Quail that is both frequently heard at most sites and abundant
(Doser et al. 2021), since abundance is often more sensitive than presence/absence to
environmental changes and often serve as a better indicator of real population declines (Beever
et al. 2013, Ashcroft et al. 2017). As such, continuing point count surveys in currently monitored
regions and expanding them into new areas would allow managers to assess both long-term
population trajectories, compare abundance across regions, and ensure population size targets
within regions are being achieved, all necessary information for managers to justify harvest
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limits. In addition, long-term monitoring is especially helpful to track populations and inform
management decisions during this time of unprecedented and rapid environmental change
(Williams and Brown 2014).

Incorporating ARU surveys alongside point counts could provide some important advantages.
Integrating data from both methods within a single population model could allow simultaneous
evaluation of local- and landscape-scale processes in Mountain Quail habitat selection. Previous
studies demonstrate that considering multiple spatial scales improves model fit and ecological
inference (Mitchell et al. 2001, Melles et al. 2003, Frey et al. 2012, Grinde and Niemi 2016).
ARUs also add temporal depth to the primarily spatial design of point counts, which can
improve the accuracy and precision of population estimates (Zipkin et al. 2017, Miller et al.
2019, Griiss and Thorson 2019, Doser et al. 2021). Furthermore, ARU technology and
abundance analytical tools are likely to become more reliable over time. Establishing several
years of overlap between point counts and ARUs at the same locations would ensure continuity
and provide the foundation for incorporating ARU-derived data into long-term abundance
analyses (Van Wilgenburg et al. 2017).

Telemetry studies of Mountain Quail across regions in California could also help to inform their
management. Telemetry can answer questions about annual and seasonal survival, breeding
season home range sizes, movements and habitat selection during the non-breeding season,
and habitat associations at finer scales (e.g., nest site selection) than point count and ARU
surveys during the breeding season. With respect to our findings, telemetry in the non-breeding
season could help to better understand the effects of temperature anomalies on Mountain
Quail movement patterns and breeding behaviors.

CONCLUSION

We compared Mountain Quail population estimates from two monitoring methods, point
counts and ARUs, and found that the two are not interchangeable but provide complementary
insights. Both identified similar land cover types (e.g., shrubs and trees) and environmental
drivers (e.g., fire) as important to Mountain Quail but differed in scale and showed relationships
that varied across regions. Point counts and abundance were better correlated with local-scale
land cover, while ARUs and presence were best explained by landscape-scale land cover.
Importantly, population trends derived from both methods were stable and broadly consistent
across regions.

These findings suggest that monitoring method selection should depend on study and
management goals. Point counts remain the best approach for estimating abundance,
particularly where management of a game species is the priority. When land management
recommendations are needed, combining both approaches may be the most effective, as they
provide complementary information on habitat associations across scales. More broadly, this
dual-method framework may strengthen population assessments of species like Mountain
Quail, whose distributions span heterogeneous and topographically complex landscapes. While
the resulting population trends may seem comparable across methodologies, they reflect

30



California’s Population of Mountain Quail

Point Blue Conservation Science
Report - September 2025

different aspects of the population. Trends in abundance are typically correlated with trends in
occurrence, however, the relationship can change or even decouple because of density-
dependent processes, mismatches in scales, and changes in habitat quality. As such it is
essential to keep the monitoring goal in mind when designing a survey design.
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APPENDIX A: Additional species predicted.

Table A-1. Species used to optimize the Mountain Quail predictions, and whether these were positively or
negatively correlated with the abundance of Mountain Quails.

Bewick's Wren, Thryomanes bewicki Positive
Black-headed Grosbeak, Pheucticus melanocephalus | Positive
California Quail, Callipepla californica Positive
Fox Sparrow, Passerella iliaca Positive
Green-tailed Towhee, Pipilo chlorurus Positive
MacGillivray's Warbler, Geothlypis tolmiei Positive
Nashville Warbler, Leiothlypis ruficapilla Positive
Spotted Towhee, Pipilo maculatus Positive
Steller's Jay, Cyanocitta stelleri Positive
Wrentit, Chamaea fasciata Positive
Brown Creeper, Certhia americana Negative
Gray Flycatcher, Empidonax wrightii Negative
Cassin's Finch, Haemorhous cassinii Negative
Hammond's Flycatcher, Empidonax hammondii Negative
Hermit Thrush, Catharus guttatus Negative
Hermit Warbler, Setophaga occidentalis Negative
Pine Siskin, Spinus pinus Negative
Savannah Sparrow, Passerculus sandwichensis Negative
Western Flycatcher, Empidonax difficilis Negative
Yellow-rumped Warbler, Setophaga coronata Negative
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APPENDIX B: Details of the CNN model evaluation step.

To evaluate the performance of the Al model, we compared its predictions against the golden
validation dataset. Specifically, we looked for predictions of quail detection from the Al model
that occurred within two seconds before or after every annotation in the golden validation
dataset. Predictions within this + 2-second window were classified as true positives. Any
predictions outside this window were considered false positives, while instances where experts
noted a call but the model did not were counted as false negatives. Among the predictions vs
golden validation records comparisons, the false positive predictions had a mean confidence of
0.19, whereas the true positive predictions had mean confidence of 0.57. Though this was an
encouraging result, some true positives still received lower confidence scores than certain false
positives. To find the penalization threshold that maximized prediction precision (i.e., most
predictions being true positives), we varied the penalization level from 0.01 to 0.99 in
increments of 0.01. At each penalization level, every prediction below it was ignored. In an ideal
classifier, increasing the penalization threshold will increase precision because we filter out less
confident predictions and end up with the predictions the model deems most certainly to be
guail calls. The downside of a high threshold is that we discard more predictions, and some of
these might have been correct, thus increasing the false negative detection rate. Indeed, our
analysis confirmed this trade-off. Maximum precision (98%) was obtained with the near
maximum threshold of 0.98, but sensitivity (recall) dropped to 20%. While only one false
positive remained among the golden validation predictions, we failed to detect 80% of the true
detections at that penalization rate. To balance precision and recall, we used the Fgindex:

Precision X Recall
(B? X Precision) + Recall

FBZ (1+ﬁ)2 X

Increasing values of beta (B) result in higher recall. We used B = 1 to find a penalization
threshold. The penalization threshold that maximized F(B=1) (henceforth the maxF1 threshold)
was 0.81 and resulted in 75% sensitivity (recall) and 87% precision.

After identifying the maxF1 penalization threshold, we found that the resulting detections still
included a 13% false positive rate. To further reduce the rate of false positives while
maintaining high recall, we evaluated the detections after the maxF1 penalization against the
golden validations, scoring true positives as 1 and false positives as 0. These binary outcomes
served as the response variable in a Random Forests model. As model covariates, we used the
maximum confidence score at the maxF1 threshold for the 10 species commonly and 10 species
unlikely to be found with mountain quail. When a species was not predicted in a recording, its
predicted confidence value was set to zero.

Because the number of true positive quail detections is much higher than the number of false
positives, fitting an unbalanced model would result in a model that is good at predicting true
positives but not adequate at identifying false positives. To address this imbalance, we used a
bootstrap procedure where all false positive records were included, and an equal number of
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true positives were randomly sampled with replacement. We created 100 bootstrap samples
and thus fitted 100 models. Each model was tuned through k-fold cross-validations and tested
against a holdout set. We then weighted model predictions by their RMSE and combined them
into an ensemble average prediction, representing the probability that a detection was a true
positive. Since the ensemble-average prediction is a probability, and since the prediction is for a
detection in the golden validation dataset, we found the threshold that maximized the
precision of the ensemble-averaged prediction using the same method as described above for
finding maxF1 (henceforth the “maxRFPrecision”).

In summary, we used the golden validations to find a penalization threshold that maximized the
Fg index at B=1, retaining only predictions above this threshold (the maxF1 threshold).
However, because a significant number of false positives remained after maxF1 penalization,
we fitted an ensemble of Random Forest models that incorporated information from co-
occurring species to help distinguish true from false positives. Ensemble-average predictions,
weighted by each model’s root mean squared error, were then used to assess whether
detections above the maxF1 threshold were true or false positives. We identified the threshold
that maximized the validity of the ensemble-averaged predictions (the maxRFPrecision
threshold). Any penalized predictions at or above this threshold were deemed true positives,
while those below it were discarded.
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Table B-1. List of covariates considered in the models, their descriptions, spatial and temporal summary, and source.
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Covariate * Description Spatial Spatial Tempor | Temporal
grain summary al grain summary

Day of year*
Time of day*
Observer group*

Latitude®
Longitude**

Aspect — North-South *

Aspect — East-West ¢

Topographic relief t

Distance to stream ®

Distance to lakes

Yearly temperature *

(index of elevation)

Precipitation anomaly
and lag by one year of
anomaly — winter

Temperature anomaly
and lag by one year of
anomaly — winter

Julian day — 1 to 366.

Time of point count.

Point count surveyed by observer in Group
A or Group B

Latitude at survey location.
Longitude at survey location

Compass direction facing a slope, where
values close to 1 is north facing and -1 is
south facing.

Compass direction facing a slope, where
values close to 1 is east facing and -1 is
west facing.

Standard deviation of the elevation pixels
within buffered area.

Distance of survey to closest permanent,
perennial, or intermittent streams.

Distance of survey to closest permanent,
perennial, or intermittent lakes and
meadows.

Yearly average of the monthly mean
temperature for the months of Jan. to
Aug. This covariate is meant to reflect
elevation.

Precipitation baseline was calculated using
sum of precipitation from Dec. to Feb.,
averaged across the years of 1981 to
2010. Anomaly is the yearly sum of
precipitation minus the baseline.

Winter temperature baseline was
calculated using minimum monthly
temperature from Dec. to Feb., averaged

30m
30m

30m

30m

30m

Line

Polygon

4,683 m

4,683 m

4,683 m

Daily
HH:MM

Decimal degree
of point
Decimal degree
of point

100 m

100 m

100 m, 500 m,
and 2000 m

Distance to
closest in
meters
Distance to
closest in
meters

500 m Monthly

500 m Monthly

500 m Monthly

Daily
HH:MM

Yearly

Yearly

Yearly

Field data

Field data

Point count surveyors were separated into
groups. A and B, based on a cluster analysis of
their recorded distances to Mountain Quail
Field data

The NASA Shuttle Radar Topography Mission
(SRTM, see Farr et al. 2007) digital elevation
data, extracted through Google Earth Engine
The NASA Shuttle Radar Topography Mission
(SRTM, see Farr et al. 2007) digital elevation
data, extracted through Google Earth Engine
The NASA Shuttle Radar Topography Mission
(SRTM, see Farr et al. 2007) digital elevation
data, extracted through Google Earth Engine
National Hydrography Dataset

National Hydrography Dataset

PRISM Monthly Spatial Climate Dataset AN81m,
extracted using Google Earth Engine

PRISM Monthly Spatial Climate Dataset AN81m,
extracted using Google Earth Engine

PRISM Monthly Spatial Climate Dataset AN81m,
extracted using Google Earth Engine


https://onlinelibrary.wiley.com/doi/10.1029/2005RG000183/full
https://onlinelibrary.wiley.com/doi/10.1029/2005RG000183/full
https://onlinelibrary.wiley.com/doi/10.1029/2005RG000183/full
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e RE BRI
grain summary al grain summary

across the years of 1981 to 2010. Anomaly

is the yearly average minus the baseline.

Temperature anomaly Summer temperature baseline was 4,683 m 500 m Monthly | Yearly PRISM Monthly Spatial Climate Dataset AN81m,
and lag by one year of calculated using minimum monthly extracted using Google Earth Engine
anomaly —summer temperature from June to Aug., averaged

across the years of 1981 to 2010. Anomaly
is the yearly average minus the baseline.

Percent high burn Percentage of the pixels associated with a 30 m 100 m, 250 m, Yearly Previous 1 to Monitoring Trends in Burn Severity (MTBS),
severity high burn category (Composite Burn Index 500 m, 1000 m 5 years, 6 to extracted using Google Earth Engine
level 4). 10 years, and
11to 20
years
Pyrodiversity Shannon Index of the diversity of burn 30m 100 m, 250 m, Yearly Previous 1to | Monitoring Trends in Burn Severity (MTBS),
severities (categories 0 to 4) and their 500 m, 1000 m 5 years, 6 to extracted using Google Earth Engine
associated number of pixels. 10 years, and
11to 20
years
Number of years since Number of years since fire, going back to 30m 1000 m Yearly Yearly Monitoring Trends in Burn Severity (MTBS),
fire 1990 (maximum 20 years prior to year of extracted using Google Earth Engine
survey).
Shrub cover Average and standard deviation of the 30m 100 m, 250 m, Yearly Yearly rcmap - MultiResolution Land Characteristics:
proportion of shrub canopy within the 500 m, 1000 m, https://www.mrlc.gov/data/rcmap-shrub-cover
buffer. Shrub is defined as vegetation with 2000 m, 5000 m
woody stems less than 6-m in height.
Shrub height** Average and standard deviation of the 30m 100 m, 250 m, Yearly Yearly rcmap - MultiResolution Land Characteristics:
height of all shrubs within the buffer. 500 m, 1000 m, https://www.mrlc.gov/data/rcmap-shrub-height
2000 m, 5000 m
Tree cover Average and standard deviation of the 30m 100 m, 250 m, Yearly Yearly rcmap - MultiResolution Land Characteristics:
proportion of tree canopy within the 500 m, 1000 m, https://www.mrlc.gov/data/rcmap-tree-cover
buffer. 2000 m, 5000 m
Landsat red band Average and standard deviation of the 30m 100 m, 500 m, 16 days Yearly Landsat 7 and 8 near-infrared band, extracted
near-infrared band value of each pixel, 1000 m using Google Earth Engine

reflecting vegetation’s chlorophyll
absorption, where low red band values
represent high absorption. First took
median value from June and July images at
each pixel location, then calculated mean
and SD across the buffer.
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Covariate " Description N:ELE] N:ELE] Tempor | Temporal
grain summary al grain summary

Landsat 7 and 8 red band, extracted using

Landsat near-infrared Average and standard deviation of the red

band band value of each pixel, reflecting
vegetation’s structure and health, where
high values represent healthy plants. First
took median value from June and July
images at each pixel location, then
calculated mean and SD across the buffer.

Shrub cover* Percentage of an area occupied by
vegetation from 0.5 to 3 meters.

Shrub height* Estimate to nearest 1 m of the average
height of the upper bounds of the shrub
layer.

Tree cover* Percentage of an area occupied by
vegetation taller than 3 meters.

Tree height* Estimate to nearest 1 m of the average
height of the upper bounds of the tree
layer.

DBH* Average diameter at breast height of the
tree canopy.

Basal area*® Area occupied by the cross-section of tree
trunks and stems at breast height. Is the
average of the basal area taken at five
points within a 50-m radius circle.

Number of snags — 10 Number of standing dead trees with a

to 30 cm* trunk diameter between 10 and 30 cm.

Number of snags — 30 Number of standing dead trees with a

to 60 cm* trunk diameter between 30 and 60 cm.

30m

50m

50m

50m

50m

50m

50m

50m

50m

100 m, 500 m,

1000 m

50m

50m

50m

50m

50m

50m

50m

50m

16 days

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Yearly

Google Earth Engine

Field vegetation surveys

Field vegetation surveys

Field vegetation surveys

Field vegetation surveys

Field vegetation surveys

Field vegetation surveys

Field vegetation surveys

Field vegetation surveys

t All covariates beside observer group were assessed as a linear and quadratic term in the models.

* Covariates used in the abundance analysis only.
ok Covariates used in the presence analysis only.

3 Covariates considered in each process model for both the abundance and presence analysis.
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APPENDIX D: List of covariates used in each process model, for each region.

Table C-1. List of covariates for the fire process models correlated with Mountain Quail in each region. The models associated with the first two regions are
abundance, while the last two are from occurrence models. The linear model (L) and quadratic (Q) model results include the estimate * SE and the significance
level: *** for p-values <= 0.001, ** for p-values <= 0.01, * for p-values <= 0.05, and . for p-values between 0.05 and 0.1.

NCal - ARU - Fire

Process

Covariate

SNN - PC - Fire

SNN - ARU - Fire

All

All

All

All

All
All
Fire

Fire

Fire

Flre

Fire

Fire

Fire

Fire

Aspect_EW_100
Aspect_SN_100
Jul_day

Latitude

distLakes
temp_avg

HighBurn_11to20yrs_250m
HighBurn_6to10yrs_1000m

Pyro_11to20yrs_100m
Pyro_11to20yrs_1000m
Pyro_1to5yrs_1000m
Pyro_1to5yrs_500m

Pyro_6to10yrs_100m

YrsSinceFire

SNS - PC - Fire
L: 0.004+0.046 L:
Q: 0.002 +0.061 Q

L: 0.018 £0.045
Q: -0.040 +0.054
L: -0.249 £0.088 **

Q: -0.267 +0.048 *** | U
L -0315£0135% |
Q: -0.328 £0.111** |
L:
L: -0.069 +0.082 a
L: 0.284+0.111 * L:
L:
L: 0.047£0016** |
L:
Q
L:
Q

L: -0.322+0.141 * L:
Q: 0.133 £0.041 ** Q

L: 0.344£0.119 **
Q: -0.059 +0.020 **

om-or

-0.110 £ 0.042 **
: -0.080 £ 0.041 *

L: -1.014 £0.322 **
Q: 0.967+0.383 *

-0.257 £ 0.060 ***

-0.429 £ 0.065 ***

0.171+£0.088 .

: -0.055 +0.045
-0.430 £ 0.084 ***
0.270£0.149.

: -0.021 £ 0.015
-0.137+£0.138

0.007 £0.011

0.016 £0.117

: 0.006 £ 0.017

L: 3.194 £5.333

0.614 +£0.221 **

: -0.132 £0.053 *

0.590 + 0.159 ***
: -0.088 £0.025 ***
-1.364 £ 0.590 *
-0.867 +0.368 *
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Table C-2. List of covariates for the local land cover process models correlated with Mountain Quail in each region. The models associated with the first two regions
are abundance, while the last two are from occurrence models. The linear model (L) and quadratic (Q) model results include the estimate + SE and the significance
level: *** for p-values <= 0.001, ** for p-values <= 0.01, * for p-values <= 0.05, and . for p-values between 0.05 and 0.1.

SNN - ARU - Local

Process

Covariate

SNS - PC - Local

SNN - PC - Local

NCal - ARU - Local

All

All

All
All

All

All

All

All
Local

Local

Local

Local

Local
Local

Local

Local
Local

Local

Local

Aspect_EW_100
Aspect_SN_100

ElevSD_100
ElevSD_500

Jul_day
Latitude
distLakes

temp_avg
ShrubCover_mean_100

ShrubCover_mean_250
ShrubCover_mean_500
ShrubCover_sd_100

ShrubCover_sd_500
ShrubHeight_mean_100
ShrubHeight_mean_250

ShrubHeight_mean_500
ShrubHeight_sd_250

Shrub_CDL_50

mean_nir_100

L:

o To

ToToTior

~

0.048 £0.050

: -0.069 + 0.066

0.055 +£0.048

: -0.110+£0.060 .

0.268 + 0.078 ***

: -0.129 £ 0.040 **

0.297 £0.330

: -0.200 £ 0.080 *

-0.083 £0.132

: -0.175+0.111

-0.022 £ 0.080

0.229+0.111 *

0.040 £ 0.064

: 0.053 £0.044

-0.012 £ 0.046

L: -0.210 £ 0.044 ***
Q: -0.106 +0.042 *

L: 1.634+0.908.

L: 0.095+0.055.

Q: -0.044 £0.028

L: -0.278 £0.059 *** | L: -3.416+1.394 *
Q: 1.634+0.771*

L: -0.279 £0.064 ***

L: 0.113+0.082
Q: -0.018 £0.037
L: -0.408 £0.082 ***

L: 0.225+0.081 **
Q: -0.077 £0.031 *
L: 4797 £2339*
Q: -2.599 £ 0.903 **
L: 0.058 +£0.082
Q: -0.032 +£0.032
L: -4.544+1.877*

L: -11.508 +4.991 *
Q: 0.775+0.379 *
L: 10.855+3.907 **

L: -3.306 £ 2.607
Q: 3.045+1.266 *
L: 0.030+0.047 L: -0.837 £1.755
Q: 2.851+1.517.
L: 0.205 £0.055 ***
Q: -0.014 +£0.023
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Q: -2.258 £ 0.535 ***

L: 2.426+1.453

L: -3.494 +£1.562 .
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Process | Covariate SNS - PC - Local SNN - PC - Local SNN - ARU - Local NCal - ARU - Local
Local mean_nir_500 L: -7.920+3.535* L: -2.115+0.783 *
Local mean_red_100 L: -0.083 £ 0.062 L: 0.192 £0.068 ** L: -0.924 +£1.754
Q: -0.054 £0.035 Q: -0.100 + 0.029 *** | Q: -3.231+1.017 **
Local mean_red_500 L: -1.572+0.931
Q: 0.655+0.397
Local sd_nir_100 L: 3.374+1.571*%
Q: -2.859+0.982 **
Local sd_nir_500 L: 0.232+0.070** | L: 0.124+0.068. L: 2.327+1.390. L: 1.219+0.783
Q: -0.050+0.022 * Q: -0.047 £0.030
Local sd_red_100 L: 1.872+1.170
Local sd_red_500 L: 0.199+£0.088 *
Q: -0.063 +0.035.
Local shrubcov L: 0.091+0.041* L: 0.214 £0.054 ***
Q: -0.055+0.028 *
Local shrubhtavg L: 0.079 £0.055 L: -0.004 +0.040
Q: -0.029 £0.020
Local snags3060 L: -0.006 +0.089
Q: -0.022 £ 0.022
Local totdbhmax L: -0.026 +£0.038
Q: 0.015+0.018
Local treeCover_mean_250 L: -6.791+2.743 *
Q: -2.615+1.254 *
Local treeCover_sd_500 L: -0.145+0.060 * L: -0.145+0.067 * L: 0.856 +0.521
Q: -0.111 +£0.040 **
Local treehtavg L: -0.039 £0.041

Q: 0.020+0.026
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Table C-3. List of covariates for the landscape land cover process models correlated with Mountain Quail in each region. The models associated with the first two
regions are abundance, while the last two are from occurrence models. The linear model (L) and quadratic (Q) model results include the estimate * SE and the
significance level: *** for p-values <= 0.001, ** for p-values <= 0.01, * for p-values <= 0.05, and . for p-values between 0.05 and 0.1.

Process Covariate SNS - PC — Landscape | SNN - PC - Landscape SNN - ARU - Landscape NCal - ARU - Landscape
All Aspect_EW_100 L: -0.005 £ 0.049 L: -0.117 £0.042 **
Q: -0.017 £0.061 Q: -0.101 £0.041 *
All Aspect_SN_100 L: 0.029 £0.045
Q: -0.057 £0.054
All ElevSD_100 L: 2.129+0.871 *
Q: -1.802 +1.043.
All Jul_day L: -0.240+0.091 ** | L: -0.249 +0.059 *** L: -2.021+0.712 ** L: -3.294 £ 0.657 ***
Q: -0.286 + 0.048 *** Q: -2.135+0.501 ***
All Latitude L: -0.167 £0.139 L: -0.318 £0.078 ***
Q: -0.242+0.124 .
All distLakes L: -0.010+0.080 L: 0.151+0.087.
Q: -0.062 +0.044
All temp_avg L: 0.132+0.116 L: -0.421 +0.096 ***
Landscape | ElevSD_2000 L: 0.302 £0.083 ***
Q: -0.111+0.046 *
Landscape | ShrubCover_mean_2000 L: -5.652 +£3.339. L: 2.132+1.254
Landscape | ShrubCover_mean_5000 | L: 0.042 +0.073 L: 0.170+0.078 * L: 1.235+4.018
Q: -0.037 £0.047 Q: -0.077 £0.044 . Q: -2.643 +1.465.
Landscape | ShrubCover_sd_1000 L: 0.051+0.063 L: 0.085+0.074 L: -7.259+2.981*
Q: -0.082+0.039 *
Landscape | ShrubCover_sd_2000 L: 7.318+3.725*
Q: 6.972 +2.440 **
Landscape | ShrubHeight_mean_1000 L: 4.444+£2.470.
Landscape | ShrubHeight_mean_2000 L: -2.502+1.067 *
Landscape | ShrubHeight_sd_2000 L: -0.739+1.871
Q: -4.290 + 1.380 **
Landscape | mean_nir_1000 L: 0.072 £0.087 L: 0.269 £0.058 *** L: -1.656 +0.816.
Landscape | mean_red_1000 L: 0.038 +£0.082 L: 0.302 +£0.100 **
Q: -0.039 +0.039 Q: -0.100 + 0.036 **
Landscape | sd_nir_1000 L: 0.153+0.078 * L: 2.606 £0.987 ** L: 1.682+0.725*
Q: -0.053+0.024 * Q: -1.711+£0.989.
Landscape | sd_red_1000 L: -0.082 £ 0.095
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Landscape | treeCover_mean_1000 L: 2.487+2.399
Q: -6.315+2.053 **
Landscape | treeCover_mean_2000 L: -13.781 +4.945 ** L: 0.318+0.781
Q: 0.590+0.425
Landscape | treeCover_mean_5000 L: -0.089 +0.073 L: 4.678+2.287*
Landscape | treeCover_sd_1000 L: -3.464+1.423*
Landscape | treeCover_sd_5000 L: -0.171+0.073 * L: -0.137 +£0.068 * L: 0.849 +0.494

Table C-4. List of covariates for the climate process models correlated with Mountain Quail in each region. The models associated with the first two regions are
abundance, while the last two are from occurrence models. The linear model (L) and quadratic (Q) model results include the estimate + SE and the significance
level: *** for p-values <= 0.001, ** for p-values <= 0.01, * for p-values <= 0.05, and . for p-values between 0.05 and 0.1.

SNS - PC - Climate

Process | Covariate SNN - PC - Climate SNN - ARU - Climate NCal - ARU - Climate

All Aspect_EW_100 L: -0.001 +0.046 L: -0.103+0.042 *
Q: 0.007 +0.061 Q: -0.083 +0.041 *
All Aspect_SN_100 L: 0.040 +0.045
Q: -0.041 +0.054
All ElevSD_100 L: 0.422+0.376
Q: -0.820+0.483.
All Jul_day L: -0.276 £0.076 *** | L. -0.276 £ 0.060 *** | L. -1.347 £0.356 *** | L. -3.610% 0.734 ***
Q: -0.270+£0.048 *** Q: -2.449 + 0.557 ***
All Latitude L: -0.107 £0.124 L: -0.452 £ 0.069 ***
Q: 0.010+0.114
All distLakes L: -0.083 +0.081 L: 0.224 +£0.093 *
Q: -0.063 +0.047
All temp_avg L: 0.293 £0.098 ** L: -0.466 +0.089 ***
Climate | ppt_anomaly L: 0.623+0.758
Q: -1.219+0.635.
Climate | ppt_anomaly_laglyr | L: -0.268 £ 0.139. L: -0.112 £ 0.092 L: -1.395+0.963
Q: 0.010+0.041 Q: 1.497 £0.705.
Climate | tmn_anomaly L: -0.358 £0.130 ** L: 0.138+0.116
Climate | tmn_anomaly”2 Q: 0.204 +0.058 ***
Climate | tmn_anomaly_laglyr | L: -0.370+0.132 ** | L: -0.029 £0.120 L: 0.164 +£1.300
Q: 2.259+1.098.
Climate | tmx_anomaly L: 0.158 £0.085. L: 0.031+0.125 L: -20.802 £8.065 ** | L: 0.905 +0.593
Q: 5.816+2.308 *
Climate | tmx_anomaly_laglyr L: -3.393+1.393 * L: -0.842 +0.688
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APPENDIX E. Spatial autocorrelation plots.

Figure D-1. Moran’s | spatial autocorrelation index across distances for the Modoc-Cascades region.
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Figure D-2. Moran’s | spatial autocorrelation index across distances for the Northern Sierra region.
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Figure D-3. Moran’s | spatial autocorrelation index across distances for the Southern Sierra region.
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APPENDIX F. Partial dependence plots.

Figure F-1. Partial dependence plots associated with the Mountain Quail, for the fire and climate processes, per

region and model.
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Northern Sierra — Presence model — Fire covariates
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