Appendix C. Selection of the 19 Nearshore Fishery Species (click on title to return)

The 19 nearshore finfish fishery species were selected by using a matrix to indicate which ones were in greatest need of management attention, and then applying five criteria (explained below) to those species with high overall matrix scores. Initially, 266 species (those which occur in waters less than $100 \mathrm{fm} ; 183 \mathrm{~m}$) were processed through the matrix. However, sufficient life history information for many of these species was not available. Also, the nearshore depth range was reduced from 100 fm $(183 \mathrm{~m})$ to $40 \mathrm{fm}(73 \mathrm{~m})$. In the final analysis, 124 species were run through the matrix. The following criteria were then applied to those species with scores falling within the highest third of the matrix scores:

- ranks high in the 'live fish fishery' component of the matrix
- is a species with minimum size limits as defined by the Nearshore Fisheries Act (FGC §8588)
- is a species listed as nearshore groundfish by the Pacific Fisheries Management Council
- is associated with essential nearshore habitat (e.g., kelp forests and rocky reefs)

Through this process, 19 finfish species were selected: cabezon, Scorpaenichthys marmoratus; California scorpionfish, Scorpaena guttata; California sheephead, Semicossyphus pulcher; kelp greenling, Hexagrammos decagrammus; rock greenling, H. lagocephalus; monkeyface prickleback, Cebidichthys violaceus; black rockfish, Sebastes melanops; black-and-yellow rockfish, S. chrysomelas; blue rockfish, S. mystinus; brown rockfish, S. auriculatus; calico rockfish, S. dalli; China rockfish, S. nebulosus; copper rockfish, S. caurinus; gopher rockfish, S. carnatus; grass rockfish, S. rastrelliger; kelp rockfish, S. atrovirens; olive rockfish, S. serranoides; quillback rockfish, S. maliger; and treefish, S. serriceps.

These 19 species include all species with minimum size limits as defined by the Nearshore Fisheries Act and all species listed as nearshore groundfish by the Pacific Fisheries Management Council. These 19 species also have similar habitat associations.

C. 1 Matrix

C.1.1 Background

The intent of the matrix was to provide an indication of species in greatest need of management attention. The criteria in the matrix were used to rank nearshore fish species in a quantifiable and reproduceable manner. By determining species rank, fisheries which impact these species can also be ranked for inclusion in management plans. The matrix was developed by John Ugoretz and Paul Reilly of the California Department of Fish and Game. The coordinator for the Nearshore Species Matrix scoring process was Kevin Walters.

C.1.2 Instructions

All criteria apply to the 20-yr period of 1980 through 1999, or the part of that period for which data were available, unless otherwise specified. This time span is intended to demonstrate trends which transcend short-term anomalous events such as El Niño. Each criterion was assessed based on the best available data. It is understood that new data may change future rankings.

These criteria were based on a synthesis of ideas developed by the Department's Nearshore Fishes Team and a paper by Weber (1998).

The term "species" is frequently used in this document. However, it should be noted that much of the fisheries-dependent data is based on information from "market categories" listed on Department's fish landing receipts, which do not necessarily equate to individual or specific species. For criteria 1a, 2a, 3a, and 4, estimated species landing data (based on market category sampling) should be used when possible to refine the market category data. If estimated species landing data are not available, the market category or categories for which a particular species is the primary component should be used and should be considered the best available data. Commercial landings data are reported in pounds of fish and recreational landing data are reported in numbers of fish.

Commercial fishing data (criteria 1a, 2a, 3a, and 4) were broken down by port or port region, depending on data availability. The nine port regions were: San Diego, Los Angeles, Santa Barbara, Morro Bay, Monterey, San Francisco, Bodega Bay, Fort Bragg, and Eureka/Crescent City. Each port region was given a share of the possible points. Thus, since there were nine port regions defined by the Department's Field Offices and a total of three available points for each of the criteria, each individual port region could contribute a maximum of $3 / 9$ of a point for each criteria. If a particular species was not landed in a particular port region, zero points were given.

Each criterion was evaluated on a scale of 0 to 3 , with greater points demonstrating species in greater need of immediate attention. If no data were available for each life history criterion (5,6 , and 7 a through $7 e$), the species in question was given a rank of 1 for that criterion.

C.1.3 Fishery Criteria

1a) Changes in ex-vessel prices in the commercial fishery
This criterion is defined as average ex-vessel price per pound over the past 5 yrs (1995-1999), divided by the average ex-vessel price per pound over the past 20 yrs (1980-1999), expressed as a decimal fraction. Each value after the base year was adjusted for inflation by dividing by the Consumer Price Index (CPI) for the cumulative period (i.e., if CPI increased by 3.0\% from base year to year two, the average value in year two would be divided by 1.03).

0 - decrease, no change, or not taken
2 - increase by 1.21 to 1.50

1 - increase by 1.01 to 1.20
3 - increase by more than 1.50

Example: adjusted average price 1995-1999: $\$ 3.50$ adjusted average price 1980-1999: $\$ 2.75=1.27=2$ points

1b) Rank in the sport fishery
This criterion is defined as the average rank in the recreational/sport harvest for the past 20 yrs.

0 - not taken
2 - middle $1 / 3$ of the ranks

1 - bottom $1 / 3$ of the ranks
3 - top $1 / 3$ of the ranks

2a) Increases in commercial landings
This criterion is defined as average commercial landings over the past 5 yrs divided by the average over the past 20 yrs , expressed as a percent.

0-no increase or not taken
2-121 to 150\%

1-101 to 120\%
3 - greater than 150\% increase

2b) Increases in sport landings
This criterion is defined as the average sport landings over the past 5 yrs divided by the average sport landings over the past 20 yrs, expressed as a percent.

0 - no increase or not taken
1-101 to 120\%
2-121 to 150\%
3 - greater than 150\% increase
3a) Decreases in commercial landings
This criterion is defined as average commercial landings over the past 5 yrs divided by the average commercial landings over the past 20 yrs , expressed as a percent.

0 - no decrease or not taken
2-50 to 79\%

1-80 to 99\%
3 - less than 50%

3b) Decreases in sport landings
This criterion is defined as the average sport landings over the past 5 yrs divided by the average sport landings over the past 20 yrs , expressed as a percent.

0 - no decrease or not taken
1-80 to 99\%
2-50 to 79\%
3 - less than 50%
4) Live fish take in the commercial fishery

This criterion is defined as total live landings for the past 5 yrs divided by total landings for the past 5 yrs , expressed as a percent.

0 - no live landings
2 - live landings 21 to 50% of total

1 - live landings 1 to 20% of total
3 - live landings over 50\% of total

C.1.4 Life History Criteria

5) Special Habitat Need

Does the species depend on habitats that are especially susceptible to damage or loss at any life stage? If not, zero points should be assigned for this criterion. If so, is that habitat subject to episodic variability (e.g., kelp habitat loss during El Niño events), long-term damage (e.g., human disturbance of intertidal areas, pollution), or permanent loss (e.g., filling of bays and estuaries, etc.)? If the species has a special habitat need but that habitat has not been altered, zero points should be assigned. If the habitat has been altered, points should be assigned as specified below:

0 - no special need
2 - long term damage (over 5 yrs)

1 - episodic variability (1 to 5 yrs)
3 - permanent loss

6) Migrational vulnerability

Does the species aggregate in or migrate to areas where it is more vulnerable to harvest? This could include spawning aggregations or returns to predictable areas (i.e., lingcod returning to nearshore areas to spawn).
$\mathbf{0}$ - no special vulnerability $\quad \mathbf{3}$ - vulnerability exists at some life stage

7) Special characteristics

Does the species possess certain characteristics that make it more vulnerable to over-fishing? Each category is scored separately as shown below. A yes means the species possesses the characteristic, a no means the species does not possess the characteristic.
a) Susceptible to barotrauma (damage due to pressure changes from being brought to the surface from deep water) on capture, making live releases difficult

$$
0 \text { - no } \quad \mathbf{3} \text { - yes }
$$

b) Sequential hermaphrodites and/or sexual dimorphism by size (i.e., removing larger, older individuals changes the sex ratio of the population)

$$
0 \text { - no } \quad 3 \text { - yes }
$$

c) Low fecundity as defined by having less than 100 embryos per spawning event

$$
0 \text { - no } \quad 3 \text { - yes }
$$

d) Late maturation (based on age at 50% maturity for females)

$$
\begin{array}{ll}
\mathbf{0}-0 \text { to } 2 \text { yrs } & \mathbf{1 - 3} \text { to } 5 \text { yrs } \\
\mathbf{2 - 6} \text { to } 10 \text { yrs } & \mathbf{3} \text { - over } 10 \text { yrs }
\end{array}
$$

e) Longevity (relatively high maximum age indicates longer generation time, adding to vulnerability)

$\mathbf{0 - 0}$ to 2 yrs	$\mathbf{1 - 3}$ to 10 yrs
$\mathbf{2 - 1 1}-11$ to 20 yrs	$\mathbf{3 - o v e r} 20$ yrs

C.1.5 Other Factors

8a) Special commercial harvest limitations
Does the species have a commercial quota, trip limit, or zero take commercial limitation? (For example, all nearshore rockfish species as defined by the Pacific Fisheries Management Council have trip limits.)

$$
0 \text { - no special limit exists } \quad 3 \text { - special limit does exist }
$$

8b) Special sport harvest limitations
Is there a sport fishing bag limit less than the standard 10 fish of a single species limit?

$$
0 \text { - no special limit exists } \quad 3 \text { - special limit does exist }
$$

9) Additive take

How many fishery classes actively take the species? Fishery classes include sport, commercial, and scientific/aquaria collections. The term "actively" is defined as having occurred within the last 3 yr .

0 - not actively taken in any fishery
2 - taken actively by two fisheries

1 - taken actively by only one fishery
3 - taken actively by all three fisheries

Arranged by species score																				
Species	Scientific Name	Spp. ID	1a	1b	2a	2b	3 a	3b	4	5	6	7a	7b	7 c	7d	7 F	8a	8b	9	total score
rockfish, brown	Sebastes auriculatus	267	3	3	1	0	3	2	2	3	3	1	0	0	1	3	3	0	2	30
shark, spiny dogfish	Ophiodon elongatus	195	2	3	0	0	3	2	1	1	3	1	0	0	1	2	3	3	2	27
shark, leopard	Squalus acanthias	152	2	2	1	0	1	3	0	3	3	0	0	3	3	3	0	0	2	26
lingcod	Triakis semifasciata	153	1	2	0	0	2	2	1	3	3	0	0	3	1	3	0	3	2	26
halibut, California	Paralichthys californicus	222	0	3	1	3	1	0	1	3	3	0	0	0	1	3	0	3	2	24
rockfish, grass	Sebastes nebulosus	258	3	3	2	0	1	2	2	1	0	1	0	0	1	3	3	0	2	24
rockfish, gopher	Sebastes carnatus	263	2	3	3	0	1	2	2	1	0	1	0	0	1	3	3	0	2	24
rockfish, China	Sebastes serranoides	651	3	3	1	0	1	2	1	1	0	1	0	0	2	3	3	0	2	23
rockfish, olive	Sebastes rastrelliger	652	3	2	2	0	0	3	2	1	0	1	0	0	1	3	3	0	2	23
rockfish, black and yellow	Platichthys stellatus	231	0	3	0	0	3	3	1	3	3	1	0	0	1	3	0	0	2	23
rockfish, black	Sebastes melanops	252	1	3	2	0	1	3	1	1	0	1	0	0	2	3	3	0	2	23
rockfish, copper	Sebastes chrysomelas	251	3	2	2	0	0	2	2	1	0	1	0	0	1	3	3	0	2	22
shark, soupfin	Sebastes caurinus	655	2	3	2	0	0	2	1	1	0	1	0	0	2	3	3	0	2	22
flounder, starry	Stereolepis gigas	280	0	1	0	1	3	0	0	1	3	1	0	0	1	3	3	3	2	22
bass, giant sea	Paralabrax nebulifer	278	0	3	0	0	2	1	0	3	3	1	1	0	1	3	3	0	1	22
shark, brown smoothhound	Scorpaena guttata	260	1	3	1	2	2	0	3	1	3	1	0	0	0	3	0	0	2	22
bass, barred sand	Atherinopsis californiensis	184	2	3	1	2	2	0	0	3	3	1	0	0	1	2	0	0	2	22
scorpionfish, California	Sebastes mystinus	665	2	3	1	0	1	1	1	1	0	1	0	0	2	3	3	0	2	21
jacksmelt	Galeorhinus zyopterus	159	0	1	0	2	2	0	0	3	3	0	0	3	1	1	0	3	2	21
rockfish, blue	Hexagrammos decagrammus	290	3	3	2	0	0	3	3	1	0	1	0	0	1	2	0	0	2	21
greenling, kelp	Sebastes atrovirens	659	2	2	2	0	1	1	2	1	0	1	0	0	1	3	3	0	2	21
rockfish, quillback	Sebastes maliger	970	1	2	2	0	0	3	1	1	0	1	0	0	2	3	3	0	2	21
sanddab, Pacific	Citharichthys sordidus	227	0	3	2	0	1	1	0	3	0	1	0	3	1	1	3	0	2	21
sheephead, California	Semicossyphus pulcher	145	2	2	3	0	0	1	1	1	0	1	3	0	1	3	0	0	2	20
rockfish, kelp	Mustelus henlei	154	0	2	0	0	2	2	0	3	3	0	0	3	1	2	0	0	2	20
surfperch, white	Paralabrax clathratus	277	0	3	1	0	2	1	0	0	3	1	0	0	1	3	3	0	2	20
surfperch, black	Embiotoca jacksoni	552	3	2	0	2	2	0	1	3	0	1	0	3	0	1	0	0	2	20
cabezon	Scorpaenichthys marmoratus	261	3	3	2	0	0	1	3	1	0	1	0	0	1	2	0	0	2	19

Draft NFMP Appendix C 05-09-02

C-6

Arranged by species score																				
Species	Scientific Name	Spp. ID	1a	1b	2a	2b	3a	3b	4	5	6	7 a	7b	7 c	7d	7 e	8a	8b	9	total score
bass, kelp	Amphistichus rhodoterus	553	0	3	1	0	1	3	0	3	0	1	0	3	1	1	0	0	2	19
ratish, spotted	Phanerodon furcatus	556	2	3	0	0	2	2	0	3	0	1	0	3	0	1	0	0	2	19
shark, grey smoothhound	Hypomesus pretiosus	182	0	3	2	0	1	2	0	3	3	1	0	0	1	1	0	0	2	19
surfperch, redtail	Cymatogaster aggregata	554	1	3	0	0	2	2	1	3	0	1	0	3	0	1	0	0	2	19
smelt, surf	Hypsypops rubicundus	482	2	1	0	3	1	0	0	1	0	1	0	0	1	2	3	3	1	19
surfperch, pile	Amphistichus argenteus	551	0	3	2	3	1	0	0	3	0	1	0	3	0	1	0	0	2	19
surfperch, shiner	Hydrolagus colliei	166	0	1	2	0	0	3	0	3	3	0	0	3	1	1	0	0	1	18
garibaldi	Mustelus californicus	179	0	1	1	0	1	1	0	3	3	0	0	3	1	2	0	0	2	18
surfperch, barred	Damalichthys vacca	559	0	3	0	0	1	3	0	3	0	1	0	3	1	1	0	0	2	18
ray, bat	Hypsurus caryi	562	2	2	1	1	1	0	1	3	0	1	0	3	0	1	0	0	2	18
shark, sevengill	Seriola dorsalis	40	1	2	1	3	2	0	0	0	0	1	0	0	1	2	3	0	2	18
surfperch, rainbow	Anarrhichthys ocellatus	454	2	1	0	0	3	3	1	0	0	1	0	0	1	1	3	0	2	18
yellowtail	Myliobatis californica	171	0	1	1	0	1	2	0	3	0	0	0	3	1	3	0	0	2	17
eel, wolf	Notorynchus maculatus	162	0	1	1	0	1	1	0	3	0	0	0	3	1	1	0	3	2	17
sculpin, staghorn	Leptocottus armatus	272	0	2	0	0	2	3	2	3	0	1	0	0	1	1	0	0	2	17
bass, spotted sand	Paralabrax maculatofasciatus	276	0	2	0	0	0	2	0	3	0	1	3	0	0	2	3	0	1	17
sole, rock	Caulolatilus princeps	490	1	3	1	2	1	0	1	0	0	1	0	0	3	2	0	0	2	17
stingray, round	Mugil cephalus	135	0	1	1	1	1	0	0	3	3	1	1	0	1	2	0	0	2	17
ray, Pacific electric	Spirinchus starksi	187	0	1	1	0	2	3	0	3	3	1	0	0	1	1	0	0	1	17
smelt, night	Lepidopsetta bilineata	203	0	2	1	0	1	3	0	3	0	0	0	0	1	3	0	0	2	16
whitefish, ocean	Cebidichthys violaceus	456	2	1	2	0	0	1	2	2	0	1	0	0	1	2	0	0	2	16
mullet, striped	Sebastes serriceps	658	0	2	1	3	0	0	1	1	0	1	0	0	1	1	3	0	2	16
eel, monkeyface	Rhacochilus toxotes	558	1	2	1	1	1	0	1	1	0	1	0	3	1	1	0	0	2	16
guitarfish, shovelnose	Urolophus halleri	173	0	1	1	3	1	0	0	3	0	0	0	3	1	1	0	0	2	16
rockfish, treefish	Squatina californica	165	1	1	0	3	3	0	1	0	0	0	0	3	1	1	0	0	2	16
shark, Pacific angel	Leuresthes tenuis	181	0	1	0	3	2	0	0	3	3	1	0	0	1	1	0	0	1	16
shark, sixgill	Hyperprosopon argenteum	557	1	3	1	0	2	1	0	1	0	1	0	3	0	1	0	0	2	16
surfperch, rubberlip	Torpedo californica	172	0	1	1	0	1	3	0	1	3	0	0	3	1	1	0	0	1	16

Arranged by species score																				
Species	Scientific Name	Spp. ID	1a	1b	2a	2b	3a	3b	4	5	6	7a	7b	7 c	7 d	7 e	8a	8b	9	total score
grunion, California	Chromis punctipinnis	479	3	2	1	3	0	0	0	1	0	1	0	0	1	1	0	0	2	15
skate, California	Rhinobatos productus	174	1	2	0	2	2	0	0	0	0	0	0	3	1	2	0	0	2	15
sole, sand	Hexanchus griseus	161	0	1	1	0	1	3	0	0	0	0	0	3	1	1	0	3	1	15
topsm elt	Raja inornata	177	2	1	1	0	0	3	0	0	0	0	0	3	1	3	0	0	1	15
sole, English	Psettichthys melanostictus	205	0	2	0	0	3	3	0	3	0	0	0	0	1	1	0	0	2	15
blacksmith	Atherinops affinis	186	0	3	0	1	0	0	0	3	3	1	0	0	1	1	0	0	2	15
shark, horn	Heterodontus francisci	169	0	1	0	0	2	2	1	0	0	0	0	3	3	1	0	0	2	15
surfperch, walleye	Gymnothorax mordax	452	2	1	1	0	1	3	1	0	0	1	0	0	1	3	0	0	1	15
eel, California moray	Embiotoca lateralis		0	3	0	0	0	2	0	3	0	1	0	3	1	1	0	0	1	15
surfperch, striped	Parophrys vetulus	206	0	1	0	0	2	3	0	3	0	0	0	0	1	3	0	0	1	14
sanddab, speckled	Citharichthys stigmaeus	228	0	2	1	0	0	3	0	3	0	1	0	0	1	1	0	0	2	14
skate, longnose	Menticirrhus undulatus	426	0	2	0	1	2	0	0	3	0	1	0	0	1	1	3	0	0	14
sole, petrale	Sphyraena argentea	130	0	3	2	3	1	0	0	0	0	1	0	0	0	2	0	0	2	14
opaleye	Hermosilla azurea	602	1	1	0	3	1	0	0	1	0	1	0	1	1	1	0	0	2	13
corbina, California	Anisotremus davidsoni	480	1	2	0	0	1	2	0	1	0	1	0	0	1	2	0	0	2	13
barracuda, California	Genyonemus lineatus	435	1	3	1	1	2	0	0	0	0	1	0	0	0	2	0	0	2	13
zebra perch	Raja rhina		0	3	0	0	0	3	0	0	0	0	0	3	1	3	0	0	0	13
sargo	Girella nigricans	475	0	2	0	2	1	0	1	1	0	1	0	0	1	2	0	0	2	13
croaker, white	Eopsetta jordani	209	0	1	0	0	2	3	0	0	0	0	0	0	2	3	0	0	2	13
skate, big	Seriphus politus	440	2	3	1	0	1	2	0	0	0	1	0	0	0	1	0	0	2	13
butterfish, Pacific	Halichoeres semicinctus	146	0	2	0	0	1	1	0	1	0	1	3	0	1	2	0	0	1	13
queenfish	Umbrina roncador	423	0	2	0	2	0	0	0	0	0	1	0	0	1	2	3	0	1	12
thornback	Sebastes dallii	671	0	2	0	0	0	1	0	1	0	1	0	0	1	2	3	0	1	12
turbot, diamond	Raja binoculata	176	0	1	1	0	0	3	0	0	0	0	0	3	1	2	0	0	1	12
wrasse, rock	Peprilus simillimus	80	0	1	0	0	2	3	0	0	0	1	0	1	1	1	0	0	2	12
croaker, yellowfin	Roncador stearnsii	422	0	2	0	2	0	0	0	0	0	1	0	0	1	2	3	0	1	12
rockfish, calico	Amphistichus koelzi	560	0	2	0	0	1	1	0	0	0	1	0	3	1	1	0	0	2	12
croaker, spotfin	Hypsopsetta guttulata	236	0	0	0	0	1	2	0	3	3	0	0	0	1	1	0	0	1	12

Arranged by species score																				
Species	Scientific Name	Spp.ID	1a	1b	2a	2b	3a	3b	4	5	6	7a	7b	7c	7d	7 e	8a	8b	9	total score
surfperch, calico	Porichthys notatus	485	0	1	1	0	1	3	0	2	0	1	0	0	1	1	0	0	1	12
midshipman, plainfin	Platyrhinoidis triseriata	178	0	1	1	0	0	2	0	0	0	0	0	3	1	1	0	0	2	11
shark, swell	Medialuna californiensis	478	0	2	1	0	1	1	0	1	0	1	0	0	1	1	0	0	2	11
halfmoon	Hyperprosopon ellipticum		0	3	0	0	0	1	0	1	0	1	0	3	0	1	0	0	1	11
surfperch, silver	Cephaloscyllium ventriosum	163	0	0	0	0	1	0	0	1	0	0	0	3	3	1	0	0	1	10
kelpfish, giant	Heterostichus rostratus	501	0	1	0	0	1	2	0	1	0	1	0	0	1	1	0	0	2	10
salema	Xenistius californiensis	484	0	1	0	3	0	0	0	1	0	1	0	0	1	1	0	0	1	9
greenling, rock	Hexagrammos superciliosus		0	2	0	0	0	2	0	1	0	1	0	0	1	1	0	0	1	9
eulachon	Thaleichthys pacificus	188	*	0	0	0	1	0	0	3	3	1	0	0	0	1	0	0	0	9
senorita	Oxyjulis californica	144	0	1	1	0	0	2	0	1	0	1	0	0	0	1	0	0	1	8
smelt, longfin	Spirinchus thaleichthys		*	0	0	0	0	0	0	3	3	1	0	0	0	1	0	0	0	8
pipefish, bay	Syngnathus leptorhynchus		*	0	0	0	0	0	0	3	3	1	0	0	0	0	0	0	0	7
prickleback, rock	Xiphister mucosus		*	0	0	0	0	0	0	2	0	1	0	0	1	2	0	0	1	7
sole, slender	Gillichthys mirabilis	483	0	0	0	0	2	0	0	3	0	1	0	0	1	0	0	0	0	7
tonguefish, California	Lyopsetta exilis	210	0	0	1	0	0	0	0	0	0	0	0	0	1	3	0	0	1	6
mudsucker, longjaw	Symphurus atricauda		2	0	0	0	0	0	0	3	0	0	0	0	0	1	0	0	0	6
turbot, curlfin	Pleuronichthys decurrens	235	1	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	1	5
skate, sandpaper	Raja kincaidii		*	0	0	0	0	0	0	0	0	0	0	3	1	1	0	0	0	5
skate, starry	Raja stellulata		0	0	0	0	0	0	0	0	0	0	0	3	1	1	0	0	0	5
turbot, spotted	Pleuronichthys ritteri	239	*	0	0	0	0	0	0	3	0	0	0	0	1	1	0	0	0	5
turbot, hornyhead	Hippocampus ingens		*	0	0	0	0	0	0	3	0	1	0	0	0	1	0	0	0	5
seahorse, Pacific	Pleuronichthys verticalis	238	*	1	1	0	0	0	0	0	0	0	0	0	1	1	0	0	1	5
Irish lord, red	Hemilepidotus hemilepidotus		*	0	0	0	0	0	0	0	0	1	0	0	1	1	0	0	1	4
turbot, C-O	Lythrypnus dalli	486	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	0	3
goby, bluebanded	Syngnathus californiensis		*	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	3
pipefish, kelp	Pleuronichthys coenosus	237	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	3
goby, zebra	Lythrypnus zebra	488	*	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	2

C. 2 Literature Cited

Weber LM. 1998. A global Assessment of major fisheries at risk, relevant management regimes, and non-governmental organizations. In: A review of the Pew Charitable Trusts, February 1998.

