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A common, although generally unrecognized, use of multistage sampling designs in freshwater fisheries 
research is for estimation of the total number of fish in  small streams. Here there are two stages of  
sampling. At the first stage one selects a sample of  stream sections, usually of equal length, and at the 
second stage one estimates the total number of fish present in each selected section. This paper argues that 
the conventional practice of  selecting stream sections of equal length is ill-advised on  both biological and 
statistical grounds, and that errors of  estimation of fish numbers within selected sections wil l  usually be 
small compared with errors o f  estimation resulting from expansion of sampled sections to  an entire stream. 
If stream sections are instead allowed to  vary in  size according to  natural habitat units, then alternative 
two-stage sampling designs may take advantage of the probable strong correlation between habitat unit 
sizes and fish numbers. When stream sections of unequal sizes are selected with probabilities proportional 
to  their size (PPS), or measures o f  the sizes of  selected sections are incorporated into estimators, one may 
substantially increase precision o f  estimation o f  the total number of fish i n  small streams. Relative 
performances of  four alternative two-stage designs are contrasted in  terms of precision, relative cost, and 
overall cost-effectiveness. Choice among alternative designs depends primarily o n  the correlation 
between fish numbers and habitat unit sizes, on  the total number o f  stream sections, and o n  sample size. 
Recommendations for choices among the designs are presented based on  these criteria. 

Les plans d'echantillonnage a etapes multiples, servent souvent, sans toutefois &re generalement recon- 
nus, dans le domaine de la recherche sur les peches en eau douce pour estimer le nombre total de 
poissons dans les petits cours d'eau. Ici, I'echantillonnage se fait en deux etapes. Dans un premier temps, 
on choisit un echantillonnage de sections d'un cours d'eau, habituellement de longueurs egales puis, 
dans u n  deuxieme temps, o n  estime le nombre de poissons prksents dans chacune des sections choisies. 
Le present document avance que la methode voulant qu'un choisisse des sections du cours d'eau de 
longueurs egales est mal inspiree tant du point de vue biologique que statistique et que les erreurs que 
comporte l'estimation du  nombre de poissons dans les seoions choisies seront generalement petites 
comparativement a celles resultant de I'extrapolation des rksultats a la totalite du cours d'eau. Si, au 
contraire, o n  fait varier la longueur des sections en fonction des habitats naturels, alms les plans d'echan- 
tillonnage a deux etapes pourront tenir compte de la forte correlation qui existe probablement entre la 
taille de ["habitat et le nombre de poissons. II est possible d'augmenter de faqon substantielie la precision 
du  calcui d u  nombre total de poissons dans les petits cours d'eau en choisissant des sections du  cours 
d'eau de longueurs inegales presentant une probabilite a leur taille (PPT), ou  en incorporant dans les 
estimateurs les mesures relatives a la taille des sections choisies. O n  compare la performance relative de 
quatre plans A deux etapes pour ce qui est de la precision, du prix de revient relatif et du rendement global 
en termes de coirt-efhicacite. Le choix du plan dependra surtout de la correlation entre le nombre de 
poissons et la taille de ['habitat, du  nombre total de sections du cours d k a u  considerees et de $a taille de 
I'echantillon. En se basant sur ces criteres, on  a formule des recommandations sur la faqon de choisir le 
plan a utiliser. 
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any applications of statistical survey (sampling) 
theory in marine fisheries research have involved use 
of multistage sampling designs (Abranmson 1968; 
Tomlinson H 97 1 ; Southward 1976; Schweigert and 

Sibert 1983). In multistage sampling there are two or more 
levels (stages) of sample selection. For example, suppose one 
wished to estimate the mean length of a comnmercial fish species 
landed at a particular port (over some specified period of time). 
The first stage of sampling might be selection of a particular 
sample of fishing vessels which lands catch of that species at that 
port. Given a first stage selection sf vessels, one must sample 

from the vessels9 catches. If fish are unloaded in large bins, then 
one selects a particular sample of bins at the second stage of 
sampling (from each of those vessels selected at the first stage). 
If the number of fish within selected bins is large, then 
subsampling of bins may be required; within each selected bin a 
third stage sample of fish may be drawn and on these fish actual 
measurements of fish length would be made. 

In the simplest case, equal probability selection methods are 
used at each stage of sampling: each vessel entering a port has an 
equal chance of inclusion at the first stage, each bin from a 
selected vessel has an equal chance of inclusion at the second 
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stage, and each fish within a selected bin has an equal chance 
of being measured at the third stage. Either simple random 
sampling (SRS) or systematic sampling could be used at each 
stage, although systematic sampling (e.g. one in every k 
vessels) may often prove to be more practical. Each stage of 
sampling therefore requires choice of selection method. These 
choices determine which multistage estimators are appropriate 
and may, in general, strongly influence the variance and/or 
bias of resulting estimates (here, of mean length). The tern 
multistage sampling design is used to define a specific collection 
of selection procedures (used at each stage of sampling) and 
their associated estimators of attributes and of the variances of 
those estimated attributes. 

One must also choose the sample sizes at each stage of 
selection; in sampling theory jargon, one must choose the 
sampling fractions at each stage. What fraction of the vessels 
should be included at the first stage? What fraction of a selected 
vessel's bins should be included at the second stage? What 
fraction of those fish within selected bins should be measured? 
Providing answers to these kinds of questions has often been 
the principal focus of papers devoted to the use of multistage 
sampling designs in fisheries research (Schweigert and Sibert 
1983; also, Cuff and Coleman 1979 for an example using 
stratified sampling). Given estimates of variance at each stage 
of sampling, one may determine optimal sampling fractions at 
each stage based on criteria of (a) minimizing the variance of 
resulting estimates at fixed cost or (b) achieving a specified 
variance at minimum cost (see Cochran 1977, p. 3 13-316). 

Less attention has been given to selection method per se 
or to the use of auxiliary variables in fisheries research (see 
Lenarz and Adams 1980 for a comparison of SRS, systematic, 
and stratified SRS in groundfish trawl surveys). Unequal 
probability selection methods, which often rely on information 
provided by some inexpensively gathered auxiliary variable, 
seem especially worthy of attention. In the preceding example, 
selection of vessels according to (the auxiliary variable) vessel 
size may increase the precision of resulting estimates and do so 
in a cost-effective manner. Because the number of fish landed 
may be highly correlated with a vessel's size, landings from 
a large vessel will usudly have more influence on mean fish 
length than will landings from a snaall vessel. By setting first 
stage selection probabilities proportional to a measure of vessel 
size (PPS), one creates a selection procedure whereby larger 
vessels are more likely to be included in first stage selections 
than are smaller vessels (see Tomlinson 1971). SRS is a special 
case of such unequal probability sampling (Kendall and Stuart 
1983, p. 189-195). 

Multistage sampling designs have seen less frequent use 
in freshwater fisheries research. However, a very common, 
dthough generally unrecognized, use is for estimation of the 
total number of fish in small streams. In this context there are 
two stages of sampling. At the first stage, a particular set of 
stream sections, usually of equal length, is selected (usually by 
SWS). Within any selected stream section, some population 
estimation techniques, most frequently a removal method 
estimator (Seber 1982, Sect. '7.2) based on electrofishing, is 
used to estimate the total number of fish present. Because there 
are no discrete sampling units at the second stage of sampling 
(bins were obvious discrete sampling units in the commercial 
fishery example), multistage sampling theory has not been 
previously used to explicitly address estimation of the total 
number of fish in small streams. However, owe may make an 
analogy between (a) estimating the total number of fish present 

in a stream section (a first stage or primary unit) by electro- 
fishing and (b) estimating the mean length of fish from a 
particular vessel by subsampling of a vessel's bins. 
To make this analogy obvious, assume that there are only two 

stages of sampling for the commercial fishery example: all fish 
within selected bins are measured. Then, the bounds of enor of 
estimation of mean fish length from a particular vessel arises 
from sampling variance: the variation among all those possible 
estimates of mean fish length derived from all of the possible 
samples (finite in number) of n bins selected from the N bins on 
that vessel. Because this variation results at the second stage of 
sampling, it is termed second stage variance (within a selected 
primary unit). When electrofishing is used to estimate the total 
number of fish in a selected primary unit (the primary unit total), 
second-stage variance depends on the variance of the sampling 
distribution of the removal method estimator. This sampling 
distribution may be visualized as a plot of the relative frequency 
of particular estimates of the primary unit total. However, 
to obtain such a plot one must imagine repeating the electro- 
fishing/rernoval method process an infinite number of tinmes, 
while assuming a known primary unit total and a known and 
constant capture probability (the chance that a fish which is 
present at the time of electrofishing will be captured by 
electrofishing). Determination of second stage variance for this 
kind of sampling distribution, in contrast with the case of 
sampling from a discrete number of bins, requires construction 
of a formal stochastic model and use of specific probability 
distribution assumptions (Seber 1982, Sect. 7.2; Schnute 
1983). 

Bohlin (198 1) recently treated the usual two-stage stream 
survey problem in tems  of sources of error: (a) error arising 
from variation among (estimated) primary unit totals and 
(b) "mea~urement'~ error within selected primary units. The 
variance formulae he derived are equivalent to those presented 
by Raj (1968, p. 116- 119) and Cochran (1977, p. 300-303) 
for two-stage sampling of equal-sized primary units if electro- 
fishing sampling variance is equated with second stage vari- 
ance. However, Bohlin did not view this problem in tems of 
multistage sampling theory. 

In this paper it is argued that (a) the usual practice of selecting 
sections of equal length is ill-advised on both biological and 
statistical grounds and that (b) a preferable practice is to allow 
stream sections to vary in size according to natural habitat units. 
If primary units (stream sections) are of unequal sizes, then 
several alternative two-stage sampling designs may be used in 
the context of stream surveys. In particular, (a) primary units 
may be selected with probabilities proportional to primary unit 
sizes amad (b) the use of an auxiliary variable (here, primary unit 
size) may result in substantial improvements in the precision of 
estimation of the total number of fish in small streams. Average 
costs for alternative designs may be computed and the cost- 
effectiveness of alternative designs compared. Although alter- 
native selection procedures and the benefits of using auxiliary 
variables will be demonstrated in the narrow context of small 
stream surveys, the general principles and procedures used 
should be applicable in a broad range of fisheries contexts. both 
freshwater and marine. 

Sampling Designs 

Notation and definitions for all sampling designs presented in 
this paper are summarized below: 
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Notation Definition 

N total number of primary units in the sampling 
universe 

n total number of primary units in the sample 

yi total in primary unit i; estimated as Pi 
N 

Y = I Yi total across all primary units 
- 
Y = YIN mean of all primary unit totals; estimated as 

a; second stage variance within primary unit i; 
estimated as c?? 

Mi size of primary unit i 
N 

Mo = 1 Mi total size of all primary units 
- 
Yi = Yi/Mi mean per unit of size in primary unit i; estimated 

- as Pi = P i / ~ i  
= YIMo overall mean per unit of size; estimated as 

pi = MiIMo probability of selecting the ith unit on a given 
draw when units are selected by PPS with 
replacement 

Ti probability that the ith primary unit is in a 
sample of size n drawn from N  by BPS 
without replacement 

"ij probability that both primary units i and J are 
in a sample of size rl drawn from N by PBS 
without replacement 

An estimate is in all cases distingyished from a true value by a 
circumflex above. For variances, V(Y) distinguishes a sample- 
based estimator of vari!nce from the true sampling variance of 
the estimated total, V(Y). Similar notation is used to distinguish 
sample-based estimators and true mean square error (= variance 
+ bias2). Unless otherwise specified, summations are implicitly 
over primary units in the sample (i  = 1 ,  2, . . . , n) or in the 
sampling universe ( i  = 1 ,  2, . . . , N) . The sampling universe 
consists of the total number of primary units and their respective 
attributes from which the sample is drawn by some selection 
method. 

The Usual Case: Primary Units of Equal Sizes Selected by SRS 

If primary units of equal sizes are selected by SRS, a removal 
method estimator is used to estimate selected primary unit 
totals, and sampling variance of the removal method estimator 
is equated with second stage variance, then (Cochran 1977, 
p. 308-303; Waj 1968, p. 116, 119): 

N "  
( I )  P = - I Y i  

n 

The first term in equation 2 accounts for variation among 
primary unit totals (first stage variance), whereas the second 
term accounts for variation arising from (sub)sampling within 
selected primary units (second stage variance). Total sampling 
variance is the sum of first and second stage variances. When 
unbiased estimators are used at the second stage of sampling, 
equations 1-3 give exact and unbiased results. However, 
because removal method estimation of a primary unit total (Yi) 
is only asymptotically unbiased, and estimators for the variance 
of an estimated total (6:) are only approximate (Appendix A), 
equations 1 and 3 are also only approximate. Equations B and 3 
are equivalent to formulas derived by Bohlin (1981). 

Although the above formulas have (approximate) statistical 
validity, there are serious biological problems with the conven- 
tion of selecting primary units of equal sizes. If primary units are 
equal-length sections of stream, then a selected unit may contain 
more than one habitat type, and only portions of discrete, 
natural habitat units (e.g. portions of a pool andlor of a riffle) 
may be included in a selected unit. For removal method 
estimation using electrofishing, one delimits the primary unit 
boundaries by first placing block nets at the upstream and 
downstream ends of the selected stream section. Placement of 
these block nets may result in considerable displacement of fish 
from the primary unit to be sampled when the ends of a selected 
unit fall, say, d d w a y  in a pool or riffle. Also, it will sometimes 
be physically impossible to place block nets at the selected 
locations: a pool may simply be too deep. Such nonsampling 
error may seriously bias estimation of primary unit totals 
and may seriously compromise the validity of any further 
inferences. 

There are at least two obvious ways by which to circumvent 
the above problems. Having identified the selected unit and 
having recognized that the upper end of the unit passes though 
the deepest part of a pool, say, one could "move the section 
upstream" until the entire pool, or most of it, was included. 
Because this alternative involves a purposive action, it destroys 
both the intent and statistical validity of any primary unit 
selection method. Alternatively, one could at least ensure that 
only a single habitat type would be included in any selected 
primary unit. If a stream were mapped and then stratified by 
habitat type into, say, pools and riffles, then these two strata 
could be independently sampled. However, this alternative 
would not eliminate those nonsampling errors identified above: 
a section could still fall midway within a pool or riffle. 

If primary units were instead allowed to vary in size 
according to the sizes of natural habitat units, then several 
advantages would result. First, those nonsampling errors 
identified above would be minimized. Placement of block nets 
at the upper and lower ends of entire pools or riffles would be far 
less likely to displace significant numbers of fish from the unit to 
be sampled. Second, the numbers and sizes of fish estimated to 
be present in particular pools or riffles could be related to the 
sizes of these natural habitat units. Finally, when primary units 
are of unequal size, multistage sampling theory offers a variety 
of alternative two-stage designs with which to estimate the total 
number of fish in small streams. 

The remainder of this paper is devoted to a presentation of 
four such alternative sampling designs and to a consideration of 
their advantages, limitations, and costs. It is assumed that 
stream habitat has first been mapped and stratified into habitat 
strata. The four sampling designs thus deal only with estimation 
of the total number of fish within a particular habitat stratum. 
Because all stratum estimates are independent of one another, 
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this introduces no complications or restrictions to the pm- 
cedures presented and contrasted. Given independent estimates 
of the total number of fish in the hth stratum, Yh, and associated 
sample-based variances for the estimated stratum totals, v(Ph), 
estimates of stratum totals and variances are strictly additive 
(Raj 1968, p. 223): 

In the following, all stratum-specific notation has been avoided; 
notation follows that presented in the preceding summary of 
notation and .definitions. 

Alternative Designs: Primary Units of Unequal Sizes 

The four alternative two-stage designs, all based on prinnary 
units of unequal sizes, may be classified by selection method 
and by their use (or lack of use) of an auxiliary variable (here, 
primary unit size): 

Design A: SRS - no auxiliary variable used 
Design B: SRSIratio estimation - uses an auxiliary 

variable 
Design C: PPS - sampling with replacement 
Design D: PPS - sampling without replacement 

For both PPS designs, first stage selection probabilities are 
based on the auxiliary variable, primary unit size. It is assumed 
for all designs that (a) primary unit totals are estimated by the 
removal method based on electrofishing and that (b) electrofish- 
ing sampling variance is equated with second stage variance. 
Note, however, that other estimators of primary unit totals, 
e.g. mark-recapture estimators, could be used at the second 
stage of sampling. All formulas would remain valid. 

Design A: SRS 
If primary units of unequal sizes are selected by SWS, but one 

does not employ an auxiliary variable, then equations 1-3 are 
again appropriate (Cmhran 1977, p. 300-383). If one had 
unbiased estimators at the second stage of sampling, equations 1 
and 3 would again be exact and unbiased. 

When primary unit totals are highly correlated with primary 
unit sizes, first stage variance will be large for this design. In 
this case, individual primary unit totals, Yi, will be very 
different from the average primary unit total, Y, and the 
squared differences between Yi and Y will make the first term 
in equation 2 large. 

Design B: SRSI ratio estimation 
If primary units of unequal sizes are selected by SRS and one 

also incorporates a measure of the sizes of selected primary units 
(Mi) in estimators, then a two-stage ratio estimator may be used 
(Cochran 1977, p. 300-305): 

Because ratio estimation is biased, mean square error is used 
as a measure of precision rather than variance. However, use of 

the auxiliary variable, Mi, in equations 4-6 may dramatically 
increase precision of estimation over equations 1-3 when 
(a) primary unit totals are proportional to primary unit sizes and 
(b) the variation in primary unit totals increases in proportion to 
primary unit size. In biological terns, condition (a) means that 
the total number of fish in a selected habitat unit should be 
proportional to the size of the habitat unit; the larger a pool, the 
greater the number of fish. When the above conditions are 
(exactly) met, the ratio estimator is the best linear unbiased 
(BLUE) estimator. When the above conditions are approxi- 
mately met, then the first tern in equation 5 becomes small 
because the average number of fish per unit of habitat size within 
any selected primary unit (Fi) is a very stable quantity, nearly 
independent of primary unit size, and is approximately equal 
to the average numker of fish per unit of habitat size in the 
sampling universe (0. However, Cockran (1977, p. 16%- 144) 
noted that sample-based estimates of mean square error (equa- 
tion 6) may have serious negative bias when the number of 
selected primary units is small (12 < 12). Equations 5 and 6 are 
both large-sample approximate results, 

Design C: PPS - Sampbirag with repiacemerat 
For this design, primary units are selected with replacement 

with probabilities pi = MiIMo. Raj (1968, p. 1 19- 12 1) derived 
estimators for this case that require independent sampling of a 
primary unit if it is selected more than once in the sample; no 
single estimate of a primary unit total may be used more than 
once: 

Equations 7-9 are unbiased when one uses unbiased estimators 
at the second stage of sampling; if electrofishing is used at the 
second stage, equations 7 and 9 will be approximate. 

PBS with replacement designs will perform best when Yi are 
proportional to Mi. Then, pi = MiiMo = YiIY, and the 
expected value of Yilpi = Y for all i; hence, the first tenn in 
equation 8 becomes zero. However, the possibility that the same 
primary unit may be included more than once in a sample means 
that PPS with replacement selection of primary units will 
usually be less efficient than PPS without replacement selection. 
When the sampling universe is large and the number of selected 
primary units is small, efficiency will be comparable with PPS 
without replacement designs. Chief virtues of BPS with replace- 
ment are (1) computation of selection probabilities is simple 
because the pi are independent of sample size and (2) the 
sample-based estimator sf variance (equation 9) does not 
require estimates of second stage variance. 

Design D: PPS - Sampling without replacement 
For this design, primary units are selected without replace- 

ment with probabilities proportional to their sizes according to 
one of many possible selection methods (see Hanif and Brewer 
1980 for a review of 58 published unequal probability selection 
methods). Let T~ = probability that the ith primary unit will be 
in a sample sf size n, and let nq = probability that units i and j 
will be in the sample (i + j ) .  Assuming that unbiased estimators 
are used at the second stage of sampling, Raj (1968, p. 
1 18- 1 19) proved that unbiased two-stage estimators are 
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with the restrictions that all nu > O and that 
N N - I  N 

1 ai = n and 1 2 a, = n(n - 1)12. 
i j > i  

Summations are over all possible distinct pairs of primary units 
in the sampling universe (equation 11) or in a particular sample 
of size n (equation 12). When electrofishing is used at the 
second stage of sampling, equations 18 and 12 are approximate. 

Because primary units are selected without replacement, the 
efficiency of this design will almost always exceed that of a PPS 
with replacement design applied to the same sampling universe. 
This design will also perform best when Yi are proportional to 
Mi. If the selection method ensures that ai are proportional to 
Mi (not all methods will ensure this (see Appendix B)), then 
Yilq = Yjlq for all i, j (i + j) and the first term in equation 11 
becomes zero. For sample sizes exceeding 2, computation of 
the T U  is not a simpie task and requires use of a computer. 
Appendix B presents details of two PBS without replacement 
selection methods, whose performances are contrasted in the 
following section, and of formal properties of equations 11 
and 12. 

Performance of Alternative Designs 

Relative performances of the four alternative designs depend 
primarily on the following conditions: (1) the number of 
primary units that are selected, n ,  and the size of the sampling 
universe, N, (2) the degree to which primary unit totals are 
proportional to primary unit sizes, measured roughly by the 
correlation between Yi and Mi, (3) the range of sizes of primary 
units in the sampling universe, and (4) survey costs associated 
with electrofishing within selected primary units, as opposed to 
those costs that are independent of the sizes of those primary 
units that are selected. No single design will perform best under 
all possible conditions. Design A (SRS) may perform best when 
primary unit totals are poorly correlated with primary unit sizes, 
whereas design B (PBS without replacement) may perform best 
when primary unit totals are highly correlated with primary unit 
sizes. Comparison of the relative performances of alternative 
designs therefore requires their application to specific sampling 
universes; results depend on the characteristics of those sam- 
pling universes used as bases for comparison. 

Construction of sampling universes 
Sampling universes formally consist of unique sets of 

primary units with sizes and totals known exactly and are 
usually of two types: natural or artificial. Natural sampling 
universes have a real-life existence, whereas artificial sampling 
universes are imaginary and constructed. It is impossible to 
satisfy the formal requirements for a natural sampling universe 
in this stream survey context because (1) numbers of fish in 
primary units are always estimated rather than enumerated, 

TABLE 1 .  Pool sizes (m2) and estimated population sizes for pools 
sampled during 198 1 and 1982 in Knowles Creek, Oregon, by the U . S . 
Forest Service. 

1981 1982 

Pool size Estimated population Pool size Estimated population 

(2) only a small fraction of primary units within a stream is ever 
sampled, and (3) selected primary units are almost always of 
equal sizes. However, one may arrive at a compromise between 
a natural and an artificial sampling universe by treating available 
estimates of primary unit totals and sizes as if they fulfilled the 
requirements of a natural sampliq universe. 

Estimated population sizes (Yi) of yearling coho salmon 
(Oncorhynchus kisutch) and surface areas (Mi) of entire pools 
sampled in a small Oregon coastal stream in each of two years 
(Table 1) were used to construct three pairs of such compromise 
sampling universes. For each pair of constructed sampling 
universes (198 1 and 1982), the totd number of sampled primary 
units (pools) was treated as the total size (N) of a small sampling 
universe, and estimated primary unit totals and sizes were 
treated as if they were exactly known totals and sizes. 
Constructed sampling universes were deliberately designed to 
differ in two principal respects, (1) the correlation between Yi 
and Mi and (2) the range of Yi and Mi, in order to present a 
useful contrast of the relative performances of alternative 
designs under differing conditions. Because these three pairs of 
constructed sampling universes were all small (N < 15), an 
additional, large (N = 50) artificial sampling universe was also 
constructed, based in part on Table 1. Primary unit totals and 
sizes for this large sampling universe are presented in Table 2. 

Calculation of net relative eflciencies 
The most useful single measure of the performance of 

alternative designs is net relative efficiency. Letting V(Y) 
denote sampling variance and C denote total costs, then, for a 
fixed sampling fraction, nlN, the net relative efficiency of 
design B compared with design A is (Jessen 1978, p. $0, 1 8 2) 

Net relative efficiency balances the relative efficiency of design 
B compared to design A (RE(B1A) = vA(f)lvB(Y)) against the 
relative cost of design B compared with design A (WC(B1A) = 
CBl CA). For example, if design B is twice as precise as design A 
(RE(B1A) = 2), but total costs for design B are three times that 
for design A (RC(B1A) = 3), then the net relative efficiency of 
design B compared with design A is 213. Net relative efficiency 
is less than 1 because improvements in precision are more than 
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TABLE 2. Artificial sampling universe giving 
pool sizes and ppulation sizes for a%% pools 
(constructed from those data presented in 
Table I) .  

Pool no. Pool size Population 

offset by increases in cost for design B: design B is less 
cost-effective than design A. 

Calculation of net relative efficiency therefore requires 
calculation of (a) sampling variance and (b) total survey costs. 
In the example results that follow, equations 2, 5, 8, and B I 
were used to calculate sampling variances for designs A, B, C, 
and B, respectively. For the PPS without replacement design 
(D), sampling vaimces were calculated for each of two 

different selection methods. For one of these selection methods, 
the magnitude of necessary computations limited maximum 
sample size to six for the small sampling universes and to three 
for the large sampling universe (see Appendix B). Calculations 
of second stage variances (cri2) assumed use of a removal 
method estimator based on two passes of equal effort with 
electrofishing capture probability, q ,  set equal to 0.5 (see 
Appendix A; and Seber 1982, p. 318) and assumed to be 
independent of the sizes of the primary units. The possibility 
that q may be inversely related to primary unit size is also 
considered in Appendix A. 

Based on conversations with biologists responsible for 
collecting those data presented in Table I ,  relative costs for 
alternative designs were based on an assumption that when SRS 
was used to select primary units, half of survey costs were 
attributed to actual time spent electrofishing. Remaining costs, 
for housing and per diem for personnel, for time spent travelling 
to and from the study stream and between selected primary 
units, and for time spent setting up and taking down block nets 
prior to and after electrofishing, were assumed to be indepen- 
dent of the sizes of selected primary units. The time and cost 
spent to electrofish primary unit i was assumed to be propor- 
tional to M:. For b = 1, time spent electrofishing primary unit i 
is directly proportional to actual primary unit size. For b > 1,  
larger units would require relatively more time than would be 
indicated by their actual sizes, Mi. Because in most situations b 
probably exceeds 1, b was set equal to either 1 or 1. 5 for 
comparative purposes. For b = 1.5, gives the efl'ctive size 
of primary unit k with respect to necessary electrofishing time. 
Thus, for example, the effective sizes of two primary units of 
actual sizes I00 and 1080 would be 1000 and 3 1 623; the ratio of 
actual sizes is 1: 18, but that of effective sizes is about 132.  
Because Mi have been measured in terns of square metres, 
M ~ ' . ~  is a rough proxy for the volume of water that must be 
electrofished in primary unit i. Details of cost calculations are 
presented in Appendix C. 

Because PPS designs (C and B) assign higher selection prob- 
abilities to larger primary units, the expected total sizes of pa 

selected primary units for the BPS designs will always exceed 
those for the two SRS designs (A and B). Thus, for net relative 
efficiency of BPS designs compared with SRS designs to exceed 
1, it is not sufficient that relative efficiency exceed 1; improve- 
ments in precision must more than compensate for increases in 
expected total costs for these designs. Net relative efficiencies 
(with respect to design A) were calculated for both actual and 
effective primary unit sizes for all designs and for both PPS 
without replacement selection methods, with one exception. 
For the large sampling universe, net relative efficiencies were 
calculated only for actual primary unit sizes ( b  = I). 

Results 

For brevity in presentation of the relative performances of the 
four alternative two-stage samplFg desjgns, the followin$ 
notation has been adopted: ( I)  bA(Y), VB(Y), Vc( Y), and VD(Y) 
denote sampling variances for design A (SRS), design B (SRSI 
ratio estimation), design C (PPS with replacement), and design 
B (PPS without replacement); (2) RC(B), RC(C), and RC(B) 
denote relative costs for designs B. C, and B (with respect to 
design A); and (3) NRE(B), NRE(C), and NRE(D) denote net 
relative efficiencies of designs B, C, and B (with respect to 
design A). 
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FIG. 1. Sampling variances, ~ ( f i ,  for SRS (SRS), SRSiratio estimation (RATIO), PPS with replacement (PPSWR), and PPS without 
replacement (PPSWQR) designs plotted against sample size for example 1 in (a) 1981 and (b) 1982. Subscripts on PPSWQR indicate selection 
methods 1 and 2. Sample sizes for which more than one n,. = 0 for the second selection method are not plotted. For the second selection method: 
1981: aslo, l l  = 0 ( n  = lo), 7~12,13 = 0 (ss = 12); 1982: n 3 , 4  = 0 (n = 3), ~ 9 . 1 0  = 0 ( m  = 9), 7 ~ ~ ~ , 1 ~  = 0 (n = 13), 4 ~ 1 4 ~ ~ 5  = 0 ( n  = 14). 

Example 1 

When all data in Table 1 are used to construct two sampling 
universes, then N = 15 (for each) and the correlations between 
& and Mi are 0.962 and 8.988 for 1981 and 1982. These strong 
correlations and the extreme ranges in primary unit sizes, 
9.44-6686 and 4.29-264 1 m', a priori suggest that designs B, 
C, and B should outperform design A. 

Figure 1 shows that, for both 1981 and 1982, ~ , ( f )  exceeds 
that for a: other designs for n < N. vB(f) is consjderably less 
than V4(Y) and, for large n relative to N, VB(Y) < Vc(Y). 
Design D (for both selection methods) is most precise for n a 2, 
and sampling variance declines most rapidly with increasing 
sample size for this design. 

The penalty paid for the improved precision of the BPS 
designs (C and B) is a substantial increase in relative costs 
(Fig. 2). However, relative costs for the PPS without replace- 
ment design decline rapidly with increasing sample size. As a 
result of the high and constant relative cost of design C (see 
Appendix C), NRE(B) > NRE(C) for nearly all sample sizes for 
both years and for both actual and effective sizes of primary 
units. NRE(C) declines linearly with increasing sample size 
and, for n == N, is less than 1. For n > 2, NRE(D) exceeds that 
of any other design for both years and for both actual and 
effective primary unit sizes. Further, NRE(D) increases with 
increasing sample size until more than half sf the primary 
units have been sampled; for all other designs, net relative 
efficiencies decline with increasing sample size (Fig. 3). 

Relative performances of the alternative designs are very similar 
for both 198 1 and 1982, as is the case for all other examples, 
suggesting that relative performances may be fairly stable 
across yeas. For these two sampling universes, then, Design D 
(PPS without replacement) would be the clear design of choice 
(among the four alternatives) for n > 2. For n = 2, designs B 
and D have similar net relative efficiencies. (However, design B 
is not recommended for small n; see Discussion.) 

Example 2 

If the three largest primary units are removed from data sets in 
Table 1 for both years, then N = 12, the correlations between %.'i 
and Mi a e  reduced to 0.794 and 0.694, and the ranges of 
primary unit sizes decrease to about two rather than three orders 
of magnitude. Vs(Y) is again less than V,(Y) for all n < N, but 
vc(f) al~ays~exceeds vB(f) for 1981 and does so for n > 3 
in 1982. VD(Y) is smallest for all sample sizes (Fig. 4). 

Because the range in sizes of primary units has been reduced, 
the relative costs for the PPS designs are much lower than for 
example I (Fig. 5). NRE(C) again declines linearly with 
increasing sample size and is less than 1 for n > 3 in most cases. 
NRE(B) exceeds 1 for all ~z < N for both years and for both 
actual and effective primary unit sizes. NRE(B) exceeds 
NRE(B) for all sample sizes exceeding 4. For n S 4, either 
design B or design D has greatest net relative efficiency (Fig. 6). 
(However, design B is not recommended for small n; see 
Discussion.) 
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FIG. 2. Relative costs for the PPSWOR design, selection methods 1 (solid symbols) and 2 (open symbols), plotted against sample size for 
example 1 in 1981 and 1982. (a) Actual sizes sf primary units; (b) effective sizes. Sample sizes for which one or more no = 0 for the second 
selection method are listed in the caption to Fig. 1. Relative costs for PPSWR design in 198 1 and 1982 were 3 -44 and 3.03 for actual sizes and 4.24 
and 5.20 for effective sizes. See text for explanation of actual and effective sizes of primary units. 
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FIG. 3. Net relative efficiencies for RATIO, PPSWR, md PPSWOR designs plotted against sample size for example 1 in 198 1 and 1982. 
(a) Actual sizes of primary units; (b) effecf ve sizes. Subscripts on PPSWOR indicate selection methods 1 and 2. Sample sizes for which one or more 
nu = 0 for the second selection method are listed in the caption to Fig. 1. 
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FIG. 4, Sampling variances, ~ ( f i ,  for SIPS, RATIO, PPSWR, and PPSWOR designs plotted against sample size for example 2 in (a) 1981 rand (b) 
1982. Subscripts on PPSWOR indicate selection methods 1 and 2. For the second selection method: 1981: 7 ~ 6 . 3  = 0 (n = 6 ) ,  nlO, = 0 (n = lo), 
7 ~ ~ ~ , ~ ~  = 0 (TI = 11); 1982: n3,s = 0 (n = 7). T ~ , I O  = 0 ( n  = 9). 
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FIG. 5. Relative costs for the PPSWOR design, selection methods I (solid symbols) and 2 (open symbolsj, plotted against sample size for 
example 2 in 198 1 and 1982. (a) Actual sizes of primary units; (bj effective sizes. Sample sizes for which one n,. = 0 are listed in the caption to Fig. 
4, Relative costs for PPSWR design in 198 1 and 1982 were 1.45 and 1.37 for actual sizes and 1.74 and 1.59 for effective sizes. 
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FIG. 6. Net relative efficiencies for RATIO, PPSWR, and PPSWOR designs plotted against sample size for example 2 in 198 1 and 1982. (a) 
Actual sizes of primary units; (b) effective sizes. Subscripts on PPSWOR indicate selection methods 1 and 2. Sample sizes for which one 'KO = 0 for 
the second selection method are listed in the caption to Fig. 4. 

Example 3 For n < 8, NWE(C) exceeds that for design B , and for pl =S 3, 
both PPS designs have comparable net relative efficiencies. 
NRE(D) increases dramatically with increasing sample size 
from n = 2 through at least n = 28 (Fig. 1 1). With the exception 
of very small sample sizes, then, design D (PPS without 
replacement) would again be the design of choice. For very 
small sample sizes (n  =S 3), design C might be the preferred 
choice due to the simplicity of the PPS with replacement 
calculations and the fact that equation 9 does not require 
estimates of second stage variances (6:). 

Figure 12 shows that the striking performance of the PPS 
without replacement design is achieved entirely through rapid 
reduction in first stage variance as sample size increases. For n 
=S 30, second stage variance for the PPS design exceeds that for 
the SRS design (A), and for n 2 27, second stage variance 
actually exceeds first stage variance for the PPS without 
replacement design. In contrast, first stage variance is at Beast an 
order of magnitude larger than second stage variance for n < 40 
and is always large compared with second stage variance for the 
SRS design (A). 

If the two smallest and two largest primary units are removed 
from data sets for each year presented in Table 1, then N = I 1 
and the correlations between Yi and Mi are reduced to 0.3 10 and 
0.398 for 198 1 and 198%; these correlations would not be judged 
statistically significant (p > 0.05). Also, the range in primary 
unit sizes is reduced to just slightly more than one order of 
magnitude. 

For these two sampling universes, vB(f') exceeds v,(f') for 
all sample sizes and all cases  for 1981 the contrast is strong. 
yc(f') is slightly less than VB(Y) for n =S 3,  but for larger sample 
sizes vc(f') exceeds ~ ~ ( f ' ) ;  V,-(Y) exceeds VA(Y) for all sample 
sizes. For n > 2, VD(Y) is less thaq for any other design for all 
cases (Fig. 7). 

Relative costs for the PPS without replacement design again 
decrease rapidly with increasing sample size, and for n > 5, 
NRECD) always exceeds 1 (Fig. 8 and 9). Thus, for n > 5, the 
PPS without replacement design would again be the design of 
choice. For n =S 4, the best choice would probably be the 
simplest: SIPS (design A). 

Example 4 Discussion 

For the artificial sampling universe presented in Tdble 2, N = 
50, the con-elation between Yi and Mi is 0.760, and primary unit 
sizes range from 4.29 to 649m2. This universe thus has 
characteristics that are intermediate between examples 1 and 2 
(in terns of correlation and range of primary unit sizes), but the 
sampling universe is much larger. 

For this sampling universe, v A ( 8  exceeds t ha~  of all other 
designs with one exception: for n > 40, VA(Y) < Vc(Y). 
However, for small sample sizes, design C perfprms veq  well: 
for pe < 27, Vc(Y) < VB(Y); and for n =S 3, Vc(Y) = VD(Y). For 
sample sizes exceeding 3, vD(fi is less than that for any other 
design (Fig. 10). 

The preceding examples illustrate that choice among altema- 
tive sampling designs for small streams depends sensitively on 
characteristics of sampling universes and on sampling fractions. 
Choice depends far less sensitively on electrofishing capture 
probability, q (even if q is more realistically allowed to 
depend on primary unit sizes; see Appendix A). For q = 8.5 
and assumed independent of primary unit size, second stage 
variance was almost always small compared with first stage 
variance. The exception to this general result was for design 
D (PPS without replacement). For large sampling fractions 
(>58%), second stage variance exceeded first stage variance for 
this design (Fig. 12). However, one would rarely expect to 
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FIG. 7. Sampling variances, ~ ( f ) ,  for SRS, RATIO, PPSWR, and BBSWOR designs plotted against sample size for example 3 in (a) 198 1 and (b) 
1982. Subscripts on BBSWOR indicate selection methods 1 and 2. For the second selection method: 1981: n g 7 q  = 0 ( 1 1  = 8)s ' ~ 1 0 , 1 1  = 0 ( s s  = 10); 
1982: 'K7,8 = 0 ( 8 a  = 7). 

achieve such a large first stage sampling fraction in fisheries 
work. 

Interestingly, far more attention has been paid to electmfish- 
ing capture probability (and hence, second stage variance) in 
small streams than to reduction in first stage variance through 
choice of two-stage sampling design (e. g . Bohlin 1982). 
heoccupation with electrofishing capture probability has no 
doubt resulted from the convention of selecting primary units of 
equal sizes. When stream sections (primary units) are of equal 
sizes, there are no substantive alternatives to SRS or systematic 
selection of primary units and there are usually no obvious 
means whereby an auxiliary variable, such as primary unit size, 
can be used to increase the precision of resulting estimates. 
When primary units are allowed to vary in size, alternative 
two-stage sampling designs can substantially reduce first stage 
variance and substantially increase precision of estimation of 
the total number of fish in small streams. 

Although results presented in this paper assumed that a 
removal method estimator, based on electrofishing, was used at 
the second stage of sampling, presented formulas and designs 
would remain valid and unaltered were some other population 
estimator, e.g. a mark-recapture estimator, used at the second 
stage of sampling. Ideally, estimators used at the second 
stage of sampling should be unbiased. Given unbiased second 
stage estimators, the fom~ulas presented in this paper are 
unquestionably valid and, with the exception of design B 
(SRSIratio estimation), formally unbiased. However, the author 
is not aware of any existing population estimators that are 

unbiased and also applicable to the small s t rem context. Of 
course, the use of an explosive (primacord) could result in direct 
enumeration of primary unit totals; second stage error is entirely 
eliminated by this method. When sample sizes are very small, 
such an approach may have merit. However, if one restricts 
oneself to the usual stream population estimators, mark- 
recapture and removal method, one must recognize that 
estimates of primary units are biased; therefore, presented 
formulas must be regarded as approximations. 

When electrofishing is used at the second stage and capture 
probability exceeds 0.5, then the relative magnitude of first 
stage variance compared with second stage variance may 
present an even more dramatic contrast than that indicated by 
Fig. 12. Thus, when primary units are of unequal size, the 
relative performances of alternative two-stage sampling designs 
are diluted very little in the stream survey context from what 
their relative performances would have been in a one-stage 
setting. It is worth noting that this would not usually be the case 
in more typical commercial fishery applications of alternative 
two-stage sampling designs. When there are many discrete 
subunits at the second stage and second stage sampling fractions 
are small, the relative performances of alternative two-stage 
smpling designs may be very similar; second stage variance 
may be large compared with first stage variance (see Cochran 
1977, p. 310). 

In the stream survey context, choice among alternative 
sampling designs rests almost entirely on the characteristics of 
the sampling universe (the correlation between Yi and Mi and 
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FIG. 8. Relative costs for the PPSWOR design, selection methods 1 (solid symbols) and 2 (open symbols), plotted against sample size for 
example 3 in 1981 and 1982. (a) Actual sizes of primary units; (b) effective sizes. Sample sizes for which one 'rsg = 0 for the second selection 
method are listed in the caption to Fig. 7. Relative costs for PPSWR design in 198 1 and 1382 were 1.45 and 1.27 for actual sizes and 1.88 and 1.49 
for effective sizes. 

the size of the sampling universe) and on sampling fraction, 
Examples provided calculations of net relative efficiencies of 
four alternative designs applied to three sets of small (N 9 15) 
sampling universes, with a broad contrast of correlations 
between Yi and Mi, and to one large (N = 58) sampling universe 
for which the con-elation between Yi and Mi was large (0.760) 
but realistic. Based on these examples, it is possible to make 
some fairly general, if crude, recomrnendations for the use of 
these four alternative designs when primary units are of unequal 
sizes. 

For small sampling universes (e.g . N < 20) neither design B 
nor design C can be recommended regardless of the correlation 
between Yi and Mi or of sampling fraction. PBS with replace- 
ment will perform poorly relative to BPS without replacement in 
small sampling universes, and the use of SRSIratio estimation 
cannot be recommended because of possible serious underesti- 
mation in sample-based estimates of variance when sample 
sizes are small ( n  < 12; Cockan 1977, p. 162- 144). One is thus 
left to choose between the SRS design (A) and the PPS without 
replacement design (D). When the correlation between Yi and 
Mi exceeds a b u t  8.5, BPS without replacement appears to be 
the design of choice, regardless of sample size. For small 
sample sizes (e.g. n =S 5) the first PPS without replacement 
selection method can be used; for larger sample sizes the first 
selection method cannot be used, but the second selection 
method (Chao 1982) can be used (see Appendix B). For 
con-elations between 0.3 and 0.5, choice of design appears to 
depend on sample size; for small sample sizes the SRS design is 
probably the design of choice, whereas for larger samples 

Chao's method of selecting PPS without replacement samples is 
recommended. When the correlation between Yi and Mi is less 
than 0.3, the SRS design is recommended; the correlation is so 
low that one cannot take advantage of the potential benefits of 
PPS without replacement selection. 

For large sampling universes (N ==: 50) choices are less 
clear-cut. When the correlation between Yi and Mi exceeds 0.5, 
then design C (PPS with replacement) is recommended for small 
samples; the performances of PBS with and without replacement 
designs are so similar for small sample sizes that one cannot 
Justify the additional computational complexities of the without 
replacement design. For larger sample sizes, @hao9 s method of 
selecting PPS without replacement samples is recommended 
and will outperfom the with replacement design. For correla- 
tions less than 0.3, the SRS design is again the design of choice, 
and for correlations between 0.3 and 0.5 recommendations 
follow those for small sampling universes. Finally, for very 
large sampling universes (e.g. N > 100) with correlations 
between Yi and Mi exceeding 0.5, PPS with replacement is 
recommended for small samples (e.g. la 12); for larger 
samples, design B (SRSIratio estimation) is recommended. 
Formulas for the SRSIratio estimation design become approxi- 
mately valid for large sample sizes selected from large sampling 
universes, and the PPS without replacement design is simply too 
unwieldly to use. 

The author makes the above recomrnendations with some 
reluctance for two reasons. First, they are based on a compari- 
son of the relative performances of alternative designs as 
applied to a limited and specific set of sampling universes. 
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FIG. 9. Net relative efficiencies for RATIO, PPSWW, and PPSWBW designs plotted against sample size for example 3 in 1981 and 1982. (a) 
Actual sizes of primary units; (b) effective sizes. Subscripts on BPSWOW indicate selection methods 1 and 2. Sample sizes for which one ' ~ s d  = 0 for 
the second selection method are listed in the caption to Fig. 7. 

Second, they strongly support the use of PPS without replace- 
ment designs in many contexts when the correlation between Yi 
and Mi exceeds about 8.3. It is only recently that methods such 
as Chao's (1982) have been developed and have allowed 
extension of the PPS without replacement selection method to 
large sample sizes drawn from large sampling universes. Both 
PPS without replacement methods that were used in this paper 
require large numbers of computations (for n > 2). These 
computations required use of a computer; in the case of Chao's 
method one must use a computer to select a particular sample. It 
is clear, however, that for M .= 50 and n > 5 Chao's method 
perfoms well and is feasible in a practical fisheries context. The 
author constructed his own computer programs (in APE) for 
implementing both methods of PBS without replacement selec- 
tion that were used in this paper and is unaware of any packaged 
programs for these selection methods, although they may 
indeed exist. 

Because of the above considerations, it is probably worth- 
while to stress the generally solid performance of the SRSiratio 
estimation design for moderate and large sample sizes ( n  > 12) 
drawn from large sampling universes for which the correlation 
between Yi and Mi exceeds 0.5. There are two significant 
advantages of this design. First, computations are simple, can 
be done on a hand calculator if desired, and are easily extended 
to any sample size and any size sampling universe. Second, 
because primary units are selected by SRS (as in design A), one 

can always compare the performances of this design and the 
SRS design. That is, having selected n primary units by SRS, 
one may always incorporate a measure of the sizes of selected 
primary units (using quation 6) and determine whether there 
would be any gain in precision over results from design A (using 
equation 3). There would be no additional cost imposed for 
this comparison if the sizes of selected primary units were 
to be measured anyway for other purposes. However, absent 
knowledge of the total size of all primary units (bbgo), one could 
not use SRSIratio estimation to estimate the total over all 
primary units (see equation 4). 

The fact that SRSIratio estimation and PPS designs require 
knowledge of the total size of all primary units may seriously 
compromise the validity of net relative efficiency calculations 
that have been presented in this paper. As they have been 
presented, the PPS designs require a map of a stream that 
specifies the sizes of all primary units. The SRSIratio estimation 
design requires knowledge of the location of all units, the total 
size of all units (Mo), and the sizes of particular units that are 
selected in a sample. In contrast, because the SRS design (A) 
does not incorporate a measure of the sizes of selected units, this 
design requires only a map of the location of d l  primary units. 
Thus, the relative costs for the SRSIratio estimation and PPS 
designs might be far greater than those calculated in this paper. 
However, it is likely that very simple measures of the sizes of 
primary units may provide excellent measures for the assign- 
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FIG. 16. Sampling variances, ~ ( f ) ,  for SRS, RATIO, PPSWR. and 
PPSWOR designs plot!ed against sample size for example 4. For the 
PPSWOR designs, V ( 0  is computed following selection method 1 for 
n = 2, 3 a d  for other sample sizes following selection method 2.  No 
nirfi = 0 for any sample size for the PPSWOW design. 

ment of PPS selection probabilities with little loss of efficiency. 
For example, if a particular reach of stream were of faiiy 
uniform width, then the length of a pool could be a measure of 
size that would be highly correlated with pool area. This much 
simpler and less costly to obtain measure of primary unit sizes 
could then be used to assign PPS selection probabilities. The 
marginal cost of obtaining &ch simple measures of primary unit 
size would probably be small compared with the cost of locating 
all primary units; - all primary units must be located for all 
designs. The author hopes to investigate this possibility in the 
future because of its obvious practical relevance for possible use 
of PPS designs. 

 or preliminary field research one usually has no existing data 
from which one could construct plausible sampling universes 
and conduct comparisons like those performed in this paper. 
Given such circumstances it is probably best to first sample 
primary units by SWS and then to compare the precisions of 
estimates based on designs A and B (assuming that sample sizes 
are large enough to wmant confidence in variance estimates 
from design B). If the sample correlation between Yi and Mi 
is high, then future sampling might take advantage of this 
correlation by using one of the PPS designs following those 
general reco&nendations made previously. One should defi- 

S A M P L E  S I Z E  

FIG. H 1 .  Net relative efficiencies for RATIO, PPSWR, and PPSWOW 
designs plaited against sample size for example 4. For the PPSWOR 
design, V(Y) is computed fo11owing selection method 1 for n = 2, 3 
and for other sample sizes following selection method 2.  No 'KG = 0 for 
any sample size for the PPSWBW design. 

nitely not attempt immediate use sf  PPS designs when variation 
in primary unit sizes is small or when the correlation between Yi 
and Mi is unknown or small. Preliminary field results can also 
give a great deal of insight into formation of strata within which 
alternative sampling designs could be used. Because habitat 
quality may vary markedly with location within a stream, the 
correlation between Yi and Mi will probably be strongest within 
reaches of a stream that are most similar. Pools of the same size 
in a downstream, low-gradient region of a stream may hold very 
different numbers sf  fish than may pools of the same size in 
upstream, high-gradient regions. One might therefore choose to 
constmct numerous small strata on the basis of general habitat 
quality and location withln a stream, e.g. headwater pools for 
which stream gradient exceeds some specific amount, and to 
sample independently from each of these strata. It is very 
unlikely that there would be a strong correlation betwen Yl and 
Mi over the entire length of any substantial stream. Only an 
intimate biological understanding of the stream to be sampled 
can lead to the most intelligent and effective construction of 
such strata; statistical advice alone is insufficient. 

Finally, the author wishes to once more stress the importance 
of allowing primary unit sizes to vary according to natural 
habitat unit sizes. Regardless of the choice (or choices) that one 
makes among alternative two-stage sampling designs for small 
streams, one should minimize nonsampling errors that result 
from placement s f  block nets when primary units are essentially 
equivalent to natural habitat units. Also, one can learn far more 
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FIG. 12. First and second stage variances for SRS (Ist/SRS and 
2nd/ SRS) and PPS without replacement (1 st/PPSWOR and 2nd/ 
PPSWBR) designs for example 4. All PPS calculations were based on 
selection method 2 and sample sizes are in increments of five. 

about the relationships between fish abundance and distribution 
and habitat unit size and quality when one adopts the practice of 
allowing primary units to vary in size. After all, fish live in 
natural habitat units that we choose to call pools, Huns, or riffles. 
We should sample them in their homes. 
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Appendix A. Calculation of Second Stage Variances, 
02, for the Removal Method Estimator 

Calculation of the cr: assumed that electrofishing was used to 
estimate a primary unit total based on two "passes" sf equal 
effort. Prior to electrofishing, block nets are set to delimit 
primary unit boundaries. On the first pass, Yi fish are available 
for capture, and of these, CI fish are captured by electrofishing 
and removed from the primary unit. On the second pass, Yi - 
C1 fish are available for capture and C2 fish are captured. Then, 
if (a) Cg ) CZ and (b) capture probability, q (the probability that 
a fish present at the time of a given pass will be captured) is 
assumed to be constant, one may estimate the primary unit total 
as (Seber 1982, Sect. 7.2) 

Pi is a maximum likelihood estimatqr and is therefore asympto- 
tically unbiased. However, BIAS(Yi) = (1 - q)(2; q)q-3,  
which may be significant for smaH Yi and small q.  V(Yj) is based 
on the delta method (Seber 1982, Sect. 1.3.3.)  and is a large 
sample result. 
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For small Yi (e.g . <50) and small q (<0.5), bias of equation 
13 may be substantial relative to &. For example, for Y, = 50 
and q = 0.25, then BIAS(Yi)I Yi is nearly 50%* In contrast, for 
large q(q 3 0.8), BIAS($) < 0.5 and squared bias is almost 
always insignificant compared with v(fi). These kinds of 
considerations have been recently examined in detail by Bohlin 
(1982). Peterson and Cederholm (1984) showed that the 
assumption that q is constant may not be valid for small streams, 
and Schnute (1983) developed alternative removal method 
estimators for situations when this assumption is violated. 

In the example computations presented in this paper, q was 
set equal to 0.5, a fairly low figure, so as not to minimize the 
possible importance of second stage variance in the stream 
survey context. The author recognizes that if q were as low as 
0.5, then many estimates of Yi and C T ~  would be tenuous for Y, 
< lMle In addition, q was assumed to be independent of primary 
unit size. However, the usual finding in small streams is that, 
instead, q is inversely related to primary unit size. One 
generally has large q (e.g. 30.8) for small (usually shallow) 
pools and small q (e.g . ~ 0 . 5 )  for large (usually deep) pools. For 
the Knowles Creek data presented in Table % , O n  8 6 4 6 1 for all 
pools < 140 m2; for larger pools, 4 decreased with increasing 
p o l  size. 

If q varies inversely with primary unit size, then rri2 may 
dramatically increase with primary unit size when Yi and Mi are 
highly correlated (see equation 14). However, this kind of 
dependence of q on primary unit size did not result in adverse 
impacts on relative performances of the PP% designs that are 
presented in this paper, even though these designs assigned 
higher selection probabilities to primary units of greater sizes 
and greater a:. In fact, when q was allowed to vary with 
primary unit size and to mimic results from the Knowles Creek 
data, numerical computations (not presented in this paper) 
showed that the relative performances of the PBS designs could 
actually be improved. 

Lack of adverse impact on the relative performances of the 
PPS designs appears to be related to weightings for the second 
stage variance terns for the four alternative two-stage designs. 
Weightings for the ari2 were Nln for SW% and ratio estimation 
(equations 2 and 6), l 1 np, for PPS with replacement (equation 
81, and 1 1~~ for PP% without replacement (equation I 1). For 
small n relative to N, Nln is large and the two SRS designs give 
this same large weighting to all primary units without regard to 
primary unit size or a:. In contrast, for the larger primary units, 
for which the 02 would also be far larger, the PPS designs will 
have large pi or T T ~  and the weightings for these larger units are 
often less than for the SIPS designs. For the large sampling 
universe for which N = 50 and with n = 2, the SRS weightings 
a e  all 25, while both BPS weightings are about 5 for the 
largest primary unit. Of course, for the smaller primary units, 
weightings are reversed and the PPS weightings will be far 
larger than the SRS weightings. However, for these smaller 
units the primary unit totd (Yi) will be small and capture 
probability will be large (q 3 0.8) so that the o: for these 
smaller units are effectively negligible when compared with cr? 
for the larger primary units. As n approaches N, all SRS and 
PPS without replacement weightings are approximately the 
same and approach 1. Weightings will not stabilize with 
increasing sample size for the PPS with replacement design 
(because the pi are independent of sample size), but this design 
is not recommended for large sample sizes (see Discussion). 

Appendix B. PPS Without Replacement Designs: 
Selection Methods and Variance Estimators 

Two methods of selecting PPS without replacement samples 
were used for this paper. For the first method, the first unit 
is selected with probability pi = MilMs. The second and 
subsequent units are drawn with conditional probabilities 
proportional to the sizes of the remaining units. Computation of 
these conditional selection probabilities requires only manipula- 
tion of the original pi. Let zi, zj, zk9 . . . , Z, denote the conditional 
probabilities of selecting primary unit i on the first draw, j on the 
second given i drawn on the first, k on the third given i and j 
&awn on the first two, etc. Then: 

For n = 2, this selection method gives the explicit results (Waj 
1968, p. 51): 

h-' 

Ti = pi + 1 pjpil(l - pj) 
j * i 

and 

Thus, the probability that a sample of size 2 contains the units i 
and j (nY) is computed as the sum of the products of (a) the 
probability of selecting the ith (or jth) unit on the first draw and 
(b) the conditional probability of selecting the jth (or ith) unit on 
the second draw given that the ith (or jth) unit was selected on 
the first draw. This amounts to summing the probabilities of the 
two ordered selections in which both primary units i and j 
appear. For n > 2, the probability of selecting any ordered 
sample of size n that contains the specified units i, j ,  k, . . . , n can 
be computed as zizjzk . . . z,. Then, the probability that unit i 
appears in the sample, '$B~, is computed as the sum of the 
probabilities of all those ordered selections that contain unit i. 
Similarly, .wu may be computed as the sum of the probabilities 
of all those ordered selections in which both the units i and j 
appear* Because calculation of the ni and arg by this selection 
method requires construction of all possible ordered samples, it 
has been termed an "all possible samples" selection method 
(Hanif and Brewer 1980). Note that there are NII(N - n)! 
pssible ordered samples. 

Selection of primary units with probabilities proportional to 
the sizes of remaining units (method one) has several disadvan- 
tages: (1) the sheer magnitude of computations necessary to 
calculate the ni and no strictly limits practical sample size, (2) 
there is distortion of inclusion probabilities in that the ari are not 
proportional to Mi, and (3) the method does not guarantee that 
all nii < ' K ~ ' w ~  (see below). However, for n = 2, calculations 
are rapid and explicit, and for small n and N this selection 
method may prove to be practical and may perform well (see 
Results). 

The second selection method used in this paper was recently 
proposed by Chao (1982) and is of an entirely different 
character. Chao's method avoids the need to construct all 
possible samples and ensures that .pri are proportional to Mi for 
most units. One first orders the primary units and then selects the 
first n units. Successive units from n f 1 through N are then 
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selected according to a probability scheme such that if the n 9 
ith unit is selected, it replaces one of those units that was 
previously in the sample; sample size remains fixed. The 'rri may 
be read directly from the last column of an easily constructed 
"normalized" probability matrix, and calculation of the TO 
follows explicit formulas (for any n) that readily lend them- 
selves to computer algorithms. The advantages of Chao's 
method are (I) the number of computations necessary to 
calculate the ni and 'rru is dramatically reduced as compared 
with all possible sample methods, thus allowing one to draw 
large samples from large sampling universes (e.g. N = 50), (2) 
for all af < I ,  the %r are strictly proportional to Mi, and (3) the 
method ensures that all n u  < ' rr iq.  However, Chao's method 
has the following disadvantages: (1) ordering of primary units 
will affect the n u ,  (2) the method does not guarantee that all %pi, 

> 0, and (3) certain ni may equal 1: a unit may be selected with 
certainty. The author's experience has been that some no may 
equal zero for very small (n < 4) or very large (n =.: hp) sample 
sizes when primary units are ordered by decreasing size; for 
intermediate sample sizes usually all %rd > 0. Thus, the two 
selection methods appear to complement one another. For very 
small samples drawn from moderate sized sampling universes 
(e.g. N < 25), it is practical to use the first selection method; for 
small sample sizes, Chao's method exhibits its disadvantages. 
For larger samples drawn from large sampling universes (N ==: 

50), Chao's method will perform well whereas the first method 
will be impossible to apply due to the sheer magnitude of 
necessary computations (except for n = 2). 

These formal details of the two PPS without replacement 
selection methods used in this paper are relevant for two 
reasons: (a) they serve to show that neither selection method can 
be used for a11 sample sizes and for all sampling universes; and 
(b) the formal properties described above may have serious 
consequences for the validity of using equations 11 and 12. 
First, equations 1 1 and 12 both require that all 'rru > 0; for some 
sample sizes, Chao's method would not meet this requirement. 
Second, although Sen (1954) proved that, for n = 2, the first 
selection method (or any other PPS without replacement 
selection method) will ensure that all nu < 'rrinj SO that 
equations 11 and 12 will always be positive, for n > 2 one has 
no such assurance. This means that if apO > n in j  (for some t ,  j ) ,  
certain pairs of primary units may actually make a negative 
contribution to variance (see equations 1 I and 12). In fact, it is 
theoretically possible that equation 11 (and 12) may result in 
negative variance (estimates)! 

For those example computations performed for this paper, it 
was always true that ng < Tinj for the first selection method so 
that there were no possibilities of negative contributions to 
variance. For Chao's method of selection. primary units were 
ordered by decreasing sizes, and data points plotted on figures 
are such that no more than one 'rr, = 0. Thus, on some figures 
there are no points plotted for Chao's selection method for very 
small n. Figure captions list those points for which a single 
'rr, = 8. 

Appendix C. Calculation of Relative Gmts 

Let C denote total survey costs for sampling n primary units 
of unequal sizes that are selected by SRS, and assume that 
exactly half of these costs are attributable to time spent 
electrofishing the selected units. Then: 

where y = cost per unit of (actual or effective) primary unit size 
and XSRS = expected total (actual or effective) size of n primary 
units selected by SRS. Normalize the total cost of sampling 
these n units by setting C = 1. Then for a specified pa: 

Note that y is a function of sample size, n. Relative costs for 
alternative sampling designs may then be calculated as 0.5 + 
yX,/,, where X,!, denotes the expected total (actual or effective) 
size of n p r i m q  units selected by some alternative method. 

Expected total (actual or effective) sizes of n selected primary 
units for the four alternative designs are 

N 

nMolN(actual) and n 1  effective) 
for SRS and SRSIratio estimation, 

N N 

n 1 Mipi(actual) and n 1 ~ ~ ' . ~ p ~ ( e f f e c t i v e )  

for PPS with replacement, and 
A: N 

1 Mini(actual) and 1  effective) 
for PPS without replacement. 

Recall that ni is a function of sample size. Let XUTR and XWoR 
denote the expected total (actual or effective) sizes for the PPS 
with and without replacement designs. Then the relative costs 
for these designs with respect to the SRS design(s) would be 

and 

Because the ni for the two PPS without replacement methods 
will differ, expected total (actual or effective) sizes of n selected 
units were computed for both of these selection methods. 

Note that the expected total sizes of selected primary units are 
strictly proportional to sample size for both SRS designs and for 
PPS with replacement. This means that the relative cost of PPS 
with replacement is constant with respect to the SRS designs and 
independent of sample size. Relative cost for the SRSIratio 
estimation design is always 1 because selection is by SRS. In 
contrast, the expected total size of n selected primary units will 
not be strictly proportional to sample size when units are 
selected by PPS without replacement. Because all 'rri are 
bounded by 1, relative cost for the PPS without replacement 
design is a decreasing function of sample size. 
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