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EXECUTIVE SUMMARY

Statistical procedures for detecting the CVPIA natural Chinook salmon production
doubling goal and determining sustainability of production increases

A mandate of Title 34 – Central Valley Project Improvement Act (of Public Law 102-575),
CVPIA, is to “develop within three years of enactment and implement a program which makes all
reasonable efforts to ensure that, by the year 2002, natural production of anadromous fish in Central
Valley rivers and streams will be sustainable, on a long term basis, at levels not less than twice
the average levels attained during the period of 1967-1991”. In this report we develop statistical
procedures aimed at comparing natural production levels in the 1967-1991 period and in years since
then and we present ideas for methods to determine the sustainability of natural production levels
observed during a given period.

1. Assessing doubling versus assessing sustainability. The problem of determining whether
a doubling of natural production has occurred is primarily a problem of statistically estimating
natural production for a given stream and a particular time period. The problem of assessing
sustainability is more difficult in that it includes both estimating natural production and also
determining the reasons for particular observed levels of production. Solutions to this latter
problem involve modeling changes in underlying life history parameters, especially expected
juvenile survival rates, while statistically controlling for both demographic and environmental
variation.

2. Complications to assessing doubling. Statistical procedures which aim to compare the
natural production levels of anadromous fish in Central Valley rivers and streams in the
period 1967-1991 with later periods are complicated by two factors which make standard
approaches, e.g. two sample t-tests, inadequate. One factor is measurement error, which
includes variance and bias, in natural production estimates. The second factor is temporal
dependence in natural production levels between adjacent years, where the dependency is due
to the fact that progeny of the same cohort contribute to the natural production in multiple
years.

3. Recommended statistical alternative to assessing doubling. Standard statistical pro-
cedures for comparing two groups, such as two-sample t-tests, or for detecting a trend, such
as ordinary linear regressions of production on time, are inadequate when data contain both
measurement errors and temporal dependency. Rather than attempt somewhat ad hoc modifi-
cations of such standard procedures to account for such errors and dependency, we recommend
that a general class of more sophisticated statistical procedures, known as state-space mod-
els, be used to assess doubling. State-space models are models for two time series running
in parallel, where one time series reflects the true state of nature, in the present case the
actual natural production levels distinguished by age-class, sex, etc., and the second time
series consists of error-contaminated and temporally correlated estimates of the first series.

4. Concerns regarding available data. While we believe that state-space models are the
proper statistical tool for comparing natural production levels in different periods, we have
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concerns over the quality of estimates of natural production in both the 1967-1991 period and
in years since then. In particular estimates of the proportion of total production attributable
to hatchery fish depend upon problematic assumptions and estimates of the imprecision and
bias of the estimates are lacking. For state-space models, or even modified t-test or t-based
confidence intervals, to be successfully implemented, measures of the bias and imprecision
of natural production estimates are needed. For the point estimates of natural production
during the historical period of 1967-1991, statistical measures of accuracy and precision need
to be calculated. With future analyses in mind, we emphasize the need for immediate im-
plementation of statistically sound tagging, marking, and sampling schemes with associated
procedures for separately estimating hatchery and natural production on a stream by stream
basis. This involves at a minimum the tagging of several well-chosen hatchery releases meant
to serve as surrogates for the various Central Valley natural stocks that cannot themselves
be tagged in adequate numbers.

5. Recommended statistical measure for assessing sustainability. Determining whether
a given level of natural production observed during a particular period is sustainable involves
more than a state-space model framework. The essential issue is whether there have been
positive changes in anadromous fishes’ life history parameters that are likely to be ongoing
rather than temporary. We formulate a measure of average natural production which is
based on recruitment parameters and is independent of environmental variation. Determining
whether changes in this average natural production measure are due to ecosystem restoration
efforts may require the inclusion of control sites with measurements made in the 1967-1991
period and in a later period, or, at least, the inclusion of covariates in the state-space model
structure that aim to control for random environmental effects.

6. Future work. To successfully apply state-space models to the twin problems of assessing
doubling and assessing sustainability, work is required on three fronts.

(a) Calculation of error bounds for production estimates. The magnitude of errors
of existing estimates of natural production during the baseline period and since 1992 may
be very large. Any analysis methods seeking to compare natural production estimates
between the baseline and later periods, including state-space models, must somehow
account for such possibly large errors. We suspect that careful data analyses might allow
one to develop some decent notions of the kinds of errors that may exist in tabulated
estimates of natural production, but we believe substantial effort will be required to
generate such notions.

(b) Future data generation. A coordinated marking, tagging, sampling, and tag recov-
ery program based on hatchery Chinook salmon reared in the Sacramento-San Joaquin
needs to be implemented with the aim of using hatchery fish as surrogates for naturally
produced fish. At the same time, we are wary of automatically assuming that a hatchery
fish is a suitable surrogate for a wild fish and also recommend that marking and tagging
of naturally produced juvenile fish, to the degree possible, be done to determine the
degree of similarity between designated surrogate hatchery fish and naturally produced
fish.
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Sampling of ocean catches must of course continue, but in addition sampling of freshwater
catches (e.g., creel surveys) needs to be reinstated. System-wide coordinated sampling of
and estimation of escapement is needed for all the watersheds in the system, and standard
errors for the escapement estimates need to be reported. Aging and sexing of at least
subsamples of escapement data should be done, too, and the resulting information would
be used for separating hatchery fish from wild fish and estimation of natural production,
for determining sustainability, and to account for between year dependence of production
estimates.

Relatively small-scale and localized experiments that aim to quantify the impact of
ecosystem restoration efforts are worth considering, and, if deemed feasible, imple-
mented. Such experiments could involve comparing and tracking life history processes
and duration between modified and unmodified portions of habitat.

(c) State-space model formulation, development, and application. A substantial
research effort would be required to develop state-space models that could be used to
assess doubling and also assess sustainability. Many of the basic ideas of the formulation
have been developed in the report but alternative formulations for various components
of the life history process need to be considered. Additionally the inclusion in the state-
space model of either control sites, as in a BACI (Before-After Control-Impact) design,
or covariates that reflect freshwater and marine survival conditions, requires considerable
thought. Finally, computer programs need to be written to implement the state-space
model and allow application of the model to real data sets.



Statistical procedures for detecting the CVPIA natural Chinook salmon
production doubling goal and determining sustainability of production

increases

1 Introduction

One of the mandates of Title 34 – Central Valley Project Improvement Act (of Public Law 102-
575), CVPIA, is to “develop within three years of enactment and implement a program which
makes all reasonable efforts to ensure that, by the year 2002, natural production of anadromous
fish in Central Valley rivers and streams will be sustainable, on a long term basis, at levels not less
than twice the average levels attained during the period of 1967-1991”. The phrase “not less than
twice the average levels” is referred to herein as the doubling goal. Subsequent to the passage of the
act, the US Fish and Wildlife Service (USFWS) formed a workgroup which produced a document,
“Final Restoration Plan for the Anadromous Fish Restoration Program” (USFWS, 2001), which
includes an appendix titled “AFRP Position Paper”. The position paper discusses some of the
key terms in the mandate and here we summarize just two terms that are pertinent to our report:
natural production and sustainability.

Natural production is defined on an annual basis for a given naturally produced stock and it
is the total catch and escapement within a specified year-long period. Total escapement includes
both in-river and hatchery escapement. Assuming that fisheries take place beginning as early as
April in a given year and proceed through the spawning season, which may continue as late as
February of the following year, the total natural production for a given population is equal to the
sum of the ocean and freshwater catches and freshwater spawning escapement that are attributed
to natural spawning of that population in previous years. By this definition, returning adults that
were survivors of fish released from hatcheries are not included in natural production, but returning
adults that are survivors of fish produced via natural spawning, irrespective of the origin of adult
parents, are included in natural production. Let Psrt denote the natural production for fish that
were born in stream s of race r during “year” t. Then Psrt is calculated by

Psrt =
∑
a

COC,srta +
∑
a

CFW,srta +
∑
a

EscN,srta +
∑
a

EscH,srta, (1)

where COC and CFW are ocean and freshwater catches, EscN is escapement that spawned naturally,
and EscH is escapement (of naturally produced fish) that strayed to hatcheries, with summation
over all relevant age classes (denoted by a). Each of the above components can be further partitioned
spatially, and, in the case of catch, by gear type (or commercial versus sport designation). For
brevity when production is referred to in the remainder of this report it will designate the natural
production for a particular stream, and is distinct from a stream’s hatchery production (if it
has a hatchery) and from a stream’s total production, which is the sum of natural and hatchery
production.

The problem of separating the contribution of hatchery fish to catch or escapement from the
contribution from natural fish is a distinct statistical estimation problem that we do not address in
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this report. Newman, Hicks, and Hankin (2004) do however present different statistical procedures
for making such distinct estimates, all of which rely upon the use of tagged hatchery releases meant
to serve as surrogates for designated naturally produced populations.

Regarding the second key term, sustainability, the “AFRP Position Paper” (USFWS, 2001)
states that production levels are “sustainable when they are maintained under the entire range of
conditions resulting from legal human activities, as superimposed on natural variability inherent in
the system”. Herein we use this description as the basis for statistical procedures to quantify the
sustainability of a particular production level. We note that our statistical procedures focus on long
run or expected production levels over a range of environmental conditions, such as marine survival
probabilities, that are in practice not deliberately manipulable by man. A non-habitat factor that
can affect production levels for chinook salmon population dynamics in particular (or any salmon
species with different maturation ages possible) is age-specific harvest rates. In Appendix A, we
present an example of the impact on production due to differences in harvest rates alone.

The purpose of this report is to present statistical procedures that could be used to determine
whether the mandate of Title 34 for salmon has been, or is being met. One set of procedures
is focused on detecting, or determining whether, a doubling of natural production has occurred.
These procedures can be roughly categorized as being either estimation or testing procedures.
The other set of procedures aims to determine whether or not sustainable increases in production
have occurred. These latter procedures can be approximately viewed as explanatory modeling
procedures. The nomenclature is not exact in that the estimation or testing procedures are based
on underlying statistical models, but such models may provide neither explanation nor insight into
why production might have changed nor may they indicate whether or not resulting production
levels are sustainable.

The structure of the remainder of the report is as follows. The next three sections (Sections 2, 3,
4) focus on answering the question: “Has doubling occurred?”. In Section 2 we present two idealized
situations for a change in current production levels relative to baseline production along with some
simple statistical procedures. The idealized situations is far from the real situation, however, and
this section is partially intended to be a warning against using simple standard statistical procedures
for determining if doubling has occurred. The next section, Section 3, departs from the idealized
situation in the direction of reality by focusing on the particular problems of measurement errors
in production estimates and environmental and demographic stochasticity, especially temporal
dependence. Then Section 4 presents a statistical framework, the state-space model, that could
serve as a statistical tool for modeling production in the presence of the above problems of errors
in production estimates and temporal dependence between annual production levels. Section 5
focuses on the question: “Assuming doubling has occurred, is it sustainable?”. Section 6 ends the
report with a discussion that includes concerns about estimates of production during the baseline
and later periods.

We note here that Chinook salmon are the anadromous species that we use for demonstration
and are the species that we have focused on in earlier work aimed at developing production esti-
mation procedures (Newman, Hicks, and Hankin, 2004). The other anadromous species identified
by Title 34 (steelhead, striped bass, sturgeon, and shad) are not addressed specifically but some
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of the statistical procedures proposed herein could be applied, perhaps with minor modification,
assuming the necessary data are gathered for those species.

2 Idealized scenarios and statistical procedures

In this section we present two idealized scenarios where more or less standard statistical procedures
could be used to determine if a doubling in production has occurred. We emphasize that these
scenarios do not reflect reality and we later point out where reality departs from these scenarios
and how standard statistical procedures are thus inappropriate.

We imagine two idealized scenarios for a doubling of production to occur following the baseline
period of 1967-1991. For both scenarios we assume perfect information, namely no measurement
or estimation error in the production values. Process variation, demographic and environmental
stochasticity, exists but is assumed constant. The two scenarios are plotted in Figure 1. In the
first case (Figure 1 a), labeled sudden increase, there is an immediate and exact doubling of the
mean production beginning in 1992. In the second case (Figure 1 b), labeled linear increase, there
is a steady upward linear trend in the mean production level such that average production in 2001
(ten years after the baseline period) exactly equals twice the baseline period average and then
the average production remains constant from then on. If in fact production should more than
double, the ability to determine whether production has at least doubled will increase; this point
is emphasized in the later section on a Bayesian solution.

The examples plotted in Figure 1 were based on the estimated baseline values for Deer Creek
fall-run Chinook salmon production. In the sudden increase case, the production values are assumed
normally distributed with means, µB (B for before) and µA (A for after), and a constant standard
deviation (in the figure, σ2=4002); namely,

Pt ∼

{
Normal(µB, σ2) t= 1967, . . . , 1991
Normal(µA = 2 ∗ µB, σ2) t= 1992, . . .

}

In the linear trend case,

Pt ∼


Normal(µB, σ2) t= 1967, . . . , 1991

Normal
(
µB + µB

(t−1991)
10 , σ2

)
t= 1992, . . . , 2001

Normal(µA = 2 ∗ µB, σ2) t= 2002, . . .


The statistical procedures for determining whether or not a doubling has occurred, or in the

case of a linear trend, when it is likely to occur, involve inferences about the means.
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2.1 Inference for sudden increase

2.1.1 Hypothesis test

One approach is hypothesis testing, where the null hypothesis is that doubling has not been achieved
and the alternative is that average natural production has at least doubled.

Ho : µA < 2µB ≡ µA − 2µB < 0

Ha : µA ≥ 2µB ≡ µA − 2µB ≥ 0

This formulation is awkward in that under Ho, the set of possible values of µA is infinite and
the most conservative value to choose for testing the µA is 2µB− , where µB− is infinitesimally
smaller than µB. The underlying t-statistic that would be appropriate is identical to that for a
mathematically less awkward formulation, namely,

Ho : µA ≤ 2µB

Ha : µA > 2µB.

This formulation is troublesome, however, in that if µA=2µB, i.e., an exact doubling has occurred,
then one would not want to reject Ho. This is indicative of one of the limitations of “classical”
significance testing.

2.1.2 Lower confidence bound for µA − µB

A less awkward solution is to construct a 1-α lower confidence bound (LCB) for µA − µB. If the
LCB is greater than or equal to µB, then that is evidence for a doubling of the average. The point
estimate of µA−µB is PA−PB, the difference in average production levels in the before and after
time periods; i.e.,

PB =
1
25

1991∑
t=1967

Pt

PA =
1

nA

1991+nA∑
t=1992

Pt

The standard error of the difference,

SE(PA − PB) =

√
s2
A

nA
+

s2
B

nB
,

where s2
B and s2

A are the sample variances of production for the before and after periods and nB
and nA are the number of years of data for both periods. If one assumes that the variance is the
same for both time periods, then a pooled variance estimate would be calculated,

s2
p =

(nB − 1)s2
B + (nA − 1)s2

A

nB + nA − 2
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and the standard error is,

SE(PA − PB) = sp

√
1

nA
+

1
nB

,

The LCB, in this latter case, is

LCB(µA − µB) = PA − PB − t1−α,nB+nA−2SE(PA − PB)

It is likely that variances would change with changes in the mean production level, however, and
the degrees of freedom calculation is a little more complicated, and not worth going into here.

One can also use this formulation to examine the effect of sample size on the precision of the
inference. Assuming µA = 2µB, then the expected value of PA − PB is µB. Suppose one would
like the LCB for µA − µB to be within a specified level below µB, say kµB where 0 < k < 1.
For example, suppose µB=800, thus µA=1600, and k=0.9, i.e., one wants the LCB to be at or
above 0.9*800=720. The probability of this occurring can be calculated for various sample sizes
or number of years of data as follows. For simplicity standard normal quantiles, zα, are used to
approximate t-distribution quantiles (which would be a bit more accurate); relatedly the common
variance of production values, σ2, is assumed known.

Pr(LCB ≥ kµB) ≈ Pr
(

PA − PB − zασ

√
1

nA
+

1
nB

≥ kµB

)
(2)

Using the fact that

PA − PB ∼ Normal
(

µB, σ2

(
1

nA
+

1
nB

))
,

one can rearrange the terms in Eq (2) to get the result,

Pr

Z ≥ zα −
(1− k)µB

σ
√

1
nA

+ 1
nB


where Z is standard normal. nB can be viewed as fixed at 25 (years 1967 to 1991). A reasonable
α-level for the LCB is 0.05, thus zα=1.96. Suppose µB=800, σ=200, and k=0.9. The probability
in Eq (2) for different values of nA, namely number of years after 1991 that are monitored, are
shown in the table below.
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nA zα − (1−k)µB

σ
√

1
nA

+ 1
nB

Pr(LCB ≥ 720)

5 0.83 0.20

10 0.58 0.28

15 0.42 0.34

20 0.31 0.38

25 0.23 0.41

30 0.17 0.43

35 0.12 0.45

40 0.08 0.47

45 0.04 0.48

50 0.01 0.50

∞ -0.36 0.64

Note that the probability that the LCB exceeds 720 is at most 64%, no matter how many years
of monitoring are carried out. The reason for this bound is the fixed number of years in the baseline
period, nB, that creates fixed uncertainty about µB and therefore about µA − µB.

2.1.3 Bayesian solution

A Bayesian perspective is to view µA and µB as random variables in the sense that our knowledge
about them is uncertain (as opposed to µA and µB truly varying, say from year to year). One way
of framing our inference objective now is to calculate a probability statement of the following form.

Pr(µA ≥ 2µB|Data),

equivalently

Pr(µA − 2µB ≥ 0|Data). (3)

Such inferences about parameters made conditional on the data are called inferences from the
posterior distribution for the parameters. The determination of a posterior distribution requires
specification of a prior distribution for the parameters and a likelihood or probability model that
links the data to the parameters. Bayes theorem then can be used to calculate the posterior
distribution. In general if θ is a parameter, the posterior distribution for θ is

Pr(θ|Data) =
Pr(θ, Data)
Pr(Data)

=
Pr(Data|θ) Pr(θ)

Pr(Data)

=
Pr(Data|θ) Pr(θ)∫

Pr(θ, Data)dθ

=
Pr(Data|θ) Pr(θ)∫
Pr(Data|θ) Pr(θ)dθ
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where Pr(θ) is the prior distribution. Note that the denominator Pr(Data) can be evaluated by
averaging the probability of the data and θ, combined, over all possible values of θ. In short,
Bayesian inference uses data to update or modify a prior distribution, thus yielding a posterior
distribution.

In many cases to calculate the posterior distribution requires numerical computation methods,
often computer intensive Monte Carlo procedures. To demonstrate how the method would work
here, however, a simplifying choice of prior distributions is made, namely, that the priors for µA
and µB are independent normal random variables with the same mean µ and same variance γ2.
This implies that before viewing data we do not believe there has been any change in production
levels from the baseline period. γ2 should be chosen to be relatively wide to reflect our uncertainty
about the two means. We further assume (as for the LCB calculations above) that the production
values (Data) are independent normal random variables given the parameters, µA and µB, and
the variance is the same (σ2). After some algebra, one can show that the resulting posterior
distributions for µA and µB are independent normal distributions:

µB|Data ∼ Normal
(

σ2

σ2 + nBγ2
µ +

nBγ2

σ2 + nBγ2
PB,

σ2

σ2/γ2 + nB

)
(4)

µA|Data ∼ Normal
(

σ2

σ2 + nAγ2
µ +

nAγ2

σ2 + nAγ2
PA,

σ2

σ2/γ2 + nA

)
(5)

The Bayes solution to the probability in Eq (3) can be found by evaluating the following integral.

Pr(µA − 2µB ≥ 0|Data) =
∫ ∞

−∞

[∫ ∞

2µB

f(µA|Data)dµA

]
f(µB|Data)dµB, (6)

where f(µA|Data) and f(µB|Data) are the posterior (normal) density functions (Equations (4) and
(5)).

As a demonstration, the before (nB=25) and after (nA=30) production values were simulated.

Pt ∼

{
Normal(µB = 765, σ2 = 2002) t= 1967, . . . , 1991
Normal(µA = 2 ∗ µB, σ2 = 2002) t= 1992, . . .

}
The priors for µB and µA were independent Normal(µ=600,τ=400). The resulting production
means were PB=748 and PA=1473. The posterior distributions,

µB|P1967, . . . , P1991 ∼ Normal(746, 362)

µA|P1992, . . . , P2021 ∼ Normal(1465, 362).

The probability that µA is at least double µB was estimated by Monte Carlo integration:

Pr(µA ≥ 2µB) ≈ 0.37.

Note that µA is exactly 2µB in this case, but there is enough uncertainty about µB in particular
that even increasing nA to 3000 years only increases this probability to around 72% (the argument is
similar to issue of limits on a LCB’s precision). If in fact µA were 2.2µB, then Pr(µA ≥ 2µB) (given
nB=30 years) increases to 94%. It is simply more difficult to establish that natural production has
doubled if it has increased by a factor of 2.0 as compared to a factor of, say, 3.0 (i.e., “much more
than doubled”).
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2.2 Inference for linear increase, a trend

We just consider one parametric formulation to the issue of trend in this idealized setting. The
focus is on estimating trend and predicting when a doubling might be achieved; this is in contrast
to testing for trend. The underlying model for production is assumed to be:

Pt ∼


Normal(µB, σ) t = 1967, . . . , 1991
Normal(µB + β(t− 1991), σ) t = 1992, . . . , T

Normal(µA = 2 ∗ µB, σ) t ≥ T, . . .


The year T is unknown and the methodology below assumes that 1991+nA is some point in time
before T . One could develop a more general methodology to deal with the case nA > T and
determining this change point is an additional inference problem.

Given nA years of production values, the slope, β, is estimated by ordinary least squares.

β̂ =

1992+nA−1∑
t=1992

(Pt − P )(t− t)

1992+nA−1∑
t=1992

(t− t)2

To predict when E[Pt] ≥ 2µB, solve for T in the equation,

2µB ≥ µB + β(T − 1991)

⇒
T ≤ µB/β + 1991

Thus if µB=700 and β=100, then T ≤ 7+1991 = 1998 (in this case T=1998 is the year doubling is
achieved). Given an estimate of µB (the intercept in the linear model), the predicted value for T :

T̂ = [µ̂B/β̂ + 1991]

where the notation [x] means to take the next largest integer for x if x is not an integer. For
example, if x=2.3, [x]=3. Confidence intervals for T̂ could be calculated, too.

Nonparametric curves could be fit as well. Additional refinements would be nonparametric
functions restricted to be monotonically increasing functions (e.g., isotonic regression).

3 Complications

The methods developed in the previous section are not appropriate in reality because of at least
two complications that are departures from the idealized situation. These two complications are
measurement errors and temporal dependence.
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3.1 Measurement error

Production for a given year and stock must be estimated, and estimated production differs from
true production by measurement or observation error. This error has two components, bias and
variance. For a given year, the estimate of production can be decomposed into three components,

P̂t = Pt + bt + εt, (7)

where Pt is the true production, bt is bias or systematic error in one direction, and εt is random
error. εt is on average 0 and has some variance, denoted τ2

t .

3.1.1 Bias

Ideally bt=0, i.e., the estimates are unbiased and the average of multiple estimates of Pt would
be quite close to Pt. If bias does exist and if the bias was constant from year to year, i.e., bt=b

a constant, then some of the above procedures could still apply when inference centers on the
difference, µA − µB. For example,

E[PA − PB] = [µA + b]− [µB + b] = µA − µB

3.1.2 Random error

Similar to bias, it would be simplest if τ2
t were constant for all years. It is likely not constant,

however, but so long as estimates of τ2
t were available, relatively accurate inferential statements

about µA − µB are still possible.

3.1.3 Estimation of Pt

Estimation of Pt for a wild Chinook salmon stock is complicated and involves estimation of various
components of catch (ocean and freshwater) and escapement. For the purposes of Title 34 there
are two sets of production estimates to consider, the baseline period estimates and estimates made
afterwards. Both sets of estimates will have bias and random error. We have concerns about baseline
period estimates and make recommendations about procedures for making future estimates (see
Section 6).

3.2 Dependence in Pts

The second complication is that annual production levels, Pt, are not independent between years.
One source of between year dependence arises from the fact that a single cohort contributes to the
production for multiple years. If, for example, the age 2 survival is very high for a cohort from
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brood year t, then that cohort will contribute larger than average numbers of fish to the age 2
component of Pt+2, to the age 3 component of Pt+3, and so on. Underlying this dependence is both
demographic stochasticity (e.g., number of fry produced will vary between occasions with identical
escapement and environmental conditions) and environmental stochasticity (e.g., river flows vary
between years during juvenile residence).

To demonstrate the possible degree of between year dependency, simulations of abundances were
made using a life history model for Sacramento winter-run Chinook salmon (Newman and Lindley
in prep). Winter-run Chinook salmon return mostly at ages 2, 3, or 4. The simulation model
generates outmigrating juveniles from a stochastic Beverton-Holt recruitment function. It also
generates sex-specific age 2 ocean residing fish (non-maturing) and age 2 spawners using multinomial
distributions (with parameters being survival rates and maturation rates). Multinomials are also
used to generate age 3 and age 4 fish (sex-specific, immature and mature, where all age 4 fish
are mature). The stochastic Beverton-Holt model and the multinomials generate demographic
variation, and environmental variation is simulated by allowing the age 2 survival rate (survival
from outmigrating juvenile phase to age 2 ocean phase) to vary at random. There is no harvest in
the simulation.

Figure 2 shows a time series plot of the simulated production for a 60 year period along with an
autocorrelation plot with lags up to 19 years. The autocorrelations are quite high for lags of one
and two years, and are statistically significant (>0) for up to 4 years. In the presence of harvest, if
the harvest varies much between years, the degree of between year dependence will likely lessen. In
any case, testing or estimation procedures that ignore between year dependence will be potentially
misleading.

3.3 Modifications to procedures for idealized situation

In the remainder of this section, we examine two modifications to some of the analysis procedures
described in Section 2 and we focus just on the problem of measurement error. Modifications
to procedures in Section 2 to reflect dependency alone can be made, for example, using an AR-4
model, (autoregressive model of order 4), but we defer treatment of dependency to Section 4. State-
space models are a unified approach for handling measurement errors and interannual dependence
simultaneously and details are given in Section 4.

3.3.1 Sudden change and measurement errors

The following model is assumed for production estimates.

P̂t|Pt ∼ Normal(Pt, τ2
t ), t = 1, . . . , nB, nB + 1, . . . , nB + nA

Thus conditional on the true production, the estimate is unbiased and has a variance that can vary
from year to year. It can be shown that the probability distribution for P̂t unconditional on Pt is
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also normal and is the following.

P̂t ∼ Normal
(
µBt, σ

2 + τ2
t

)
, t = 1, . . . , nB

P̂t ∼ Normal
(
µAt, σ

2 + τ2
t

)
, t = nB + 1, . . . , nB + nA

Assuming that the variances in the estimates, τ2
t , are known (or, more realistically variance

estimates are available and then treated as equal to τ2
t ), the three parameters, µB, µA, and σ2, can

be estimated by maximum likelihood. The estimates are found iteratively (i.e., there is no closed
form analytic solution) using a technique called Fisher scoring. The estimates at the k+1 iteration
are found by the following formula.


µk+1

B

µk+1
A

σ2(k+1)

 =
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µk

B

µk
A

σ2(k)

+


[∑nB

t=1
1

τ2
t +σ2(k)

]−1

0 0

0
[∑nB+nA

t=nB+1
1

τ2
t +σ2(k)

]−1

0

0 0
[∑nB+nA

t=1
1

τ2
t +σ2(k)

]−1





∑nB
t=1

P̂t−µk
B

τ2
t +σ2(k)∑nB+nA

t=nB+1

P̂t−µk
A

τ2
t +σ2(k)

−0.5
∑nB+nA

t=1
1
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t +σ2(k)

+0.5
∑nB

t=1

(P̂t−µk
B)2

τ2
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+0.5
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(P̂t−µk
A)2
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t +σ2(k)



A LCB for µA-µB can again be constructed and is equal to:

µ̂A − µ̂B − zα

√√√√√[
nB∑
t=1

1
τ2
t + σ2(k)

]−1

+

[
nB+nA∑
t=nB+1

1
τ2
t + σ2(k)

]−1

The estimated variances of µ̂A and µ̂B are taken from the first two elements on the diagonal of the 3
by 3 matrix in the above iterative estimation procedure (the matrix is called the Fisher Information
matrix).

3.3.2 Linear increase and measurement errors

Estimation of the slope parameter proceeds in similar fashion to the estimation in the sudden
increase case. The unconditional distributions for P̂t have variances increased by measurement
errors.

P̂t ∼


Normal

(
µB, σ2 + τ2

t

)
, t = 1967, . . . , 1991

Normal
(
µB + β(t− 1991), σ2 + τ2

t

)
, t = 1992, . . . , T

Normal
(
µA = 2 ∗ µB, σ2 + τ2

t

)
, t ≥ T, . . .


Maximum likelihood estimates for µB, β, and σ2 can again be found using an iterative procedure
such as Fisher scoring.
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Given estimates of µB and β, T can be predicted as before,

T̂ = [µ̂B/β̂ + 1991],

but now the variance estimate for T̂ needs to be inflated somewhat, compared to that in Section
2.2, to reflect measurement error.

4 State-space models for production and estimates of production

A single coherent framework that can account for error in production estimates and reflect interan-
nual dependence in underlying true production levels is a state-space model (SSM). A SSM also has
the ability to efficiently incorporate data generated from multiple sources for multiple components
of production, e.g., juvenile abundances, catch, and escapement data. Additionally, depending
upon the formulation of an SSM and available data, the resulting model can describe, and possibly
explain, why production levels are what they are.

A SSM is a model for 2 time series, one called the state process (labeled nt) and the other called
the observation process (labeled yt). A general formulation is the following.

Initial state n0 ∼ G(θ)

State process nt ∼ G(nt−1, θ), t = 1, . . . , T

Observation process yt ∼ F (nt, θ), t = 1, . . . , T

where G and F denote particular probability distributions, e.g., normal or binomial, and θ rep-
resents unknown parameters, e.g., measurement error and process error variances. Note that the
model for the state process suggests that nt only depends upon the immediate past nt−1; this is
called a first order Markov process. The dependence can extend further in the past, but the model
is technically no longer called a state-space model. We could use the term hidden process model
for the more general case but will for simplicity stick with SSM even when dependence extends
further in the past. Buckland et al. (2004) give several example formulations of SSMs for animal
population dynamics.

The inference objectives for SSMs are usually twofold: (1) to estimate the unknown parameters;
(2) to estimate the unknown state values. To make such inferences, Monte Carlo procedures,
including Markov chain Monte Carlo (Gilks, Richardson, and Spiegelhalter, 1996) and sequential
importance sampling (Doucet, de Freitas, and Gordan, 2001), are typically used.

For the particular problem of detecting changes in average production, we consider two different
SSM formulations. The first model is simpler and less explanatory than the second.

4.1 Simple SSM

This model focuses on total production rather than the components of production, catch and
escapement. The between year dependence in production levels is treated somewhat as a blackbox
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and observations are estimates of total production (along with estimates of variance). For example,
in the case of sudden increase,

Initial state P0 ∼ Normal(µB, σ2)

State process Pt ∼ Normal(ρPt−1, σ
2), t = 1, . . . , nB

Pt ∼ Normal(µA, σ2), t = nB + 1

Pt ∼ Normal(ρPt−1, σ
2), t = nB + 2, . . . , nB + nA

Observation process yt ∼ Normal(Pt, τ2
t ), t = 1, . . . , nB + nA

The parameter ρ reflects the between year dependence in production levels, and the parameters σ2

and τ2 are the state process variation and observation error, respectively. The observation process
could be lognormal instead of normal to ensure estimates are non-negative.

The state process is an example of a first order autoregressive model, where production in year
t just depends upon the previous year’s production. The model could be extended to second order
as follows.

Initial states Pt ∼ Normal(µB, σ2), t = −1, 0

State process Pt ∼ Normal(ρ1Pt−1 + ρ2Pt−2, σ
2), t = 1, . . . , nB

Pt ∼ Normal(µA, σ2), t = nB + 1

Pt ∼ Normal(ρ1Pt−1, σ
2), t = nB + 2

Pt ∼ Normal(ρ1Pt−1 + ρ2Pt−2, σ
2), t = nB + 3, . . . , nB + nA

In the case of linear trend, with first order autocorrelation say, the state process model would
include time and the previous production level.

Initial state P0 ∼ Normal(µB, σ2)

State process Pt ∼ Normal(ρPt−1, σ
2), t = 1, . . . , nB

Pt ∼ Normal(µB + β(t− 1991) + ρPt−1, σ
2), t = nB + 1, . . . ,

4.2 Production component SSM

In this SSM formulation individual components of production are separately modeled in the state
process and the observations consist of estimates for each component and associated variances. The
state and observation at time t are thus vectors of components. To reduce the number of equations
slightly in the formulation below we assume that all age 4 fish mature; extending the model to
allow age 5 fish is not difficult. Further, a distinction between freshwater and marine harvest is not
made; again, a more complex model can be formulated to allow this. Observations are estimates
of the components of production (and possibly abundances for other life history stages, especially
juveniles). Thus the method of production estimation of Newman, Hicks, and Hankin (2004), for
example, could be providing the estimates. As will be mentioned in Section 6, a considerably more
complex SSM would include production estimation as part of the model, i.e., raw sample data
rather than production estimates would serve as inputs or part of the observation vector.
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In this demonstration we assume the state process distributions are trinomial (Trin) for the
catches and escapements and a rounded lognormal distribution for juveniles based on an underlying
Beverton-Holt recruitment function. Alternate recruitment functions are easily substituted.

Jt ∼ [Lognormal]

(
log

(
S2+3+4,t−1α

1 + β(S2+3+4,t−1)

)
, log(CVBH

2 + 1)

)
(C2t, E2t) ∼ Trin (Jt−1, φ2h2, φ2(1− h2)ρ2)

(C3t, E3t) ∼ Trin

(
Jt−2 − C2,t−1 − E2,t−1,

φ2(1− h2)(1− ρ2)φ3h3

1− ψ2
,
φ2(1− h2)(1− ρ2)φ3(1− h3)ρ3

1− ψ2

)
ψ2 = φ2h2 + φ2(1− h2)ρ2,

(C4t, E4t) ∼ Trin

(
Jt−3 − C2,t−2 − E3,t−2 − C3,t−1 − E3,t−1,

φ2(1− h2)(1− ρ2)φ3(1− h3)φ4h3

1− ψ3
,
φ2(1− h2)(1− ρ2)φ3(1− h3)φ4(1− h3)

1− ψ3

)
ψ3 = φ2h2 + φ2(1− h2)ρ2 + φ2(1− h2)(1− ρ2)φ3h3 + φ2(1− h2)(1− ρ2)φ3(1− h3)ρ3

The observation vector would consist of estimates of age 2, 3, and 4 catches and escapements, and
potentially estimates of outmigrating juveniles. Normal or lognormal distributions could be used.

Changes in production would be reflected in the state process and there are several ways to do
this. If juvenile estimates are available, then increases in production could be modeled by increases
in the α parameter of the Beverton-Holt model (partially reflecting increases in in-river juvenile
survival rates) and/or by decreases in the β parameter (reflecting reduced density dependent mor-
tality or increased habitat availability). With the sudden increase scenario, the α parameter could
increase at the change point to some arbitrary amount; similarly β could decrease. With the linear
trend model, the α parameter would be modeled as a function of time, just as production itself
was in earlier examples. If juvenile estimates are not available, then increases in α and age 2 sur-
vival rates φ2 are confounded, thus increases in production could be due to better in-river juvenile
survival rates or better marine conditions. Models which allow for dynamic juvenile production
parameters are discussed in the next section.

5 Sustainability of production

A review of scientific and statistical literature revealed that the situation created by Title 34, namely
one of an ecosystem being in one state prior to some point in time (prior to 1992) and then changing
to another state at some later point, is similar to other situations that have been extensively dealt
with The literature has been largely motivated by the need for environmental impact statements
(both for planned development and for after-the-fact assessment of environmental disasters, such
as the Exxon Valdez oilspill) and ecosystem restoration projects. For general approaches see Smith
(2002a, 2002b), Stewart-Oaten et al. (1986), and Underwood (1994); for related fisheries examples
see Crawford (2003, 2004) .

The literature makes a distinction between two aspects of an assessment of a potential change in
an ecosystem. One aspect is simply to determine if a change did occur, in terms of the abundance of
one or more species, for example, and to estimate the effect size. The second aspect is to determine
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whether there have been positive changes in various life history parameters, say, that are likely to
be ongoing rather than temporary. The previous three sections of this report have been devoted
to the first aspect, determining if the production level has at least doubled and/or estimating the
magnitude of the change in production between two time periods. Determining whether a new
production level is sustainable is closely related to the second aspect of assessment discussed in the
literature and is the focus of this section.

Implicit to a statement that a new production level is sustainable is the notion that the expected
or average production that underlies year-to-year environmental and demographic stochasticity is
at a new level. In statistical terms, there have been fundamental changes in life history parameter
values central to a stochastic model. Simple comparisons of observed (or estimated) mean produc-
tion levels between two time periods do not provide sufficient evidence for a fundamental change
in parameter values. The underlying problem is that one is dealing with an observational study
and not a randomized experiment where “treatments” can be randomly applied to different cohorts
(relatedly to different time periods). To try to determine if fundamental changes in parameter
values have occurred, one tries to separate out, or control for, the effects of natural environmental
variation on observed mean production levels. The fact that there are cycles to marine conditions,
and subsequently, periods of “high” and “low” ocean survival rates, can confound simple compar-
isons of mean levels. For example, high ocean survival rates may coincide with one period and low
rates may coincide with the other period. Similarly, changes in age-specific harvest rate configura-
tion can lead to changes in average production levels (see Appendix A), and can thereby confound
simple comparisons of mean production levels. In short, a doubling of natural production might
reflect short-term improvements in ocean survival conditions and/or major changes in age-specific
ocean and/or freshwater harvest policies.

Considering the entire life history of Chinook salmon, the key to sustainability are survival rates:
(a) egg to fry to tributary outmigrant; (b) tributary outmigrant survival through the Sacramento
and San Joaquin Rivers and the delta system to the ocean; (c) ocean survival rates to age 2; (d)
ocean survival rates between successive ages (which reflects harvest rates). Fecundity (# eggs per
fish or per body weight or age) varies significantly between individuals within a given year, but
does not show much variation across years (except perhaps for strong El Nino-type events) and
is therefore not a substantial determinant or measure of changes in the success of a population
in a given environment. Improvements in instream freshwater habitat conditions should increase
both (a) and (b) above and together will affect the magnitude of the productivity parameter
of a stock-recruitment function. Increased habitat availability (e.g., the removal of a barrier to
upstream migration) instead will increase total production (e.g., decreasing the value of the density
dependence parameters in recruitment functions). With reference to a life history model, such
as one embedded in the production component state-space model formulations, such changes in
habitat could be manifested by changes in the downstream migrants/spawner and density dependent
parameters of a recruitment model, where recruitment is defined by number of fry, say, and by
changes in the expected in-river survival rates between fry and outmigrating smolt stages.

We maintain that the ultimate measure of sustainable production is the expected juvenile pro-
duction over a long time period with age-specific harvest rates and marine survival rates held
constant, or controlled for. An index of this expected juvenile production, that controls for spawn-
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ers, is the expected maximum recruitment multiplied by expected survival rate between fry and
outmigrating smolt stages. For the purpose of demonstration alone, consider a Beverton-Holt
recruitment function, namely,

Fry = Spawners
α

1 + β Spawners
.

We define the index of expected maximum recruitment, labeled MJPI (maximum juvenile produc-
tion index),

MJPI =
α

β
µφr ,

where µφr is the expected survival rate (in-river) of fry to outmigrating smolt. Note that unless
fry are measured as well as outmigrating smolts, there is no way to distinguish increases in α from
µφr , however. Thus it is nearly equivalent (whether or not exactly equivalent depends upon the
underlying probability distributions) to redefine the recruits to be outmigrating smolts and then

MJPI =
α∗

β
, (8)

where α∗ reflects both fry/spawner, say, and in-river survival.

As defined above then, to determine sustainability, estimates of MJPI are needed. Models
which incorporate life history processes as well as demographic and environmental stochasticity
are thereby needed and a state-space model with life history embedded in the state process seems
appropriate. That an SSM also explicitly accounts for measurement errors is a further advantage.

Returning to the scenarios of a sudden increase or a trend, such changes would manifest them-
selves by changes in the MJPI, in particular by increases in α∗ and/or decreases in β. It would be
best if one would a priori specify which parameter is expected to be changing as a result of the
particular habitat restoration efforts, with different α∗ and β values allowed for different stocks in
different watersheds. Similar to the approaches taken previously under idealized situations, α∗, for
example, could be allowed to have one value in the baseline period and another afterwards, under
the sudden increase scenario, or have α∗ be an increasing function of time after the baseline period.
For example, the sudden increase case:

α∗t =

{
α∗B t= 1967, . . . , 1991
kα∗B t= 1992, . . .

}

where k ≥ 1.

A further complication remains, however, in that even evidence of an increase in MJPI does
not imply that habitat restoration efforts caused the increase. Restoration efforts on each watershed
can be viewed as part of an observational study in contrast to a designed experiment. The “treat-
ments” or the restoration efforts are not applied at random to particular watersheds or sections
of watersheds. Thus there is the possibility that observed increases in MJPI are due largely to
other changes in ecosystem conditions, e.g., higher than average water flow levels. As always, in
an observational study there is the danger of confounding factors, other variables not manipulable
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by the scientist or manager, that affect the response of interest (and possibly interact with the
treatment).

Two statistical tools aimed at lessening the potential impact of confounding factors are the
use of controls and the use of covariates. For controls, one would like to find stocks (implicitly,
streams) that have not experienced restoration efforts and are thought to have yielded production
levels somewhat proportional to those of the restored stocks during the baseline period. During
the period after restoration efforts, production levels for the control stock should roughly parallel
what would have happened to the treatment stock in the absence of treatment. Figure 3 shows an
example of such a situation for both the sudden increase and linear trend cases. Such a design is
called a Before-After Control-Impact or BACI design (Stewart-Oaten, Murdoch, and Parker, 1986),
or more accurately a BACI Paired design (Smith, 2002a) in that multiple measurements are taken
over time at both the control and “impact” (restored) sites. A standard procedure for analyzing
such designs is a two-sample t-test comparing the average differences between control and impact
sites in the before and after periods. More than one control site can be included, as well, in the
design and then the analysis is a type of ANOVA (Underwood, 1994).

The standard analyses of BACI designs, however, assume no measurement error and no temporal
dependence. Once again a state-space model seems an appropriate tool for analysis. In this case
the state and observation vectors would be extended to include values and measurements taken
on the control site (stock). The underlying state process might assume identical, or nearly so,
environmental variation.

The other statistical tool for dealing with confounding factors is the use of covariates. An
example is the use of analysis of covariance (ANCOVA) whereby comparisons are made between a
treatment and a control group (or multiple treatment and control groups) with covariates thought
to influence the response of interest included in the model, hence “controlled for”. For example
when comparing mortality rates of male smokers and non-smokers, the man’s age is a confounding
factor and is thus included as a covariate in the model for mortality rate and an “age-adjusted”
effect of smoking is reported. A similar device could be used by including covariates in the modeling
of the parameters of the state process. For example, if a restoration project is carried out in some
year, its possible effect on the α∗ parameter could be modeled by included a dummy variable for a
change beginning that year.

Covariate information for the baseline and later periods could perhaps be provided by using
existing hatchery release and recovery data for adipose-clipped and coded-wire-tagged fish from
Central Valley hatcheries. In particular year-specific indices for river and ocean survival rates
might be developed from such data. The contrast between survival rates or indices for fish released
at different locations in the Sacramento and San Joaquin systems could provide some assessment
of impacts in the systems as opposed to the ocean. Variation across years would then provide a
measure of temporal variability in these same survival rates.

There are a lot of unworked details still to consider with regard to the formulation and fitting
of a state-space model aimed at determining sustainability. For example, for a BACI analysis,
control sites, which have production estimates during the baseline period, would need to selected.
Potential biases in baseline period production estimates are another issue (discussed later). The



CVPIA Doubling Goal 22

use of a state-space model that includes control stocks and covariates, however, is in principle a
sound approach.

6 Discussion

6.1 Selection of approaches for detecting doubling and determining sustainabil-

ity

Statistical methods for comparing current production levels with the baseline period levels are
complicated by two factors: errors in the estimates of production and temporal dependence in
production levels. Standard elementary procedures for comparing means, such as t tests and t-
based confidence intervals for differences in means, or elementary procedures for estimating trends,
such as regression models, are based on assumptions of no measurement errors and independence
between observations. Because the available production figures do have measurement errors and
are temporally dependent, these standard procedures are inadequate. Alternatively, state-space
models explicitly incorporate measurement error and temporal dependence and appear to be the
best framework for comparing baseline and current production levels.

State-space models are also a potential tool for achieving the second objective of determining
whether changes in production are sustainable. There are additional data needs and additional
complications to the formulation of the model. In particular, to better make the case that ecological
restoration efforts are responsible for increases in production, information from “control” sites
and/or the inclusion of relevant covariates to model life history parameters, namely recruitment
parameters, are needed.

We want to make clear that while state-space models appear to be the best tool, we have three
concerns that need to be considered before attempting to fit a state-space model. The concerns
are:

1. The quality of estimates of baseline period production.

2. The need for estimates of the imprecision, and potential bias, in baseline production estimates.

3. The need to be gathering data now that will allow unbiased, or negligibly biased, estimates
of production and also yield estimates of imprecision.

In the remainder of this report we discuss each of these concerns in more detail.

6.2 Concerns Regarding Existing Estimates of Natural Production

In previous sections, we have provided sketches of a number of possible statistical methods that
could conceivably be used to determine if abundance trends for natural production of CV Chinook
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salmon might support a conclusion that a sustainable doubling of production has or has not taken
place by some fixed date. Potential application of these statistical methods is complicated by two
factors. First, the CVPIA itself and Appendix A of the Final Restoration Plan for the Anadromous
Fish Restoration Program (USFWS 2001) both seem to call for doubling to be achieved on river-
or stream-specific bases. Section 3406 (b)(1) of Public Law 102-575 states, in part: “... natural
production of anadromous fish in Central Valley rivers and streams will be sustainable, on a long-
term basis, at levels not less than twice the average levels attained during the period of 1967-1991...”
And, at Appendix A-15 of the Final Restoration Plan, it is stated that: “Numeric restoration goals
for Chinook salmon in each stream will be calculated as at least double the average of PX,N,XX
for each of the years during the baseline period.” Together, these statements leave little doubt that
it would not be enough to double overall natural production of, say, fall-run Chinook salmon in
Central Valley streams. Instead, production is to be doubled, on a sustainable basis, in individual
tributary streams.

To estimate stream-specific production, stream-specific data are needed and, for reasons that
will become apparent below, subsequent analysis of such data to assess abundance trends becomes
complicated.

6.2.1 Methods Used to Generate Existing Data (1967-present)

In this section we first present a brief summary of the methods that have been used to generate
stream-specific estimates of natural production for Central Valley streams. Our attention is cen-
tered on fall-run Chinook salmon because we have greatest experience with this race or run type
and also because it is by far the dominant race of Chinook salmon in the system today. The essen-
tial analysis methods that have been applied to fall-run Chinook salmon have also been applied for
other races (spring-, late-fall- and winter-runs) of Central Valley Chinook salmon, however, and we
briefly point out the special problems that these other races present as compared to fall-run Chi-
nook salmon. Our summary relies on our examination of three essential types of documents: (1) A
compilation of CV annual freshwater run size, harvest and population estimates (Mills and Fisher,
1994); (2) Appendix A of the Final Restoration Program for the Anadromous Fish Restoration
Plan (USFWS, 2001); and (3) LOTUS-123 computer spreadsheets KINGPROD.WK3 and CHI-
NOOKPRODUPDATED.62503c.123 (R. Burmester, USFWS, pers. comm.). The Mills and Fisher
(1994) publication apparently provides the authoritative freshwater escapement and hatchery return
data and ocean sport and commerical catches from San Francisco and Monterey from 1967 through
1991 and was apparently prepared to allow implementation of the CVPIA1. The AFRP Appendix
describes how ocean catch and other issues, such as in-stream harvest and hatchery proportions,
are to be incorporated in estimates of stream-specific natural production; the two computer files
reflect inter-agency attempts to apply the guidance provided in the AFRP Appendix. To the best of
our knowledge, the values that are currently presented in CHINOOKPRODUPDATED.62503c.123
are those that would be subjected to the statistical analysis methods that we have proposed in
this report. Burmester (USFWS, pers. comm, see also file caveats2.wpd) provides a summary of

1Grandtab has been used for production estimates starting in 1992 (Belmer, pers. comm).
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some caveats that pertain to existing data and also indicates instances for which current catch
or escapement values differ from those found in Mills and Fisher (1994). Following our review of
the methods that have been proposed and used to generate stream-specific estimates of natural
production, we provide a critique of these methods, pointing out the most important assumptions
that have been made and their probable importance with respect to overall errors of estimation.
We do not mean to imply that the importance or weaknesses of many of these assumptions have
not been previously recognized (see, e.g., Burmester’s caveats2.wpd file), but we do mean to call
attention to the potential impacts of these assumptions on errors of estimation. As appropriate,
we briefly consider special complications that may arise when these same methods are applied to
the three other runs of chinook salmon.

Before presenting a summary and critique of methods that have been used to generate estimates
of natural production, we are obligated to present a rigorous definition of just what is being mea-
sured by natural production. Natural production consists of “fish produced to adulthood without
direct human intervention in the spawning, rearing, or migration processes” (CVPIA Section 3403
(h)) and is defined, for a particular stream, as the sum of the (a) number of adult fish that are
harvested in the ocean (commercial + recreational), (b) the number of adult fish that are harvested
in freshwater, and (c) the number of adult fish that escape to spawn in that stream, or stray to
a hatchery on that stream in a particular year. This definition of production differs from more
formal definitions of production in that it excludes fish that were produced but were not caught or
did not escape to spawn (i.e., natural mortalities). Also, for an age-structured species like Chinook
salmon, this definition of production reflects the contribution of spawning adults from at least three
different brood years as age 3, 4, and 5 adults that are caught or escape to spawn in year t were
produced by adults spawning in years t− 3, t− 4, and t− 5. As noted previously, this means that
natural production values in successive years have substantial autocorrelation.

6.2.2 Summary of Methods

As indicated above, the obvious conceptual approach for calculation of the annual natural produc-
tion of adults from a specific stream would be to simply add up the ocean catch plus freshwater
catch plus freshwater spawning escapement from that stream. Unfortunately, data are not available
that would allow that kind of direct stream-specific addition of the major components of produc-
tion. Instead, a much less direct and more involved procedure must be used, as was proposed
in Appendix A to the AFRP (USFWS, 2001). The notation used below simplifies and hopefully
clarifies the notation presented in Appendix A, but is otherwise a faithful representation of the
methods recommended in that Appendix:

An alternate formulation of Appendix A of AFRP Final Restoration Plan

• Step 1. Calculate the total size of the freshwater run that enters stream i, Ri, as:

Ri = CF,i + ES,i + EH,i
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where CF,i = freshwater catch from within stream i itself; ES,i = freshwater spawning es-
capement in stream i; and EH,i = hatchery spawning escapement in stream i.

• Step 2. Calculate ocean catch from stream i, CO,i as:

CO,i = CO ·

[
Ri/

k∑
i=1

Ri

]
where CO = total estimated ocean commercial and recreational catch of adult salmon from

the ports of San Francisco and Monterey, and
k∑
i=1

Ri = total estimated freshwater run sizes of

all k “populations” returning to the Central Valley. Note that the k populations include all
recognized populations of fall-run Chinook salmon but also include all recognized populations
of winter-, spring- and late-fall-run Chinook salmon.

• Step 3. Calculate lower river freshwater catch from stream i, i.e. freshwater catch that ex-

cludes catch in the tributary stream itself, CL,i, as:

CL,i = CL ·

[
Ri/

k∑
i=1

Ri

]
where CL = total lower river freshwater catch.

• Step 4. Calculate the total production from stream i, PT,i as:

PT,i = CL,i + CO,i + Ri.

• Step 5. Calculate natural production from stream i, PN,i, as a fraction of total production in
stream i:

PN,i = (1− h)PT,i

where h = proportion of total production from stream i that is attributable to hatchery
production in that stream or elsewhere in the Sacramento/San Joaquin system.

Methods used in KINGPROD.WK3 and CHINOOKPRODUPDATED.62503c.123

Methods used to generate stream-specific estimates of natural production that are tabulated in
the KINGPROD.WK3 and CHINOOKPRODUPDATED.62503c.123 computer files appear to be
largely consistent with the methods proposed in the Appendix A of the AFRP Final Restoration
Plan, but reflect absence of annual estimates of freshwater catches in tributary streams and/or
in the lower Sacramento River and San Joaquin River and of the percentages of hatchery fish in
various streams. Because there are few or no existing estimates of freshwater catches and hatchery
fish percentages for individual streams, inter-agency biologists agreed upon reasonable guesses of
these quantities that allowed generation of the complete time series of stream-specific estimates of
natural production that seem required under the CVPIA doubling goals mandate.
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• Step 1. Calculate stream-specific estimates of total freshwater production (catch + escape-
ment) from stream i, R∗i , using:

R∗i = (1 + u)(ES,i + EH,i)

where u is a fraction that accounts for total freshwater harvest (i.e., harvest in the lower Sacra-
mento and harvest in a particular stream). Note that u is not a freshwater harvest rate. For ex-
ample, if u = .4 and the sum of stream-specific spawning escapement and hatchery escapement
were 1000,000 fish, then 40,000 additional fish would be accounted for by freshwater catches.
The freshwater exploitation rate would there be u∗ = 40, 000/(100, 000 + 40, 000) = 0.285.
Thus, the true exploitation rate, u∗, may in general be considerably less than the u values
reported in KINGPROD and CHINPRODUPDATED.

• Step 2. Calculate total production of adults from stream i using:

PT,i = R∗i + CO · [R∗i /
k∑
i=1

R∗i ]

This method seems largely consistent with the AFRP recommendations although it uses total
freshwater run sizes (i.e., including lower river catches) rather than just freshwater run sizes
to streams to adjust total ocean catches to stream-specific ocean catches.

• Step 3. Calculate natural production of adults from stream i using:

PN,i = (1− h)PT,i

6.2.3 Critique of Methods

The methods described above that have been used to generate existing estimates of natural pro-
duction in streams entering the Sacramento-San Joaquin system have an obvious solid conceptual
basis and would be unobjectionable if there were solid empirical data to support a number of very
important assumptions or assumed values that are used in the calculations. Because it is difficult
to determine the degree to which these assumptions are violated or assumed values are in error, it
is exceptionally difficult to quantify the magnitude of errors that maybe contained in the existing
estimates of natural production. Below we provide our initial assessment of the importance of
assumptions and assumed values used in the above calculations.

Scaling Ocean Catches to the CV Ocean Catch Index
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Chinook salmon originating from the Sacramento River have been subjected to intensive ocean
commercial and recreational fisheries over the entire period 1967-91 and they continue to be sub-
jected to intensive ocean fisheries today. According to the KINGPROD tabulation, over the period
1967-1998, average ocean harvest of Central Valley fall-run Chinook salmon was about 342,000 fish
as compared to an average total freshwater return (=

∑
R∗i ) of 264,000 fish. Calculation of the

ocean catch attributable to any particular CV stream is based on scaling the CV INDEX of ocean
catch (estimated San Francisco + Monterey port commercial and recreational landings), CO, by
the fraction of freshwater returns that are attributable to a particular stream (either Ri/

∑
Ri or

R∗i /
∑

R∗i ). There are two major assumptions made in these calculations that are unlikely to be
valid. First, the CV INDEX assumes that the total catch of Chinook salmon from the ports of
San Francisco and Monterey should be equal to the total ocean catch of Central Valley Chinook
salmon. As the geographic extent over which Central Valley Chinook salmon are caught extends at
least through southern Oregon in most years and ocean distribution of Chinook salmon is known
to vary substantially across years, it is exceptionally difficult to imagine that this assumption is
either correct or reasonable. Thus, even though ocean sampling programs probably generate essen-
tially unbiased and relatively accurate estimates of total catch, there are no historic data on stock
composition of ocean catches which might be used to evaluate the performance of the CV Index as
an estimator of ocean catch of Central Valley Chinook salmon. Modern genetic stock identification
methods, if applied in the context of ocean sampling designs, could probably deliver quantitative
estimates of ocean catch composition in the future.

Assuming that the CV INDEX provides an accurate estimate of the total ocean catch of Central
Valley Chinook salmon, the second problematic, but apparently unstated assumption is made in
the scaling of ocean catches. The scaling factor used here is Ri/

∑
Ri or R∗i /

∑
R∗i , essentially the

fraction of all CV returns of Chinook salmon that are accounted for by stream i. To scale up in this
identical fashion for all streams and races invokes an untenable assumption that all populations
experience the same ocean exploitation rates or that somehow the combination of stock-specific
maturation schedules, growth rates, and return times all result in the same fraction of fish being
caught in the ocean as compared to returning to freshwater in a given year. It is well known, for
example, that winter-run Chinook salmon are smaller at age and less susceptible to ocean capture
than other stocks of Chinook salmon. Similarly, spring-run Chinook salmon generally mature, on
average, at an earlier age and leave ocean fisheries for freshwater spawning streams several months
in advance of fall-run Chinook salmon stocks, thereby reducing their duration of vulnerability to
ocean fisheries. Finally, even within fall-run Chinook salmon stocks, differences in maturation
schedules or mean lengths at age can have profound impacts on the relation between freshwater
returns and ocean catches. At age 3, many fall-run Chinook salmon stocks are only partially
vulnerable to ocean fisheries because only a small fraction of age three fish may exceed legal size
limits. For many CV fall-run Chinook salmon stocks, mean ocean sizes at age 3 are often very
large, however, and almost all age three fish may be vulnerable to ocean fisheries. The point here
is that ocean fishery vulnerability likely varies substantially across stocks of CV Chinook salmon.
Without detailed and stock-specific information on differences in maturation schedules and sizes at
age among these stocks, it is impossible to judge how large “scaling” errors might be that result
from use of the factors Ri/

∑
Ri or R∗i /

∑
R∗i .
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Unknown Freshwater Harvest Rates and Contributions of Hatchery Fish

The actual calculations that appear to have been made in the KINGPROD and CHINPRODUP-
DATED files rely on two critical parameters that lack a substantial empirical basis. These param-
eters are u, a parameter that is somewhat related to the overall freshwater exploitation rate, and
h, the fraction of total production for a given stock type in a given stream (e.g., fall-run Chinook
salmon in the American River) that can be attributed to hatchery production. There are no avail-
able time series for freshwater exploitation rates in the lower river or in specific streams because
freshwater creel surveys have not been carried out on a long-term ongoing basis. The contribution
of hatchery fish to production of Chinook salmon in CV streams is poorly understood for two
primary reasons. First, marking programs have generally been deficient. For example, with the
exception of a very few years of experimental marking, essentially none of the approximately 8
million fall-run Chinook salmon released annually from Nimbus Hatchery on the American River
have been marked. Second, large numbers of Chinook salmon from essentially all of the existing
CV hatcheries have been released at locations far distant from the hatchery rearing locations. Such
“off-site” release practices have in many cases improved survival rates and ocean contributions of
hatchery fish, but they have also generated widespread straying (failure to return to hatchery or
stream of origin) throughout the system. Such offsite release practices are no doubt responsible for
the current lack of genetic differentiation among fall-run Chinook salmon stocks from at least the
Mokelumne, American, and Feather rivers.

The table below presents a few of the values that have been used in the KINGPROD and
CHINPRODUPDATED files to generate freshwater catches and to distinguish hatchery from nat-
ural production of fall-run Chinook salmon. These values have, with exceptions noted in the table,
generally been applied over the full 1967-91 period and also in subsequent years.

Stream u h comment
American R. 0.45 0.40
Feather R. 0.20 0.40 0.00 for 67-69, 92-94
Mokelumne R. 0.10 0.40
Battle Ck. 0.10 0.90
Merced R. 0.05 0.10 0.00 for 67-72, 92-97
Stanislaus R. 0.05 0.00
Tuolumne R. 0.05 0.00
Yuba R. 0.10 0.00
Butte Ck. 0.10 0.20
Mill Ck. 0.10 0.20
Clear Ck. 0.10 0.20

Scrutiny of the above table will reveal that freshwater harvest of fall-run Chinook salmon is
perceived to be relative modest (less than 10% of total freshwater returns) with the exception of the
American and Feather rivers where there appear to be moderately intense freshwater fisheries. In
most systems, therefore, absence of freshwater harvest data seems unlikely to have generated huge
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errors in estimates of total natural production. The wide range and somewhat conflicting values of
h, however, are a cause of substantial concern as these multipliers have substantial impact on the
estimates of natural production. In the absence of empirical data suggesting the degree to which
values of h might vary across years, it is difficult to calculate the magnitudes of errors or bias that
may result from application of generic constant values over an entire data set. One can, however,
explore the implications of assuming a constant h value in a particular stream given estimates of
spawning escapement and hatchery escapement in a particular river system.

To illustrate the potentially unlikely scenarios that are suggested as a consequence of an as-
sumption of constant h, we used the American River fall-run Chinook salmon stock as an example.
Although the h would normally be applied to the entire production from the American River, we
instead apply this value only to the sum of American River spawning escapement and Nimbus
Hatchery returns in a given year. The product of h(ES,i + EH,i) = Hi, say, where i = American
River, should give the number of hatchery fish in the American River in a particular year. If, for the
sake of argument, one assumes that all hatchery fish in the American River originate from Nimbus
Hatchery, then the ratio EH,i/Hi should provide a “homing rate” for fish returning to Nimbus
Hatchery in a given year. Over the period 1967-1998, the total recorded returns of fall-run Chinook
salmon to Nimbus Hatchery ranged from a low of 3,600 adults to a high of 20,600 adults, but were
relatively stable between about 5,000 and 13,000 fish, falling below 5,000 fish in only two years and
exceeding 13,000 fish in only two years. Yet, over this same period the calculated values of homing
rates, implied by the use of a constant value of 0.4 for h, ranged from 0.19 to 1.43 and exhibited
wide variation. Variation in these calculated values of homing rate did not exhibit a pattern that
seemed logically related to total hatchery returns or to total escapement, and the values exceeding
1.0 imply that more hatchery fish entered the hatchery than would have been accounted for in
the entire river using the constant h values. Thus, it seems highly unlikely that use of a constant
value of (1 − h) would result in meaningful estimates of natural production from a given stream.
Of course, the above hypothetical calculations must also be complicated by unknown straying of
hatchery fish from other systems, a phenomenon that no doubt varies substantially across years as
a function of release locations and relative survival rates for hatchery fish released from different
facilities. Also, it is possible that wild fish enter Nimbus Hatchery.

6.2.4 Conclusions

Existing estimates of natural production of Chinook salmon in Central Valley streams must clearly
have large errors, but it is extremely difficult to conjecture what the magnitudes of these errors
might be or the degree to which estimates may be seriously biased. Although estimates of error
should be available for mark-recapture estimates of spawning escapement, errors of estimated total
natural production originate from many other sources in addition to errors of estimation of spawning
escapement. It seems clear that numerous untenable assumptions had to be made and that several
important parameter values had to be assumed known in order to allow generation of estimates of
natural production for individual races and streams. Chief assumptions that are of concern to us
are: (1) the use of the CV Ocean Index (San Francisco + Monterey estimated total ocean salmon
catches) as an estimate of total ocean catch of Central Valley origin Chinook salmon; and (2) an
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assumption that catch:escapement ratios are the same for all CV stocks of Chinook salmon. Several
critical parameter values have been assumed constant over the period 1967-1991 (and through to
the present, so far as we can tell) and such assumed constancy seem untenable. The assumed
parameter values that cause us greatest concern are those relating to the contribution of hatchery
fish in various streams, particularly in the American and Feather rivers where h = 0.4 may cause
hatchery contributions to be underestimated.

Because the magnitude of errors of existing estimates of natural production may be large and
because there is no compelling reason to believe that existing estimates are approximately unbiased,
it seems clear to us that any analysis methods that seek to assess whether or not doubling of natural
production has taken place need to include measures of variance and bias in the baseline period
production estimates and statistically account for the uncertainty in the estimates. We suspect
that careful data analyses might allow one to develop some decent notions of the kinds of errors
that may exist in tabulated estimates of natural production, but we believe substantial effort would
be required to generate such notions. In this preliminary work, we have not had time to explore
such issues, but such work should be accomplished in the immediate future.

Depending upon the magnitude and nature of errors in estimates of production and depending
upon the magnitude of increased production, many years of additional data collection may be
necessary before one can confidently conclude that production has in fact at least doubled and that
the increased production is sustainable. Work by Newman et al. (2004) shows that the precision and
accuracy of estimates of escapement crucially affects the quality of overall production estimates,
advises that systematic tagging of hatchery stocks meant to serve as surrogates for wild stocks be
done, and further recommends that tagging of wild stocks be done where feasible in order to assess
how well hatchery stocks do in fact represent wild stocks.

6.3 Data needs and future production estimates

6.3.1 Alternative production estimates for the future

For production estimation in future years, we recommend that procedures developed by Newman,
Hicks, and Hankin (2004) be implemented as an alternative to procedures used for the baseline
period estimates. The procedure is similar to the “run reconstruction” approach described in
Appendix A of the AFRP document (USFWS, 2001), but not identical. Estimates of stock-specific
hatchery and natural (wild) production are based on designated tagged and marked surrogate
hatchery stocks which represent particular natural stocks.

A computer program, CFM Sim2, has been developed which simulates marking, tagging, and
catch and escapement sampling levels and the resulting estimates of production. It is a tool meant
to help fisheries managers determine appropriate data collection and generation levels, including
levels of constant fractional marking (CFM). These procedures require certain kinds of data to be
generated in addition to those currently being generated.

2Available at http://www.creem.st-and.ac.uk/ken/CFM/index.html.
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Work on the methodology for estimating wild production is incomplete in that a variance
estimator has not been formally developed. Statistical bootstrapping or resampling is a likely
approach to variance estimation. Additionally, the estimation procedure (based on what is called
the method of moments) is not the most statistically efficient procedure and can, for example,
yield negative estimates of production (a problem shared by the estimation procedures described
in Appendix A of the AFRP document). Also, the approach does not use juvenile production
data, which provide the most direction information about stream-specific productivity. A state-
space model formulation for the production of wild salmon and associated hatchery surrogates is
potentially the solution to all of these problems, but will require a considerable research effort to
develop and implement. Note that the state-space model formulations presented in Section 4 take
production estimates or components of production estimates (catch and escapement estimates) as
input. A more unified SSM approach would take the “raw data”, marked hatchery release and
recovery numbers, catch and escapement sample data, as input and generate production estimates.

6.3.2 The necessary data

No matter which particular procedure is used to estimate production, it seems clear that it is most
important to be collecting certain kinds of data now, that the data be of sufficiently high quality for
the purposes of estimating production, and to ensure that measures of the precision and accuracy
of the data are provided. Watershed specific escapement estimates of wild fish are one of the more
crucial data, ideally with age- and sex-specific estimates. Estimates of ocean catch are important
and believed to be of generally high quality. Estimates of freshwater catch, however, are lacking for
several watersheds and cutbacks in the budget of California Department of Fish and Game have
forced the closure of freshwater creel surveys.

The right kind of data includes age- and stock-specific estimates of catches and escapements:
ocean, mainstem, and stream catches, hatchery and in-river escapements. This implies a need for
taking scale samples of unmarked fish in the escapement, for example.

Additionally, estimates of the sex composition of catches and escapements, where possible, could
be quite useful (particularly for dealing with sex-specific maturation rates and more meaningful
spawner-recruitment models). We also argue for the selection of tagged and marked “indicator”
hatchery stocks meant to represent or serve as surrogates for unmarked natural stocks. Relatedly,
despite the difficulty of doing so, we would suggest attempting to tag and mark outmigrating
juveniles from natural stocks in order to determine just how well indicator hatchery stocks represent
natural stocks. Lastly, as has been partially implemented, estimates of juvenile production on a
per stream basis are needed.
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A The effect of age-specific harvest rates on production

Assuming that the underlying natural processes remain constant, changes in harvest rate practices
alone can lead to dramatic changes in production.

Suppose the underlying juvenile production model is Ricker (α=4000, β=0.001) and assume
lognormal variation (multiplicative variation in the juveniles produced at a given level of spawners)
with σ2=0.02. A program was written (in S-Plus) called exp.product that calculates expected
production based on the Ricker model, lognormal variation, age-specific annual survival rates, age-
specific maturation rates, and finally age-specific harvest rates for ocean and freshwater catches.

The example output shown below compares two different sets of age-specific harvest rates
and the resulting expected catch, escapement, and production. The Ricker parameters are the
same as are the survival rates (φ2=0.02, φ3=0.60, φ4=0.70) and maturation probabilities (ρ2=0.07,
ρ3=0.60). The harvest rates in the first example are 0.2 for age 2 fish in both marine and freshwater
fisheries, 0.3 for age 3 fish in both fisheries, and 0.5 for age 4 in a single fishery (say freshwater
alone). For the second example, age 2 and age 3 fish are harvested more intensively (0.4 and 0.6
for ages 2 and 3), but the age 5 harvest rate declines to 0.3.

exp.product(u2m=0.2,u2f=0.2,u3m=0.3,u3f=0.3,u4=0.5)

C= 3984 Esc= 3145 P= 7129

exp.product(u2m=0.4,u2=0.4,u3m=0.6,u3=0.6,u4=0.3)

C= 9780 Esc= 2486 P= 12265

By increasing the harvest on younger age classes, the catch levels increase, escapements decrease
somewhat, and the production on the whole increases by 72% for the second example compared to
the first.



CVPIA Doubling Goal 34

Figure 1: Artificial examples of two idealized production doubling scenarios. The vertical line

marks the division between the baseline and later periods. The dashed lines are the underlying

mean values.
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Figure 2: Simulated production levels based on a model for winter-run Chinook salmon. All

production is from escapement, harvest is zero. The horizontal dashed lines in the autocorrelation

plot are the 95% confidence limits about 0 (no autocorrelation).
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Figure 3: Artificial examples of two idealized production doubling scenarios along with the produc-

tion of a control stock. The vertical line marks the division between the baseline and later periods.

The dashed lines are the underlying mean values.

(a) Sudden increase (with control).
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(b) Linear increase, then level (with control).
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