DEPARTMENT OF FISH AND GAME

Marine Region

CRUISE REPORT: 05-S-1

Quantitative Monitoring of Channel Islands Marine Protected Areas using a Remotely Operated Vehicle – A cooperative study with the Department of Fish and Game, Channel Islands National Marine Sanctuary, and Marine Applied Research and Exploration

Authors (in alphabetical order)

Mary Bergen¹, Steve Holz², Konstantin Karpov¹, Andrew Lauermann, Christine Pattison¹, Mike Prall¹, and Dirk Rosen²

¹California Department of Fish and Game ²Marine Applied Research and Engineering

February 2006

Vessel & Dates:

Leg 1: Department of Fish and Game PB Swordfish - August 14 to 27,

2005

Leg 2: NOAA RV Shearwater - September 22, 2005 to October 12, 2005

Locality: Four of the Northern Channel Islands off the Southern California

Bight (San Miguel, Santa Rosa, Santa Cruz, and Anacapa Islands).

Abstract

Remotely Operated Vehicle (ROV) operations were conducted on the California Department of Fish and Game's (Department) Patrol Boat *Swordfish* in August, 2005 and the National Oceanic and Atmospheric Association's (NOAA) Channel Islands National Marine Sanctuary's (Sanctuary) Research Vessel *Shearwater* in September and October, 2005. Substrate and finfish abundance were quantitatively measured at ten sites in or adjacent to five marine protected areas (MPAs) on San Miguel, Santa Rosa, Santa Cruz, and Anacapa Islands. The sampling objective was to provide data to evaluate MPA effectiveness. Real-time substrate determination allowed adaptation of sampling effort at each site to acquire a fixed amount of predominantly hard substrate target strata. The target of sampling 75 one-hundred m² transects was reached at all sites.

Introduction

In 2003, Marine Applied Research and Exploration (MARE) and the Department began developing protocols for sampling fish populations with a remotely operated vehicle (ROV). The objective was to monitor changes in finfish density over time to provide data for the evaluation of the Channel Islands Marine Protected Areas (MPAs) as described in the Channel Islands Marine Protected Areas Monitoring Plan (CDFG 2004).

In 2003 and 2004, quantitative protocols were developed and 14 of 18 potential survey sites explored. In September 2004, quantitative surveys were completed at four sites (Table 1) (Karpov et al., 2005a).

Table 1. Fourteen sites by island, name, location codes, and kilometers of track line
captured during exploratory surveys from November 2003 and May 2005; and quantitative
survey in September 2004 (Bergen et al., 2005).

Island	Location	ation Kilometers of video captured			
Site Name	Code	· ·			
		Nov. 2003	May 2004	Sept. 2004	
Santa Rosa Island					
Carrington Point SMR*	SRI-1	2			
Carrington Point SMR	SRI-2	2		12	
Rodes Reef	SRI-3	2		12	
Cluster Point	SRI-4	1			
South Point SMR	SRI-5	1			
East Point	SRI-6		4	12	
Santa Cruz Island					
Gull Island SMR	SCI-1	4			
Gull Island SMR	SCI-2	4		12	
Bowen Point	SCI-3	2			
Blue Banks Arch	SCI-4		3		
Anacapa Island					
Anacapa SMCA**	Al-1		3	9	
Anacapa SMR 1	Al-2		3		
Anacapa SMR 2	AI-3		3		
Arch Rock	Al-4		3		
	Total	18	18	56	

^{*}State Marine Reserve

The objectives of the 2005 survey were to: 1) expand quantitative sampling to ten sites, five within and five adjacent to MPAs; 2) increase sampling capability by increasing the number of vessels that could be used for ROV surveys; and 3) if time allowed, develop protocols for measuring fish size and refine methods for measuring transect length in high-relief substrate.

^{**}State Marine Conservation Area

Methods

Four cruises were planned for the summer of 2005:

- 1) July 17 through July 23: set up and test the Department's PB *Swordfish* for ROV operations and train additional crew
- 2) August 13 through August 28: aboard the P/B *Swordfish* to quantitatively sample four to five sites
- 3) September 25 through October 8: aboard the Channel Islands National Marine Sanctuary's R/V *Shearwater* to sample the remainder of the 10 sites
- 4) October 16 through October 22 to test the Department's R/V Garibaldi.

Due to delays in acquiring critical equipment and concerns for potential accidents late in the season, the first and fourth cruises were cancelled.

Detailed descriptions of ROV operations, including equipment, calibrations, deployment and retrieval are presented in Bergen et al., 2005 and Karpov et al., 2005b. A laser (used for distance measurement) calibration log was added to the field data sheets already described in Karpov et al., 2005b. This log was used by the deck officer to record the position of projected paired laser points at a distance of 0.5 and 2 m from both cameras between each of the dives (Appendix 1).

Site and Track Line Selection

In 2003, with the aid of acoustic survey maps, potential site pairs were selected, one inside an MPA and one at an adjacent site outside the MPA, to have comparable rocky substrate and depth ranges. In general, sites were created as rectangles of at least 500 m wide spanning a depth range from 20 m - 70 m. Where possible, sites selected were offshore Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) sites being sampled by scuba divers (Karpov et al., 2005a). In 2003 and 2004, exploratory surveys were conducted at nine sites and quantitative and qualitative surveys were conducted at five sites (Table 1, Figure 1).

Analysis of substrate data from 2003 and 2004 showed that soft substrate was a major component at all sites, even though soft substrate areas identified with acoustic and side SMCAn sonar maps were excluded from sampling (Bergen et al., 2005, Karpov et al., 2005a, and Karpov et al., 2005b). In the five sites sampled in 2004, transect lines averaged from 33 to 71 percent soft substrate. In order to maximize sampling efficiency, all sites previously sampled were reviewed by superimposing the substrate data on the acoustic maps (Figure 2). This allowed more clear differentiation between hard and soft substrates. Based on this review, the area of soft substrate excluded from sampling was modified and the site design broken into smaller rectangles to target hard substrate more effectively (Figure 3).

Two sampling sites on Anacapa Island (AI-1 and AI-2), one site on Santa Cruz Island (SCI-2) and three sites on Santa Rosa Island (SRI-2, SRI-3 and SRI-6) were modified. The modification of Anacapa SMCA (AI-1) also included changing the width of the site from 800 m to 500 m. Because the existing sites (SRI-4 and SRI-5) had insufficient reef substrate and depth range, the Cluster Point and South Point sites on Santa Rosa Island were moved. Newly acquired acoustic map data (Guy Cochran, United States Geological Survey, personal communication) were used to review the sites on San Miguel Island. The Castle Rock site (SMI-2) was modified and the Harris Point site (SMI-2) moved. The resulting ten sites are named as located in Table 2 and Figure 4.

Table 2. Ten planned quantitative sites by island, name, and location code with number of zones and expected depth range.							
Island	Location	Number of	Depth Range				
Site Name	Code	Zones	(m)				
Santa Rosa Island							
Carrington Point SMR	SRI-2	2	20 - 40				
Rodes Reef	SRI-3	2	20 - 40				
Cluster Point	SRI-7	2	20 - 60				
South Point SMR	SRI-8	2	20 - 60				
East Point	SRI-6	4	20 - 50				
Santa Cruz Island							
Gull Island SMR	SCI-2	1	30 - 65				
Anacapa Island							
Anacapa SMCA	Al-1	2	20 - 50				
Anacapa SMR	AI-2	2	20 - 65				
San Miguel Island	San Miguel Island						
Harris Point SMR	SMI-1	2	20 - 60				
Castle Rock	SMI-2	2	25 - 60				

In 2004, track lines parallel to the depth zone were randomly selected for sampling. To ensure that the sampling was distributed across the entire depth zone, each site was divided into two zones with equal area. Half the lines were randomly placed in each zone. In 2005, variable size zones were structured depending on the site. Most sites had two zones, but East Point had four and Gull Island had one (Table 2). The area of each zone included only the area to be sampled; "soft substrate only" areas were excluded.

The amount of survey line needed to produce the target sample size of 75 transects depended on the amount of hard and mixed substrate within the site. For the four sites that were quantitatively sampled in 2004, it was estimated that between 3.1 and 4.3 km of hard or mixed substrate would be sampled (Bergen et al., 2005). At all other sites, 4.0 km was sampled.

To allocate sampling within the site, the length (km) of track line in each zone was prorated depending on the size of the zone (Table 3). To allow for the mix of substrate types, the length of track line was divided by the proportion of hard and mixed substrate in the zone. When available, data from exploratory and

Table 3. East Point (SRI-6) work table used to estimate number of track lines needed by zone to attain a target 4.3 km of hard or mixed substrate. Allocation is by zonal area and percent hard or mixed substrate encountered in 2004.

Zone	Area (Ha*)	% of Site	Target Hard and Mixed Substrate	% Hard and Mixed		Needed to Re	ach Goal
		Area	by Zone (km)	Substrate (2004)	Km	No. of 500 m Lines	No. with 20% Buffer
1	36	30	1.3	44	3.0	6	7
2	44	37	1.6	40	3.9	8	9
3	35	29	1.3	63	2.0	4	5
4	5	4	0.2	42	0.4	1	1
Total	119	100	4.3**		9.3	19	22

^{*} Excludes rectangular areas interpreted as "soft only" from sonar map, exploratory, and quantitative track line (≥ 75% soft only).

quantitative surveys were used to determine the proportion of hard and mixed substrate by zone. Since data were not available for the Cluster Point and South Point sites, the proportion was assumed to be the same as other sites with similar sonar imagery. For the two sites on San Miguel Island, estimates of the amount of soft substrate made in real-time during the August 2005 exploratory survey were used. The number of 500 m lines needed was determined and a 20% buffer added to allow for operational contingencies (e.g., pulling off transect). At each of the ten sites it was estimated that 12 to 26 track lines (6 to 13 km) were needed to acquire a target of 3.1 to 4.3 km of hard or mixed substrate (Table 4).

Track lines, generally parallel to the bathymetry, were distributed within each zone (Figure 3). Track lines were numbered according to the distance along an imaginary line perpendicular to the rectangular subunits. In each zone, the track lines were chosen for sampling by selecting random numbers spaced 20 meters apart equal to the distance along the perpendicular line. A 10 m minimum spacing was used at our narrowest site, Anacapa Island SMCA. In case the amount of hard and mixed substrate was underestimated, additional lines were randomly selected and sequentially labeled. Thus, if the number of transects needed to be increased, a subset of the randomly selected lines could be added to each zone.

Two approaches were adopted to assess the amount of usable substrate and track line while at sea. At the end of each sampling day, tracking data were reviewed for content and quality. If quality was compromised, lines were repeated later in the survey. The Data Manager measured substrate in "real-time" by recording the GPS time code when soft only substrate was encountered. Since the ROV velocity was relatively constant across the entire track line (Bergen et al., 2005), the ratio of the total time with soft only substrate to total

^{**} Bergen et al. 2005 found ~ 4 km of hard or mixed substrate was needed per site.

Table 4.	Number of planned track lines to achieve site specific goals of hard or mix	кed
substrate	(Bergen et al., 2005).	

Island	Zone	Hard and Mix	Hard and Mixed Substrate		
Site		Percent	Kilometers	Track Lines with	
		Estimated	Needed	20% buffer	
San Miguel Island	1	70*	2.2	8	
Harris Point SMR	2		1.8	7	
			4.0	17	
Castle Rock	1	81*	1.5	4	
	2		2.5	7	
			4.0	11	
Santa Rosa Island	1	72**	1.5	5	
Carrington Point SMR	2	49**	1.8	9	
			3.3	14	
Rodes Reef	1	91**	2.0	5	
	2	38**	1.1	7	
			3.1	12	
Cluster Point	1	40***	3.0	18	
	2		1.0	6	
			4.0	24	
South Point SMR	1	40***	2.0	12	
	2		2.0	13	
			4.0	25	
East Point	1	44**	1.3	7	
	2	40**	1.6	9	
	3	63**	1.3	5	
	4	42**	0.2	1	
			4.3	22	
Santa Cruz Island					
Gull Island SMR	1	36**	3.8	26	
Anacapa Island	1	40**	2.3	14	
Anacapa SMCA	2	36**	1.7	11	
			4.0	25	
Anacapa SMR	1	50*	2.0	12	
	2	50*	2.0	12	
			4.0	24	
Totals			39	197	

^{*} Estimated from previous exploratory survey.

time provided an estimate of the amount of soft only substrate expected during subsequent post processing. If additional track line was needed, randomly selected alternate lines were sampled.

Fish Sizing

The objective of the fish sizing experiment was to compare visual estimates of fish size to the actual size of fish models. Models were constructed in two body forms: rounded and elongate. The model species were blue rockfish, copper rockfish, olive rockfish, vermilion rockfish, flag rockfish, kelp greenling,

^{**} Estimated from previous quantitative survey.

^{***} Estimated from sonar map interpretation only.

sheephead, and lingcod (Table 5). To construct models, colored photos of fish were cut out along fin margins and then sandwiched over a flat neoprene flotation core. The neoprene was either 7 or 13 mm thick. Models were attached to 13 mm rebar with 0.6 mm monofilament line. A total of 49 models were used in the experiment. Each model was marked with a number only large enough to be seen by divers.

	Table 5. List of fish model body forms, common and scientific names, number, and range of total lengths (TL) used in field sizing experiment.						
Body Form	Common Name	Scientific Name	No.	TL cm			
Rounded	Blue rockfish	Sebastes mystinus	8	7.5 - 47.0			
	Copper rockfish	S. caurinus	5	15.5 - 40.8			
	Olive rockfish	S. flavidus	5	7.3 - 48.0			
	Vermilion rockfish	S. miniatus	8	7.6 - 40.5			
	Flag rockfish	S. rubrivincuts	6	8.3 - 35.5			
Elongate	Kelp greenling (female)	Hexagrammos decagrammus	5	9.5 - 47.0			
	Kelp greenling (male)	" "	3	25.8 - 46.8			
	California Sheephead (female)	Semicossyphus pulcher	2	15.8 - 53.5			
	California Sheephead (male)	" "	3	39.3 - 53.5			
	Lingcod	Ophiodon elongatus	4	22.8 - 49.2			
		Total	49	7.3 – 53.5			

The sizing experiment was conducted on 7 and 9 October 2005, at Albert's Anchorage on the southwest side of Santa Cruz Island. On 7 October, an initial test with six models was run on a soft bottom in 10 m of water. Due to strong surge, the models moved back and forth too much to be effectively sampled. To try to address this problem, the monofilament line on 2/3 of the models was replaced with one or two lengths of 12 gauge hanger wire.

On 9 October, the surge had diminished and conditions were judged to be marginally workable. Divers deployed a 30 m transect line on soft bottom in 17 m of water. Six to ten models were placed on each 5 m segment of the transect line with the exception of the first 5 m, which was kept free of models to allow the ROV to maneuver onto the line. To avoid recording laser lights on the models in the video, models were not placed directly on the line. Models were either close to the line, approximately 0.2 m from the center, or offset approximately 1 m. Models were placed perpendicular to the line at haphazard distances off the substrate, depending on the length of monofilament line or depth of penetration of the wire. The distance of the models from the substrate ranged from 0 to 40 cm.

The ROV was deployed after dark to ensure that the lasers would be visible in the video record. The ROV was flown over the models six times. On four of the flights, the ROV pilot followed standard protocols, maintaining a constant heading, height above the bottom, and speed. The camera angle was set at either 25 or 30 degrees. In order to provide video for a training film, the ROV

was maneuvered so that the lasers would hit the fish on two passes through the models.

Results

During 14 days in August, the P/B *Swordfish* was used for joint patrol and ROV research operations (Table 6). Most of this time (nine days) was spent loading, setting up the new winch, calibrating equipment, and outfitting the boat. During six days at sea, two enforcement staff were trained in ROV operations and 34 km of track line were completed. The two San Miguel Island sites (Harris Point SMR and Castle Rock) were explored using "Z-shaped" transects (Figures 5 and 6), for a total of 8 km of track line. Quantitative sampling was initiated at Anacapa Island SMR and completed at Carrington Point SMR and Rodes Reef off northern Santa Rosa Island. Between research operations, enforcement patrols were conducted by on-board enforcement staff.

During 12 days in September more than 79 km of track and the eight remaining sites were completed onboard the RV *Shearwater* (Table 6). Two days were devoted to diver deployment and taking ROV video of fish models for sizing experiments near Gull Island SMR.

Month	Location	Activity	Km
Date		, i	
F	Period 1 – P/B Swordfish		
August	Ventura Harbor	Loading, gear set-up,	
14-17		calibrations and repairs	
18		Exploratory sampling & training	Not
	Anacapa Island (SMR)		Used
19		Quantitative sampling	4.0
20 & 21	Ventura Harbor	Planning and re-supply	
22	Anacapa Island SMR	Quantitative sampling	4.5
23	Anacapa Island SMR		5.5
	and Rodes Reef		
24	Ventura Harbor	Repairs to P/B Swordfish	
25	Carrington Point SMR	Completed both sites	12.5
	and Rodes Reef		
26	Harris Point SMR	Exploratory (z-shaped tack	8.0
	and Castle Rock	lines)	
27	Ventura Harbor	Unloaded gear	
P	Period 2 – R/V Shearwater		
Sept.	Santa Barbara Harbor	Load, calibrate gear, and ROV	
22 & 23	and Anacapa Island	check-out dive	
24	East Point	Quantitative sampling	4.5
25	Harris Point SMR		7.0
26	Castle Rock	Completed the site	6.5
27	East Point	Quantitative sampling	6.5

continued on following page

Table 6, continued Locations, activities, and kilometers sampled in 2005.						
Month	Location	Activity	Km			
Date						
28 & 29	Gull Island SMR	Quantitative sampling	12.5			
30	Harris Point SMR	Completed the site	2.5			
	Cluster Point	Quantitative sampling	4.5			
October 1	Cluster Point	Completed the site	5.5			
2	Anacapa Island SMCA	Quantitative sampling	7.5			
	Anacapa Island SMR	Completed the site	4.5			
3	Anacapa Island SMCA	Completed the site	5.5			
4 & 5	Santa Barbara Harbor	Poor weather				
6	Santa Barbara Channel	Vessel used by NOAA.				
7	Anacapa Island SMCA	Methods demonstration	Not			
			used			
8 & 9	Santa Cruz Island	ROV film of fish models deployed				
		by divers				
10 & 11	South Santa Rosa Island	Completed the site	12.5			
12	Santa Barbara Harbor	Unloaded				

Anacapa Island SMR was the only site to require extensive re-sampling. Real-time substrate analysis showed that the central portion of the site (Lines 300 – 720) was predominantly soft substrate. In addition, some lines required resampling due to tracking errors during the August survey. A new set of lines planned for the October survey period were used to randomly select lines for sampling. Operations on August 19th, 22nd, 23rd, and October 2nd produced 20 usable transects from the 38 that were completed (Table 4 and 7, Appendix 2 and 3). The other seven sites did not required re-sampling.

Table 7. Number of track lines completed and kilometers of hard or mixed substrate estimated from data manager observations during the survey. Island Zone No. of Track Hard and Mixed Substrate							
Site	Zone	Lines Completed	Percent	Kilometers Captured			
San Miguel Island Harris Point SMR	1 2	10 9 19	52 50	2.6 2.3 4.9			
Castle Rock	1 2	6 7 13	83 95	2.5 3.3 5.8			
Santa Rosa Island Carrington Point SMR	1 2	5 9 14	70 58	1.7 2.6 4.4			
Rodes Reef	1 2	5 6 11	83 33	2.1 1.0 3.0			
Cluster Point	1 2	14 5 19	51 41	3.6 1.0 4.6			

continued on following page

Table 7, continued.	Number of track lines completed and kilometers of hard or mixed
substrate estimated	from data manager observations during the survey.

Island	Zone	No. of Track	Hard and Mixed Substrate	
Site		Lines Completed	Percent	Kilometers Captured
South Point SMR	1 2	12 13 25	49 39	3.0 2.6 5.5
East Point	1 2 3 4	6 10 5 1 22	39 43 77 37	1.2 2.2 1.9 0.2 5.4
Santa Cruz Island Gull Island SMR	1	25	42	5.3
Anacapa Island State Conservation Area	1 2	13 11 24	61 37	4.0 2.0 6.0
Anacapa SMR	1 2	9 (15)* 11 (22) 20 (37)	52 42	2.3 2.4 5.0
Totals		192 (209)		50

^{*()} Total includes replicated lines.

Discussion

Sampling efficiency in number of kilometers of video captured each day was almost identical to the previous year. An average of 5.6 km per day was completed this year compared to 5.4 km during the September 2004 survey (Karpov et al., 2005b).

During both sampling periods 192 of 197 planned 500 m track lines were completed (Tables 4 and 7). Based on real-time substrate estimates this represented 50 km of hard or mixed substrate which exceeded the minimal 39 km target by 128%. This was expected because the protocol was designed to exceed the target by 20% (Bergen et al., 2005). The minimum goal at each site was also exceeded except at Rodes Reef, where 3.0 of the 3.1 km target was sampled. With this amount of sampling, 75 one-hundred m² transects at each site are possible (Bergen et al., 2005).

In order to minimize cost, only those lines estimated in real-time to have > 25% hard and mixed substrate will be post-processed. Since relatively few tracking errors were observed in the field, this should still provide sufficient track line to meet transect goals. Thus, only 180 (~95 km) of the 192 completed lines will be analyzed for fish density (Table 7, Appendix 3).

References

- Bergen, M., M. Connell, S. Holz, K. Karpov, A. Lauermann, C. Pattison, M. Prall, D. Rosen, and C. Valle. 2005. Final September 2004 Project Report Quantitative Finfish Abundance and Exploration of Santa Barbara Channel Islands Marine Protected Areas A Cooperative Remote Operated Vehicle Study with the Department of Fish and Game, Channel Islands National Marine Sanctuary, and Marine Applied Research and Exploration. Department of Fish and Game. Unpublished Report. June 2005. 39p
- CDFG. 2004. Channel Islands Marine Protected Areas Monitoring Plan. www.dfg.ca.gov/mrd/channel_islands/monitoring.html.
- Cochran, Guy, United States Geological Survey, Menlo Park, 2004 personal communication.
- Karpov, K.A., D. Rosen, A. Lauermann, M. Prall, M. Bergen, and C. Pattison.
 2005a. Exploration and Inventory of Santa Barbara Channel Islands
 Marine Protected Areas A Cooperative Remote Operated Vehicle Study
 with the Department of Fish and Game, Channel Islands National Marine
 Sanctuary, and Marine Applied Research and Exploration. Department of
 Fish and Game. Cruise Report 04-S-1. January 2005. 71p.
- Karpov, K.A., A. Lauermann, M. Prall, and C. Pattison. 2005b. Quantitative
 Finfish Abundance and Exploration of Santa Barbara Channel Islands
 Marine Protected Areas A Cooperative Remote Operated Vehicle Study
 with the Department of Fish and Game, Channel Islands National Marine
 Sanctuary, and Marine Applied Research and Exploration. Department of
 Fish and Game. Cruise Report 04-S-2. April 2005. 20p.

Personnel

August 15 - August 21, 2005

PB Swordfish Personnel:

Aaron Burger Warden - CDFG John Castro Warden - CDFG
Mark Kibby Captain - CDFG Eric Kord Warden - CDFG
Bob Puccinelli Lieutenant - CDFG John Suchil Lieutenant - CDFG

ROV Team Personnel:

Steve Holz Biologist - Marine Applied Research and Exploration Konstantin Karpov Senior Biologist – CDFG and Principal Investigator Andy Lauermann Biologist - Marine Applied Research and Exploration

Mike Prall Biologist (Marine/Fisheries) – CDFG

Other Participants:

Derek Stein Biologist (Marine/Fisheries) – CDFG

September 22 – October 12, 2005

R/V Shearwater Personnel:

Charles Lara Captain - NOAA Lumann Moody Captain - NOAA Terrence Shinn Captain - NOAA

ROV Team Personnel:

Dr. Mary Bergen Senior Environmental Specialist IV – CDFG; Fisheries

Independent Data Mandate Coordinator

Steve Holz

Konstantin Karpov

Andy Lauermann

Biologist - Marine Applied Research and Exploration

Senior Biologist - CDFG and Principal Investigator

Biologist - Marine Applied Research and Exploration

Michael Prall Biologist (Marine/Fisheries) – CDFG

Dirk Rosen Director - Marine Applied Research and Exploration (MARE)

Operations Supervisor, fundraising coordinator

Other Participants:

Mike Connell Biologist (Marine/Fisheries) – CDFG

Bill Miller Biologist, Oregon Department of Fish and Wildlife

Guests:

Pat Coulston Research Coordinator – CDFG

Lawrence M. Rosen Martin J. Rosen

Gary Stacey Marine Region Regional Manager – CDFG

Acknowledgements

(in alphabetical order)

We would like to thank everyone that participated in this cruise (preparation, execution and follow up). We would especially like to thank the following individuals for all of their help and support:

- Aaron Burger, Warden, P/B Swordfish, California Department of Fish and Game
- John Castro, Warden, P/B Swordfish, California Department of Fish and Game.
- Guy Cochrane of the USGS for side SMCAn sonar maps.
- Mike Connell, Biologist, California Department of Fish and Game.
- Chuck Cook of The Nature Conservancy for financial support.
- Pat Coulston, Research Coordinator, California Department of Fish and Game.
- Sarah Fangman, Research Coordinator, Channel Islands National Marine Sanctuary, for providing the National Oceanographic and Atmospheric Administration's R/V Shearwater, the crew and logistical support.
- David Jeffrey, Marine Applied Research and Exploration board member for technical and engineering support.
- Mark Kibby, California Department of Fish and Game.
- Kingfisher, for financial support.
- Eric Kord, Warden, PB *Swordfish*, California Department of Fish and Game.
- Rikk Kvitek of California State University Monterey Bay for multi-beam maps.
- Charles Lara, Captain, RV Shearwater.
- Marisla Foundation, for financial support.
- Bill Miller, Biologist, Oregon Department of Fish and Wildlife, for backup equipment and operational support.
- Chris Mobley, Channel Islands National Marine Sanctuary Manager.
- Luman Moody, Captain R/V Shearwater.
- Katherine Peet, Operations Coordinator/Vessel Operator, Channel Islands National Marine Sanctuary, for providing the National Oceanographic and Atmospheric Administration's R/V Shearwater, the crew and logistical support.
- Bob Puccinelli, Lieutenant, California Department of Fish and Game.
- Lawrence M. Rosen for financial support.
- Martin J. Rosen for financial support.
- Stephen Schwartz, Larry L. Hillblom Foundation for financial support.
- Terrance Shinn, Captain R/V Shearwater.
- Gary Stacey, Regional Manager, Marine Region, California Department of Fish and Game.
- Derek Stein, Biologist, California Department of Fish and Game.

- John Suchil, Lieutenant, P/B Swordfish, California Department of Fish and Game
- John Ugoretz, California Department of Fish and Game Nearshore Ecosystem / MLPA Coordinator for all his support.
- Dan Vasey of Santa Barbara City College for providing backup equipment and technical support.
- Yuko Yokozawa, California Department of Fish and Game GIS Scientific Aid for technical support.

Appendix 1. (see Appendix_1.PDF)

Appendix 2. Random track lines selected for each of the ten sites. I.D. numbers and letters correspond to sequence of random generation. Light grayed letters designate alternate or supplemental lines. Dark borders indicate extent of the one to four zones per site.

Har	ris Point R	Cas	Castle Rock		ngton SMR	Rode Reef	es	Clus Poin	
ID	Line	ID	Line	ID	Line	D	Line	ID	Line
2	30	Α	50	3	220	3	80	8	20
3	60	4	70	Α	570	Α	200	11	50
4	140	2	240	5	630	4	310	2	100
7	170	1	390	1	670	2	340	3	120
1	200	В	880	4	840	1	560	1	170
8	570	3	920	2	970	5	620	16	200
В	640	S*	1030	S**	890	9	670	17	220
6	730	S*	1050	S**	1090	11	750	4	260
5	990	В	1140	12	1230	8	780	6	290
Α	1090	9	1350	9	1290	10	800	10	340
С	1200	8	1490	S**	1300	Α	820	13	470
12	1290	10	1680	S**	1330	12	930	15	680
14	1320	С	1840	13	1380	7	960	7	740
10	1430	6	2110	Α	1510	6	1000	14	760
В	1790	7	2330	6	1560	S**	1010	5	780
9	1810	Α	2650	11	1610	S**	1160	9	820
13	1860			8	1670	S**	1160	12	860
Α	1940			10	1700	S**	1260	18	930
11	2000			7	1860			S*	950
		•		14	2150			S*	1100
								21	1190
								Α	1220
								19	1270
								22	1300
								23	1320
								20	1380
								24	1410

^{*} Excluded as sanded areas based on sonar map interpretation.

^{**} Substrate ≥ 75% soft only in 2004 survey.

Appendix 2. (Continued).

Sou SMF	th Point	East Point		Gull Island SMR		Anacapa Island SMCA		Anacapa SMR	Island
ID	Line	ID	Line	ID	Line	ID	Line	ID	Line
4	30	7	40	K	0	9	20	7	20
Α	70	Α	220	K	110	4	40	В	40
5	170	S**	240	S**	190	Α	90	12	100
8	190	S**	440	S**	520	7	110	6	130
6	210	3	490	Α	530	10	130	Α	160
11	250	4	530	25	550	14	150	2	200
10	270	1	560	23	570	13	170	С	220
12	330	6	590	24	590	5	190	8	240
2	370	5	710	S**	600	12	200	11	260
В	390	2	740	S**	620	1	230	5	300
9	410	S**	920	22	610	8	250	4	330
7	430	S**	1220	17	630	6	270	10	400
3	470	16	1300	14	650	3	300	1	420
1	510	10	1320	16	670	2	330	9	450
Α	610	14	1390	15	700	11	350	3	510
18	650	Α	1400	С	710	S*	360	23	550
24	670	8	1430	6	720	S*	410	18	630
25	730	12	1490	3	750	4	430	24	650
23	810	В	1550	1	770	10	450	14	680
13	850	13	1720	11	800	Α	460	21	700
22	870	9	1800	5	820	2	470	20	720
21	890	S*	1920	8	840	1	490	В	740
20	910	S*	2030	2	860	6	500	15 I	770
15	930	15	2040	21	880	12	520	F	800
19	1010	11	2110	18	910	11	540	Α	820
17	1050	S**	2200	7	940	3	560	С	850
16	1130	S**	2520	20	960	5	580	22 K	880
14	1150	18	2620	D	970	S*	590	E	900
	•	19	2720	13	980	S*	610	13 G	920
		20	2760	4	1010	7	620	19 J	940
		17	2900	В	1030	8	640	17 H	960
		Α	2950	9	1040	S**	670	D	980
		21	3050	10	1070	S**	710	14	1000
		S*	3210	19	1090				
		S*	3320	12	1120				
		A	3330	S**	1130				
		22	3390	S**	1230				
		S*	3420						
		S*	3560						

Appendix 3. Dive number, tack line, and date completed at each of ten sites sampled in 2005. Percentage of "soft only" as estimated during operations. Gray areas of ≥ 75% "soft only" will be excluded from future sampling and not post-processed. Dark borders indicate extent of the one to four zones per site. Rejected lines repeated at Anacapa Island SMR due to tracking or video errors are delineated in gray text. K denotes kelp prevented line completion.

Harris Po	int SMR ((SMI-1)		Castle Ro	ock (SMI-2)		
Dive	Lines	% Soft Only	Date	Dive	Lines	% Soft Only	Date
295	30	52	9/25	297	50	4	9/26
	60	46			70	7	
	140	65			240	5	
	170	37			390	19	
	200	22			880	65	
	570	71			920	2	
304	640	43	9/30	296	1140	1	9/26
295	730	65	9/25		1350	0	
294	990	34			1490	9	
304	1090	44	9/30		1680	0	
304	1200	42	9/30		2110	16	
294	1290	63	9/25		2330	4	
	1320	79			2650	2	
	1430	25					
304	1790	82	9/30				
294	1810	60	9/25				
	1860	42					
304	1940	32	9/30				
294	2000	28	9/25				

Appendix 3. (Continued)

Carringto	n Point SM	IR (SRI-2)		Rodes Re	ef (SRI-3)		
Dive	Lines	% Soft Only	Date	Dive	Lines	% Soft Only	Date
		·				- ·	
289	220	32	8/25	286	80	27	8/23
	630	9			310	26	
	670	41			340	3	
	840	35			560	12	
	970	33			620	19	
289	1230	59	8/25	287	670	67	8/25
	1290	42			750	69	
288	1380	48			780	67	
	1560	37			800	56	
	1610	24			930	72	
	1670	49			960	74	
	1700	24					
	1860	48					
	2150	43					

Appendix 3. (Continued).

Cluster Point (SRI-7)			South Point SMR (SRI-8)			East P	East Point (SRI-6)				
Dive	Lines	%	Date	Dive	Lines	%	Date	Dive	Lines	%	Date
		Soft				Soft				Soft	
		Only				Only				Only	
308	50	24	10/1	319	70	13	10/11	299	220	K	9/27
	100	37		319	170	22			490	48	
	120	27		319	190	27			530	72	
	170	14		319	210	41			560	41	
	200			319	250	73			590	38	
	290	60		319	270	70			710	80	
307	340	85		319	330	87			740	87	
	470	93		318	370	78		298	1300	63	9/27
	680	53		318	410	41			1320	71	
	740	66		318	430	42			1390	75	
306	760	50	9/30	318	470	54			1400	71	
	780	50		318	510	62			1430	81	
	820	43		318	650	47	10/11		1490	48	
305	860	39	9/30		670	54			1720	41	
305	1190	30	9/30	317	730	62	10/10	293	1800	37	9/24
	1270	46			810	66			2040	27	
	1300	57			850	60			2110	56	
	1380	85			870	55		293	2620	9	9/24
	1410	78			890	81			2720	13	
					910	74			2760	20	
				316	930	70		292	2900	25	
					1010	51			3050	50	
					1050	33		292	3390	63	9/24
					1130	73					
					1150	64					

Appendix 3. (Continued).

Gull Island SMR (SCI-2)		Anaca	pa Island	SMCA (AI-1)	Anaca (Al-2)	pa Island	SMR			
Dive	Lines	% Soft Only	Date	Dive	Lines	% Soft Only	Date	Dive	Lines	% Soft Only	Date
303	550 570 590 630 650 670 700	63 63 67 53 42 35 53	9/29	314	20 40 90 110 130 150 170	44 55 53 45 53 18 13	10/3	283 310 283 310 283 310	20 40 100 130 160 200 220	55 48 39 48 18 51 43	8/22 10/2 8/22 10/2 8/22 10/2
302	720 750 770 800 820 840	66 63 69 66 65 52	9/28	312	190 200 250 270 330 350	8 30 38 48 40 73	10/2	282	240 260 300 330 400 420	42 57 86 79 95 82	8/19
	860 880	70 61			430 460	87 65		281	450 510	68 86	
300	910 940 960 980 1010 1030 1040 1070	47 65 54 55 64 59 49 57 49		311	470 490 500 520 540 560 580 620 640	76 88 75 66 36 17 56 72 52		309 284 315	550 630 650 680 700 720 740 770	82 87 94 76 85 61 78	10/2 8/22 10/7
	1120	57						309 284 315 309 284 315 284 315 309 284	800 820 850 880 880 900 920 920 940 960 960 980 1000	57 78 59 55 31 39 42 76 61 92	8/22 10/7 10/2 8/22 10/7 8/22 10/7 8/22 10/7 10/2 8/22

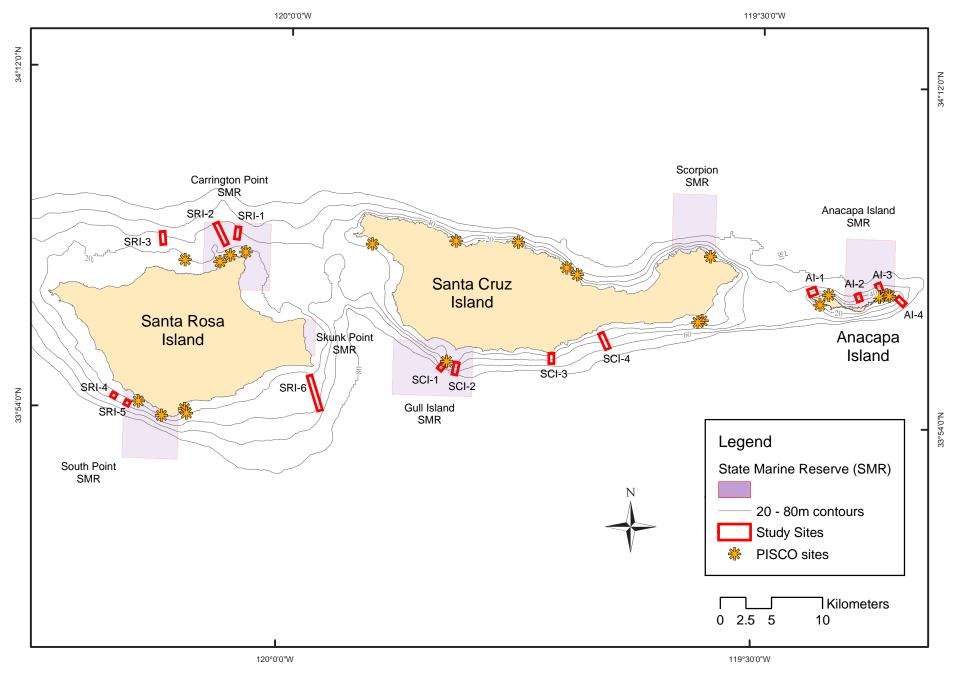


Figure 1. Location codes for sites surveyed during November 2003, May 2004, and September 2004 relative to the five State Marine Reserves and locations of PISCO SCUBA survey sites.

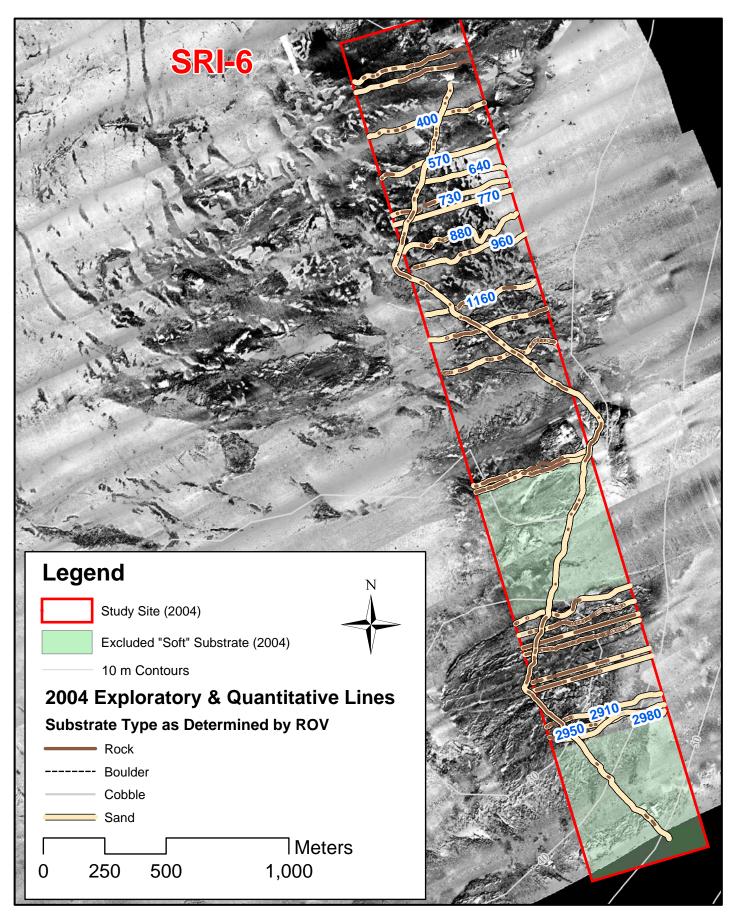


Figure 2. East Point (SRI-6) study site substrate types from ROV exploratory and quantitative surveys in May and September 2004. Track lines from September 2004 with >74% the "soft only" substrate are numbered (Bergen et al. 2005; Appendix 3).

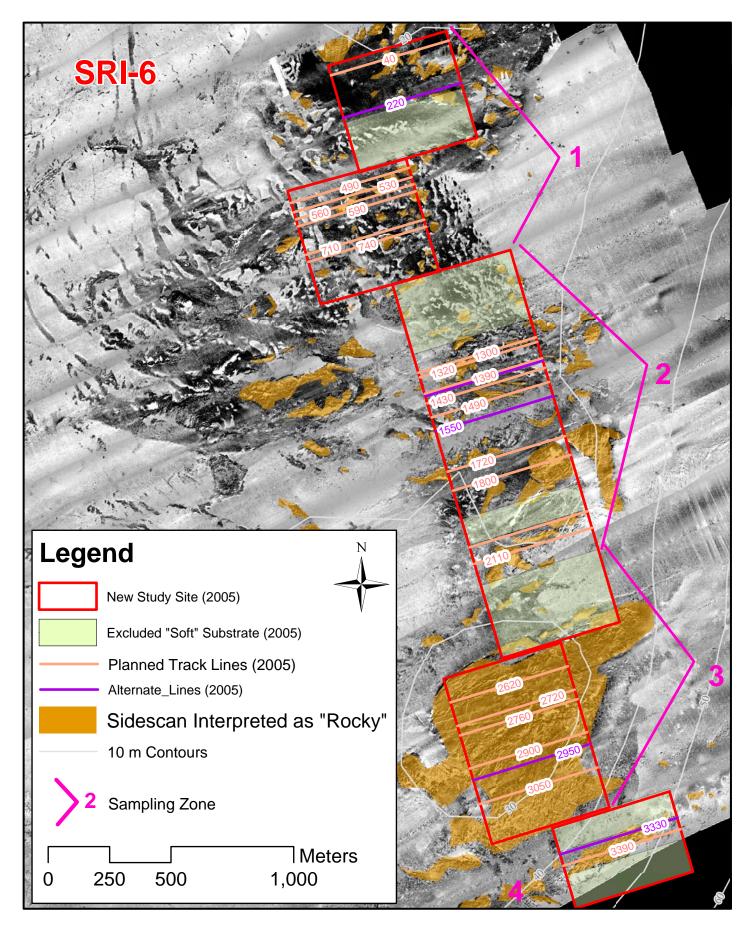


Figure 3. Modified East Point (SRI-6) study site, sampling zones, planned, and alternate track lines as planned for the 2005 survey. Sidescan sonar areas interpreted as more "rocky" from previous sampling experience. Site boundaries were modified to avoid predominantly "soft only" areas.

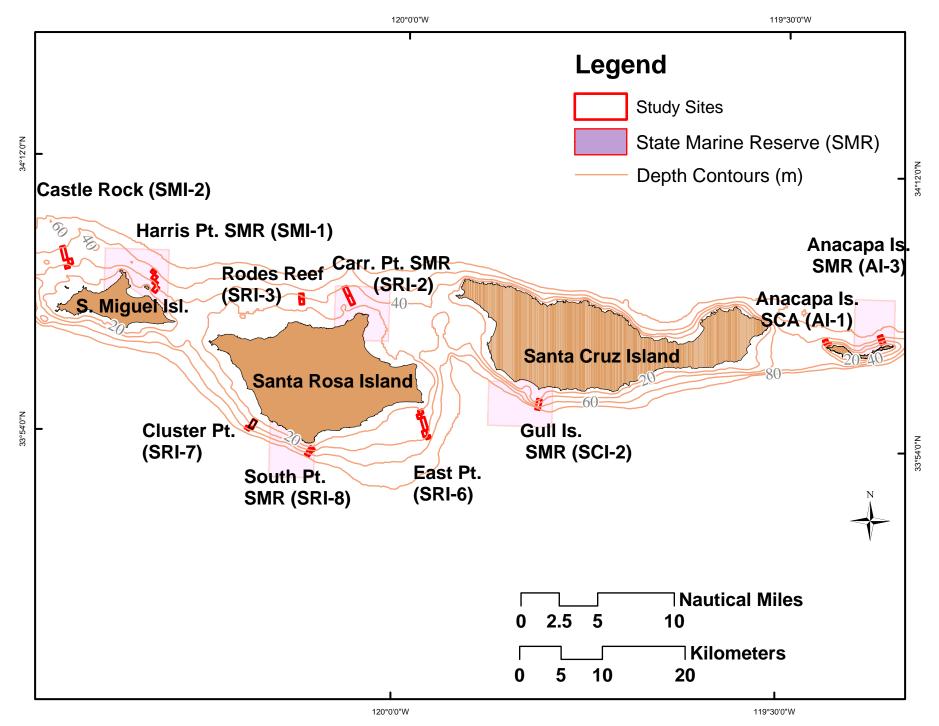


Figure 4. Location and codes for ten sites surveyed from August through October 2005.

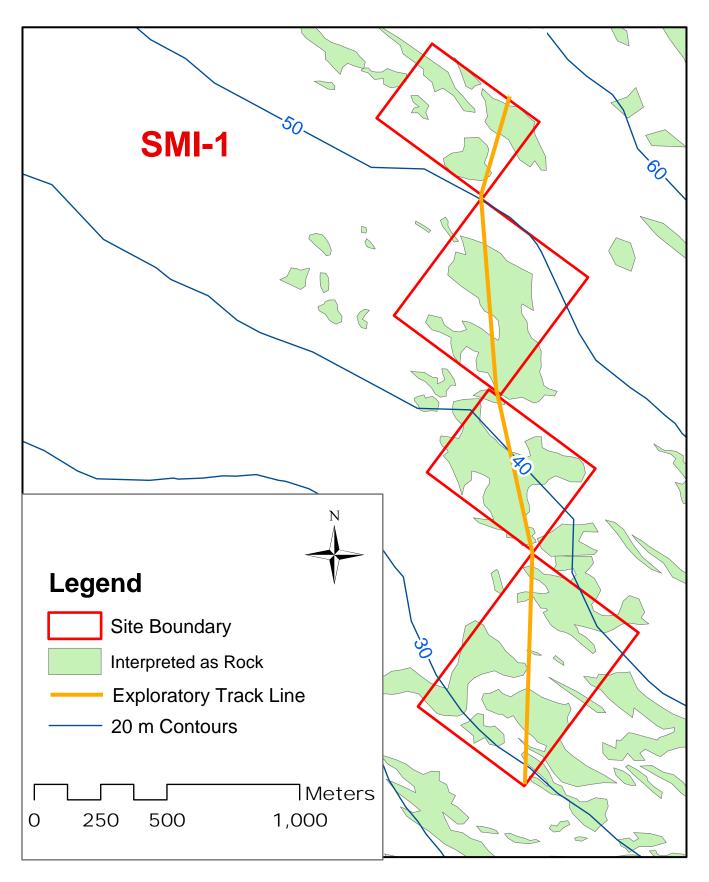


Figure 5. Harris Point SMR site boundary with exploratory track line sampled in 2005. Rocky habitat as interpreted by us from sidescan sonar maps provided by USGS.

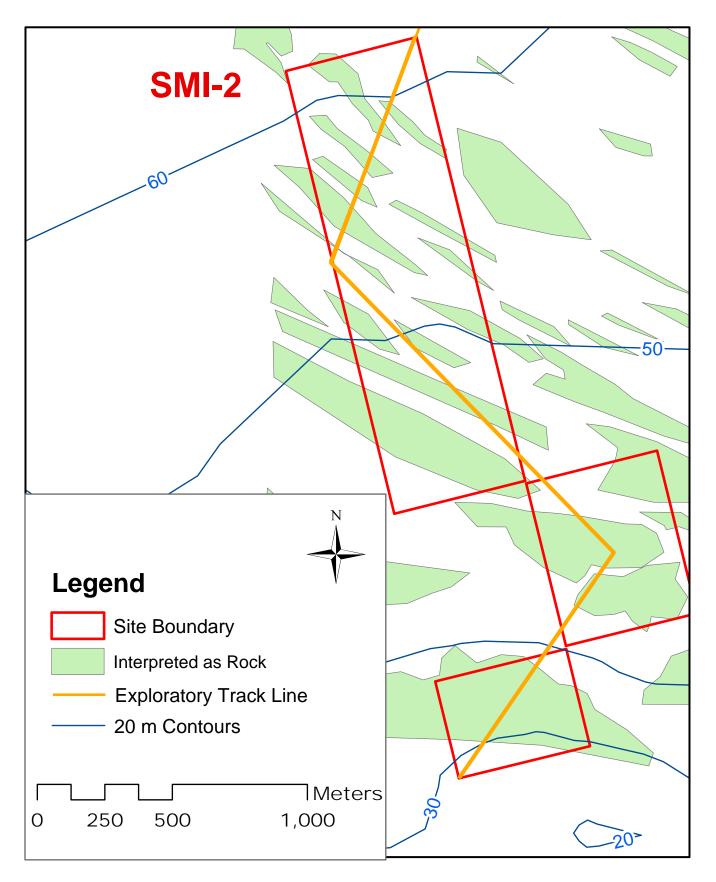


Figure 6. Castle Rock site boundary with exploratory track line sampled in 2005. Rocky habitat as interpreted by us from sidescan sonar maps provided by USGS.

Appendix 1. Revised Deck Officer's log including calibration sheet record laser point spread between dives.

		Deck Office	er's Lo	og		
Date:]		Dive Num	ber:	
Name:			Location	on:		
Site:				Clump Weight (I	hc):	
·				Clump Weight (I	ມຣ).	
	a short post-dive na	arrative:				
Launch and Re	covery:					
Live-boating O	perations:					
Equipment Pro	<u>blems:</u>					
David Direct Comm						
Post-Dive Com	ments:					
Post-Dive Com	ments:					
Post-Dive Com	<u>ments:</u>					
Post-Dive Com	ments:					
Post-Dive Com	ments:					
Post-Dive Com	ments: Depth (m)			Notes		
				Notes		
				Notes		
				Notes		
				Notes		
				Notes		
				Notes		
				Notes		

		Dive Number:
Time (TC)	Depth (m)	Notes

	Laser Calibration Log
Pre-Dive	Dive Number:
Forward Camer	ra
1/2 meter:	
2 meter:	
Down Camera	
1/2 meter:	
2 meter:	
Post-Dive	
Forward Camer	ra
1/2 meter:	
2 meter:	
Down Camera	
1/2 meter:	
2 meter:	
Comment:	

^{*} Please make a mark for each laser within the approprate distace box before and after each dive.