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ABSTRACT 
Climate change and altered fire regimes are rapidly transforming montane forests of the 
Western United States and reshaping wildlife habitat, creating challenges for wildlife 
management. Reliable population monitoring is critical to inform management, yet it remains 
unclear whether emerging technologies like autonomous recording units (ARUs) provide 
information comparable to traditional point count survey methods by human observers when 
assessing the effects of fire, climate, and land cover, across multiple scales. We sought to better 
understand the effects of fire, climate, and land cover on Mountain Quail abundance and 
occurrence using point count and ARU data across the majority of their range in California and 
provide evidence-based recommendations for managing and monitoring this species in the 
context of dynamic environmental conditions. 
 
We found that local-scale land cover best explained abundance, while landscape-scale land 
cover was more strongly linked to presence. In terms of land cover, the percentage of shrub 
cover emerged as important across all spatial scales (50-5,000 m). Fire-related factors were also 
broadly correlated with Mountain Quail presence and abundance with quail being positively 
associated with high burn severities 6-20 years post-fire at local scales (<500m) and positively 
associated with post-fire areas 1-5 years after fire if they burn heterogeneously at landscape 
scales. While climate variables were not strong predictors of abundance in isolation relative to 
land cover and fire, anomalously warm winter temperatures had a pronounced negative effect 
on abundance and presence in some regions. Abundance varied regionally with the highest 
population densities at lower latitudes. Population trends were consistently stable across 
regions and monitoring protocols from 2010 to 2021 in the Sierra Nevada, Southern Cascades, 
and Modoc Plateau, and in Northern California from 2017 to 2021. 
 
Our findings suggest that while point counts and ARUs capture different aspects of Mountain 
Quail ecology, both provide complementary insights. We recommend that future monitoring 
continue with regional approaches, combine point counts with ARU data collection to 
strengthen inference and utility for management, and integrate multiple spatial scales during 
analysis.  
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INTRODUCTION 
 

Climate change is transforming the habitat of terrestrial wildlife in the mountains of the 
Western United States by reshaping and shifting the ranges of vegetation communities, altering 
hydrologic cycles, and amplifying thermal stressors (Halofsky and Peterson 2016, Thorne et al. 
2018, Noel et al. 2025). Warmer winters, drier summers, and droughts have facilitated massive 
beetle outbreaks causing widespread mortality of conifer forests, which in turn affects wildlife 
(Bentz et al. 2010, Roberts et al. 2019a, Fettig et al. 2019, Madakumbura et al. 2020). Montane 
environments are experiencing reduced and earlier melt of snowpack, drying habitats that 
wildlife rely on (Wilkins et al. 2019, Halsch et al. 2024). Climate change also exerts direct 
thermal effects on wildlife, impacting survival and reproduction (Dugger et al. 2016, Riggio et al. 
2023a). But perhaps nowhere are the effects of climate on wildlife habitat in Western montane 
forests more pronounced than those of increasing high severity fire. 
 
California’s forests, like much of the Western US, are experiencing rapid ecological change 
caused by altered fire regimes (Halofsky et al. 2020, Gaines et al. 2022). The fire regime across 
the majority of the conifer forest of interior Northern California and Sierra Nevada were 
historically characterized as mixed severity, dominated by lower and moderate severity effects, 
resulting in a structurally diverse and successionally heterogenous landscape (Hessburg et al. 
2016). Following nearly a century of effective fire suppression, in the last few decades fires 
have been increasing in size and severity with a concomitant increase in the area burning at 
high severity and the size of the high severity patches, both outside the historic range of 
variability (Mallek et al. 2013, Steel et al. 2015, Hagmann et al. 2021, Williams et al. 2023). The 
abundance and distribution of forest successional stages has rapidly changed as a result, with 
homogenization of habitat patches at large landscape scales (Steel et al. 2023). These changes 
in turn affect the distribution and abundance of the wildlife communities adapted to the 
structural and spatial diversity created by mixed severity fires (Zeller et al. 2023).  
 
Managing wildlife populations in these rapidly changing environmental conditions presents 
significant challenges for managers. Managers rely on the best available science to inform 
decisions, yet the pace of environmental change may lead to shifts in the species-habitat 
relationships that underpin decisions (Morley et al. 2018, Morelli et al. 2025). Recent 
technological advancements in wildlife monitoring, such as the use of autonomous recording 
units (ARUs), may help expand our capabilities to monitor wildlife populations (Dalton et al. 
2022). ARUs present benefits for monitoring vocal wildlife such as birds (Darras et al. 2018). 
They offer a relatively low cost monitoring design, while typically increasing detection 
probabilities (Drake et al. 2021), especially for species with low detectability (Doser et al. 2021, 
Lewis et al. 2025). They have been shown to be effective in modeling habitat relationships for 
many bird species in the mountains of Northern California and the Sierra Nevada, including 
Mountain Quail (Furnas 2020, Brunk et al. 2023a, 2025). However, little is known about 
whether ARU and human observer assessments identify the same processes affecting wildlife, 
such as fire, climate, and land management. 
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The adoption of new monitoring methods can also present challenges for managers, especially 
for long-term monitoring programs. In some cases, the population estimates derived from new 
monitoring methods align with traditional monitoring methods, reinforcing their reliability 
(Baldwin et al. 2023, DeLeon et al. 2023). However, discrepancies in population estimates 
obtained from new and traditional monitoring tools (Hutto and Stutzman 2009, Hodgson et al. 
2018, Drake et al. 2021, DeLeon et al. 2023) raise concerns for wildlife managers. Additionally, 
many of these technologies rely heavily on artificial intelligence (AI) models for data processing 
(Shah et al. 2020, Kahl et al. 2021, Vélez et al. 2023, Samiappan et al. 2024). It is important to 
compare trends in populations obtained from new technologies with traditional monitoring 
methods and identify the cause of discrepancies, if those exist (Strang et al. 2025). However, 
the type of data that feeds into population trends often differs across monitoring approaches. 
For example, point-count protocols are well suited for estimating abundance, whereas ARUs 
typically generate occupancy or presence/absence data (DeLeon et al. 2023). Depending on 
management goals, ARUs may not provide the data needed to guide management practices, 
especially in cases where accurate estimates of population size are required, such as for 
developing or adjusting hunting regulations. It is also important to evaluate if the covariate 
effects between traditional and new methodologies are comparable. Given the extent to which 
the existing literature on avian abundance and distribution is based on human observer counts, 
more comparisons of data collected by human observers and ARUs are needed as ARU data 
becomes more prevalent. 
 
The Mountain Quail (Oreortyx pictus) is a small gallinaceous bird native to mountainous areas 
from Oregon, through California, to northern Baja California. They are associated with early and 
mid-successional stages of mixed conifer and mixed conifer-hardwood forests and shrublands 
(Block et al. 1987, Gutiérrez and Delehanty 2020). As an upland game bird and an indicator 
species for the US Forest Service, Mountain Quail is a species of high management interest in 
California, but few studies of the species exist to inform population management (Gutiérrez and 
Delehanty 2020), especially in relation to environmental change. In the Sierra Nevada, 
Mountain Quail have been found to respond positively to high-severity fire disturbances (Taillie 
et al. 2018, Brunk et al. 2023b) but these studies were limited in temporal or geographic scope. 
No published studies have evaluated Mountain Quail response to variations in climate in 
California, such as anomalous temperature and precipitation. In Idaho and Eastern Washington, 
they were found to be sensitive to climatic variables (Stephenson et al. 2011).  
 
Our study sought to better understand the effects of fire, climate, and land cover on Mountain 
Quail abundance and occurrence across the majority of their range in California and provide 
evidence-based recommendations for managing and monitoring this species in the context of 
dynamic environmental conditions. We used data from long-term point count monitoring and 
recent ARU monitoring to model abundance and presence of Mountain Quail across the Sierra 
Nevada and Northern California mountains. By comparing results derived from these two 
monitoring techniques, we aimed to identify areas of agreement and discrepancy in the 
monitoring methods. We hypothesized that both methodologies (a traditional point count 
method and a new method using ARUs) would correlate broadly. 
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METHODS 
Mountain Quail Detection Data 

 
We used two types of data from three different sources to assess the breeding population 
trends and distribution of Mountain Quail across the majority of their range in California. The 
first data type consists of standardized point count surveys (Ralph et al. 1993) conducted across 
the Sierra Nevada Planning Area as part of a region-wide avian monitoring project on National 
Forest lands (Roberts et al. 2011b) (Figure 1). Sample locations were selected across nine 
National Forests and the Lake Tahoe Basin Management Unit using a generalized random-
tessellation stratified design (GRTS) to avoid clustering in any given area.  Within each GRTS 
area, surveys were located at elevations ranging from 1,000 to 2,800 meters, were limited to 
areas within 1 km of accessible roads, on slopes less than 35 degrees, and within forest, shrub 
wet meadow and riparian habitats. Sample locations formed a spatially balanced survey design 
with a geographically even distribution of sampling sites (Roberts et al. 2011a). The sampling 
design for upland habitats (forest and shrubland) included 2 transects per site, with each 
transect sampling a 1-km 
grid cell. Each upland 
transect consisted of 5 
survey stations, a central 
station and four stations 
250 meters away from the 
central station in each 
cardinal direction. The 
sampling design for wet 
meadow and riparian 
habitats included 2-3 
transects per site with 4-5 
stations arranged 250 
meters apart in a linear or 
clustered pattern that 
sampled irregularly and 
linearly shaped habitat 
patches. Bird surveys were 
conducted from mid-May 
through early July from 
2010 to 2021, except 2018 
and 2020. Each survey 
consisted of a five-minute 
count, where the observer 
recorded the number and 
estimated exact distance to 
each individual bird species 
heard or seen, from the 

 

Figure 1. The study area covers the Sierra Nevada mountain range, the 
northern California coast and northern mountain ranges. The dots 
represent the locations of the surveys from each data owner. 
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station center, out to a distance of 300 meters. Surveys began at local sunrise, were completed 
within four hours, and did not occur in conditions that would substantially reduce detectability 
(e.g. precipitation, fog, or high winds). Laser rangefinders were used to assist in distance 
estimation. While approximately 25% of all sites received a second visit every year, we used 
only observations from the first visit. We used a total of 15,781 point count surveys in the 
analysis. 
 
The second data type came from Autonomous Recording Units (ARUs), deployed across the 
Northern California mountains and northern half of the Sierra Nevada (Figure 1;Furnas and 
Callas 2015, Snyder et al. 2022). All ARU data were recorded using Audiomoth devices (Hill et al. 
2018, 2019). We used three sources of ARU data, each with their own recording protocol: Point 
Blue (Point Blue 2021), California Department of Fish and Wildlife (CDFW; (Furnas and Callas 
2015), and Soundscape 2 Landscape (S2L; (Snyder et al. 2022). We used a sample (n = 1,737) of 
S2L recordings from Sonoma County, from April to June of years 2017 to 2020, only for tuning 
the convoluted neural network (CNN) model (i.e., not in the occupancy analysis; Snyder et al. 
2022; details below). Data from CDFW consisted of 3 daily 5-minute recordings (n = 3,449) 
collected between pre-dawn (4:44 AM) and sunrise (6:33 AM) from May 2, 2017 to June 30, 
2021, in the Northern California mountains (Figure 1). Recordings from Point Blue were 
sampled across the northern half of the Sierra Nevada in 2021 (Figure 1). They consisted of 1-
minute recordings every 10 minutes of every hour for several days at each location. Because 
both the sampling design and sampling effort (number of years) differed between the CDFW 
and Point Blue, we opted to complete a separate occupancy analysis with each dataset. 
However, within a yearly scale, we subsetted the Point Blue dataset to the same months and 
approximate time periods of the CDFW dataset. That is, we used 15 minutes of recordings from 
each day, starting at 4:30 AM to 7:00 AM (n = 6,495 recordings).  A total of 9,944 minutes of 
recorded data were used to predict with our tuned CNN model and resulted in 434,548 
predictions of possible detections. 
 

Cloud-based workflow to detect species using ARU recordings 

We developed a cloud-based workflow that uses machine-learning techniques to accurately 
identify Mountain Quail vocalizations from ARU data. This system is scalable, allowing for future 
adaptations to include other species and regions. Beyond the immediate goal of identifying 
Mountain Quail, this workflow could be extended to increase the utility of the CDFW dataset 
for other species of management interest. 

 

The cloud-based species detection workflow (Figure 2) included five steps: data labeling, data 
preparation, CNN model tuning, CNN model predictions, and CNN model evaluation. All of 
these steps were completed on a cloud computing system (the Amazon AWS cloud, or in the 
case of developing labels, the ARBIMON web platform). However, they could all be completed 
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on a local computer, provided that it has sufficient storage capacity. Below we describe each 
step and where it was completed.  

 

Data labeling involved identifying the 'quark' song of Mountain Quail in a sample of recordings. 
This was completed using an automated detection tool in ARBIMON, a free web application 
(Aide et al. 2013). In ARBIMON, we searched for Mountain Quail ‘quark’ by listening to 
recordings and selected three templates of the call in a spectrogram. We then applied 
ARBIMONs image searching algorithm to find spectrograms in the same frequency range from 
our morning and afternoon recordings. Then, experts validated the detected 'quarks' as either 
'present' or 'not present' (i.e., was or was not a Mountain Quail ‘quark’), by inspecting all the 
findings of the pattern matching algorithm from ARBIMON. The results of the pattern matching 
searches and validations were exported out of ARBIMON as a csv file that contains: the name of 
the sound file, the starting and ending second where the pattern was located, and whether it 
was confirmed as a present or not present. Other software can be used to complete this task, 
including desktop applications, but these may lack an image or pattern searching tool and may 
require much more effort scanning large numbers of sound files to find matching patterns. We 
also note that the ARBIMON tool has an important caveat: the matches found are very similar 
to the pattern provided, thus there will be significant homogeneity in the results. It is always 
good practice to use several patterns to obtain some variability in the matches. We used three 
templates in our pattern matching analysis. 

 

In the data preparation step, we used the downloaded csv file with the results of the pattern 
matchings to locate and crop the clips in the sound files. Because the next step requires 3-
second clips and the patterns are usually shorter than 3 seconds, we centered and buffered the 
clips equally on both ends. We obtained over 7,000 tuning clips (both quail and non-quail 
detections combined). We ensured that these clips came from a variety of sample locations 
representative of the geographic diversity of our study area to enhance the diversity of the 
training patterns. We did not use any augmentation methods, which are commonly used to 
increase sample size, such as adding noise to our existing training clips to generate new tuning 
clips. This data preparation step can be completed on any platform with sufficient disk space to 
host the often-large sound files. Our AWS system consisted of an EC2 virtual machine with an 
Ubuntu 24.04 LTS operating system. On this machine we set up a Jupyter Notebook server, 
allowing us to access this computing environment from anywhere via a web URL connection. 
The server is password-protected. The sound files are stored in an Amazon S3 bucket, which we 
mounted onto the virtual machine and were thus available to the notebook server. We installed 
an R kernel for the notebook server, in addition to the default python kernel, to be able to run 
both python and R notebooks. Clipping the sound files with the pattern-matching results was 
done in R. 

 

To predict quail presence in the recordings, we used the BirdNET CNN AI model. BirdNET is a 
freely available tool for identifying bird species from sound recordings across North America 
and beyond (Kahl et al. 2021, McGinn et al. 2023), and is accessible through its GitHub 
repository. The downloadable package includes a Python interface that allows users to both 

https://github.com/birdnet-team/BirdNET-Analyzer
https://github.com/birdnet-team/BirdNET-Analyzer
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train the model and run predictions on sound files. Following a transfer-learning approach, the 
code fine-tunes the classifier head of the CNN (i.e., the weights for the embeddings) without 
altering the original embeddings. For the tuning step, we used the ‘autotune’ functionality with 
200 trials to optimize model hyperparameters (note that only a subset of CNN hyperparameters 
can be tuned using the provided software). We also used the ‘append’ functionality, which 
directed the model to use our numerous, geographically localized recordings of Mountain 
Quail. This step produced a classifier fine-tuned specifically on our data. To further improve 
accuracy, we included the provided “not-quail” clips so that the model could learn to 
distinguish quail vocalizations from similar sounds, thereby maximizing true detections while 
reducing false positives. Although BirdNET includes a Python application for training and 
prediction, we executed these steps from within R by calling Python scripts through system 
commands. For example, a batch execution of the BirdNET Python script from the command 
line might look like: 

> python3 -m birdnet_analyzer.analyze … (other arguments here) 

Then the R-based command would be: 

 $ system(“python3 -m birdnet_analyzer.analyze … (other arguments here)”) 

The sole advantage of this approach is that it permits the user of our system to execute all steps 
within the R environment. Because we set up R to run in a Jupyter Notebook, users can fully 
annotate their code. We annotated all of our notebooks and documented every step described 
here. 

 

The prediction step used the Mountain Quail classifier generated in the previous step to 
determine whether Mountain Quail were present in the recordings. Predictions were made on 
1-minute or 5-minute recordings, with the model evaluating overlapping 3-second clips (1-
second overlap). As with training, this was implemented as a batch script execution within the R 
environment, run in a Jupyter Notebook with an R kernel. Each prediction returned a 
confidence score indicating the model’s certainty that a 3-second clip contained a Mountain 
Quail call. In addition to quail detections, we also applied the default BirdNET classifier to 
identify 20 additional species in the recordings. These consisted of the 10 most frequently and 
10 least frequently detected species from point counts conducted at locations where Mountain 
Quail are known to occur (Appendix A).  
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Figure 2. Diagram of the workflow used to process and analyses the ARU data.  

 
 

The final step, CNN model evaluation, focused on identifying the optimal level of prediction 
penalization to minimize false positives while maximizing true positives. Penalization can be 
applied simply by setting a minimum confidence threshold (e.g., accepting only predictions with 
confidence scores >0.8). This step is critical, as even a small number of false positives can 
significantly reduce accuracy (Royle and Link 2006, Miller et al. 2011, 2015, Royle et al. 2012). 
Because the CNN generates a confidence score for every 3-second clip, it is essential to 
determine the confidence level at which predictions can be considered reliable detections. 
Despite its importance, this step is often overlooked in similar studies, or a simple 0.5 threshold 
is used. To properly validate our model, we used a withheld dataset in which experts manually 
reviewed recordings. Reviewers documented the exact timing of Mountain Quail ‘quark’ calls, 
noted other detected species, and recorded background noise such as wind, insects, or human 
activity (Clark et al. 2023). We refer to this test set as our “golden validation” dataset. 

 

To evaluate the performance of the AI model, we compared its predictions against the golden 
validation dataset. This allowed us to determine the confidence score threshold that balances 
prediction precision (accuracy) and recall (detection sensitivity). In a first step, we used the Fβ 

index at β = 1 (highest recall) to identify a penalization threshold of 0.81, which yielded 75% 
recall and 87% precision. After identifying the penalization threshold, we found that the 
resulting detections still included a 13% false positive rate, so we took a second step of fitting 
an ensemble of Random Forest models, weighted and averaged across bootstrap replicates, 
that incorporated information from co-occurring species. This ensemble refinement provided a 
more reliable distinction between true and false positives and further improved overall 
precision. More details about the evaluation steps are provided in Appendix B.  

 

Abundance and occupancy modeling analysis 

Environmental covariates 

We modeled Mountain Quail abundance and distribution using covariates relevant to the 
ecology of Mountain Quail with the inclusion of specific covariates to assess the impact of 
climate and fire. A total of 85 and 90 covariates were used in the modeling with the point count 
and ARU data, respectively. Each covariate consisted of a unique combination of measurement 
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(e.g., shrub cover, precipitation), spatial scale (e.g., 100m), and summary statistic (mean or 
standard deviation). See Appendix C for a complete list and definition of the covariates, their 
source, the spatial scales considered, and how they were summarized. The covariates fell in five 
broad data types: (1) survey effort, such as day of year and time of day; (2) geographic, such as 
latitude, aspect, relief, and an index of elevation; (3) climatic, related to annual temperature 
and precipitation anomalies; (4) landcover, such as satellite-derived metrics of land cover types, 
spectral wavelengths, and field-collected vegetation data; and (5) fire, such as the extent of 
high-severity fire, the number of years since the last fire, and a pyrodiversity index. Many of 
these covariates, particularly those related to land cover types and fire, were summarized 
across multiple spatial scales, ranging from 50 to 5,000 meters, and in some cases, across 
multiple ranges of years, e.g., high severity fires in the past one to five years. The 50 m 
covariates were obtained through field surveys, while all other scales – 100, 250, 500, 1,000, 
2,000, and 5,000 m – were obtained using remotely sensed data. The original grain size of these 
remote sensing data was typically 30 m, beside the climate data which were provided at a 4,683 
m resolution. These scales have been found to be relevant to avian ecology in other studies 
(Graf et al. 2005, Cunningham and Johnson 2006), while accurately representing land cover 
(Rigge et al. 2025). 
 

Abundance analysis using point count data 

We modeled the abundance of Mountain Quail over time in the Sierra Nevada and Modoc-
Cascades regions using point count data (Figure 1). We used the ‘distamp’ function in the R 
package ‘unmarked’ (version 1.4.3; Kellner et al. 2023), a hierarchical modeling approach that 
models abundance corrected for detection as a function of distance from observers. Our 
models included all Mountain Quail detections up to a distance of 175 meters from each of the 
four cardinal point count stations of each transect. We excluded the central point count station 
at each transect to ensure no overlap in area sampled among adjacent point count stations at 
the 175-m distance threshold.  
 
We applied a model selection process to account for imperfect detectability. We first compared 
three detection functions — hazard rate, half-normal, and uniform — via AIC with intercept-
only formulas for the detection and abundance components of the models. We selected the 
hazard rate detection function for all subsequent analysis based on its lowest AIC value. We 
next assessed the influence of survey-specific variables on detection, evaluating the effects of 
Julian day, time of day, observer group, and habitat covariates on detection, while keeping the 
abundance formula as intercept-only. We compared candidate models using AIC and retained 
the top-performing model that included Julian day, time of day, and observer group. Lastly, for 
all abundance modeling, we considered counts from a station-year combination as independent 
records in the model, with year and transect as random effects to account for potential spatial 
and temporal patterns in abundance caused by repeated measures at the same locations (Fuller 
et al. 2016, Roberts et al. 2019b) and to account for yearly variation not represented by the 
covariates e.g., diseases, changes in phenology, etc. We also standardized all covariates prior to 
inclusion in the models by rescaling the data to have a mean of 0 and a standard deviation of 1. 
In the R analysis tool ‘distsamp’, we selected for the output to be the density in kilometer 
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square. We next used a model selection process to define the abundance formula in our 
models.  
 
The environmental covariates that influence the abundance of Mountain Quail vary across their 
range (Rousseau and Betts 2022). We hypothesized that drivers of Mountain Quail abundance 
could differ across the broad geographic extent of our study area. To address this, we assessed 
the importance of environmental covariates in three geographic regions delineated using 
CDFW’s ecoregion boundaries as a rough guide (Goudey et al. 2007): the Modoc-Cascades, the 
Northern Sierra Nevada, and Southern Sierra Nevada (Figure 1).  We built separate models for 
each of these regions to assess varying geographical drivers and improve model fit (Syphard et 
al. 2024).  

For each region, we developed four process models to evaluate the relative influence of 
climate, fire, local and landscape land cover on Mountain Quail abundance. These models 
aimed to identify which of these four ecological drivers were the most influential in predicting 
Mountain Quail abundance in each region. We used a two-step procedure to determine which 
covariates to include in each process model (steps 2 and 3 in Figure 3). In the first step, we 
combined all environmental covariates within each scale, to obtain one model per scale. For 
example, a scale model would have included vegetation covers, fire covariates, and so on, 
summarized at 100 m buffer. We also created one ‘no scale’ model for those covariates that 
were scale-independent (e.g., distance to river). At this step and all subsequent models we used 
the Variance Inflation Factor (VIF) to ensure no covariates within the same model had high 
correlation (VIF > 3) to avoid spurious model behavior (Akinwande et al. 2015, Yu et al. 2015). 
The second step involved selecting the covariates that would be included in each of the four 
process models for each region using the results of the spatial scale models. All climatic 
covariates were restricted to the climate model. All fire covariates were restricted to the fire 
model. All land cover covariates summarized at scale ≤ 500 m (buffer of 100 m, 250 m, and 500 
m) were restricted to the local land cover model, while covariates summarized at scale ≥ 1000 
m (buffer of 1000 m, 2000 m, and 5000 m) were restricted to the landscape land cover model. 
All four process models had the same detection formula as described above. Additionally, all 
models included the same subset of geographic variables and survey effort variables (Julian 
day) as fixed effects in the abundance formula (Appendix C). Some individual land cover and fire 
covariates were correlated across multiple spatial scales (e.g. shrub cover at 100m and 250m). 
To select the best scale for each covariate, we used the scale with the highest absolute z-value 
(mean estimate divided by standard error) from the previous step. The final set of covariates 
for each process model in each region is listed in Appendix D. Finally, we compared the four 
process models within each region using AIC to determine which process best explained the 
variation in Mountain Quail abundance. This process model comparison was completed for the 
two Sierra regions but was not for the Modoc-Cascades region due to a lack of convergence for 
some of the process models. 

Next, we developed a final model per region for assessing population trends and predicting the 
species’ distribution. For the two Sierra Nevada regions, we first ran a global model per region 
containing all covariates present in at least one of the process models (Figure 3; Appendix D). 
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We then reduced the number of covariates in the model by removing any that had a p-value > 
0.1. This step sometimes included iterations of running models. We then further reduced the 
covariates by removing any with a p-value > 0.05, again running model iterations until all 
covariates had a p-value < 0.05. We observed that some iterations sometimes had a lower AIC 
even if it contained covariates with a p-value > 0.05. If such was the case, we kept the model 
with the lowest AIC (retained the covariate). For the Modoc-Cascades region, we used a 
univariate approach to build the final model, where we selected all covariates significantly 
correlated with abundance, starting with the one with the largest effect size, and sequentially 
added covariates until the model no longer converged because of sample size limitations. We 
then compared a few candidate models using AIC and selected the best-fit model. For the final 
models for all regions, we assessed if we had spatial autocorrelation in the residuals using 
Moran’s I (Fortin et al. 1989, Betts et al. 2006), as the presence of spatial autocorrelation can 
affect model fit (Betts et al. 2006, Bahn et al. 2006). Although Moran’s I values were statistically 
significant, they remained low (< 0.1) and only within very short distances (not among 
transects), indicating minimal positive spatial autocorrelation (Appendix E). Finally, we assessed 
model fit for each region’s final model using a goodness-of-fit test (parboot function, 100 
simulations; Fiske and Chandler 2011).  

We assessed trends in Mountain Quail population density in each region from 2010 to 2021. 
First, we predicted the population density of each year of sampling using each region’s final 
model. We then fit a linear regression model to these annual density predictions to assess the 
population trend.  
 

 

Figure 3. Summary of the methodology used to predict abundance from the point count data and presence 
from the ARU data. 
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We created a map of the predicted abundance of Mountain Quail using the final model for each 
region. We predicted density at the central point of a 2.5 square mile hexagon grid used by the 
CDFW Areas of Conservation Emphasis, using remotely sensed covariates values for 2021. 
However, the final model of each region included a field measurement, shrub cover, not 
available across the hexagon grid. We thus used the regional mean of shrub cover in our 
prediction calculations. While not perfect, this allowed us to visualize the variation in 
abundance as a function of all the other covariates in the model. The mapped predictions were 
constrained to hexagons with values of covariates within the range of our samples for each 
regional model. 
 

Presence-absence analysis using ARU data 

We used a similar approach to assess the presence and absence of Mountain Quail using ARU 
data as we employed for the abundance analysis, with some noteworthy differences (Figure 3). 
We used two regions for this analysis, the Northern Sierra and a Northern California region that 
was a combination of the Coastal California, Klamath Mountains, and Modoc-Cascades regions 
(Figure 1). The Northern Sierra Region contained Point Blue ARU data from 2021 that 
overlapped with point counts at the same sample locations. The Northern California region 
contained CDFW ARU data collected from 2017 to 2021. We created this larger region to 
increase sample size for analysis. 
 
All Mountain Quail detections were obtained from the CNN model predictions after the 
penalization and correction process (the CNN model evaluation process). For each region, we 
summarized acoustic detections by survey event, where an event was defined as 15 minutes of 
surveys at a site on a given date. This yielded six consecutive survey events (six consecutive 
days) per site‑year. A survey event was considered to have a detection if at least one corrected 
positive detection occurred within the 15‑minute period. We excluded 11 site-years from the 
Point Blue data that had fewer than 15 minutes of sound records. 
 
We further noted that there was a clear dichotomy in the number of detections per survey 
event among sites. Specifically, we constructed the empirical probability distribution of all 
corrected detections from all 15‑minute events across all site-years in the region, and sought to 
classify an event as having quail if the number of corrected detections exceeded some 
percentile of that distribution. For example, the 30th percentile of the distribution might be 3 
detections per event, so any event with more than 3 detections would be considered as having 
detected the species, and not having detected the species if the number of detections in the 
event was 3 or fewer. Since each site has 6 survey events, we could construct a detection table 
where each row is a site and each column represents a single survey event and use this 
detection table to fit an imperfect-detection occupancy model. However, upon reviewing the 
data, a clear dichotomy was seen in the empirical distribution as it applied to survey site-years 
before applying any quantile filtering: most site‑years with detections had 4-6 events with 
detections, while the rest of site-years had only 0–2 detections across all events. Given this 
pattern, we chose not to fit an imperfect detection model, and instead applied a logistic model. 
Thus, we coded a site‑year as 1 (quail present) if it had 4-6 events with detections, and 0 (quail 
absent) otherwise. Doser et al. (Doser et al. 2021) noted in a simulation analysis that when 

https://wildlife.ca.gov/Data/Analysis/ACE
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fitting hierarchical imperfect-detection models that include estimation of false positives to data 
from highly abundant species, the models failed to converge due to lack of parameter 
identification and thus inability to distinguish true from false positives. Our data were already 
corrected with an ensemble of Random Forest models to remove false positives, thus fitting a 
model with a false positive probability was unwarranted. We acknowledge that quail might 
have been present at sites with ≤2 detections, but this threshold also serves as an additional 
filter against false positives and may help address the problem noted by Doser et al. (2021) in 
high abundance areas. To account for seasonal variation in calling behavior, we included both 
linear and quadratic terms for day of year in the logistic model. 
 
We created four process models, representing fire, climate, local land cover and landscape land 
cover as described above, one set for each region. In this case, covariates that were correlated 
were kept as long as they increased model fit based on AIC (Burnham and Anderson 2004). The 
selection of covariates in each process model was done using a backward stepwise algorithm. 
When using logistic models, it is recommended to balance the number of zeros and ones as the 
response variable (Salas-Eljatib et al. 2018). However, the Northern California region contained 
6 times more ones than zeros. We thus repeated the process of creating the four process 
models 100 times, each using a bootstrap sample containing the same number of zeros and 
ones. We compared the process model using AIC to assess which process was most correlated 
with the presence-absence of Mountain Quail in each region. 
 
For each region, we considered all covariates present in at least one of the four process models 
for inclusion in the final model and used the same backward stepwise algorithm to determine 
the covariates to retain. For the Northern California region, we thus obtained one final model 
per bootstrap. We assessed the goodness of fit of all 100 final models using a Hosmer-
Lemeshow test (Hosmer and Lemesbow 1980, Hosmer et al. 1997). 
 
We investigated for any temporal variation in presence in the Northern California region, where 
multiple years of CDFW’s ARU data existed. We fit the best model possible with year as a 
categorical fixed effect. Because of the low number of ARU deployed and thus paucity of data in 
2019 and 2020, we lumped these years with 2021, resulting in 3 year-classes with 23 data 
points for 2017, 45 for 2018, and 46 for 2019-21. We then assessed how many times the year 
effect was selected as a competitive covariate across the 100 bootstrapped iterations of the 
final model. We also created a partial dependence plot (PDP) for the year covariate, to inform if 
a trend was present. 
 
We created a prediction map of the probability of presence across both regions using the final 
models. For the Northern California region, we used the mean prediction from each of the 100 
bootstrapped models, inversely weighted by their AIC values. 
 

Comparison between abundance and presence results 

We compared predictions of abundance and presence in the two regions where both point 
count and ARU data were collected: the Northern Sierra and the Modoc‑Cascades. 
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In the Northern Sierra, point count and ARU datasets were collected along the same transects, 
allowing us to compare predictions directly at survey points as well as across the entire region. 
For point‑level comparisons, we used predictions on the original (untransformed) scale, while 
for regional comparisons we used back‑transformed predictions. In the Modoc‑Cascades, the 
point count and ARU datasets were collected at different locations. As a result, we restricted 
comparisons to regional predictions, again using back‑transformed values. In both cases, we fit 
linear models to assess whether the two prediction types - abundance and presence - were 
correlated. 
 
For the Northern Sierra, we further examined where and when abundance and presence 
predictions aligned and where they diverged. To do this, we scaled abundance values from 0 to 
1 and subtracted the predicted probability of presence from the scaled abundance. Values near 
zero indicated strong agreement between models, negative values indicated higher predicted 
presence relative to scaled abundance, and positive values indicated the reverse. We then 
tested whether these differences were associated with particular covariates by fitting separate 
linear models for each covariate selected in either model. 
 

RESULTS 
Processes influencing abundance and occupancy 

We evaluated if the Mountain Quail abundance and presence were most influenced by climate, 
fire, local or landscape land cover types. We found that the process influencing the abundance 
and presence differed across regions and data type. Overall, abundance tended to be better 
explained by local scale covariates, while presence patterns tended to be better explained by 
landscape scale covariates. The fire covariates formed a competitive model using the Southern 
Sierra abundance data and the Northern California presence data (Table 1; Appendix D). 
 

Covariates correlated with abundance and presence 

The covariates from the process models were used to create one final model for each region 
and data type (i.e., point count and ARU), resulting in five final models: Southern Sierra, 
Northern Sierra, and Modoc-Cascades for the abundance analysis, and Northern Sierra and 
Northern California for the presence analysis. Each of the five models achieved satisfactory 
goodness-of-fit results. For the abundance models, the parametric bootstrap of the sum of 
squared errors (SSE) showed that the observed statistic (calculated from the data and fitted 
models) had p-values of 0.373 for the Southern Sierra, 0.430 for the Northern Sierra, and 0.545 
for the Modoc-Cascades region within the empirical distribution sampled from the posterior 
values of the predictors, indicating a sufficiently good fit. 
 
For the presence analysis, the Hosmer–Lemeshow goodness-of-fit Chi-square test statistic for 
the Northern Sierra was 1.39 with 8 d.f., and a p-value of 0.99, demonstrating a good fit. For 
the Northern California region, the test statistic averaged 12.2 with 9 d.f., and mean p-value of 
0.47 among all 100 ensemble models, also indicating an overall good fit, though 17 of the 
models did not have a good fit. 
 



               Point Blue Conservation Science   California’s Population of Mountain Quail 

  Report – September 2025 

 

 

18 
 

Table 1. AIC comparison of four process models for four regions. Models in bold, for each region, had substantial 
support (delta < 2). 

Region* Process Model K Log link AICc Delta Weight 

Northern 
Sierra - 
Abundance 

Local Land Cover 40 -5299.40 10679.29 0 1 

Landscape Land Cover 26 -5348.27 10748.74 69.46 0 

Fire 28 -5353.05 10762.34 83.06 0 

Climate 22 -5365.34 10774.83 95.54 0 

Southern 
Sierra - 
Abundance 

Fire 24 -4544.20 9136.64 0 0.63 

Local Land Cover 34 -4534.61 9137.70 1.05 0.37 

Landscape Land Cover 31 -4541.98 9146.37 9.72 0 

Climate 23 -4556.49 9159.19 22.55 0 

Northern 
Sierra - 
Presence 

Landscape Land Cover 20 -24.07 99.34 0 0.62 

Local Land Cover 23 -19.50 100.34 1.00 0.37 

Fire 6 -47.92 108.78 9.44 0.01 

Climate 7 -48.94 113.14 13.81 0 

Northern 
California - 
Presence** 

Landscape Land Cover   74.41 0 0.40 

Local Land Cover   74.75 0.35 0.34 

Fire   75.78 1.38 0.20 

Climate   78.20 3.79 0.06 

* This analysis was not completed for the Modoc-Cascades abundance. 
** Results are the average AICc of 100 bootstraps. 

 
Of the 85 covariates considered in the abundance analysis, and 90 in the presence analysis, 22 
and 20 respectively were selected by at least one regional final model (Table 2). For the 
abundance analysis, two of the 22 covariates were selected in all three regional final models - 
day of year and field measured shrub cover within 50 m - 7 were selected by two regional final 
models, and 13 were unique to one regional final model (Table 2). For the presence analysis, 
only one of the 20 selected covariates were common to both regional final models - day of year 
- and 19 unique to only one regional model (Table 2). Covariates for near-infrared or red band 
reflectance values were present for all five regional models at scales ranging 100-1000 m (Table 
2). Lastly, three covariates - the Landsat mean red band reflectance, summarized over a 100m, 
the mean percent tree cover, summarized over 5,000m, and the minimum winter temperature 
anomaly - were selected by at least one abundance and one presence regional model (Table 2). 
 
While different covariates were selected in the abundance and presence regional models, those 
selected often measured similar features or the same features at different scales. For example, 
in the Northern Sierra region, Mountain Quail abundance was correlated with shrub cover 
within 50 m and 250 m, whereas the probability of presence was also correlated with shrub 
cover at broader scales of 2,000 m and 5,000 m (Table 2, Figures 4A-B).  
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Table 2. List of covariates correlated with Mountain Quail in each region. The models associated with the first three regions are abundance, while the last two are from 
presence models. The linear model (L) and quadratic (Q) model results include the estimate ± SE and the significance level – *** for p-values <= 0.001, ** for p-values <= 
0.01, * for p-values <= 0.05, and . for p-values between 0.05 and 0.1.  

  Point Count Abundance Analysis ARU Presence Analysis 

Process Covariate Scale Southern Sierra Northern Sierra Modoc-Cascades Northern Sierra Northern California 

All Average temperature Yearly 
 

L:  -0.409 +/- 0.079 *** L:  0.492 +/- 0.156 ** 
  

All Day of year Daily L:    0.140 +/- 0.315  
Q: -0.218 +/- 0.077 ** 

L:  -0.273 +/- 0.058 *** L:  -0.691 +/- 0.147 *** L:  -1.809 +/- 0.804 * 
Q:  2.000 +/- 1.038 . 

L:  -4.342 +/- 1.010 *** 
Q: -2.642 +/- 0.674 *** 

All Latitude At point 
 

L:  -0.338 +/- 0.061 *** 
   

Local Land 
Cover 

Aspect east-west slopes 100m 
 

L:  -0.194 +/- 0.043 *** 
Q: -0.105 +/- 0.041 ** 

   

Local Land 
Cover 

Aspect north-south 
slopes, mean 

100m L:    0.047 +/- 0.045  
Q: -0.073 +/- 0.044  

    

Local Land 
Cover 

Landsat near-infrared 
band, mean 

100m L:  0.148 +/- 0.047 ** L:   0.133 +/- 0.051 ** 
   

Local Land 
Cover 

Landsat near-infrared 
band, mean 

500m 
    

L:  -2.054 +/- 0.897 . 

Local Land 
Cover 

Landsat near-infrared 
band, SD 

100m 
   

L:   3.654 +/- 1.567 * 
Q: -1.906 +/- 0.734 ** 

 

Local Land 
Cover 

Landsat near-infrared 
band, SD 

500m 
  

L:   0.160 +/- 0.101  
  

Local Land 
Cover 

Landsat red band, mean 100m 
 

L:   0.238 +/- 0.058 *** 
Q: -0.106 +/- 0.028 *** 

L:  0.262 +/- 0.140 . 
Q: -0.420 +/- 0.110 *** 

L:   1.340 +/- 1.517  
Q: -3.252 +/- 1.258 ** 

 

Local Land 
Cover 

Percent shrub cover 50m L:  0.120 +/- 0.039 ** L:   0.247 +/- 0.052 *** 
Q: -0.057 +/- 0.027 * 

L:  0.257 +/- 0.069 *** 
  

Local Land 
Cover 

Percent shrub cover, 
mean 

250m 
 

L:   0.278 +/- 0.074 *** 
Q: -0.087 +/- 0.030 ** 

   

Local Land 
Cover 

Percent tree cover, SD 500m 
 

L:  -0.096 +/- 0.059  
Q: -0.135 +/- 0.038 *** 

L:  0.283 +/- 0.117 * 
  

Local Land 
Cover 

Shrub height, mean 100m 
    

L:  -1.043 +/- 0.652  

Local Land 
Cover 

Topographic relief 500m L:    0.207 +/- 0.079 ** 
Q: -0.103 +/- 0.039 ** 

    

Local Land 
Cover 

Topographic relief 100m 
   

L:   4.764 +/- 1.702 ** 
Q: -2.904 +/- 1.413 * 

 

Landscape 
Land Cover 

Landsat near-infrared 
band, mean 

1000m 
 

L:   0.137 +/- 0.063 * 
   

Landscape 
Land Cover 

Landsat near-infrared 
band, SD 

1000m 
   

L:  2.261 +/- 1.262 . 
 

Landscape 
Land Cover 

Percent shrub cover, 
mean 

2000m 
    

L:  3.069 +/- 1.513 . 
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  Point Count Abundance Analysis ARU Presence Analysis 

Process Covariate Scale Southern Sierra Northern Sierra Modoc-Cascades Northern Sierra Northern California 

Landscape 
Land Cover 

Percent shrub cover, 
mean 

5000m 
   

L:   6.972 +/- 2.877 * 
Q: -5.312 +/- 1.690 ** 

 

Landscape 
Land Cover 

Percent shrub cover, SD 1000m 
   

L: -11.157 +/- 4.236 ** 
 

Landscape 
Land Cover 

Percent shrub cover, SD 2000m 
   

L:   5.313 +/- 3.036 . 
Q:  2.300 +/- 1.192 . 

 

Landscape 
Land Cover 

Percent tree cover, 
mean 

2000m 
   

L:  -9.684 +/- 4.200 * 
 

Landscape 
Land Cover 

Percent tree cover, 
mean 

5000m 
  

L:  -0.155 +/- 0.116  L:  5.734 +/- 2.834 * 
 

Landscape 
Land Cover 

Percent tree cover, SD 1000m 
   

L:  -2.799 +/- 1.470 . 
 

Landscape 
Land Cover 

Percent tree cover, SD 5000m 
  

L:  -0.364 +/- 0.108 *** 
  

Landscape 
Land Cover 

Shrub height, mean 1000m 
   

L:  6.493 +/- 3.171 * 
 

Landscape 
Land Cover 

Shrub height, mean 2000m 
    

L:  -1.900 +/- 1.090  

Landscape 
Land Cover 

Topographic relief 2000m L:  0.181 +/- 0.079 * 
    

Fire Percent high burn fire 
severity 

Past 1 to 5 yrs 
- 100m 

   
L: -2.466 +/- 1.028 * 

 

Fire Percent high burn fire 
severity 

Past 11 to 20 
yrs - 250m 

L:  0.027 +/- 0.016 . 
    

Fire Pyrodiversity index Past 1 to 5 yrs 
- 1000m 

L:  -0.197 +/- 0.140  
Q:  0.112 +/- 0.041 ** 

L:   0.365 +/- 0.151 * 
Q: -0.079 +/- 0.043 . 

   

Fire Pyrodiversity index Past 6 to 10 
yrs - 100m 

L:   0.314 +/- 0.120 ** 
Q: -0.057 +/- 0.020 ** 

L:  0.317 +/- 0.133 * 
Q: -0.063 +/- 0.024 ** 

   

Climate Maximum summer 
temperature anomaly 

Current year L:   0.227 +/- 0.079 ** 
    

Climate Maximum summer 
temperature anomaly 

Past year 
    

L:  -2.773 +/- 1.169 * 

Climate Minimum winter 
temperature anomaly 

Current year L:  -0.319 +/- 0.122 ** L:  0.147 +/- 0.109  
Q:  0.147 +/- 0.056 ** 

   

Climate Minimum winter 
temperature anomaly 

Past year L:  -0.429 +/- 0.121 *** 
   

L:   0.152 +/- 0.874  
Q:  1.984 +/- 1.034 . 

Climate Winter precipitation 
anomaly 

Past year 
    

L:  -1.652 +/- 0.980  
Q:  1.680 +/- 0.701 * 
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Metrics of vegetation structure appeared in the final model for every region. For all regions, 
Mountain Quail abundance or presence was associated with moderate to high shrub cover, 
with abundance peaking at 50-100% shrub cover at local scales and 10-50% shrub cover at 
landscape scales (Table 2). Tree cover metrics appeared in top models for all regions except 
Northern California, always at scales ≥ 500 m, and relationships varied across scales and regions 
(Table 2). 
 
Fire covariates were retrained in the final abundance and presence models for the Sierra 
Nevada but not for the Modoc-Cascades and Northern California (Table 2). Several fire 
covariates caused a lack of model convergence and had to be removed.  Mountain Quail 
abundance was positively associated with moderate pyrodiversity at 6-10 years post fire within 
100 m of surveys in both the Northern and Southern Sierra (Table 2, Appendix F). In the 
Southern Sierra, abundance was also positively correlated with increasing proportion of high 
burn severity at 11-20 years post-fire at the 250 m scale (Table 2, Appendix F). Mountain Quail 
abundance was associated with moderate and high pyrodiversity for fires 1-5 years old at the 
1000 m scale in the Northern and Southern Sierra respectively (Table 2, Appendix F). The only 
fire covariate associated with presence was a negative association with proportion of high 
severity burn 1-5 years post-fire within 100 m in the Northern Sierra (Table 2, Appendix F).  
 
Climate covariates were retained in the final models for the Sierra Nevada and the Northern 
California regions. In the Southern Sierra Nevada, Mountain Quail abundance was negatively 
associated with anomalously warm winters (Table 2, Appendix F). Quail were predicted to be 
about three times as abundant in areas that experienced a winter 3℃ cooler than average than 
areas experiencing a winter 3℃ warmer than average (Appendix F). This effect carried over to 
the next breeding season, and was slightly stronger (Table 2, Appendix F), such that Mountain 
Quail populations were suppressed for two years in areas experiencing anomalously warm 
winter temperatures and vice versa for cold winters. The relationship with anomalous winter 
temperatures flipped in the Northern Sierra where Mountain Quail were predicted to be about 
five times more abundant in areas that experienced a 5℃ warmer than average winter 
compared to an average or slightly cooler than normal winter. Mountain Quail in the Southern 
Sierra were also positively correlated with anomalously warm summers (Appendix F). In the 
Northern California region, Mountain Quail presence was reduced in areas that experienced 
anomalously hot summer temperatures the year prior (Table 2, Appendix F). Though covariates 
for winter temperature and precipitation anomalies appeared in the final presence model for 
Northern California (Table 2), the relationships did not appear ecologically meaningful when 
plotted (Appendix F). 
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Figure 4. Selected partial dependence plots showing relationships between Mountain Quail abundance (plots A, C, 
and E) or presence (plots B, D, and F) and model covariates. A) Positive association between abundance and mid-
range values of shrub cover within 50 m (field measurement), in the Northern Sierra. B) Positive association 
between presence and mid-range shrub cover summarized within a 2000 m buffer (remotely sensed), in the 
Northern Sierra. C) Positive effect of low pyrodiversity within 100 m on abundance, especially when fires occurred 
6–10 years prior, in the Northern Sierra. D) Positive association between presence and a low percentage of the 100 
m buffer that experienced high-severity fire within the past 1–5 years, in the Northern Sierra. E) Positive 
association between abundance and maximum summer temperature anomalies during the current summer, in the 
Southern Sierra. F) Negative association between presence and maximum summer temperature anomalies during 
the previous summer, in Northern California. 

A)  

 

B) 

 

C) 

 

D) 

 

E) 

 

F) 
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Predicted abundance versus presence 

We compared predictions of abundance and presence of Mountain Quail across regions (Figure 
5). The abundance and presence predictions for the Northern Sierra were positively correlated 
for both the survey locations and across the whole region (F(1,90) = 4.11, p = 0.04; F(1,2192) = 
16.17, p < 0.001, respectively). However, the r-squares were very low (0.03 and 0.01, 
respectively), suggesting the correlations were not very meaningful. The predictions across the 
Modoc-Cascades region were significantly negatively correlated (F(1,7794) = 69.35, p < 0.001), 
with a slope of -0.031. 
 
In the Northern Sierra, abundance and presence predictions differed most when surveys 
occurred early or late in the season. Whether ARU and point count surveys were conducted at 
the same time or not made no difference. In other words, abundance and presence aligned 
only when both surveys were conducted mid-season. Moreover, survey dates for both data 
types were highly correlated with elevation, with low-elevation sites typically surveyed earlier 
in the season and high-elevation sites surveyed later, reflecting limited access due to snowpack. 
 
Figure 5. Predicted A) presence and B) abundance across regions occupied by the Mountain Quail in the year 2021. 
We only predicted at locations within the range of covariates used to create the models. 

 
 

Trends in Mountain Quail Density 

Mountain Quail population density varied among regions, but temporal trends were not 
apparent. Although Mountain Quail population density varied over time, especially in the 
Southern Sierra, trends from 2010 to 2021 appeared stable in all three abundance regions 
(Figure 6; Modoc-Cascades: slope = 0.037 ± 0.045, p-value = 0.434; Northern Sierra: slope = 
0.025 ± 0.051, p-value = 0.644; Southern Sierra: slope = -0.006 ± 0.065, p-value = 0.935). Mean 
population density decreased with increasing latitude, from 3.5 ± SD 0.6 individuals/km² in the 
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Southern Sierra, 2.3 ± SD 0.5 individuals/km² in the Northern Sierra, to 1.0 ± SD 0.5 
individuals/km² in the Modoc-Cascades (Figure 6). 
 
Figure 6. Trend and mean density of Mountain Quail per region. All trends were non-significant. 

 
 
Using the ARU data, we were only able to assess trends in Mountain Quail presence in the 
Northern California region, since it was the only area with multiple years of data. We found no 
supporting evidence in the data for variation in the probability of quail presence among years. 
A model with fixed year effects required more parameters to be marginally competitive. Across 
100 bootstrapped models for this region, year was retained as a final covariate in just 19 
models, and predicted presence did not vary significantly across years (slope = 0.008 ± SE 0.008, 
t = 1.028, p = 0.491). 

 

DISCUSSION 
We assessed the impact of fire, climate, local and landscape land cover types on the abundance 
and presence of Mountain Quail with point count and ARU data in the mountainous regions of 
Northern California and the Sierra Nevada, California. Our results suggest that Mountain Quail 
abundance and presence was mainly correlated with land cover at local- and landscape-scales 
(out to 5000 m) that, at least in some regions, were shaped by fire processes. There were also 
smaller but concerning effects of temperature anomalies suggesting Mountain Quail may be 
susceptible to warming winters and summers in parts of their range. We did not find evidence 
of an ecologically meaningful effect of precipitation anomalies on Mountain Quail populations. 
While there was large annual variation in abundance in some regions, we found no evidence for 
a temporal trend in abundance or presence across the time scales in our study. Lastly, contrary 
to our hypothesis, abundances derived from our analysis of point count data did not closely 
correlate with the predicted likelihood of Mountain Quail presence from the ARU data. To our 
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knowledge, this is the first study of Mountain Quail to: investigate habitat relationships of at 
large landscape scales ≥ 500 m, including relationships with fire; assess the effects of 
temperature and precipitation anomalies in California; and compare results for point count and 
ARU monitoring methods. 
 

Spatial scales associated with Mountain Quail 

The relationship between habitat and bird density is scale-dependent, with species densities 
correlating with land cover covariates at both local and landscape scales (Thompson and 
Mcgarigal 2002, Betts et al. 2014, Stuber and Gruber 2020). Our results illustrate how the 
effects of scale vary by survey method. Local-scale covariates (50–500 m) typically best 
represent conditions within a Mountain Quail’s large home range, which averaged 141 ha in the 
southern Cascades of Oregon (Pope et al. 2004), including essential resources such as cover, 
food, and water-for reproduction. Landscape-scale measures of habitat are more aligned with 
factors that influence meta-population dynamics and the distribution of resources across 
broader areas (Saab 1999), including during the non-breeding season. Adequate habitat at 
these larger scales also increases the likelihood that a patch will be occupied (Hanski 1998, 
Ovaskainen 2002). Our results suggest that Mountain Quail abundance and presence are driven 
by environmental covariates across extensive scales, from less than 100 m up to a 5,000 m 
radius from sample locations.  
 
In our models, local-scale processes best explained variation in abundance, whereas landscape-
scale processes better explained variation in presence. This likely reflects both survey protocol 
differences and the species’ ecology. Mountain Quail are highly vocal and can be heard over 
long distances (Gutiérrez and Delehanty 2020). In the abundance analysis, we truncated 
detections to within 175 m, which may explain why local-scale covariates (50–500 m) best 
represented these data. In contrast, the detection distance for ARUs is unknown. Given the 
species’ loud calls, many detections may have occurred beyond 500 m, aligning more closely 
with landscape-scale covariates. Survey duration also differed between methods. Point counts 
involved a single 5-minute survey per site per year. Any detection during a point count is more 
likely to reflect birds within or near the core of their territories, since birds spend most of their 
time there. ARUs in this study, recorded for six days per site, increasing the likelihood of 
detecting individuals away from the most frequently used portion of their large territories. It 
follows that the abundance results would more closely reflect habitat selection within 
Mountain Quail home ranges (third order of selection), while the presence results better reflect 
selection of home range placement within a landscape (second order of selection; Johnson 
1980). 
 

Processes associated with Mountain Quail 

Mountain Quail have been identified as an indicator of early- to mid-seral coniferous forests for 
the National Forests of the Sierra Nevada Planning Area (USDA Forest Service 2008). Our results 
support this association, showing correlations with several land cover types and environmental 
factors characteristic of these forests. Mountain Quails were consistently associated with 
moderate to high shrub cover across all spatial scales and regions, and at larger scales were 
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positively associated with low to moderate amounts of tree cover. These findings support 
previous research on the species throughout their range (Brennan et al. 1987a, Brunk et al. 
2023b). Their relationships with land cover and fire variables in the Sierra Nevada specifically 
suggest Mountain Quail there prefer a relatively active mixed severity fire regime that 
promotes and retains high shrub cover at local scales, moderate shrub cover at larger scales, 
and low to moderate tree cover at larger landscape scales. The relationship with pyrodiversity 
at 6-10 years post fire suggests Mountain Quail are positively associated with burns 6-10 years 
old that had a relatively uniform burn severity within 100 m of sample locations (Appendix F): 
abundance peaked at values of pyrodiversity corresponding to 85% of the 100-m radius circle in 
one severity class and 15% in one other severity class. The relationship with high burn severity 
at 11-20 years post-fire suggests they continue to use areas within older fires that burned at 
high severity (Appendix F). However, Mountain Quail tended to be associated with fires 1-5 
years old when those fires burned heterogeneously (moderately heterogenous in the Northern 
Sierra and maximally heterogenous in the Southern Sierra), a burn pattern that would likely 
retain cover immediately after fire (Appendix F). Our results largely align with those reported by 
Taillie et al. (2018) and Brunk et al. (Brunk et al. 2023b) in suggesting that Mountain Quail are 
associated with high severity fires 6-20 years old at local scales less than 500 m, while adding 
information about the importance of fire severity heterogeneity to promote habitat suitability 
in the initial years post-fire.  
 
Further study is needed to clarify the role of wildfire on Mountain Quail throughout their range 
in California, especially given the increasing frequency, severity, and extent of fires across 
California (Miller and Urban 1999). While fire covariates were not significant outside of the 
Sierra Nevada region, fire may still be an important driver of Mountain Quail populations in 
other regions. In the Northern California region, land cover variables – that are in part driven by 
fire – were better predictors of Mountain Quail distribution than more distal metrics of burn 
severity and pyrodiversity. Our ARU sample size may have also precluded our ability to detect 
the effects indexed by the fire covariates by limiting the number of recent fires sampled in the 
Northern California region. 
 
The climate process models were relatively weak in explaining overall patterns of abundance 
and presence relative to the land cover and fire process models, yet temperature anomaly 
covariates had some of the strongest effects on the populations in the final models. Spring 
snowpack in the Sierra Nevada – commonly measured as April 1 snow water equivalent (SWE) – 
at elevations below 2500 m is highly sensitive to temperature changes (Howat and Tulaczyk 
2005). Warm temperatures enhance snowmelt and cause more precipitation to fall as rain than 
snow (Kapnick & Hall, 2010, Klos et al., 2014). In a climate simulation study of the Sierra 
Nevada, Sun et al. (2019) found that at elevations lower than 2,500 m, winter (December 
through March) mean temperature plays a stronger role than winter accumulated precipitation 
on April 1 SWE variations. At higher elevations, winter temperatures tend to remain cold 
enough that precipitation variation is the primary driver of 1 April 1 SWE (Sun et al. 2019). In 
this context, we interpret the relationships with winter temperature anomalies to mean that 
Mountain Quail habitat suitability increased with greater snowpack in the Southern Sierra 
whereas habitat suitability increased with lower snowpack in the Northern Sierra. The large 
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annual variation in population densities observed in our abundance data in the Southern Sierra 
suggests that, despite a long-term stable trend, the regional population does fluctuate largely, 
possibly as a product of climatic variation such as snowpack. It is plausible that the strong 
elevational gradients in the Southern Sierra selected for by Mountain Quail in that region 
enable them to find refuge from high snowpack at lower elevations with relatively small 
movements while also being able to exploit the benefits that high snowpack brings in spring 
through increased primary productivity and increased availability of water. Mountain Quail in 
the higher elevation portions of their range are known to move down in elevation during the 
winter (Gutierrez & Delehanty 2020,). It is also plausible that in the Northern Sierra, where 
elevation gradients are weaker, finding refuge from high snowpack may require prohibitively 
long movement, such that when snowpack is high, quail experience increased mortality as has 
been reported from introduced populations in Idaho and Washington (Stephenson et al. 2011). 
If this were the case, one would expect the pattern we found of increased abundances in the 
Northern Sierra following winters with below average snowpack, especially if moisture 
availability (i.e., spring snowpack) was less of a limiting factor for habitat suitability in this 
region that is consistently wetter than the Southern Sierra. 
 
Anomalously high summer temperatures also influenced Mountain Quail populations. In the 
Northern California region, there was a lower likelihood of Mountain Quail presence in the year 
following anomalously high summer temperatures. Anomalously high temperatures can have 
direct and indirect negative effects on birds, especially nests and young (Bourne et al. 2020, 
Conradie et al. 2020, Riggio et al. 2023b). Stephenson et al. (2011) also found that higher spring 
and summer temperatures reduced Mountain Quail survival. Given projections for increased 
number and duration of heat waves with climate change, it is possible that Mountain Quail 
living in areas that are already hotter and closer to their biological thermal limits may 
experience population declines. In the higher elevations of the Sierra Nevada, however, it is 
thought that cold spring and summer temperatures are a limiting factor for bird populations 
(Saracco et al. 2019), which may explain our finding that abundance was higher in the Southern 
Sierra in areas experiencing anomalously warm summer temperatures, a pattern also observed 
by Roberts et al. (2019). 
 

Comparison of abundance and presence predictions 

Although all abundance and presence models exhibited good fit, there was a very weak 
relationship between abundance and presence. In the Northern Sierra, for example, abundance 
and presence were significantly and positively correlated (p = 0.04), yet abundance explained 
less than one percent of the variance in presence. As expected, the correlation was somewhat 
stronger for survey sites (R² = 0.03) compared to broader regional predictions (R² = 0.01) but 
still not ecologically meaningful. In the Modoc-Cascades, the correlation was weakly negative. 
While surprising, the poorer correlation relative to the Northern Sierra was expected given that 
results from the presence model in this analysis were derived from a model for the entire 
Northern California region whereas the abundance model was specific to the Modoc-Cascades 
region. Moreover, the abundance and presence results were obtained from point counts and 
ARUs sampled at different locations from each other. 
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This pattern is not unique to Mountain Quail. Ten Caten et al. (2022) reported similarly weak 
associations between abundance and occupancy across multiple taxa, including several 
breeding landbirds, and Gaston et al. (1999) found no relationship for forest birds. 
 
In our study, weak or absent correlations often coincided with surveys conducted early or late 
in the season, regardless of whether data came from point counts or ARUs. By contrast, the 
strongest correlations occurred when both survey types were conducted mid-season. This may 
reflect seasonal shifts in Mountain Quail behavior or the fact that mid-season surveys were 
disproportionately conducted at mid-elevations, where snowmelt permitted access. More 
broadly, the abundance–presence relationship is typically neither constant nor linear, and is 
known to vary with species, species traits, time (within and across years, length of surveys), 
habitat, and spatial grain (Gaston et al. 1999, Zuckerberg et al. 2009, Johnston et al. 2015, 
Steenweg et al. 2018, Manne and Veit 2020, Ten Caten et al. 2022). Our results suggest that a 
combination of species behavior, sampling design, and/or monitoring protocol may have jointly 
contributed to the weak relationship observed here. 
 

Densities and trends 

Our density estimates decreased from south to north in eastern California, with the highest in 
the Southern Sierra and the lowest in the Modoc–Cascade region, a pattern also reported by 
Brennan et al. (1987). However, our breeding season density estimates are at least nine times 
lower than those recorded three decades ago based on line transect surveys (Brennan et al. 
1987b). Although differences in survey methodology may contribute to this discrepancy, 
significant long-term declines have also been documented in California using Breeding Bird 
Survey data since 1993 (Sauer et al. 2020). While our results indicate a stable trend from 2010 
to 2021, results from the Sierra Nevada and the Modoc-Cascades region incorporating 2024 
densities reveal a recent downward shift (Rousseau et al. 2025). 
 

Assumptions and limitations of our approach 

Interpreting ARU detections of Mountain Quail requires careful consideration of how call 
characteristics and habitat affect detection distances. Mountain Quail are vocal with a 
distinctive song that makes them well-suited for detection. However, the loudness of their song 
combined with mountainous terrain likely facilitates their detection by ARUs from farther than 
the distance thresholds typically used in point count surveys and analysis of point count data. 
At the same time, their preference for dense shrubby habitats and irregular topography, and 
the unidirectional design of ARUs may reduce detections, particularly when calls originate from 
behind the unit or a hill. Though these same challenges also affect human observers, people 
can slightly adjust their position to better estimate the direction and distance of calls. Overall, 
the uncertainty surrounding the distance at which individual Mountain Quail were being 
detected by the ARUs translates into uncertainties of the scale at which to interpret presence 
data. 
 
Another limitation of our approach is the imbalance in sample sizes between ARU and point 
count survey sites. Although both analyses were based on station-year combinations, the ARU 
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dataset included only a few hundred records compared to more than 15,000 station-year 
surveys in the point count dataset. The lower ARU sample size likely constrained the range of 
covariates represented in the presence models and reduced our ability to accurately predict 
occurrences across broad spatial extents. 
 

Recommendations for monitoring Mountain Quail 

Future monitoring of Mountain Quail should consider sampling designs and protocols that align 
with the species’ ecology, the geography and extent of its distribution, and the data needed to 
inform management decisions. The findings from long-term ongoing monitoring can track 
populations and inform management decisions during this time of unprecedented and rapid 
environmental change (Williams and Brown 2014). Thus, long-term regular monitoring is 
essential to refining conservation strategies and ensuring management decisions reflect the 
most current ecological conditions. 
 
Our results suggest that Mountain Quail populations, while largely associated with early- and 
mid-seral forests, also respond to somewhat different environmental covariates and exhibit 
variable densities across regions even within their distribution in California. This highlights the 
importance of avoiding assumptions of stationarity across a species’ range and instead taking a 
regional approach when assessing populations across broad distributions (Fink et al. 2010, 
Rousseau and Betts 2022). If we had combined all three regions into a single analysis, processes 
and dynamics associated with high-density areas would likely have overshadowed processes 
and dynamics in lower-density regions. This indicates that land management or population 
management strategies for Mountain Quail applied uniformly across California also may not 
yield consistent outcomes. If possible, future monitoring and management should account for 
regional variation in habitat associations and population density. Furthermore, geographic 
areas not included in this study, such as most of the California Coast Ranges and the southern 
California mountains, should be included in future monitoring efforts. These regions likely 
support distinct subspecies of Mountain Quail (Gutiérrez and Delehanty 2020), which may differ 
in their ecology and responses to management. 
 
Because Mountain Quail is a managed game species, obtaining and tracking reliable estimates 
of abundance across its distribution is essential for informed population management. While 
technologies such as ARUs offer several benefits, and efforts are underway to derive abundance 
from them (Fiss et al. 2024), the accuracy of ARU-based abundance estimates varies with 
species and other factors (Pérez-Granados and Traba 2021, Hutschenreiter et al. 2024, de 
Araújo et al. 2025). For this reason, point counts remain the recommended sampling protocol 
for estimating abundance. Point counts are also the recommended protocol when studying a 
species such as the Mountain Quail that is both frequently heard at most sites and abundant 
(Doser et al. 2021), since abundance is often more sensitive than presence/absence to 
environmental changes and often serve as a better indicator of real population declines (Beever 
et al. 2013, Ashcroft et al. 2017). As such, continuing point count surveys in currently monitored 
regions and expanding them into new areas would allow managers to assess both long-term 
population trajectories, compare abundance across regions, and ensure population size targets 
within regions are being achieved, all necessary information for managers to justify harvest 
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limits. In addition, long-term monitoring is especially helpful to track populations and inform 
management decisions during this time of unprecedented and rapid environmental change 
(Williams and Brown 2014). 
 
Incorporating ARU surveys alongside point counts could provide some important advantages. 
Integrating data from both methods within a single population model could allow simultaneous 
evaluation of local- and landscape-scale processes in Mountain Quail habitat selection. Previous 
studies demonstrate that considering multiple spatial scales improves model fit and ecological 
inference (Mitchell et al. 2001, Melles et al. 2003, Frey et al. 2012, Grinde and Niemi 2016). 
ARUs also add temporal depth to the primarily spatial design of point counts, which can 
improve the accuracy and precision of population estimates (Zipkin et al. 2017, Miller et al. 
2019, Grüss and Thorson 2019, Doser et al. 2021). Furthermore, ARU technology and 
abundance analytical tools are likely to become more reliable over time. Establishing several 
years of overlap between point counts and ARUs at the same locations would ensure continuity 
and provide the foundation for incorporating ARU-derived data into long-term abundance 
analyses (Van Wilgenburg et al. 2017). 
 
Telemetry studies of Mountain Quail across regions in California could also help to inform their 
management. Telemetry can answer questions about annual and seasonal survival, breeding 
season home range sizes, movements and habitat selection during the non-breeding season, 
and habitat associations at finer scales (e.g., nest site selection) than point count and ARU 
surveys during the breeding season. With respect to our findings, telemetry in the non-breeding 
season could help to better understand the effects of temperature anomalies on Mountain 
Quail movement patterns and breeding behaviors. 
 

CONCLUSION 
We compared Mountain Quail population estimates from two monitoring methods, point 
counts and ARUs, and found that the two are not interchangeable but provide complementary 
insights. Both identified similar land cover types (e.g., shrubs and trees) and environmental 
drivers (e.g., fire) as important to Mountain Quail but differed in scale and showed relationships 
that varied across regions. Point counts and abundance were better correlated with local-scale 
land cover, while ARUs and presence were best explained by landscape-scale land cover. 
Importantly, population trends derived from both methods were stable and broadly consistent 
across regions. 
 
These findings suggest that monitoring method selection should depend on study and 
management goals. Point counts remain the best approach for estimating abundance, 
particularly where management of a game species is the priority. When land management 
recommendations are needed, combining both approaches may be the most effective, as they 
provide complementary information on habitat associations across scales. More broadly, this 
dual-method framework may strengthen population assessments of species like Mountain 
Quail, whose distributions span heterogeneous and topographically complex landscapes. While 
the resulting population trends may seem comparable across methodologies, they reflect 
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different aspects of the population. Trends in abundance are typically correlated with trends in 
occurrence, however, the relationship can change or even decouple because of density-
dependent processes, mismatches in scales, and changes in habitat quality. As such it is 
essential to keep the monitoring goal in mind when designing a survey design. 
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APPENDIX A: Additional species predicted. 
 
Table A-1.  Species used to optimize the Mountain Quail predictions, and whether these were positively or 
negatively correlated with the abundance of Mountain Quails. 

Species Name (English, Latin) Association 

Bewick's Wren, Thryomanes bewicki Positive 

Black-headed Grosbeak, Pheucticus melanocephalus Positive 

California Quail, Callipepla californica Positive 

Fox Sparrow, Passerella iliaca Positive 

Green-tailed Towhee, Pipilo chlorurus Positive 

MacGillivray's Warbler, Geothlypis tolmiei Positive 

Nashville Warbler, Leiothlypis ruficapilla Positive 

Spotted Towhee, Pipilo maculatus Positive 

Steller's Jay, Cyanocitta stelleri Positive 

Wrentit, Chamaea fasciata Positive 

Brown Creeper, Certhia americana Negative 

Gray Flycatcher, Empidonax wrightii Negative 

Cassin's Finch, Haemorhous cassinii Negative 

Hammond's Flycatcher, Empidonax hammondii Negative 

Hermit Thrush, Catharus guttatus Negative 

Hermit Warbler, Setophaga occidentalis Negative 

Pine Siskin, Spinus pinus Negative 

Savannah Sparrow, Passerculus sandwichensis Negative 

Western Flycatcher, Empidonax difficilis Negative 

Yellow-rumped Warbler, Setophaga coronata Negative 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



               Point Blue Conservation Science   California’s Population of Mountain Quail 

  Report – September 2025 

 

 

33 
 

APPENDIX B: Details of the CNN model evaluation step. 
 
To evaluate the performance of the AI model, we compared its predictions against the golden 
validation dataset. Specifically, we looked for predictions of quail detection from the AI model 
that occurred within two seconds before or after every annotation in the golden validation 
dataset. Predictions within this ± 2-second window were classified as true positives. Any 
predictions outside this window were considered false positives, while instances where experts 
noted a call but the model did not were counted as false negatives. Among the predictions vs 
golden validation records comparisons, the false positive predictions had a mean confidence of 
0.19, whereas the true positive predictions had mean confidence of 0.57. Though this was an 
encouraging result, some true positives still received lower confidence scores than certain false 
positives. To find the penalization threshold that maximized prediction precision (i.e., most 
predictions being true positives), we varied the penalization level from 0.01 to 0.99 in 
increments of 0.01. At each penalization level, every prediction below it was ignored. In an ideal 
classifier, increasing the penalization threshold will increase precision because we filter out less 
confident predictions and end up with the predictions the model deems most certainly to be 
quail calls. The downside of a high threshold is that we discard more predictions, and some of 
these might have been correct, thus increasing the false negative detection rate. Indeed, our 
analysis confirmed this trade-off. Maximum precision (98%) was obtained with the near 
maximum threshold of 0.98, but sensitivity (recall) dropped to 20%. While only one false 
positive remained among the golden validation predictions, we failed to detect 80% of the true 
detections at that penalization rate. To balance precision and recall, we used the Fβ index: 

 

𝐹𝛽 =  (1 + 𝛽)2  ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙

(𝛽2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)  +  𝑅𝑒𝑐𝑎𝑙𝑙
 

  

Increasing values of beta (β) result in higher recall. We used β = 1 to find a penalization 
threshold. The penalization threshold that maximized F(β=1) (henceforth the maxF1 threshold) 
was 0.81 and resulted in 75% sensitivity (recall) and 87% precision.  

 

After identifying the maxF1 penalization threshold, we found that the resulting detections still 
included a 13% false positive rate. To further reduce the rate of false positives while 
maintaining high recall, we evaluated the detections after the maxF1 penalization against the 
golden validations, scoring true positives as 1 and false positives as 0. These binary outcomes 
served as the response variable in a Random Forests model. As model covariates, we used the 
maximum confidence score at the maxF1 threshold for the 10 species commonly and 10 species 
unlikely to be found with mountain quail. When a species was not predicted in a recording, its 
predicted confidence value was set to zero.  

 
Because the number of true positive quail detections is much higher than the number of false 
positives, fitting an unbalanced model would result in a model that is good at predicting true 
positives but not adequate at identifying false positives. To address this imbalance, we used a 
bootstrap procedure where all false positive records were included, and an equal number of 
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true positives were randomly sampled with replacement. We created 100 bootstrap samples 
and thus fitted 100 models. Each model was tuned through k-fold cross-validations and tested 
against a holdout set. We then weighted model predictions by their RMSE and combined them 
into an ensemble average prediction, representing the probability that a detection was a true 
positive. Since the ensemble-average prediction is a probability, and since the prediction is for a 
detection in the golden validation dataset, we found the threshold that maximized the 
precision of the ensemble-averaged prediction using the same method as described above for 
finding maxF1 (henceforth the “maxRFPrecision”). 

 

In summary, we used the golden validations to find a penalization threshold that maximized the 
Fβ index at β=1, retaining only predictions above this threshold (the maxF1 threshold). 
However, because a significant number of false positives remained after maxF1 penalization, 
we fitted an ensemble of Random Forest models that incorporated information from co-
occurring species to help distinguish true from false positives. Ensemble-average predictions, 
weighted by each model’s root mean squared error, were then used to assess whether 
detections above the maxF1 threshold were true or false positives. We identified the threshold 
that maximized the validity of the ensemble-averaged predictions (the maxRFPrecision 
threshold). Any penalized predictions at or above this threshold were deemed true positives, 
while those below it were discarded. 
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APPENDIX C: List of covariates considered. 
 
Table B-1.  List of covariates considered in the models, their descriptions, spatial and temporal summary, and source. 

Covariate † Description Spatial 
grain 

Spatial 
summary 

Tempor
al grain 

Temporal 
summary 

Source 

Day of year* Julian day – 1 to 366. . . Daily Daily Field data 

Time of day* Time of point count. . . HH:MM HH:MM Field data 

Observer group* Point count surveyed by observer in Group 
A or Group B 

. . . . Point count surveyors were separated into 
groups. A and B, based on a cluster analysis of 
their recorded distances to Mountain Quail 

Latitudeŧ Latitude at survey location. 30 m Decimal degree 
of point 

. . Field data 

Longitude** Longitude at survey location 30 m Decimal degree 
of point 

 .  

Aspect – North-South ŧ Compass direction facing a slope, where 
values close to 1 is north facing and -1 is 
south facing. 

30 m 100 m . . The NASA Shuttle Radar Topography Mission 
(SRTM, see Farr et al. 2007) digital elevation 
data, extracted through Google Earth Engine 

Aspect – East-West ŧ Compass direction facing a slope, where 
values close to 1 is east facing and -1 is 
west facing. 

30 m 100 m . . The NASA Shuttle Radar Topography Mission 
(SRTM, see Farr et al. 2007) digital elevation 
data, extracted through Google Earth Engine 

Topographic relief ŧ Standard deviation of the elevation pixels 
within buffered area. 

30 m 100 m, 500 m, 
and 2000 m 

. . The NASA Shuttle Radar Topography Mission 
(SRTM, see Farr et al. 2007) digital elevation 
data, extracted through Google Earth Engine 

Distance to stream ŧ Distance of survey to closest permanent, 
perennial, or intermittent streams. 

Line Distance to 
closest in 
meters 

. . National Hydrography Dataset 

Distance to lakes ŧ Distance of survey to closest permanent, 
perennial, or intermittent lakes and 
meadows. 

Polygon Distance to 
closest in 
meters 

. . National Hydrography Dataset 

Yearly temperature ŧ 
(index of elevation) 

Yearly average of the monthly mean 
temperature for the months of Jan. to 
Aug. This covariate is meant to reflect 
elevation. 

4,683 m 500 m Monthly Yearly PRISM Monthly Spatial Climate Dataset AN81m, 
extracted using Google Earth Engine 

Precipitation anomaly 
and lag by one year of 
anomaly – winter 

Precipitation baseline was calculated using 
sum of precipitation from Dec. to Feb., 
averaged across the years of 1981 to 
2010. Anomaly is the yearly sum of 
precipitation minus the baseline. 

4,683 m 500 m Monthly Yearly PRISM Monthly Spatial Climate Dataset AN81m, 
extracted using Google Earth Engine 

Temperature anomaly 
and lag by one year of 
anomaly – winter 

Winter temperature baseline was 
calculated using minimum monthly 
temperature from Dec. to Feb., averaged 

4,683 m 500 m Monthly Yearly PRISM Monthly Spatial Climate Dataset AN81m, 
extracted using Google Earth Engine 

https://onlinelibrary.wiley.com/doi/10.1029/2005RG000183/full
https://onlinelibrary.wiley.com/doi/10.1029/2005RG000183/full
https://onlinelibrary.wiley.com/doi/10.1029/2005RG000183/full
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Covariate † Description Spatial 
grain 

Spatial 
summary 

Tempor
al grain 

Temporal 
summary 

Source 

across the years of 1981 to 2010. Anomaly 
is the yearly average minus the baseline. 

Temperature anomaly 
and lag by one year of 
anomaly – summer 

Summer temperature baseline was 
calculated using minimum monthly 
temperature from June to Aug., averaged 
across the years of 1981 to 2010. Anomaly 
is the yearly average minus the baseline. 

4,683 m 500 m Monthly Yearly PRISM Monthly Spatial Climate Dataset AN81m, 
extracted using Google Earth Engine 

Percent high burn 
severity 

Percentage of the pixels associated with a 
high burn category (Composite Burn Index 
level 4). 

30 m 100 m, 250 m, 
500 m, 1000 m 

Yearly Previous 1 to 
5 years, 6 to 
10 years, and 
11 to 20 
years 

Monitoring Trends in Burn Severity (MTBS), 
extracted using Google Earth Engine 

Pyrodiversity Shannon Index of the diversity of burn 
severities (categories 0 to 4) and their 
associated number of pixels. 

30 m 100 m, 250 m, 
500 m, 1000 m 

Yearly Previous 1 to 
5 years, 6 to 
10 years, and 
11 to 20 
years 

Monitoring Trends in Burn Severity (MTBS), 
extracted using Google Earth Engine 

Number of years since 
fire 

Number of years since fire, going back to 
1990 (maximum 20 years prior to year of 
survey). 

30 m 1000 m Yearly Yearly Monitoring Trends in Burn Severity (MTBS), 
extracted using Google Earth Engine 

Shrub cover Average and standard deviation of the 
proportion of shrub canopy within the 
buffer. Shrub is defined as vegetation with 
woody stems less than 6-m in height. 

30 m 100 m, 250 m,  
500 m, 1000 m, 
2000 m, 5000 m 

Yearly Yearly rcmap - MultiResolution Land Characteristics: 
https://www.mrlc.gov/data/rcmap-shrub-cover 

Shrub height** Average and standard deviation of the 
height of all shrubs within the buffer. 

30 m 100 m, 250 m,  
500 m, 1000 m, 
2000 m, 5000 m 

Yearly Yearly rcmap - MultiResolution Land Characteristics: 
https://www.mrlc.gov/data/rcmap-shrub-height 

Tree cover Average and standard deviation of the 
proportion of tree canopy within the 
buffer. 
 

30 m 100 m, 250 m,  
500 m, 1000 m, 
2000 m, 5000 m 

Yearly Yearly rcmap - MultiResolution Land Characteristics: 
https://www.mrlc.gov/data/rcmap-tree-cover 

Landsat red band Average and standard deviation of the 
near-infrared band value of each pixel, 
reflecting vegetation’s chlorophyll 
absorption, where low red band values 
represent high absorption. First took 
median value from June and July images at 
each pixel location, then calculated mean 
and SD across the buffer. 

30 m 100 m, 500 m, 
1000 m 

16 days Yearly Landsat 7 and 8 near-infrared band, extracted 
using Google Earth Engine 
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Covariate † Description Spatial 
grain 

Spatial 
summary 

Tempor
al grain 

Temporal 
summary 

Source 

Landsat near-infrared 
band 

Average and standard deviation of the red 
band value of each pixel, reflecting 
vegetation’s structure and health, where 
high values represent healthy plants. First 
took median value from June and July 
images at each pixel location, then 
calculated mean and SD across the buffer. 

30 m 100 m, 500 m, 
1000 m 

16 days Yearly Landsat 7 and 8 red band, extracted using 
Google Earth Engine 

Shrub cover* Percentage of an area occupied by 
vegetation from 0.5 to 3 meters. 

50 m 50 m Yearly Yearly Field vegetation surveys 

Shrub height* Estimate to nearest 1 m of the average 
height of the upper bounds of the shrub 
layer. 

50 m 50 m Yearly Yearly Field vegetation surveys 

Tree cover* Percentage of an area occupied by 
vegetation taller than 3 meters. 

50 m 50 m Yearly Yearly Field vegetation surveys 

Tree height* Estimate to nearest 1 m of the average 
height of the upper bounds of the tree 
layer. 

50 m 50 m Yearly Yearly Field vegetation surveys 

DBH* Average diameter at breast height of the 
tree canopy. 

50 m 50 m Yearly Yearly Field vegetation surveys 

Basal area* Area occupied by the cross-section of tree 
trunks and stems at breast height. Is the 
average of the basal area taken at five 
points within a 50-m radius circle. 

50 m 50 m Yearly Yearly Field vegetation surveys 

Number of snags – 10 
to 30 cm* 

Number of standing dead trees with a 
trunk diameter between 10 and 30 cm. 

50 m 50 m Yearly Yearly Field vegetation surveys 

Number of snags – 30 
to 60 cm* 

Number of standing dead trees with a 
trunk diameter between 30 and 60 cm. 

50 m 50 m Yearly Yearly Field vegetation surveys 

†  All covariates beside observer group were assessed as a linear and quadratic term in the models. 
* Covariates used in the abundance analysis only. 
** Covariates used in the presence analysis only. 
ŧ Covariates considered in each process model for both the abundance and presence analysis. 
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APPENDIX D: List of covariates used in each process model, for each region. 
 
Table C-1. List of covariates for the fire process models correlated with Mountain Quail in each region. The models associated with the first two regions are 
abundance, while the last two are from occurrence models. The linear model (L) and quadratic (Q) model results include the estimate ± SE and the significance 
level: *** for p-values <= 0.001, ** for p-values <= 0.01, * for p-values <= 0.05, and . for p-values between 0.05 and 0.1. 

Process Covariate SNS - PC - Fire SNN - PC - Fire SNN - ARU - Fire NCal - ARU - Fire 

All Aspect_EW_100 
L:    0.004±0.046   
Q:   0.002 ± 0.061   

L:   -0.110 ± 0.042 ** 
Q:  -0.080 ± 0.041 * 

  

All  Aspect_SN_100  
L:    0.018 ± 0.045   
Q:  -0.040 ± 0.054   

   

All  Jul_day  
L:   -0.249 ± 0.088 ** 
Q:  -0.267 ± 0.048 *** 

L:   -0.257 ± 0.060 *** 
L:   -1.014 ± 0.322 ** 
Q:    0.967 ± 0.383 * 

L:   -2.965 ± 0.550 *** 
Q:   -2.027 ± 0.430 *** 

All  Latitude  
L:   -0.315 ± 0.135 * 
Q:  -0.328 ± 0.111 ** 

L:   -0.429 ± 0.065 ***   

All  distLakes  L:   -0.069 ± 0.082   
L:    0.171 ± 0.088 . 
Q:  -0.055 ± 0.045   

  

All temp_avg L:   0.284 ± 0.111 * L:   -0.430 ± 0.084 ***   

Fire  HighBurn_11to20yrs_250m  L:   0.047 ± 0.016 ** 
L:    0.270 ± 0.149 . 
Q:  -0.021 ± 0.015   

  

Fire  HighBurn_6to10yrs_1000m  
 L:   -0.137 ± 0.138   

Q:    0.007 ± 0.011   
  

Fire  Pyro_11to20yrs_100m  
 L:    0.016 ± 0.117   

Q:   0.006 ± 0.017   
  

FIre Pyro_11to20yrs_1000m   L:  3.194 ± 5.333  

Fire  Pyro_1to5yrs_1000m  
L:   -0.322 ± 0.141 * 
Q:   0.133 ± 0.041 ** 

L:    0.614 ± 0.221 ** 
Q:  -0.132 ± 0.053 * 

   

Fire Pyro_1to5yrs_500m    L:   0.638 ± 0.406   

Fire  Pyro_6to10yrs_100m  
L:    0.344 ± 0.119 ** 
Q:  -0.059 ± 0.020 ** 

L:    0.590 ± 0.159 *** 
Q:  -0.088 ± 0.025 *** 

  

Fire YrsSinceFire  
 L:   -1.364 ± 0.590 * 

Q:   -0.867 ± 0.368 * 
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Table C-2. List of covariates for the local land cover process models correlated with Mountain Quail in each region. The models associated with the first two regions 
are abundance, while the last two are from occurrence models. The linear model (L) and quadratic (Q) model results include the estimate ± SE and the significance 
level: *** for p-values <= 0.001, ** for p-values <= 0.01, * for p-values <= 0.05, and . for p-values between 0.05 and 0.1. 

Process Covariate SNS - PC - Local SNN - PC - Local SNN - ARU - Local NCal - ARU - Local 

All  Aspect_EW_100 L:    0.048 ± 0.050   
Q:  -0.069 ± 0.066   

L:   -0.210 ± 0.044 *** 
Q:  -0.106 ± 0.042 * 

  

All Aspect_SN_100 L:    0.055 ± 0.048   
Q:  -0.110 ± 0.060 . 

   

All ElevSD_100 
  

L:    1.634 ± 0.908 . 
 

All ElevSD_500 L:    0.268 ± 0.078 *** 
Q:  -0.129 ± 0.040 ** 

L:    0.095 ± 0.055 . 
Q:  -0.044 ± 0.028   

  

All Jul_day L:    0.297 ± 0.330   
Q:  -0.200 ± 0.080 * 

L:   -0.278 ± 0.059 *** L:   -3.416 ± 1.394 * 
Q:    1.634 ± 0.771 * 

L:   -3.776 ± 0.786 *** 
Q:  -2.258 ± 0.535 *** 

All Latitude L:   -0.083 ± 0.132   
Q:  -0.175 ± 0.111   

L:   -0.279 ± 0.064 *** 
  

All distLakes L:   -0.022 ± 0.080   L:    0.113 ± 0.082   
Q:  -0.018 ± 0.037   

  

All temp_avg L:    0.229 ± 0.111 * L:   -0.408 ± 0.082 *** 
  

Local ShrubCover_mean_100 
   

L:    2.426 ± 1.453   

Local ShrubCover_mean_250 L:    0.040 ± 0.064   
Q:   0.053 ± 0.044   

L:    0.225 ± 0.081 ** 
Q:  -0.077 ± 0.031 * 

  

Local ShrubCover_mean_500 
  

L:    4.797 ± 2.339 * 
Q:  -2.599 ± 0.903 ** 

 

Local ShrubCover_sd_100 L:   -0.012 ± 0.046   L:    0.058 ± 0.082   
Q:  -0.032 ± 0.032   

  

Local ShrubCover_sd_500 
  

L:   -4.544 ± 1.877 * 
 

Local ShrubHeight_mean_100 
   

L:   -3.494 ± 1.562 . 

Local ShrubHeight_mean_250 
  

L:  -11.508 ± 4.991 * 
Q:    0.775 ± 0.379 * 

 

Local ShrubHeight_mean_500 
  

L:   10.855 ± 3.907 ** 
 

Local ShrubHeight_sd_250 
  

L:   -3.306 ± 2.607   
Q:    3.045 ± 1.266 * 

 

Local Shrub_CDL_50 
 

L:    0.030 ± 0.047   L:   -0.837 ± 1.755   
Q:    2.851 ± 1.517 . 

 

Local mean_nir_100 
 

L:    0.205 ± 0.055 *** 
Q:  -0.014 ± 0.023   
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Process Covariate SNS - PC - Local SNN - PC - Local SNN - ARU - Local NCal - ARU - Local 

Local mean_nir_500 
  

L:   -7.920 ± 3.535 * L:   -2.115 ± 0.783 * 

Local mean_red_100 L:   -0.083 ± 0.062   
Q:   -0.054 ± 0.035   

L:    0.192 ± 0.068 ** 
Q:  -0.100 ± 0.029 *** 

L:   -0.924 ± 1.754   
Q:  -3.231 ± 1.017 ** 

 

Local mean_red_500 
   

L:   -1.572 ± 0.931   
Q:    0.655 ± 0.397   

Local sd_nir_100 
  

L:    3.374 ± 1.571 * 
Q:  -2.859 ± 0.982 ** 

 

Local sd_nir_500 L:    0.232 ± 0.070 ** 
Q:   -0.050 ± 0.022 * 

L:    0.124 ± 0.068 . 
Q:  -0.047 ± 0.030   

L:    2.327 ± 1.390 . L:    1.219 ± 0.783   

Local sd_red_100 
  

L:    1.872 ± 1.170   
 

Local sd_red_500 
 

L:    0.199 ± 0.088 * 
Q:  -0.063 ± 0.035 . 

  

Local shrubcov L:    0.091 ± 0.041 * L:    0.214 ± 0.054 *** 
Q:  -0.055 ± 0.028 * 

  

Local shrubhtavg L:    0.079 ± 0.055   
Q:   -0.029 ± 0.020   

L:   -0.004 ± 0.040   
  

Local snags3060 
 

L:   -0.006 ± 0.089   
Q:  -0.022 ± 0.022   

  

Local totdbhmax 
 

L:   -0.026 ± 0.038   
Q:    0.015 ± 0.018   

  

Local treeCover_mean_250 
  

L:   -6.791 ± 2.743 * 
Q:  -2.615 ± 1.254 * 

 

Local treeCover_sd_500 L:   -0.145 ± 0.060 * L:   -0.145 ± 0.067 * 
Q:  -0.111 ± 0.040 ** 

 
L:    0.856 ± 0.521   

Local treehtavg L:   -0.039 ± 0.041   
Q:    0.020 ± 0.026   
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Table C-3. List of covariates for the landscape land cover process models correlated with Mountain Quail in each region. The models associated with the first two 
regions are abundance, while the last two are from occurrence models. The linear model (L) and quadratic (Q) model results include the estimate ± SE and the 
significance level: *** for p-values <= 0.001, ** for p-values <= 0.01, * for p-values <= 0.05, and . for p-values between 0.05 and 0.1. 

Process Covariate SNS - PC – Landscape SNN - PC - Landscape SNN - ARU - Landscape NCal - ARU - Landscape 

All Aspect_EW_100 L:   -0.005 ± 0.049   
Q:  -0.017 ± 0.061   

L:   -0.117 ± 0.042 ** 
Q:  -0.101 ± 0.041 * 

  

All Aspect_SN_100 L:    0.029 ± 0.045   
Q:  -0.057 ± 0.054   

   

All ElevSD_100 
  

L:    2.129 ± 0.871 * 
Q:  -1.802 ± 1.043 . 

 

All Jul_day L:   -0.240 ± 0.091 ** 
Q:  -0.286 ± 0.048 *** 

L:   -0.249 ± 0.059 *** L:   -2.021 ± 0.712 ** L:   -3.294 ± 0.657 *** 
Q:  -2.135 ± 0.501 *** 

All Latitude L:   -0.167 ± 0.139   
Q:  -0.242 ± 0.124 . 

L:   -0.318 ± 0.078 *** 
  

All distLakes L:   -0.010 ± 0.080   L:    0.151 ± 0.087 . 
Q:  -0.062 ± 0.044   

  

All temp_avg L:    0.132 ± 0.116   L:   -0.421 ± 0.096 *** 
  

Landscape ElevSD_2000 L:    0.302 ± 0.083 *** 
Q:  -0.111 ± 0.046 * 

   

Landscape ShrubCover_mean_2000 
  

L:   -5.652 ± 3.339 . L:    2.132 ± 1.254   

Landscape ShrubCover_mean_5000 L:    0.042 ± 0.073   
Q:  -0.037 ± 0.047   

L:    0.170 ± 0.078 * 
Q:   -0.077 ± 0.044 . 

L:    1.235 ± 4.018   
Q:  -2.643 ± 1.465 . 

 

Landscape ShrubCover_sd_1000 L:    0.051 ± 0.063   L:    0.085 ± 0.074   
Q:  -0.082 ± 0.039 * 

L:   -7.259 ± 2.981 * 
 

Landscape ShrubCover_sd_2000 
  

L:    7.318 ± 3.725 * 
Q:   6.972 ± 2.440 ** 

 

Landscape ShrubHeight_mean_1000 
  

L:    4.444 ± 2.470 . 
 

Landscape ShrubHeight_mean_2000 
   

L:   -2.502 ± 1.067 * 

Landscape ShrubHeight_sd_2000 
  

L:   -0.739 ± 1.871   
Q:  -4.290 ± 1.380 ** 

 

Landscape mean_nir_1000 L:    0.072 ± 0.087   L:    0.269 ± 0.058 *** 
 

L:   -1.656 ± 0.816 . 

Landscape mean_red_1000 L:    0.038 ± 0.082   
Q:  -0.039 ± 0.039   

L:    0.302 ± 0.100 ** 
Q:  -0.100 ± 0.036 ** 

  

Landscape sd_nir_1000 L:    0.153 ± 0.078 * 
Q:  -0.053 ± 0.024 * 

 
L:    2.606 ± 0.987 ** 
Q:  -1.711 ± 0.989 . 

L:    1.682 ± 0.725 * 

Landscape sd_red_1000 
 

L:   -0.082 ± 0.095   
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Landscape treeCover_mean_1000 
  

L:    2.487 ± 2.399   
Q:  -6.315 ± 2.053 ** 

 

Landscape treeCover_mean_2000 
  

L:  -13.781 ± 4.945 ** L:    0.318 ± 0.781   
Q:   0.590 ± 0.425   

Landscape treeCover_mean_5000 
 

L:   -0.089 ± 0.073   L:    4.678 ± 2.287 * 
 

Landscape treeCover_sd_1000 
  

L:   -3.464 ± 1.423 * 
 

Landscape treeCover_sd_5000 L:   -0.171 ± 0.073 * L:   -0.137 ± 0.068 * 
 

L:    0.849 ± 0.494   

 
Table C-4. List of covariates for the climate process models correlated with Mountain Quail in each region. The models associated with the first two regions are 
abundance, while the last two are from occurrence models. The linear model (L) and quadratic (Q) model results include the estimate ± SE and the significance 
level: *** for p-values <= 0.001, ** for p-values <= 0.01, * for p-values <= 0.05, and . for p-values between 0.05 and 0.1. 

Process Covariate SNS - PC - Climate SNN - PC - Climate SNN - ARU - Climate NCal - ARU - Climate 

All Aspect_EW_100 L:   -0.001 ± 0.046   
Q:   0.007 ± 0.061   

L:   -0.103 ± 0.042 * 
Q:  -0.083 ± 0.041 * 

  

All Aspect_SN_100 L:    0.040 ± 0.045   
Q:  -0.041 ± 0.054   

   

All ElevSD_100  
  

L:    0.422 ± 0.376   
Q:  -0.820 ± 0.483 . 

 

All  Jul_day  L:   -0.276 ± 0.076 *** 
Q:  -0.270 ± 0.048 *** 

L:   -0.276 ± 0.060 *** L:   -1.347 ± 0.356 *** L:   -3.610 ± 0.734 *** 
Q:  -2.449 ± 0.557 *** 

All  Latitude  L:   -0.107 ± 0.124   
Q:   0.010 ± 0.114   

L:   -0.452 ± 0.069 *** 
  

All  distLakes  L:   -0.083 ± 0.081   L:    0.224 ± 0.093 * 
Q:  -0.063 ± 0.047   

  

All temp_avg L:    0.293 ± 0.098 ** L:   -0.466 ± 0.089 *** 
  

Climate  ppt_anomaly  
   

L:    0.623 ± 0.758   
Q:  -1.219 ± 0.635 . 

Climate  ppt_anomaly_lag1yr  L:   -0.268 ± 0.139 . L:   -0.112 ± 0.092   
Q:   0.010 ± 0.041   

 
L:   -1.395 ± 0.963   
Q:   1.497 ± 0.705 . 

Climate tmn_anomaly L:   -0.358 ± 0.130 ** L:    0.138 ± 0.116   
  

Climate tmn_anomaly^2 
 

Q:   0.204 ± 0.058 *** 
  

Climate tmn_anomaly_lag1yr L:   -0.370 ± 0.132 ** L:   -0.029 ± 0.120   
 

L:    0.164 ± 1.300   
Q:   2.259 ± 1.098 . 

Climate tmx_anomaly L:    0.158 ± 0.085 . L:    0.031 ± 0.125   L:  -20.802 ± 8.065 ** 
Q:    5.816 ± 2.308 * 

L:    0.905 ± 0.593   

Climate tmx_anomaly_lag1yr 
  

L:   -3.393 ± 1.393 * L:   -0.842 ± 0.688   
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APPENDIX E. Spatial autocorrelation plots. 
 

Figure D-1. Moran’s I spatial autocorrelation index across distances for the Modoc-Cascades region. 

 
 

Figure D-2. Moran’s I spatial autocorrelation index across distances for the Northern Sierra region. 

 
 

Figure D-3. Moran’s I spatial autocorrelation index across distances for the Southern Sierra region. 
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APPENDIX F. Partial dependence plots. 
 
Figure F-1. Partial dependence plots associated with the Mountain Quail, for the fire and climate processes, per 
region and model. 

Southern Sierra – Abundance model – Fire covariates  

  

 

 
 
 
 
 
 
 
 
 
 
 
 

Southern Sierra – Abundance model – Climate covariates 
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Northern Sierra – Abundance model – Fire covariates 

  
Northern Sierra – Abundance model – Climate covariates 
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Northern Sierra – Presence model – Fire covariates 

 

 

Northern California – Presence model – Climate covariates 
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